
Sensitivity to anomalous Higgs couplings 
via WW → HH  at e+e−  colliders
Manuel González López 

Máster en Física Teórica

MÁSTERES 
DE LA UAM
2018 - 2019

Facultad de Ciencias



Sensitivity to anomalous Higgs
couplings via WW → HH at e+e−

colliders

Manuel González López
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Abstract

The goal of this work is to test the sensitivity of certain scattering processes
to Beyond the Standard Model interactions among Higgs and electroweak
gauge bosons. We will do so by employing the Electroweak Chiral Lagrangian
(EChL), an effective field theory based on Chiral Perturbation Theory, which
allows to introduce parameters that quantify possible deviations from the
Standard Model (SM) in a model independent way. First, we present this
theoretical framework, and describe how it allows to compute observables
that may be sensitive to New Physics. Then, we focus on a particular process,
WW → HH, and compare its behaviour within the SM and the EChL. We
will first describe the dynamics of the subprocess, and then embed it in a
process that could take place in an e+e− collider, analyzing how the cross
section depends on the EChL parameters by making a scan on the parameter
space. Finally, we conclude by estimating the number of events that could
be detected in this kind of accelerator once the Higgs bosons decay, trying
to be predictive on the experimental consequences of the possible anomalous
couplings.
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1 Introduction

Currently, our understanding of the fundamental constituents of Nature is based on
the so called Standard Model of Particle Physics (SM) [1–3]. This theory, developed
along the 20th century thanks to both theoretical and experimental efforts, describes
with great success the fundamental particles (those which are not composite states)
and the interactions among them.

Figure 1.1: Particle content of the Standard Model.

The Standard Model is a quantum field theory based on the symmetry group
SU(3)C × SU(2)L × U(1)Y . These symmetries are gauge (local) and determine the
characteristics of the fundamental particles and how they interact with each other.
The SU(3)C subgroup describes the strong interactions between quarks and gluons,
while the SU(2)L×U(1)Y is responsible for the electroweak interactions. The study
of the latter will be the motivation for this work.

Electroweak interactions affect all particles which exhibit weak isospin (the charge
associated to the SU(2)L subgroup) and/or hypercharge (the quantum number re-
lated to U(1)Y ). All fermions are hypercharged, while only the left-handed ones show
weak isospin. According to the gauge principle, there are three mediator bosons re-
lated to the SU(2)L group (W 1,W 2,W 3) and one, B, associated to U(1)Y . Gauge
symmetry forces all these particles to be massless (any mass term for them would
explicitly break gauge invariance).

However, electroweak symmetry is not preserved in Nature: it is spontaneously
broken. This means that, although the Lagrangian which describes this interaction is
exactly invariant under gauge transformations, its ground state is not. This breaking
takes place via the Higgs mechanism [4–9]. A scalar complex doublet, which con-
tains four degrees of freedom, is introduced in the theory, coupled to the electroweak
gauge bosons. This scalar has an associated potential, which has infinite degenerate
non-zero minima. This means that the neutral component of the doublet will take a
vacuum expectation value (vev) which, through the couplings between the doublet
and the electroweak bosons, will render the latter massive. More specifically, the
spontaneous symmetry breaking (SSB) will generate, according to the Goldstone
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Theorem [10], as many (massless) Nambu-Goldstone bosons as generators of the
broken group. These modes will then mix with the massless gauge bosons, which
will acquire a third (longitudinal) degree of freedom, becoming massive. In sim-
pler words, the gauge bosons “eat” the Goldstone modes and acquire a mass. The
Higgs boson is the fourth degree of freedom of the scalar doublet. It is included in
the spectrum as a remnant of the electroweak symmetry breaking, appearing as a
massive particle. The breaking of the electroweak symmetry is not complete: only
three of the four bosons (the usual W+,W− and Z) obtain a mass, while the fourth
one (the photon) stays massless. This means that, even after SSB, the theory is
still invariant under a U(1) gauge group, associated to electromagnetic interactions
(those mediated by the photon). The physical, massive bosons cannot be associated
one-to-one with the massless ones that exist before the SSB: each set of particles
can be expressed as a linear combination of the other. The misalignment between
the “interaction basis” (the W 1,W 2,W 3 and B bosons) and the “mass basis” (the
physical W,Z and γ) can be understood by a rotation parametrized by the weak
angle θW . This angle (which is a free parameter of the theory and can only be
determined experimentally) relates the masses of the W and Z bosons, as well as
the coupling constants of the broken SU(2)L × U(1)Y and the unbroken U(1)em.

The Higgs mechanism was theoretically developed in the 60s, and the W and Z
bosons were discovered in 1983 [11–14], with masses of around 80 and 90 GeV re-
spectively. By that time, the phenomenon of the SSB was well understood, although
it took 30 years to discover the Higgs boson. In July 2012, the experimental collab-
orations of ATLAS and CMS announced the discovery of a scalar, neutral particle,
with a mass of around 125 GeV [15,16], perfectly compatible with the characteristics
of the Higgs boson responsible for the Higgs mechanism and the electroweak sym-
metry breaking sector (EWSBS). This completed the experimental and theoretical
understanding of the Standard Model of Particle Physics.

Nevertheless, there are both experimental evidences and theoretical issues that
unequivocally point out that the Standard Model cannot be the fundamental theory
of elementary particles. Among the experimental evidences are the non-zero masses
of neutrinos or the presence of dark matter. Most of the theoretical problems are
related to the fine-tuning of some of the free parameters of the theory, for instance,
the flavour puzzle or the strong CP problem.

One of these issues has to do with the Higgs boson: the hierarchy problem. The
mass of the Higgs boson is not stablished by first principles, being a free parameter
of the theory. It was fixed experimentally at around 125 GeV when this particle
was discovered. However, this value is surprisingly small; the Higgs mass is not
protected by any symmetry (in other words, no symmetry would be restored if the
Higgs were massless), so it is very sensitive to quantum ultraviolet (UV) corrections.
Reproducing the experimental value of the Higgs mass would require a huge fine-
tuning in its bare mass. This fact might be a hint towards a theory Beyond the
Standard Model (BSM), some UV dynamics that could explain in a natural way the
value of the Higgs mass. Some of these theories include new symmetries which are
spontaneously broken, with the Higgs boson being the associated (pseudo) Nambu-
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Goldstone boson. This new symmetry would protect its mass, solving the hierarchy
problem. Other lines of investigation dislike the fact that only one fundamental
scalar exists in the Standard Model, and explore the possibility of the Higgs boson
being a composite state. However, up to date, none of these attempts has been
proved succesful, and the hierarchy problem remains open.

Due to this lack of a reliable UV theory, effective theories (see, for instance,
[17] or [18]) have turned out to be a powerful tool in the study of the nature of
the Higgs boson and the EWSBS. Effective theories assume the existence of UV
new Physics above a certain scale, but do not describe the dynamics above that
threshold. Thus, they do not include new particle content, as new states would only
be able to propagate at energies of, approximately, their mass. However, effective
theories take into account the low-energy effect of the possible existence of new
particles, including new interaction vertices or modifications of those which already
existed. The paradigmatic example of an effective theory is Fermi’s theory of weak
interactions [19]. Before the W boson was discovered, Fermi described beta decays
via a four-fermion point interaction, whose intensity was quantified by the coupling
GF . What this theory really describes is a process mediated by a W boson, but
when the energy of the process is much lower than the mass of this particle, its
propagator can be collapsed into a point, yielding a four-fermion interaction. The

effect of the W boson is encoded in the coupling GF . In fact, GF =
√
2g2

8M2
W

.

When studying the spontaneous breaking sector of a certain symmetry, chiral
Lagrangians are a particularly useful tool. First developed in the late 70s [20], these
are effective theories that describe the low-energy dynamics of Goldstone bosons of
a particular SSB. Their effective character lies in the fact that all possible heavier
particles are integrated out, and only the lighter particles are involved. They rely
on the formalism of Chiral Perturbation Theory, working out expansions in the
momenta of the involved particles (assuming these live way below the UV scale).
These Lagrangians are equipped to include deviations from the SM in the form of
certain parameters, which would reflect the effects of new physics above the UV
scale.

One of the main advantages of Chiral Lagrangians is their model-independance:
they provide information that can be interpreted in different manners by different
UV theories. In fact, some models predict certain relations between the parameters
that can be introduced in the Lagrangian. This way, this effective theory is a
perfect approach in order to make contact with experimental data, as it allows to
make predictions for observables in terms of these parameters. Comparisons with
experiment may set constraints on them, which may eventually exclude or favor
certain UV theories.

Chiral Lagrangians were first employed in QCD [20], where chiral symmetry is
spontaneously broken. This SSB yields the existence of three pions, which are,
strictly speaking, pseudo-Nambu-Goldstone bosons (due to the fact that the sym-
metry is also explictly broken by quark masses). The QCD Chiral Lagrangian de-
scribes the dynamics of pions well below the typical mass scale of the rest of the
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hadrons (around 1 GeV), which have been integrated out. In a similar manner, the
Electroweak Chiral Lagrangian (EChL) (which was developed in the 80s [21–23])
provides an effective description of the Nambu-Goldstone bosons which arise from
the electroweak SSB. After the Higgs mechanism takes place, these will mix with the
electroweak gauge bosons, yielding the physical vector bosons W and Z. Thus, the
EChL is useful to describe their dynamics, and, as they couple to the Higgs boson,
it is a powerful tool to probe the EWSBS. Nonetheless, there are still open issues
in the employment of the EChL. As the UV theory is unknown, there is no way
to match the observables computed in the effective theory. This means that these
parameters are free, and need to be constrained experimentally and theoretically
(for instance, imposing unitarity). Besides, the UV scale is also unknown, so it is
unclear up to what energy the effective theory can be reliable.

Regarding the EChL phenomenology, Vector Boson Scattering (VBS) is partic-
ularly useful in order to study the EWSBS sector. These are processes with two
vector bosons in the initial state resulting in two vector and/or Higgs bosons. Their
interest relies in the fact that the vertices in these processes directly involve the op-
erators of the EChL, being sensitive to possible deviations from the SM. In this work
we will focus on the W+W− → HH process. Although it also exhibits interesting
features, we will not consider the ZZ → HH case.

This work will be organized as follows. In section 2 we will present the EChL,
showing how the fields are introduced and how deviations from the SM can be
parametrized. In section 3 we will fully analyze the W+W− → HH subprocess,
both in the SM and in the framework of the EChL. In the latter case, we will
study how the behaviour of this process is sensitive to the variations of the EChL
parameters, checking also whether unitary might be compromised. In section 4, this
analysis will be extended to a whole process that could take place in an e+e− collider.
First we will extract some results within the SM, comparing MonteCarlo simulations
to the effective W approximation (which assumes the W ’s are “partons” inside the
electrons). Then we will check how the whole process is affected by changes in
the EChL parameters, making predictions on the number of events that could be
detected. Our conclusions will be shown in section 5.

2 The Electroweak Chiral Lagrangian

Chiral Lagrangians are a powerful tool in order to study the low-energy dynamics of
the Goldstone bosons arising from the spontaneous breaking of a particular symme-
try. They provide a model-independent treatment of their interactions, being able
to parametrize deviations from the SM and allowing direct contact to data. In par-
ticular, the Electroweak Chiral Lagrangian is a useful approach to understand the
nature of the Goldstone bosons arising from the breaking of the electroweak sym-
metry and, therefore, to describe the interactions involving W , Z and Higgs bosons.
We will first introduce the Chiral Lagrangian in QCD, which is the inspiring refer-
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ence for the building of the EChL, and then show how the latter is constructed and
how it allows to deal with observables.

2.1 The Chiral Lagrangian in QCD

Chiral Lagrangians were first developed to understand the chiral symmetry breaking
in QCD [18]. In the massless limit, strong interactions are invariant under the global
transformations:

ψL → LψL,

ψR → RψR.
(2.1)

ψL(R) are the left- (right-) handed quark fields, and L(R) ∈ SU(Nf )L(R) are indepe-
dent rotations, which act respectively on the left- and right-handed fields. Nf is the
number of quark flavours which are considered, and could be taken to 6 if all quarks
were massless. However, this is not the case. Only the up and down are light enough
(with respect to the natural scale of QCD) to take the massless limit as a good ap-
proximation, so the chiral symmetry of QCD is considered to be SU(2)L× SU(2)R.
In fact, quark mass terms explicitly break chiral symmetry. This explicit breaking is
soft if only the two lightest quarks are in the game, not so soft if the strange quark
is included as well. The charm, bottom and top quarks are definitely too heavy to
even consider the corresponding chiral symmetry at all.

However, the chiral symmetry in QCD is not only explicitly broken by the quark
masses, it is also spontaneously broken. The vacuum of QCD (the quark condensate)
is not invariant under SU(2)L×SU(2)R, and it is only preserved by transformations
contained in the subgroup SU(2)L+R. According to the Goldstone theorem [10], this
SSB will mean the appearance of three degrees of freedom in the form of massless
Nambu-Goldstone bosons. As the symmetry is also not exact at the Lagrangian
level (due to quark masses), these modes will actually be pseudo-Nambu-Goldstone
bosons (pNGB), and will be massive. If only up and down quarks are considered,
three pNGB will arise, which are identified with the three pions. The fact that the
explicit breaking of the symmetry is soft is reflected on the small masses of the pions,
which are much lighter than the rest of the hadrons. If also the strange quark is
considered, the spectrum of pNGBs is enlarged; however, as the strange mass breaks
chiral symmetry in a harder way, the masses of these new modes are closer to that
of the rest of the hadrons.

The mass difference between the pions and the proton (the lightest among the
heavier hadrons) makes it reasonable to write an effective theory which describes
the dynamics of these Nambu-Goldstone modes way below the mass of the proton.
At these “low energies”, all the other hadrons can be integrated out, as they are
too heavy to propagate. Their effect can be taken into account in the values of the
couplings which control the interactions between pions.

The next subsection will be dedicated to describing in detail the Chiral La-
grangian in the electroweak theory. As the technical details of the QCD Chiral
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Lagrangian are mainly the same as in the electroweak case, they will be omitted
here and explained in the following.

2.2 Building the Electroweak Chiral Lagrangian

Chiral Lagrangians can also be applied to the electroweak theory, where a SSB also
takes place. As we already showed, the EW sector of the SM is described by a
gauge SU(2)L × U(1)Y symmetry, which is exact at the Lagrangian level, but is
spontaneously broken due to the presence of a scalar sector. In order to stablish
a relation to the Chiral Lagrangian, the most covenient form to write the EWSBS
Lagrangian is:

LSBS =
1

2
Tr[(DµM)†(DµM)]− V (M), (2.2)

with the potential:

V (M) = −1

4
λ

[
Tr(M †M) +

µ2

λ

]2
. (2.3)

M is a matrix which contains all the four real degrees of freedom of the scalar sector:

M =

(
φ∗0 φ†

−φ− φ0

)
. (2.4)

The covariant derivative in equation 2.2 only involves the gauge bosons associated
to the electroweak group, and clearly not the gluons (as the scalar is a singlet under
SU(3)C). The scalar potential has a non-zero minimum when µ2 < 0 (in fact,
infinite non-zero degenerate minima), yielding a non-trivial ground state which is
not invariant under the gauge symmetry. Once φ0 takes a vacuum expectation value
(vev), this symmetry breaking occurs, and the Higgs boson becomes a propagating
mode.

Three NGBs will arise from this SSB. Via the Higgs mechanism, these modes will
mix with the electroweak gauge bosons (which are massless before the symmetry is
broken), and will constitute the longitudinal degrees of freedom of the latter, ren-
dering them massive. This is how the W and Z bosons acquire masses. The photon
stays massless, because, as it has been mentioned, the full electroweak symmetry is
not broken and the electromagnetic gauge group is still preserved.

Aside from the gauge electroweak symmetry, the scalar sector also exhibits a
global SU(2)L × SU(2)R symmetry (called EW chiral symmetry): the Lagrangian
in equation 2.2 stays unchanged under global transformations of the kind:

M → LMR†, (2.5)

with L(R) ∈ SU(2)L(R).

However, this symmetry is also broken when φ0 takes a vev: the remaining sym-
metry is called custodial: SU(2)L × SU(2)R → SU(2)C = SU(2)L+R. This sub-
group is responsible for the relation between the masses of the W and Z bosons,
MW = MZ cos θW .
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This was a quick summary of the basics of the spontaneous breaking of the
electroweak symmetry through the Higgs mechanism. Nevertheless, as it was stated
in the introduction, some issues remain unsolved in this sector of the SM. Why is
the Higgs mass so small? Why is it the only fundamental scalar in nature? Is it
really fundamental, or could it be composite? Is there a bigger symmetry which
protects the Higgs mass? Could the Higgs be a pNGB of this symmetry?

Some of the BSM theories which attempt to answer these questions make some
predictions on the interactions involving Goldstone/gauge and Higgs bosons [24–27].
Thus, understanding deeply how these particles interact is key to achieving a full
knowledge on the true nature of the EWSBS.

So far, experiment seems to be in almost total agreement with the SM, meaning
that any New Physics should be observed at energies above our current experimental
limits. Nevertheless, some consequences from a hypothetical UV theory could be
detected at energies within our reach, as small deviations from the SM predictions.
In this sense, effective theories are a perfect tool to probe the EWSBS. They allow
to compute observables which can be directly compared to experimental results in a
model-independent way, and are able to parametrize deviations from the SM which
can afterwards be interpreted in different theoretical frameworks.

In particular, the EChL is an effective theory which describes the dynamics of
the electroweak Nambu-Goldstone bosons way below a certain energy scale Λ, that
will be discussed shortly. The EChL incorporates the same symmetries as the SM
(gauge electroweak and global chiral symmetries) and the same particle content
(as all hypothetical heavier particles cannot propagate): the Higgs, Goldstone and
gauge bosons. Regarding the fermions, we will assume they have exactly the same
interactions as in the SM. Therefore, we will not discuss the fermionic sector in this
work.

It is worth noting that, before the Higgs boson was discovered at the LHC in 2012,
considerable effort was made employing the Electroweak Chiral Lagrangian in its
“Higgsless” version [28–33]. The Higgs boson mass was expected to be considerably
larger than it finally turned out to be (some theoretical arguments set upper bounds
at hundreds of GeV), so it was considered a heavy field and integrated out. When
the Higgs mass was finally set by experiments at 125 GeV, the EChL was modified
to include the Higgs boson as a propagating degree of freedom, in the way that will
be explained in the following.

The way to introduce these fields in an effective theory is not unique; in fact,
many representations are possible, yielding representation dependent Lagrangians.
However, physical predictions are obviously representation independent. In the
EChL [34], [35], the Higgs h is included as a chiral singlet, while the Goldstone
bosons w are placed in a non-linear exponential representation (same as in the QCD
Chiral Lagrangian). The gauge fields, W and B, and their corresponding field
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strengths are written as usual. Thus, the building blocks of the EChL are:

U = exp

(
iwaτa

v

)
, (2.6)

Ŵµ =
g

2
~Wµ~τ , (2.7)

B̂µ =
g′

2
Bµτ

3, (2.8)

Ŵµν = ∂µŴν − ∂νŴµ + i[Ŵµ, Ŵν ], (2.9)

B̂µν = ∂µB̂ν − ∂νB̂µ. (2.10)

Chiral Lagrangians rely on Chiral Perturbation Theory [36, 37], a method based in
performing expansions in the quantity p/Λ, where p is the characteristic momentum
(or energy) scale of the dynamics.

In the case of QCD, Λ = 4πfπ, where fπ = 93 MeV is the pion decay constant;
in the EW case, Λ = 4πv ∼ 3 TeV, where v is the mentioned vev of φ0. This
scale is naturally introduced when performing loop computations, and controls the
contributions corresponding to quantum corrections. In other words, a quantum
correction associated to a process involving n loops would be suppressed by a factor
Λ−n. Nevertheless, this scale is not necessarily the cut-off at which the consequences
of the hypothetical UV theory would be manifest. For instance, in QCD, 4πfπ does
not exactly coincide with the mass of the proton, which is roughly where high-energy
dynamics start to be relevant. An effective theory can be trusted if it describes
physics way below these two scales (the natural one arising from loops and the UV
cut-off).

So far, experiment has ruled out the existence of New Physics: the data obtained
at the LHC, where the highest energies are reached, is consistent with the SM. This
means the UV cut-off is still unknown, and must be, at least, at the O(TeV) scale
or above. Thus, the natural loop scale, 4πv, marks the limit up to which the EChL
can be consistently employed as an effective low-energy theory.

The quotient p/Λ is expected to be small (if it was not, an effective theory would
be nonsensical), and, thus, a power series can be written. In Chiral Lagrangians,
the different terms that can be written are organized according to their “chiral
dimension”, which esentially determines the power of p involved in a certain term.
The masses and momenta of the fields are of order p. This procedure allows to write
the EChL as the sum of different pieces:

LEChL = LGF + LFP + L2 + L4 + . . . (2.11)

LGF and LFP are, respectively, the gauge-fixing and the non-Abelian Fadeev-Popov
terms, while Li contains all the terms with chiral dimension i (terms which scale
as pi). The higher order terms will be suppresed by powers of Λ, so they will be
subleading.
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W+
µ

W−
ν

h VWWH = igMWagµν

W+
µ

W−
ν

h

h

VWWHH = ig2

2
bgµν

Zµ

Zν

h VZZH = ig
c2W

MWagµν

Zµ

Zν

h

h

VZZHH = ig2

2c2W
bgµν

Figure 2.1: Feynman rules extracted from the EChL for Higgs-gauge bosons inter-
actions.

In particular, the first term reads:

L2 = − 1

2g2
Tr
(
ŴµνŴ

µν
)
− 1

2g′2
Tr
(
B̂µνB̂

µν
)

+
1

2
∂µh∂

µh− V (h)+

v2

4
F(h)Tr

(
DµU

†DµU
)

+ . . .

(2.12)

The covariant derivative of the matrix field U reads:

DµU = ∂µU + iŴµU − iUB̂µ. (2.13)

As the Higgs field is introduced in the EChL as a chiral singlet, F(h) can be an
arbitrary function. The usual choice is a polynomical one:

F(h) = 1 + 2a
h

v
+ b

h2

v2
, (2.14)

where a and b are free parameters. Notice that, in the SM, a = b = 1.

Once the exponential in equation 2.6 is expressed as a power series, the last
term in equation 2.12 will yield interaction terms between the Goldstone, W , Z and
Higgs bosons. In particular, the relevant interactions for the present work are the
ones involving the physical gauge bosons and the Higgs boson, which are given in
figure 2.1.

2.3 Computing observables using the EChL

These Feynman rules directly involve the parameters a and b, and so will the cross
sections for processes which include these vertices. The SM Feynman rules are re-
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covered when a = b = 1, so any deviations from these values would translate on
cross sections which would differ from those predicted by the SM. The goal of this
work is to determine quantitavely the sensitivity of certain processes to variations
of these two parameters, and predict the value for their cross sections when the
parameters depart from their SM values. These results could (hopefully) be checked
experimentally, determining if deviations from the SM take place. These possible
anomalies in the couplings could then be interpreted in different theoretical frame-
works, extracting deep conclusions concerning the true nature of the Higgs boson
and the EWSBS. However, this is well beyond the intentions of this work.

Vector Boson Scattering (VBS) processes are very useful in this context. These
are 2-to-2 processes, with two vector bosons (W or Z) in the initial state, and two
vector or Higgs bosons in the final state. They are directly sensitive to the a and
b parameters, and, clearly, offer bigger cross sections in the context of a fermionic
accelerator than processes with one or two Higgs bosons in initial states (due to the
small Yukawa couplings of the fermions we are able to collide). In particular, this
work will be devoted to the analysis of the W+W− → HH process (instead of other
interesting ones, such as ZZ → HH for instance) for reasons we will explain further
on.

The EChL allows to compute observables for any value of the parameters a and
b. However, there are both experimental and theoretical reasons which have already
set constraints on them.

Regarding b, recent experimental results have for the first time constrained b
to be in the allowed region b ∈ [−1.02, 2.71] at a 95% confidence level [38]. This
parameter controls couplings among two gauge and two Higgs bosons, and thus
would require the production of two Higgs bosons at tree-level. There are also
theoretical arguments [39] to argue that this parameter must be in the range b ∈
[−1, 3]: otherwise resonances at hundreds of GeV would have been detected at the
LHC. This work will (attempt to) show how Vector Boson Scattering processes
at e+e− colliders can be a very interesting source of information regarding this
parameter.

A lot more can already be said about a. This parameter controls the interaction
concerning two gauge bosons and one Higgs, making it much easier to be tested
experimentally (as the production of a single Higgs is more feasible than that of
a pair). The combined measurements of ATLAS and CMS with the LHC Run 1
dataset provide a value of a = 1.04 ± 0.05 [40]. Also, this parameter can be fitted
using electroweak precision observables, especially the W mass, due to its small
uncertainty. Assuming no New Physics contributions, the fits show that, with a
95% confidence level, a ∈ [0.99, 1.06] [41,42]. There are also theoretical reasons that
favour a < 1 [43], employing positivity arguments. Besides, deviations of a few per
mille in the Peskin-Takeuchi parameters would set a in the interval [0.84, 0.95] at
the 95% confidence level [44]. All in all, there does not seem to be much room for
deviations in a with respect to the Standard Model value, a = 1.
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On the other hand, both parameters are necessarily constrained by unitarity.
As it is characteristic of effective (UV incomplete) theories, the EChL may predict
scattering probabilities larger than 1 for some values of the parameters it includes.
This depends on the energy at which the studied processes take place, and does not
set universal constraints on a and b. Nevertheless, imposing unitarity means, at it
will be shown, that none of these parameters can deviate too much from their SM
values, in order to guarantee the unitarity of the theory and physically acceptable
predictions.

In order to study the unitarity properties of a particular scattering process, a
partial wave analysis is an optimal tool. The scattering amplitude of a 2-to-2 process,
where the spins of the particles are s1 to s4, can be decomposed as:

Fs1,s2,s3,s4(s, θ, φ) = 16πκ
∑
J

(2J + 1)D∗Jss′(φ, θ,−φ)aJ,s1,s2,s3,s4(s), (2.15)

where s is the squared center-of-mass energy of the process, θ and φ are the polar
and azimuthal angles, aJ is the partial wave amplitude associated to a total angular
momentum J , s ≡ s1 − s2, s′ ≡ s3 − s4, and D are the Wigner functions. κ is 1 if
the external particles are different and 2 if they are identical.

The orthogonality properties of the Wigner functions allow to write the partial
wave amplitudes as:

aJ,s1,s2,s3,s4(s) =
1

32πκ

∫ 1

−1
d cos θFs1,s2,s3,s4(s, cos θ)dJss′(cos θ), (2.16)

where dJss′(cos θ) = ei(s
′−s)φD∗Jss′(φ, θ,−φ).

Unitarity requires the modulus of every partial wave amplitude to be smaller than
1. Imposing this feature up to the energy at which the process is taking place allows
to determine within which range of values the parameters a and b can live.

Looking for possible anomalous couplings of gauge and Higgs bosons via devi-
ations in a and b is not the only procedure to look for deviations from the SM
employing the EChL. Terms in equation 2.11 with higher chiral dimension than L2

or L4 would yield other Feynman rules modifying interaction vertices of Z and W
bosons, and even allowing couplings which do not exist in the SM, such as the one
involving 4 Zs. All these possible deviations are also controlled by other EChL
parameters, in a similar manner as it was described for a and b. The analysis that
will be performed throughout this work could be done in a similar way, employing
different processes, in order to test the sensitivity to the other EChL parameters in
L4 [45].

This work will only deal with tree-level processes; loop level computations are
way beyond our intentions. In this theory, divergences appearing at one-loop order
from L2 can be absorbed by counterterms in L4. A finite prediction of a scattering
amplitude, up to O(p4), at one-loop level would be of the generic form F = F (2) +
F (4). Here, F (2) is the O(p2) contribution, arising from L2 at tree-level, while F (4)
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corresponds to O(p4) terms, coming from L2 at one-loop level and from L4 at tree-
level. However, renormalization within the EChL framework is still an open line of
research (see, for instance, [46,47]).

2.4 Linear vs. non-linear representations

So far, we have only introduced the EChL, which is a non-linear effective theory,
in the sense that the NGBs are introduced in an exponential matrix (equation 2.6).
They transform non-linearly under the EW chiral symmetry SU(2)L × U(1)Y , as it
can be deduced from the transformation properties of the U matrix:

U → LUR†, (2.17)

with L ∈ SU(2)L and R ∈ SU(2)R.

Nevertheless, there are many possible representations, which would yield different
Lagrangians. As the Physics is representation independent, observables should be
the same in any of the possible choices for effective theories. This does not mean
that the operators in different Lagragians, or their physical meaning, can be directly
related.

One of the most widely employed representations is the linear one, where the
NGBs are introduced in a scalar doublet, along with the Higgs boson, in the same
manner as in the SM. In fact, this effective theory is referred to as Standard Model
Effective Field Theory (SMEFT). For a review, see, for instance, [48]. The La-
grangian in this representation is:

Llinear = LSM +
∑
i

fi
Λ2
Od=6
i +

∑
i

fi
Λ4
Od=8
i + . . . (2.18)

In the linear representation, the counting of the operators is the standard one, in
terms of canonical dimensions, in contrast to the counting in the non-linear repre-
sentation (where the counting is done attending to chiral dimensions). This linear
effective theory includes the SM, but also all possible higher-dimensional operators
which respect the expected symmetres (in the electroweak theory, these would be a
global chiral symmetry and a gauge SU(2)L × U(1)Y symmetry). These operators
are suppressed by powers of the UV scale Λ.

In the SM there are no higher-dimensional operators (all the coefficients fi would
vanish), so the SMEFT parametrizes deviations from the SM through these opera-
tors. This is a first difference with respect to the EChL, where anomalous couplings
(controlled by the parameters a and b or others, as it has been previously explained)
can be extracted from chiral dimension 2 or 4 operators. This explicitly shows that
is impossible to make a 1-to-1 identification between operators in the linear and
non-linear representations. The way to make this relation becomes even trickier
when considering loops. As we have said, in the non-linear representation, NGB
one-loop contributions from L2 have the same chiral dimension as L4, in contrast to
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the linear representation. As a consequence, the renormalization procedure will be
very different in both effective theories.

In the previous subsection we motivated how the EChL is a very useful tool in
order to look for deviations from the SM through computations of VBS mediated
process. The linear representation would also allow to perform this study, but in a
different way. As it has been mentioned, the linear Lagrangian includes no deviations
from the SM in canonical dimension 4 operators, so higher-dimensional ones should
be considered. All possible operators which modify the couplings between Higgs
and vector bosons (up to a certain order) should be taken into account, and their
coefficients would have the same physical interpretations as |a − 1| and |b − 1|, as
they quantify how these couplings depart from those described by the SM. In this
sense, we believe the EChL is a more practical tool to compute observables, as a
single operator encodes all the information regarding the vertices we are interested
in, while the SMEFT requires to employ a considerable number of operators and
coefficients.

3 Vector Boson Scattering: W+W− → HH sub-

process

As it has been motivated before, VBS mediated processes allow to directly probe the
EChL parameters, in particular, a and b, the ones this work is devoted to deal with.
In order to test the sensitivities to both of these parameters in a collider, at least
two Higgs bosons must be involved in the process, as the parameter b only plays a
role in interacions among two gauge and two Higgs bosons. From a theoretical point
of view, any subprocess with 2 gauge and 2 Higgs bosons in the external legs would
exhibit all these properties. However, when thinking about a complete process in a
collider (either the LHC or a leptonic accelerator), any scenario with a Higgs boson
in the initial state would be very suppressed, as the couplings of the Higgs bosons
to the colliding fermions are extremely small, and would offer much smaller cross
sections than V V → HH processes. In particular, WW → HH is the best choice,
rather than ZZ → HH. Although the Higgs couples slightly stronger to Zs than to
W s (as they are heavier), the WW luminosity is larger than the ZZ one, meaning
the probabilty of radiating two W s from the colliding particles is larger than that
of two Zs.

Thus, from now on we will dedicate to the study of the W+W− → HH process,
first at the subprocess level and then in the framework of an e+e− collider.

At tree level and in the unitary gauge, four diagrams contribute to the W+W− →
HH subprocess, those in figure 3.1.

The Feynman rules employed in our computations will be extracted from the
EChL (figure 2.1). As this Lagrangian does not modify the kinetic terms of the SM,
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Figure 3.1: Diagrams contributing to the W+W− → HH subprocess in the unitary
gauge.

the only difference with respect to the computation in the SM will be the appearance
of the parameters a and b in the couplings between W s and Hs. It is worth noting
that the EChL allows to modify the Higgs trilinear coupling [49], involved in the
s-channel of this process. However, we will set this coupling to its SM value, and
only focus on possible deviations from the SM in the WWH and WWHH vertices.

The amplitudes for the different channels (s,t,u and contact channels) are:

Fc =
g2b

2
ε1 · ε2, (3.1)

Fs =
3g2M2

Ha

2(s−M2
H)

ε1 · ε2, (3.2)

Ft =
g2a2M2

W

t−M2
W

(
ε1 · ε2 −

(pt · ε1)(pt · ε2)
M2

W

)
, (3.3)

Fu =
g2a2M2

W

u−M2
W

(
ε1 · ε2 −

(pu · ε1)(pu · ε2)
M2

W

)
, (3.4)

F (W+W− → HH) = Fs + Fu + Ft + Fu, (3.5)

where s, t and u are the Mandelstam variables, ε1 and ε2 the polarization vectors
of the W bosons, g is the weak gauge coupling, and pt(u) is the four-momenta of the
virtual W boson propagating in the t(u)-channel.
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Figure 3.2: Cross sections of the W+W− → HH subprocess in the SM, as a function
of the center-of-mass energy, for all the possible combinations of polarization modes
of the W bosons. Left panel shows the predictions up to 3 TeV, while the right one
shows them up to 15 TeV.

3.1 SM predictions

First, we believe it is illuminating to analyze how the W+W− → HH subprocess
takes place in the SM. Setting a = b = 1 restores the SM Feynman rules.

The cross section in terms of the center-of-mass energy of the subprocess, s, can
be computed employing the amplitudes in equations 3.1 to 3.5:

σ(W+W− → HH) =
1

2
· 2π | ~pout|
| ~pin|

1

64π2s

∫ 1

−1
d cos θ|F̄ |2(s, cos θ). (3.6)

The factors 2π and 1
2

arise, respectively, from the integration over the azimuthal an-
gle and from the fact that two identical particles are produced in the final state. The
terms | ~pout|| ~pin|

1
64π2s

have to do with the phase space, and |F̄ |2(s, cos θ) is the squared,

spin-averaged scattering amplitude (which is the sum of the four channels).

We will make use of FeynArts 3.10 [50] and FormCalc 9.7 [51] in order to compute
the squared, spin-averaged amplitudes and cross sections for this process. The EChL
will be implemented employing FeynRules 2.3.32 [52]. Figure 3.2 shows the cross
section as a function of the center-of-mass energy (which has a kinematic threshold of
2mH), for different polarization modes of the W bosons, longitudinal and transverse.
As it could be expected, the longitudinal polarization modes dominate at these
energies. Besides, shortly after surpassing the kinematical threshold of

√
s = 2mH

all dependance of the total cross section with the center-of-mass energy seems to
vanish, a characteristic feature of VBS processes.

Regarding unitarity, the s-wave partial amplitude (J = 0) will be the dominant
one. Figure 3.3 shows the mentioned s-wave amplitude for the different combinations
of helicities of the initial W s. These are clearly the only distinct possibilites, since
the case where one boson is longitudinally polarized and the other one is transversely
polarized vanishes due to parity arguments. None of the amplitudes is bigger than
1 for any energy: this process will never violate unitarity. This is not a surprise at
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Figure 3.3: Modulus of s-wave partial amplitudes, as a function of the center-of-
mass energy, for the W+W− → HH subprocess in the SM. All combinations of the
polarization modes of the initial W bosons which yield a non-vanishing amplitude
are shown.

all, as the SM is a unitary Quantum Field Theory.

Summarizing, the W+W− → HH subprocess does not seem particularly special
in the SM. Its total cross section is well behaved with the energy, its dependance
being almost flat. There is no problem at all with unitarity, and the longitudinal
degrees of freedom of the W bosons provide the biggest contributions to this process.

As a remark, from now on we will not make any further analysis concerning the
polarizations of the W bosons. As we will end up embedding the W+W− → HH
subprocess in a complete process that could take place in a collider, it does not
make much sense to think of the W s as particles with a particular polarization; they
would rather be produced unpolarized, and only the total cross section, summing
all modes, is really relevant. Nevertheless, the fact that longitudinal polarizations
dominate the cross section allows to control the unitarity behaviour of the total
cross section: if the longitudinally polarized s-wave amplitude is smaller than 1, the
unitarity of the process will be guaranteed independently of other polarizations and
partial wave amplitudes. Thus, from now on we will only compute this particular
amplitude when performing unitarity analyses.

3.2 EChL predictions

Figure 3.4 shows how the total cross section of the subprocess depends on the center-
of-mass energy when varying the EChL parameters a and b. The values for the
parameters are chosen to respect the theoretical constraints (keeping a ≤ 1). Al-
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Figure 3.4: Total cross sections of the W+W− → HH subprocess in the EChL, as a
function of the center-of-mass energy, for different values of the parameters a and b.
The dashed yellow line corresponds to the SM prediction (a = b = 1). Upper panel
shows positive values of b whereas lower panel displays negative values.

though some values are slightly outside the experimental bounds, we believe that at
this intial stage it is illustrative to show the effects of these parameters when they
vary in a wider range.

Some first conclusions can be extracted from these two plots. In figure 3.4 (upper
panel), it is plain to see that the behaviour of the cross section is very different from
the SM when varying the EChL parameters. While, in the SM case (dashed yellow
line), there is hardly any dependance with the energy, in the rest of the cases the
cross section grows very steeply. This is not a very nice feature, although it was
expected, due to the UV uncompleteness of the EChL. These plots also show that,
the bigger the deviations of a and b from 1, the bigger the cross section. Thus,
some possible New Physics, translated in EChL parameters departing from their
SM values, would yield clear experimental evidence, with much larger cross sections
than those predicted by the SM. This is yet another advantage of employing this

17



a=0.9,b=0

a=0.95,b=0

a=1,b=0

a=0.9,b=1

a=0.95,b=1

a=1,b=1

a=0.9,b=2

a=0.95,b=2

a=1,b=2

Unitarity Violation

0 3000 6000 9000 12 000 15 000
10

-3

10
-2

10
-1

1

10

10
2

s HGeVL

a
0
HW

L
W

L
®

H
H

L

a=0.9,b=0

a=0.95,b=0

a=1,b=0

a=0.9,b=-1

a=0.95,b=-1

a=1,b=-1

a=0.9,b=-2

a=0.95,b=-2

a=1,b=-2

Unitarity Violation

0 3000 6000 9000 12 000 15 000
10

-3

10
-2

10
-1

1

10

10
2

s HGeVL

a
0
HW

L
W

L
®

H
H

L

Figure 3.5: Modulus of s-wave partial amplitudes, as a function of the center-of-
mass energy, for the W+

LW
−
L → HH subprocess in the EChL, for different values of

the parameters a and b. The dashed yellow line corresponds to the SM prediction
(a = b = 1). Upper panel shows positive values of b whereas lower panel displays
negative values.

type of processes in the quest for New Physics.

It is relevant to note that a possible wrong conclusion can be extracted from
these results, especially from 3.4 (lower panel). In this plot, the curves seem to
“cluster” in groups of 3, where the curves in each of these groups share a common
value of b. This behaviour would lead to the conclusion that it is the parameter b
the one that mostly dominates the deviations from the SM. However, this is not so,
or at least cannot be confirmed so far. The variations chosen for b with respect to 1
are much bigger than for a, taken into account the good number of theoretical and
experimental bounds existing on a, while the constraints are looser for b. In these
plots, a varies at most a 10% with respect to 1, and b does so in up to 300%; this
very different ranges are responsible for the apparent dominance of b. However, it
is not the aim of this section to determine which of the parameters dominates; that
will be analyzed in the next section.
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Figure 3.6: In the EChL and at a center-of-mass energy of 3 TeV, modulus of s-wave
partial amplitudes for the W+

LW
−
L → HH subprocess, as a function of the parameter

b, for different values of a.

This large increase of the cross sections might indicate that unitarity is not guar-
anteed: as cross sections are unequivocally related to scattering probabilities, a
monotonic growth of the cross section with the energy might mean the probability
eventually becomes bigger than 1. In order to check if this problem indeed exists,
we will plot, in figure 3.5, the energy dependance of longitudinally polarized s-wave
partial amplitude for the same values of a and b. These results show that unitarity
is, in fact, a problem. Except in the SM case (which, as it was shown, perfectly re-
spects unitarity), the rest of the chosen values of the parameters render partial wave
amplitudes larger than 1 at energies of several TeVs, which could be reachable at
colliders. As it could be anticipated, the further from the SM, the sooner unitarity
is violated.

Taking into account that the current bounds on a are much more constraining
than those on b, it might be interesting to plot the partial wave amplitude, for a
fixed energy, as a function of b. Figure 3.6 shows just that, for a fixed energy of 3
TeV, and several values of the parameter a. This a first attempt at studying how
unitarity might be compromised when varying both parameters at once. It can be
clearly observed that, at this energy, when a varies from its SM value approximately
a 10% (which, roughly speaking, coincides with experimental bounds), b can depart
from 1 to 50% at most, in order to obtain physically reasonable predictions.

All in all, these quick results clearly show that the EChL predictions are way
different than those of the SM when varying the parameters a and b. Instead of
being esentially independent of the center-of-mass energy, the cross section of the
W+W− → HH process grows with the energy when a, b 6= 1, which, although
interesting in order to make experimental detections, is problematic in terms of
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unitarity. All these effects are enhanced when choosing values of the parameters
which differ greatly from those of the SM.

4 Vector Boson Scattering at an e+e− accelerator

So far, we have studied the W+W− → HH subprocess in the framework of the
EChL, analyzing how it behaves under variations of the parameters a and b. This
preliminary study offers an interesting insight on how the EChL contains very differ-
ent physics than the SM, as its predictions are both qualitatively and quantitatively
different. Nonetheless, the information obtained so far is not really conclusive, as
the subprocess alone will never take place. In order to extract solid conclusions,
it is necessary to perform a more realistic analysis, and embed the subprocess in a
complete process that could take place in a collider.

The first and obvious possibility would be the LHC. It is the most powerful ma-
chine available up to date, reaching record center-of-mass energies and luminosities.
In fact, there already exist efforts analyzing processes similar to the ones we care
about in the context of this accelerator. However, there are some disadvantages in
testing VBS processes in the LHC. For starters, statistical studies are really complex.
It is necessary to analyze how the vector bosons that start the subprocess are radi-
ated by the quarks that constitute the colliding protons, and then to convolute all
this information with the parton distribution functions (PDFs) of the quarks. Due
to this “double convolution”, the energy that ends up fueling the W+W− → HH
subprocess will be relatively low, and the cross sections will not be large enough.
In fact, the number of events of this kind of process that can be currently achieved
does not allow to perform consistent statistical analysis, and thus it is very difficult
to obtain solid information about the involved Physics. This is the reason why there
is no strong experimental constraint on the b parameter yet, as it is necessary to
produce two Higgs bosons to probe it (constraints on a are provided by single Higgs
production). Besides, the main decay channel of the Higgs boson is H → bb̄; each of
these quarks would later hadronize, forming jets. As the LHC is a hadronic machine,
this type of experimental signature would compete with huge backgrounds, such as
those arising from QCD multijet events.

Taking all these considerations into account, we believe that an e+e− collider
might be the ideal framework in order to study VBS mediated processes and, thus,
to probe the EChL parameters. In this kind of machine, the vector bosons would
be directly radiated by the colliding leptons (and not from partons of the collid-
ing protons as in the LHC), so it would be easier to transmit a bigger energy to
the subprocess. This would be an advantage in order to detect possible anomalous
couplings: if a and b were different from 1, this transmission of energy to the sub-
process would mean, as it has been shown, an enhancement in the cross section of
the subprocess with respect to the SM prediction, meaning more events would be
available, a key requirement in order to obtain statistically reliable results. Also, as
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Figure 4.1: Sketch of VBS within an e+e− → HHνeν̄e process. The black dot
generically depicts all diagrams shown in figure 3.1.

this collider involves no hadrons in the initial states, the amount of processes that
could produce four jets in the final state would be much smaller, meaning the signal
would be much cleaner, and the possible background would not be so relevant.

Currently, there are no leptonic colliders such as the ones we believe could offer
very intesting possibilites for this kind of Physics. However, there are prospects for
several of these machines to be built in the future. For instance, the International
Linear Collider (ILC) [53] aims to reach center-of-mass energies of 250 GeV and,
after an update, of even 500 GeV. Also, the Compact Linear Collider (CLIC) [54]
is expected to be running at energies of 380 GeV in around 15 years, starting a
program of 25-30 years, reaching center-of-mass energies of 3 TeV. We believe this
experimental program is encouraging in the search for New Physics: this is the
motivation to study VBS mediated processes in the context of an e+e− accelerator,
hoping our results could be compared to the experimental data once these machines
start running.

In this work, we will analyze the e+e− → HHνeν̄e process: a scenario where
each of the colliding leptons radiates a W boson, also producing a neutrino. Both
neutrinos would fly away from any detector, meaning a certain energy would be
missing. The radiated W s would then scatter, through the subprocess studied in
the previous section, producing two Higgs bosons. The VBS contribution to this
process is illustrated in figure 4.1.

The aim of this section, and main goal of this work, is to make predictions on
how the cross section of this process would depend on the EChL parameters a and
b. We will make a scan of the cross section on this two-dimensional parameter space
and plot the contour lines. This allows to directly test the sensitivity of the process
to the EChL parameters, and is a direct way to detect possible deviations from the
SM.
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We will make use of the MonteCarlo event generator MadGraph5 [55] in order
to make these computations. This software generates events for a certain process,
allowing both to compute total cross sections and to obtain differential cross sectiona
distributions with respect to several variables. MadGraph allows to implement a
certain Particle Physics model, such as the EChL, and to modify its associated
parameters (a and b in this case), so it is a powerful tool to check how certain
observables depend on them.

Obviously, as Higgs bosons are unstable particles, they will never be detected;
only the products of their decays will be. As the main decay channel of the Higgs
is to a bb̄ pair, the actual whole process would be e+e− → νeν̄ebb̄bb̄. Each of the
four quarks would then hadronize, forming b-jets. Thus, the experimental signature
of this process would consist on four jets and missing energy (associated to the
neutrinos, which cannot be detected).

A study in full glory of the possible experimental detection of the processes we are
interested in would require a deeper analysis: performing differential cross section
distributions with respect to several kinematical variables, analyzing the possible
backgrounds, reconstructing the jets... It is beyond the reach of this work to perform
such a careful study.

Nevertheless, we attempt to make some, although approximate, realistic pre-
dictions on the experimental consequences on possible deviations from the SM in
the VBS processes that have been described. In order to do so, we will employ
MadGraph to compute the cross section of the full e+e− → νeν̄ebb̄bb̄ process. This
software allows to impose cuts on the final particles. Finally, we will try to make
an estimation of the jet reconstruction by introducing a b-tagging efficiency factor.
Of course, both the cuts and the tagging efficiency will reduce the cross section.
We will make use of the expected luminosities for the future e+e− colliders in order
to provide quantitative predictions on the number of events. This will be done for
several energies (according to the expectations of these future machines) and in the
whole (a, b) parameter space.

4.1 The Effective W approximation compared to MC simu-
lations

First, we will try to understand profoundly the Physics involved in the e+e− →
HHνeν̄e process. Although it involves VBS diagrams, such as the ones sketched in
figure 4.1, there are some others that would also contribute to the same process.
All these diagrams, 32 in total, can be found in appendix A. Diagrams 21 to 24 are
the ones which involve VBS (the same as in figure 3.1). Many of the rest involve
vertices between Higgs bosons and electrons, and thus could be neglected (as the
Yukawa coupling of the electron is really small). However, there are some Z-mediated
processes (diagrams 1 to 4) that involve similar couplings to the diagrams involved
in the W+W− → HH subprocess and, thus, could not be neglected a priori.
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It is interesting to quantify how relevant VBS diagrams are, as we already un-
derstand how these subprocesses are sensitive to the a and b parameters. In order
to do so, two strategies can be followed:

• A comparison of the process with electron neutrinos in the final state with a
second process with muon neutrinos in the final state provides a good estimate
of how relevant the VBS diagrams are. Out of the 32 diagrams that contribute
to the e+e− → HHνeν̄e process, only 12 of them could take place replacing the
electron neutrinos with muon neutrinos. Out of the 20 remaining, all involve
couplings between Higgs and electrons (which are negligible) except the four
VBS diagrams. This means that the difference between the e+e− → HHνeν̄e
and e+e− → HHνµν̄µ quantifies the weight of the VBS diagrams in the full
process. We define the quantity RVBS,

RVBS =
σ(e+e− → HHνeν̄e)− σ(e+e− → HHνµν̄µ)

σ(e+e− → HHνeν̄e)
. (4.1)

This is an adimensional quantity that clearly determines how large is the con-
tribution of VBS mediated processes to the e+e− → HHνeν̄e process. If RVBS

is close to 1, the cross section will be mostly dominated by VBS. This would
be the ideal situation in order to test the sensitivity to the EChL parameters.

The cross sections for both the e+e− → HHνeν̄e and the e+e− → HHνµν̄µ
processes will be computed employing MadGraph.

We would like to note that RVBS is not a measurable quantity, since it is exper-
imentally impossible to distinguish the flavour of the neutrinos (they all escape
the detectors). Besides, the contribution of the subset of diagrams which ex-
hibit VBS configuration is not a physically meaningful quantity, as they are
not a gauge invariant subset. Only the whole set of diagrams provides a gauge
invariant amplitude and, thus, physically reasonable predictions. Nevertheless,
it is useful to understand numerically the relevance of certain subprocesses.

• The effective W approximation (EWA) [56] treats vector bosons as partons
inside the fermions, just as quarks and gluons are considered partons inside a
proton. This allows to define distribution functions for the vector bosons inside
a fermion, in the same way as the PDFs of quarks and gluons inside a proton.
The EWA also assumes that the vector bosons are radiated colinearly by the
fermions, and then scatter on-shell in the subprocess. This allows to employ
factorization, obtaining the cross section for the whole process by convoluting
that of the subprocess with the “PDFs” of the vector bosons:

σT (s) =

∫
dx1

∫
dx2f(x1)f(x2)σ̂(ŝ). (4.2)

Here, σT (s) ≡ σ(e+e− → HHνeν̄e) is the total cross section for the complete
process taking place at a center-of-mass energy of

√
s; σ̂(ŝ) ≡ σ(W+W− →

HH) is the cross section for the subprocess at a center-of-mass energy of
ŝ = x1x2s; x1 and x2 are the fractions of the momentum of the electrons carried

23



by the two vector bosons respectively; and f(x1) and f(x2) their distribution
functions.

In practice, this double integral is really a triple one. The squared scattering
amplitude is directly related to the differential cross section with respect to
the polar angle; obtaining the cross section of the subprocess involves an in-
tegration over this variable, which needs to be performed along with the ones
over x1 and x2. It is absolutely impractical to compute these integrations ana-
litically: we will solve them numerically employing Vegas [57], a Monte Carlo
integration software. The details of pur computation can be seen in appendix
B.

A key point about the EWA is the fact that the “PDFs” of the vector bosons
are different for longitudinally and transversely polarized bosons. This means
that equation 4.2 is actually more complicated:

σT (s) =

∫
dx1

∫
dx2

∑
ij

fi(x1)fj(x2)σ̂ij(ŝ). (4.3)

The indices i and j run over the longitudinal and transverse polarizations.
σ̂ij(ŝ) is the cross section for the subprocess where the initial vector bosons
have polarizations i and j respectively. The cross sections for the different
polarizations will be taken from those computed in the analysis of the sub-
process. Regarding the distribution functions of the vector bosons, there
has been a considerable effort in the literature on trying to find the opti-
mal choice [56, 58, 59]. [56] provides the distribution functions in two ways.
One of them assumes the energy E of the fermions which “contain” the vector
bosons is much larger than the mass of the latter, MW , obtaining simple ex-
pressions employing the so-called Leading Log Approximation (LLA), which
applies in this limit, E � MW . The improved formulas go beyond the LLA,
also keeping terms of order M2

W/E
2, rendering more complicated expressions.

We will employ these two versions of the distribution functions and compare
their results.

Due to the intrinsic nature of the EWA, it implies that VBS processes are
the most relevant contribution to the complete process. A comparison of the
results obtained employing this method with the full ones obtained from Mad-
Graph can also provide an insight on how relevant the contribution from VBS
actually is.

Table 4.1 shows the values of the cross sections, in picobarns, for different scenar-
ios. The first line shows the values for the e+e− → HHνeν̄e process computed by
MadGraph. As it has been mentioned, this cross section gets contributions from
VBS diagrams, but also from other type of diagrams, so, a priori, it is unclear how
relevant VBS actually is. The second and third lines contain the results obtained
employing the EWA, using both the approximate and improved vector boson PDFs.
As we have mentioned, both these sets of cross sections only get VBS contributions.
Finally, the last line shows the cross section for the e+e− → HHνµν̄µ process, which
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√
s (TeV) 0.5 1 2 3

MadGraph 1.3 · 10−5 8.0 · 10−5 4.0 · 10−4 8.0 · 10−4

LLA EWA 2.8 · 10−5 3.7 · 10−4 1.5 · 10−3 2.8 · 10−3

Improved EWA 7.7 · 10−6 1.2 · 10−4 4.8 · 10−4 8.5 · 10−4

MadGraph with νµ 1.0 · 10−5 8.1 · 10−6 3.7 · 10−6 2.2 · 10−6

Table 4.1: Cross sections (in pb) in the SM, for different center-of-mass energies,
computed employing various methods.

esentially gets the same contributions as that with electron neutrinos in the final
state, but removing all which come from VBS. All those values are computed for
several center-of-mass energies, and within the SM (a = b = 1).

Table 4.2 is much more illuminating. It shows the ratio between the cross sections
for the e+e− → HHνeν̄e process computed via the EWA and via MadGraph. Its
last line contains the value of the coeffcient RVBS, defined in equation 4.1, which
quantifies the relevance of the vector boson scattering diagrams. Clear conclusions
can be extracted from these results. For starters, the effective W approximation
tends to overestimate the value of the cross section, so there will probably exist
some destructive interference between VBS diagrams and those which do not involve
this type of subprocesses. Besides, as it can be expected, as RVBS approaches 1, so
does the ratio between the EWA and MadGraph values. This is totally reasonable:
the more important VBS is, the more accurate the EWA is. This behaviour is
enhanced for higher energies; in fact, the EWA is an excellent approach to perform
these computations above 1 TeV. These results also confirm that the expressions
obtained within the LLA for the vector bosons distribution functions are not optimal.
Although they also provide better results when increasing the energy of the process,
they do not quite mimic the values obtained with MadGraph, while the improved
formulas do.

It is also interesting to analyze the behaviour of the differential cross section
with respect to MHH , the invariant mass of the Higgs pair. MadGraph provides all
the kinematical information for each simulated event, and thus directly allows to
plot distributions. These can be compared to the results obtained employing the

√
s (TeV) 0.5 1 2 3

LLA EWA 2.19 4.59 3.78 3.34
Improved EWA 0.59 1.48 1.2 1.06

RVBS 0.3 0.9 0.99 0.997

Table 4.2: Within the SM, quantifications of the relevance of the VBS contribution
in the whole e+e− → HHνeν̄e process for different center-of-mass energies. The
first two lines include the ratios of the cross sections compared via the EWA and
via MadGraph. The last line shows the value of the coefficient RVBS, defined in
equation 4.1.
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Figure 4.2: In the SM, predictions for the behaviour of the e+e− → HHνeν̄e cross
section distribution with respect to the Higgs pair invariant mass, MHH .

EWA. This information is shown in figure 4.2, which includes the results obtained
employing both methods for a center-of-mass energy of 3 TeV (in the case of the
EWA, using both the LLA and the improved distribution functions).

This plot confirms the conclusions that the total cross sections results pointed
to. In general, the effective W approximation tends to overestimate the cross sec-
tion. However, at high energies, it is an excellent approximation, and the functional
dependance is reproduced with high accuracy. It is also confirmed that in order to
obtain precise results employing the EWA, the improved expressions of the distri-
bution functions need to be employed. The LLA ones are proven to be accurate at
high energies (in fact, over 1 TeV they behave very similarly to the improved ex-
pressions), but greatly overestimate the cross section at low energies. This explains
why the total cross section provided by the approximate distribution functions is
several times larger than that obtained with the improved expressions.

All in all, these procedures have yielded an interesting insight on the full e+e− →
HHνeν̄e process within the SM. Apart from many diagrams where the Higgs bosons
couple to electrons (which can be neglected), the main contributions are VBS me-
diated processes or Z mediated processes. Both the EWA and the comparison with
the e+e− → HHνµν̄µ process confirm that, above the TeV, VBS clearly dominates.
This could be expected, as the Z mediated diagrams involve one or more Z bosons
propagating in an s-channel, and thus decrease with the center-of-mass energy. Be-
sides, it has also been learnt that the EWA constitutes an excellent tool to make
computations for this kind of processes, especially at high energies. Nevertheless,
the improved expressions for the distribution functions of the vector bosons need to
be employed in order to obtain quantitatively accurate results.
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√
s (TeV) 0.5 1 2 3

a = 1.5, b = 1

MadGraph 1.2 · 10−4 2.4 · 10−3 1.5 · 10−2 3.6 · 10−2

LLA EWA 4.1 · 10−4 5.7 · 10−3 2.7 · 10−2 5.6 · 10−2

Improved EWA 1.4 · 10−4 2.6 · 10−3 1.4 · 10−2 3.2 · 10−2

MadGraph with νµ 2 · 10−5 1.9 · 10−5 1.9 · 10−5 1.9 · 10−5

a = 0.5, b = 1

MadGraph 1.5 · 10−5 3 · 10−4 0.0026 0.0071

LLA EWA 4.9 · 10−5 6 · 10−4 0.0037 0.0089

Improved EWA 7.9 · 10−6 2 · 10−4 0.002 0.0058

MadGraph with νµ 5.2 · 10−6 7.7 · 10−6 6.9 · 10−6 6.5 · 10−6

a = 1, b = 1.5

MadGraph 1.7 · 10−5 9 · 10−5 7.9 · 10−4 2.4 · 10−3

LLA EWA 3.4 · 10−5 3.9 · 10−4 2 · 10−3 4.5 · 10−3

Improved EWA 2.7 · 10−6 6.6 · 10−5 6.5 · 10−4 2 · 10−3

MadGraph with νµ 1.6 · 10−5 1.5 · 10−5 8.5 · 10−6 6.1 · 10−6

a = 1, b = 0.5

MadGraph 1.7 · 10−5 3.3 · 10−4 2.3 · 10−3 5.5 · 10−3

LLA EWA 5.5 · 10−5 8.4 · 10−4 4.1 · 10−3 8.6 · 10−3

Improved EWA 2 · 10−5 3.8 · 10−4 2.2 · 10−3 5 · 10−3

MadGraph with νµ 5.7 · 10−6 4.1 · 10−6 3.3 · 10−6 3.1 · 10−6

Table 4.3: Predictions of the EChL for the cross sections (in pb), for different values
of the parameters a and b and e+e− center-of-mass energies, computed employing
various methods.

4.2 Sensitivity to the EChL parameters

From now on, we will depart from the SM and analyze how the e+e− → HHνeν̄e
process is affected when the EChL parameters a and b differ from 1. As we showed in
section 3, the VBS subprocess cross section is greatly increased when these param-
eters take values different from 1. Thus, it could be expected that, when modifying
them, the contribution of VBS to the total cross section will be even bigger than
in the SM. Nevertheless, this is just a naive conclusion. The Z mediated processes
(diagrams 1 to 4 in appendix A) also involve vertices among gauge and Higgs bosons
which are, of course, controlled by a and b, so it is unclear if the energetic depen-
dance of the full process will resemble that of the SM even when the EChL depart
from their SM values.

In order to get a first intuition, we will perform the same analysis as the one that
was developed for the SM, but with several values of a and b. Only one parameter
will be modified at a time, while the other will be chosen to take values of 0.5 and 1.5.
These values are not very consistent, especially for a (they are outside the current
experimental constraints, and picking a > 1 is theoretically not well motivated).
Besides, according to figures 3.5 and 3.6, unitarity might be an issue for this values.
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√
s (TeV) 0.5 1 2 3

a=1.5, b=1

LLA EWA 3.4 2.38 1.8 1.56

Improved EWA 1.17 1.08 0.93 0.89

RVBS 0.83 0.9921 0.9987 0.99947

a=0.5, b=1

LLA EWA 3.27 2 1.42 1.25

Improved EWA 0.53 0.67 0.77 0.82

RVBS 0.65 0.9975 0.9973 0.99985

a=1, b=1.5

LLA EWA 2 4.33 2.53 1.88

Improved EWA 0.16 0.73 0.82 0.83

RVBS 0.06 0.83 0.99 0.9975

a=1, b=0.5

LLA EWA 3.24 2.55 1.78 1.56

Improved EWA 1.18 1.15 0.96 0.91

RVBS 0.66 0.988 0.9986 0.99944

Table 4.4: Within the EChL, and for different values of the parameters a and b, quan-
tifications of the relevance of the VBS contribution in the whole e+e− → HHνeν̄e
process for different center-of-mass energies. The first two lines include the ratios of
the cross sections compared via the EWA and via MadGraph. The last line shows
the value of the coefficient RVBS, defined in equation 4.1.

Nonetheless, here we just choose them as some illustrative examples to show the
main features of the departures from the SM predictions. The results are shown in
figure 4.3 and tables 4.3 and 4.4. As a remark, the distribution plots do not include
the results obtained employing the approximate distribution functions in the EWA,
as it has been confirmed that the improved expressions provide much better results.

Some information can be extracted from these results. As it was expectable, when
a and b are different from 1, vector boson scattering processes tend to dominate,
even at lower energies. Thus, in these cases the effective W approximation is even
more robust than in the SM case. In fact, the distributions obtained via MadGraph
and via the EWA are almost identical, except some differences at low energies, where
VBS processes are not so dominant.

Also, it is clear that the results are not the same for symmetric variations of the
parameters with respect to the SM: with constant |a − 1| or |b − 1|, the behaviour
is quantitavely different if the parameters are larger or smaller than 1. In fact, it
seems that cross sections tend to grow faster when a is larger than 1 (a scenario
that, we insist, is theoretically disfavoured) and when b is smaller than 1.

Besides, now both parameters have been modified in the same ranges, so it is
possible to try and take a hint on which of them is more dominant. It seems that
the role of a is more important than that of b: cross sections are larger when b is
kept to 1 and a varies rather than viceversa. This could be expected a priori. In
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Figure 4.3: In the EChL, and for different values of the parameters a and b, pre-
dictions for the behaviour of the e+e− → HHνeν̄e cross section distribution with
respect to the Higgs pair invariant mass, MHH .

the W+W− → HH process, t- and u-channels involve two vertices between two W s
and one Higgs boson. Each of these vertices is controlled by the parameter a, so the
scattering amplitude will scale as a2. On the other hand, there is only one vertex
involving two W s and two Higgses, so the amplitude will scale linearly with b. This
can explain why a particular variation in a yields bigger cross sections than the same
variation in b.

Nevertheless, these are just some premilinary results to understand how the cross
section of the full e+e− → HHνeν̄e process depend on a and b. Confirming our
hypothesis, VBS is even more dominant when a and b depart from their SM val-
ues, which implies a higher accuracy when employing the EWA. In this case, the
dependance on a and b of the cross section of the whole e+e− → HHνeν̄e process
will esentially be inherited from that of the W+W− → HH subprocess. Although
some diagrams which do not exhibit VBS configuration also depend on a and b,
when these parameters depart from 1 their contribution will be much smaller, as
VBS dominates.

However, in order to extract solid conclusions, keeping one parameter at 1 and
then varying the other is not enough: it is necessary to analyze how the cross section
behaves when both parameters are modified. We will perform a scan on the (a, b)
two-dimensional parameter space to determine more exactly the behaviour of the
process when varying both parameters at once. In order to that, it is necessary to
decide the region of the parameter space that will be scanned.
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Figure 4.4: In the EChL, and for different values of the parameters a and b, pre-
dictions for the behaviour of the e+e− → HHνeν̄e cross section distribution with
respect to the Higgs pair invariant mass, MHH . The center-of-mass energy is set at
3 TeV.

Taking into account that this work attempts to make some realistic predictions
in the context of future e+e− colliders, it would not be consistent to pick arbitrary
values of the EChL parameters. Apart from the current experimental and theoret-
ical bounds, it is necessary to take into account the unitarity analysis. As it was
mentioned, the EChL is not a UV complete theory, and choosing certain values for
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its parameters might cause scattering probabilities to be larger than 1 when the
energy of the process is above a particular threshold. Over this threshold, the EChL
is not predictive anymore. A different point of view can be adopted: in a collider, as
the energy is fixed, imposing unitarity means that a and b are restricted to a certain
range, outside of which the EChL cannot be trusted.

It is possible to make a connection between the process and the subprocess,
taking into account that the invariant mass of the Higgs pair, MHH , coincides with
the center-of-mass energy of the subprocess. Thus, an analysis of the behaviour of
the full e+e− process with respect to MHH allows to check if, given certain values
for a and b, unitarity is endangered.

Figure 4.4 shows the distributions for different values of a and b. Dashed lines
cover regions of MHH where the modulus of the s-wave partial amplitude is larger
than 1. These results are consistent with figure 3.5: at around 2.5 TeV, unitarity
is violated when b varies from its SM value in around a 50%. Thus, it can be
concluded that b ∈ [0.5, 1.5] is an adequate range for this parameter in order to
guarantee unitarity in the framework of the e+e− colliders we are interested in.

With these bounds in mind it is possible to perform a scan on the (a, b) parameter
space. Figure 4.5 shows the cross section contour lines, obtained with MadGraph,
for energies of 500 GeV, 1 TeV and 3 TeV.

The ranges for the parameters have been chosen such that unitarity is guaranteed
within the considered parameter space. Although the range for a is larger than the
one it is actually constrained to, we wanted to display the same ranges for both
parameters in order to obtain a global view. The dotted region is theoretically
disfavoured by positivity, while the orange one contains the experimentally allowed
region for a, within a 95% confidence level.

These plots finally provide solid conclusions on the sensitivity of the e+e− →
HHνeν̄e process to variations of the EChL parameters. As both a and b are modified
simultaneously and in the same range, it is possible to compare their role on the
behaviour of the cross section.

For starters, it is clear that the plots are not symmetrical with respect to the
(1,1) point, which means that increasing any of the parameters with respect to 1
in a certain amount is not equivalent to diminishing it in the same amount. This
happens for both parameters: the plots do not exhibit any symmetry with respect
to the a = 1 or b = 1 axes. This means that the cross section is sensitive to the sign
of a − 1 and b − 1. This was already observed in figure 4.3, and is now confirmed.
This can be understood diagramatically. A quick look at appendix A shows that the
e+e− → HHνeν̄e process gets contributions from diagrams with one vertex between
one Higgs and two gauge bosons (which scale as a), diagrams with two of these
vertices (proportional to a2) and diagrams with interactions among two Higgs and
two gauge bosons (scaling as b). This means that the scattering amplitude can be
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Figure 4.5: EChL predictions for contour lines of σ(e+e− → HHνeν̄e) (in pb) in
the (a, b) parameter space, at a center-of-mass energy of 500 GeV (upper panel),
1 TeV (middle panel) and 3 TeV (lower panel). The dotted region is excluded by
positivity, while the orange one shows the experimentally allowed region for a. The
white cross represents the SM prediction (a = b = 1).

written as:
F = αa2 + βb+ γa, (4.4)

where α, β and γ are coefficients which do not depend on the EChL parameters,
and will depend on the relevant kinematical variables. As it was already mentioned,
the dependance of the amplitude on a and b will be esentially inherited from the
subprocess (equations 3.1 to 3.5) when VBS is sufficiently dominant (practically in
all the parameter space).

The difference with respect to the SM can be written as:

F − FSM = α(a2 − 1) + β(b− 1) + γ(a− 1). (4.5)

When squaring this amplitude in order to compute cross sections, the interferences
between the three pieces will definitely be sensitive to the signs of a− 1, b− 1 and
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a2−1. This can explain why deviations from the SM are not symmetric with respect
to its values for a and b.

Also, the plots are not symmetrical with respect to the a = b line: equal variations
in a and b are not equivalent. Clearly a is the dominant parameter: cross sections
grow faster when keeping b constant and varying a than viceversa. This could also
be expected due to the quadratic dependance on a in equation 4.4, and could offer
some insight on the coefficients α, β and γ, although we will not focus on them.

When comparing the three plots, it is also clear that the behaviour of the cross
section with respect to the EChL parameters is sensitive to the energy of the process:
the shape of the contour lines is modified when increasing the energy. At 500 GeV,
some sort of closed ellipses can be glimpsed, but at higher energies these ellipses start
stretching, and even opening at 3 TeV. This means that the functional dependance
of the cross section with respect to both parameters varies with the energy of the
process. This can be translated in different energetic dependances of the parameters
α, β and γ, which can be understood in terms of diagrams. For instance, diagrams
that scale linearly with a (diagrams 1 and 24 in appendix A) involve Z or Higgs
bosons propagating in an s-channel, and, thus, will decrease with the energy: so will
the coefficient γ. On the other hand, diagrams which are quadratic in a or linear in
b will involve, among others, VBS processes, which are enhanced as the energy of
the process increases. All in all, the relative relevance of the coefficients α, β and γ
depends on the energy, being the latter the most suppressed at high energies. This
is translated in different functional dependances in the cross section, and, therefore,
in the changes of the shapes of the ellipses, as the plots confirm.

Comparing these results to the ones obtained previously, especially in section 3,
there appears to be a contradiction. The cross section of the subprocess increased
considerably with respect to the SM predictions when a and/or b differed from 1.
However, in the contour plots displayed for 500 GeV and 1 TeV, it is clear than
there is a region of the parameter space where the cross section is smaller than the
SM value, especially at 500 GeV. This is no contradiction at all: when the relevance
of the VBS contribution was quantified in subsection 4.1, we learnt that, at low
energies, these processes were not the dominant ones. This explains why, although
VBS is enhanced when a and b depart from 1, the cross section of the full process may
not. In order to make a quantitative analysis of this feature, it would be necessary
to study in depth how the dynamics of Z mediated processes behave when varying
the EChL parameters. This is beyond our intentions. However, at higher energies,
the SM lies within the region with the smallest cross section, as it could be expected
(at this energy, the VBS contribution is hugely dominant).

The conclusions obtained so far provide interesting information on how the EChL
parameters control the behaviour of the e+e− → HHνeν̄e process. Nevertheless, in
order to obtain experimentally testable results, it is necessary to analyze a final
state where the Higgs bosons have decayed. We will choose its main decay channel,
H → bb̄, yielding a final state with four jets (due to the hadronization of the quarks)
and missing energy (associated to the neutrinos). As it has been argued, the analysis
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Figure 4.6: EChL predictions for contour lines of number of events of the full process,
e+e− → HHνeν̄e → bb̄bb̄νeν̄e, in the (a, b) parameter space after the cuts shown in
equation 4.6 are applied, at a center-of-mass energy of 500 GeV (upper panel), 1
TeV (middle panel) and 3 TeV (lower panel). The dotted region is excluded by
positivity, while the orange one shows the experimentally allowed region for a. The
white cross represents the SM prediction (a = b = 1).

of this final state is not trivial at all, so we just aim to obtain an estimation. In
order to do so, we will perform a Monte Carlo simulation employing MadGraph:
the same computation that was already worked out, but including the decays of the
Higgs bosons. We will implement some cuts to the final particles, in order to ensure
their detection. Jets with low transverse momentum cannot be detected. On the
other hand, it is expectable that the neutrinos carry a non-negligible fraction of the
energy of the incoming electrons. These considerations imply to require a minimum
missing energy /ET and a minimum transverse momenta pjT for the jets. Besides,
in order not to lose signal in the direction of the beams, a cut in the polar angle
θ is needed. Equivalently, a maximum pseudorapidity ηj ≡ − log

(
tan θ

2

)
for the

jets is stablished. Finally, in order to be detectable, the two jets need to exhibit a
certain angular separation. This is equivalent to stablishing a minimum value for
the variable ∆Rjj ≡

√
(∆ηjj)2 + (∆φjj)2, where ∆ηjj and ∆φjj are the separations
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in pseudorrapidity and azimuthal angle, respectively. The values chosen for these
cuts, in agreement with [44] and [60], are:

pjT > 20 GeV,

|ηj| < 2,

∆Rjj > 0.4,

/ET > 20 GeV.

(4.6)

Once the Higgs bosons decay, and the cuts on the final state are implemented,
the cross section diminishes in a factor of 3 to 5, approximately. Then, the cross
section will be multiplied by ε4, where ε is the b-tagging efficiency factor, that will
be assumed of an 80%, which agrees with [61] and [44]. After this cross section
is computed, the number of events is obtained by multiplying the cross section by
the accumulated luminosity. The ILC project expects a luminosity of 4 ab−1 at 500
GeV, and of 8 ab−1 at 1 TeV. On the other hand, the luminosity at 3 TeV at CLIC
is proposed to be of 2.5 ab −1 [54]. Taking these values as references, we will display,
in figure 4.6, contour plots for the number of events, in the same fashion as the ones
shown before for the cross section.

Comparing these three plots to the corresponding ones for cross sections, some
quantitative differences between both sets of plots appear (the contours are not
equivalent). In other words, the plots which show number of events cannot be
obtained by multiplying those which show cross sections by a constant number.
This is due to the fact that the kinematical cuts imposed do not reduce the cross
section in the same amount all over the parameter space. In fact, the closer to
the center of the plot (the SM value), the bigger the effect of the cuts. This is
reasonable: when a and b are far away from 1, the VBS mediated processes are
more dominant. However, this effect is not too large, and the physical conclusions
that can be extracted from both sets of plots are roughly the same.

As we have mentioned, the ranges for both parameters have been chosen to be
the same in order to grasp a global view and to obtain conclusions on how the cross
section (or, equivalently, the number of events) depends on the EChL parameters.
However, current experimental results set strong constraints on a: most part of
the parameter space we have showed is already experimentally excluded. On the
contrary, no conclusive information is yet available concerning b. In fact, the current
experimental bounds on this parameter are wider than those we have obtained by
requiring unitarity. Thus, in order to be more sensitive to b, we will make a zoom
on the allowed region for a. The results are displayed in figure 4.7.

At low energies, variations in b of up to 20% with respect to its SM value imply
differences of just a handful of events. Although these experimental consequences
would be extremely interesting, such a small number of events makes it impossible
to obtain statistically solid conclusions. In order to do so, high energies would be
required. In fact, in the TeV regime, hundreds or even thousand of events could
be detected. In this scenario, it would be possible to set stronger constraints on
b, or even on a, with a number of events large enough to yield statistically robust
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Figure 4.7: EChL predictions for contour lines of number of events of the full process,
e+e− → HHνeν̄e → bb̄bb̄νeν̄e, in the (a, b) parameter space after the cuts shown in
equation 4.6 are applied, at a center-of-mass energy of 500 GeV (upper panel), 1
TeV (middle panel) and 3 TeV (lower panel). The range of the parameter a is chosen
so it coincides with the experimentally allowed region. The white cross represents
the SM prediction (a = b = 1).

conclusions.

Of course, in order to determine if it is feasible to experimentally test the sensi-
tivity to variations in a and b with respect to their SM values, it would be necessary
to analize the possible backgrounds. Nevertheless, this is beyond the intentios of
this work and is left for future research.

5 Conclusions

The Standard Model of elementary particles and their fundamental interactions has
been proven to be one of the most succesful theories in the History of Science, and
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provides a consistent and exact description of the characteristic of the fundamental
constituents of Nature and the way they interact. Nevertheless, there exist both
experimental and theoretical issues that point to the incompleteness of the SM.

In particular, the Electroweak Symmetry Breaking Sector of the SM, in which the
Higgs mechanism plays a key role, describes how the fundamental particles acquire
a mass and how the Higgs boson becomes a physical state. So far, experimental
results are in very good agreement with the theoretical understanding of this sector
of the SM. However, there are certain reasons to believe that our description is not
complete, such as the hierarchy problem or the fact that the Higgs boson is the only
fundamental scalar in Nature.

Huge theoretical efforts have tried to unravel these misteries. Many high-energy
models have been developed, studying new scenarios such as the Higgs boson being
a composite particle, or the (pseudo) Nambu-Goldstone boson of a bigger symme-
try which breaks down to the SM at energies way above our experimental reach.
Although interesting, none of these proposals has been able to come up with solid
solutions to the problems arising in the EWSBS of the SM.

The absence of a robust candidate for a complete UV theory has turned the
interest of a part of the community to the employment of effective field theories as
tools to search for Beyond the Standard Model effects at energies within our current
experimental possibilities.

One of these theories is the Electroweak Chiral Lagrangian, inherited from the
Chiral Lagrangian for low energy QCD, which describes the dynamics of electroweak
NGBs below a certain UV scale. The lack of experimental evidences of a UV theory
means that this scale must be around 4πv ∼3 TeV, which is the natural loop scale
in this theory. The EChL introduces the NGBs in a non-linear, exponential repre-
sentation, separately from the Higgs boson, which takes the form of a singlet and,
thus, can be introduced, for instance, in a polynomical function. This effective the-
ory includes certain parameters, which quantify deviations from the SM in a model
independent way. This feature is the main advantage of the EChL: it does not need
a UV theory to describe BSM interactions, making possible a direct contact with
data. In fact, the hypothetical deviations from the SM, parametrized according to
the EChL, can be later interpreted within many UV theories.

The EChL provides Feynman rules for the anomalous interaction vertices among
Higgs, Z and W bosons. At first order in Chiral Perturbation Theory, the anoma-
lous interactions are controlled by two parameters, a (involved in V V H couplings)
and b (entering in V V HH vertices), which are equal to 1 in the SM. Processes in-
volving these vertices allow to search from deviations with respect to these values
in experimental observables. In particular, Vector Boson Scattering (processes with
two vector bosons in the initial state and two Higgs bosons in the final one) offer
the best possibilites. So far, both theory and especially experiment have already set
strong constraints on the possible range of values for a, while b is still practically
unconstrained.
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We have focused in the W+W− → HH subprocess, which involves four diagrams.
We have found out that the behaviour of its cross section with the center-of-mass
energy is very sensitive to variations of the parameters a and b. When any of them
is different from 1, the cross section rapidly grows with the energy, whereas in the
SM it basically stays constant when rising the energy at which the process takes
place. This large enhancement of the cross section points out that unitarity might
be a problem, as it is characteristic of UV incomplete theories, such as the EChL.
In order to check this issue, we have performed a partial wave analysis, finding out
that the s-wave partial amplitude exceeds 1 at a few TeV for certain values of the
parameters. This leads to the conclusion that a and b cannot take arbitrary values,
being constrained in order to guarantee unitarity.

After understanding how the W+W− → HH subprocess behaves, we have gone
a step further, embedding it in a process taking place at an e+e− collider: e+e− →
HHνeν̄e. This process includes several subprocesses, and not only the VBS ones
we are interested in. In order to understand how relevant the VBS contribution
is, we have compared Monte Carlo simulations to computations via the effective W
approximation. The latter assumes that the vector bosons are produced as partons
of the electrons and then scatter on-shell, therefore only considering VBS mediated
processes. We have also compared the Monte Carlo simulations to those where muon
neutrinos are produced in the final state: the difference will esentially be the VBS
contribution. Both procedures have shown that, from 1 TeV onwards, VBS highly
dominates, especially when either a or b depart from their SM values.

We have shown our predictions for cross section contour lines in the (a, b) pa-
rameter space, constraining a and b to ranges where unitarity is guaranteed. These
results have shown that increasing or diminishing the parameters with respect to
their SM values is not equivalent, and have also pointed that a plays a more rel-
evant role (a fact that could be expected due to the presence of diagrams which
scale as a2). The behaviour of the contour lines is clearly sensitive to the energy
of the process, which is consistent with the different energetic dependances of the
contributing diagrams.

In order to end up providing predictions on experimental signatures, we have also
performed the Monte Carlo simulations including the decays of the Higgs boson via
their main channel, H → bb̄, and implementing cuts on the relevant kinematical
variables of the final particles. In particular, we required a minimum in the missing
energy associated to the neutrinos and in the transverse momentum of the jets
produced by the hadronization of the b quarks. We also set cuts on the angular
variables of the jets in order to guarantee a proper detection. Finally, we included
the b-tagging efficiency, and multiplied the cross section by the luminosities expected
at future e+e− machines, such as ILC or CLIC, to obtain the number of events that
would be expected.

The results have been displayed in the same contour lines fashion, and also mak-
ing a zoom in the region experimentally allowed for a. We found out that it is
possible to set stronger constraints on b that the current ones, as the number of
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events is reasonably sensitive to this parameter. However, it is necessary to reach
high energies, in the TeV regime, to obtain statistically solid conclusions, as the
number of events is really small at low energies. Furthermore, a study of the possi-
ble backgrounds would be necessary in order to determine if the future colliders are
capable of testing realistic sensitivies to b. This analysis is beyond the scope of this
work, and is expected to be performed in future work.

Summarizing, we have introduced the EChL, an effective theory that describes
low-energy interactions between EW gauge and Higgs bosons, and shown how it
allows to quantify deviations from the SM through a couple of parameters. We have
analyzed how the W+W− → HH subprocess is sensitive to these deviations, and
performed Monte Carlo simulations to search for experimental signatures that could
reach interesting sensitivities to a and b or, otherwise, set constraints to the values of
theses parameters. Although a is already strongly constrained, we can conclude that
future e+e− colliders could be sensitive to a and b via this kind of processes and, in
particular, determine b for the first time. This may provide interesting information
on the nature of the EWSBS of the SM.
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compartiendo el d́ıa a d́ıa con vosotros. Gracias por las risas en el despacho, por
vuestra paciencia cuando he necesitado vuestra ayuda y por las partidas de pocha
(pese al injusto resultado). Habéis sido lo mejor de este año.
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Appendices

A Diagrams contributing to the e+e− → HHνeν̄e
process

The following diagrams have been automatically generated by MadGraph:
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Diagrams made by MadGraph5_aMC@NLO
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B Computations with the effective W approxima-

tion

The W+W− −→ HH subprocess will be characterized by an amplitude F (ŝ, x),
where ŝ is the square of the center-of-mass energy of the subprocess and x ≡ cos θ.
The differential cross section will be

dσ̂

dΩ
=
|~pout|
|~pin|

|F̄ |2

64π2ŝ
(B.1)

The integration over the azimuthal angle is trivial, and the moduli of the incoming
and outgoing three-momenta can be easily expressed as a function of ŝ:

σ̂(ŝ) =

√
ŝ− 4m2

H

ŝ− 4M2
W

1

32πŝ

∫ 1

−1
dx|F̄ |2(ŝ, x) (B.2)

where the averaged squared amplitude can be decomposed as

|F̄ |2 = |F̄ |2LL + |F̄ |2TT + |F̄ |2LT (B.3)

The squared center-of-mass energy of the whole e+e− −→ HHν̄eνe process, s, is
related to that of the subprocess through

ŝ = x1x2s (B.4)

where

x1 =
EW+

Ee+
, x2 =

EW−

Ee−
(B.5)

As electron and positron carry the same energy,

Ee+ = Ee− ≡ E =

√
s

2
(B.6)

The cross section of the whole process can be obtained by convoluting that of the
subprocess with the distribution functions of the W bosons:

σ(s) =

∫
dx2

∫
dx1f(x1)f(x2)σ̂(x1x2s) (B.7)

Some kinematical cuts must be applied to the variables x1 and x2. The energy of
the subprocess must be large enough to produce two Higgs bosons. This means

ŝ > 4m2
H ⇒ x1x2s > 4m2

H ⇒ x1 >
4m2

H

x2s
(B.8)

Besides, each of the W bosons needs to have an energy of at least its mass. Picking,
for instance, the W−,

EW− >MW ⇒
x2
√
s

2
>MW ⇒ x2 >

2MW√
s

(B.9)
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Taking these considerations into account, the total cross section can be expressed
as:

σ(s) =

∫ 1

A

dx2

∫ 1

B/x2

dx1f(x1)f(x2)σ̂(x1x2s) (B.10)

with A ≡ 2MW/
√
s and B ≡ 4m2

H/s. However, in order to perform these integrals
numerically, the integration variables must be independent. In order to achieve
so, some changes of variable need to be performed. Defining τ ≡ x1x2 and η ≡
1
2

log
(
x1
x2

)
yields x1 =

√
τeη and x2 =

√
τe−η. As τ = ŝ

s
, it spans in the range

τ ∈ [
4m2

H

s
, 1]. The other variable will be in the range η ∈ [log

√
τ ,− log

√
τ ]. The

Jacobian of this change of variables is 1, so

σ(s) =

∫ 1

4m2
H

dτ

∫ − log
√
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log
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dησ̂(ŝ) =
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4m2
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dτ

∫ − log
√
τ

log
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dxf(

√
τeη)f(

√
τe−η)×

×

√
τs− 4m2

H

τs− 4M2
W

1

32πτs
|F̄ |2(τs, x)

(B.11)

However, these integration variables still depend on each other, and a numerical
integration needs them to be independent. Thus, a further change of variables will
be worked out:

ω1 ≡
log
(

τs
4m2

H

)
log
(

s
4m2

H

) (B.12)

ω2 ≡
1

2

(
1− η

τ

)
(B.13)

ω3 ≡
1

2
(1 + x) (B.14)

These new variables are all contained in the range [0, 1]. Now the Jacobian is not
trivial:

J(ω1, ω2, ω3) = 8τ(ω1) log
1√
τ(ω1)

log
s

4m2
H

(B.15)

with

τ(ω1) =
4m2

H

s
exp

(
2ω1 log

s

4m2
H

)
(B.16)

Thus,

σ(s) =

∫ 1

0

ω1

∫ 1

0

ω2

∫ 1

0

ω3J(ω1, ω2, ω3)f(x1(τ(ω1), η(ω1, ω2)))f(x2(τ(ω1), η(ω1, ω2)))×

×

√
τ(ω1)s− 4m2

H

τ(ω1)s− 4M2
W

1

32πτ(ω1)s
|F̄ |2(τ(ω1)s, x)

(B.17)

where

η(ω1, ω2) = (2ω2 − 1) log
1√
τ(ω1)

(B.18)
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Equation B.7 is actually a bit more complicated. As the distribution functions
depend on the polarization of the vector bosons, it is necessary to split the squared
amplitude (according to equation B.3), weighting each piece with the corresponding
distribution functions.

σ(s) =

∫ 1

0

ω1

∫ 1

0

ω2

∫ 1

0

ω3J(ω1, ω2, ω3)

√
τ(ω1)s− 4m2

H

τ(ω1)s− 4M2
W

1

32πτ(ω1)s
×

×
∑
i,j

fi(x1(τ(ω1), η(ω1, ω2)))fj(x2(τ(ω1), η(ω1, ω2)))|F̄i,j|2(τ(ω1)s, x)

(B.19)

where the indices i and j run over the longitudinal and transverse polarizations of
the gauge bosons. This expression can be numerically integrated. This integration
will be performed employing two different sets of disitribution functions (both can
be found in [56]): the ones obtained employing the Leading Log Approximation
(LLA), which assumes E >> MW , and the improved ones, which keep terms of
order MW/E.

Equations B.20 and B.21 show the “PDFs”, within the LLA, for W bosons which
carry a fraction x of the energy of the electron, E, and exhibit a transverse and
longitudinal polarization, respectively.

fT (x) =
g2

32π2x

[
x2 + 2(1− x)

]
log

(
4E2

M2
W

)
(B.20)

fL(x) =
g2

16π2

1− x
x

(B.21)

Equations B.22 and B.23 show the improved distribution functions, which keep terms
of order MW/E.

fT (x) =
g2

32π2x

[
−x2

1 +M2
W/(4E

2(1− x))
+

2x2(1− x)

M2
W/E

2 − x2
+{

x2 +
x4(1− x)

(M2
W/E

2 − x2)2
×
(

2 +
M2

W

E2(1− x)

)
− x2

(M2
W/E

2 − x2)2
M4

W

2E4

}
× log

(
1 +

4E2(1− x)

M2
W

)
+ +x4

(
2− x

M2
W/E

2 − x2

)2

log
x

2− x

]
η (B.22)

with η ≡
(

1− M2
W

x2E2

)1/2
.

fL(x) =
g2

4π2

1− x
x

η

(1 + η)2

×
{

1− x−M2
W/(8E

2)

1− x+M2
W/(4E

2)
− M2

W

4E2

1 + 2(1− x)2

1− x+M2
W/(4E

2)

1

M2
W/E

2 − x2

− M2
W

4E2

x2

2(1− x)(x2 −M2
W/E

2)2

[
(2− x)2 log

x

2− x
−

((
x− M2

W

E2x

)2
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−(2(1− x) + x2)
)

log

(
1 +

4E2(1− x)

M2
W

)]
− M2

W

8E2

x√
x2 −M2

W/E
2

[
2

x2 −M2
W/E

2
+

1

1− x

]
×

[
log

2− x−
√
x2 −M2

W/E
2

2− x+
√
x2 −M2

W/E
2
− log

x−
√
x2 −M2

W/E
2

x+
√
x2 −M2

W/E
2

]}
(B.23)
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