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Introduction

This thesis aims to serve as an introduction to the theory of quasitilings for
amenable groups. In order to showcase the power of this theory, we focus on
the study of the Sofic Lück Approximation Conjecture, which can be proven
for amenable groups by making use of quasitilings. The first four chapters
of the thesis are an exposition of the aforementioned topics, collected from
the literature. After that, we present some new results in the fifth and final
chapter.

Amenable groups originated in 1929 from J. von Neumann’s work on
the Banach-Tarski Paradox in [23]. This so-called paradox, proved in 1924
by S. Banach and A. Tarski [1], states that a ball in the euclidean three-
dimensional space can be decomposed into a finite number of pieces that can
then be rearranged to form two new balls of the same size as the original ball,
using only translations and rotations. The key to this result lies on the fact
that the group of isometries of R3 contains a copy of the free group of rank
two. This led to von Neumann introducing amenable groups as those with
a finitely-additive probability measure that is invariant under the action of
the group on itself. These are precisely the groups that cannot cause a
paradoxical decomposition akin to the one in the Banach-Tarski Paradox.
It was then conjectured that a group is amenable if and only it contains a
free subgroup of rank two. This came to be known as the von Neumann
Conjecture, and was disproved in 1980 by A. Y. Ol’shanskii [19].

The term amenable was later coined by M. M. Day [3] as a pun on the
word mean, after he showed that amenable groups are those on which an
invariant mean can be defined. Another equivalent definition was found by
E. Følner [7], characterising amenable groups as those with almost-invariant
finite subsets. Subsequently, amenable groups have been extensively studied,
and a plethora of different characterisations of amenability has been found,
making amenable groups ubiquitous across many seemingly distant areas of
mathematics.

The theory of quasitilings for amenable groups was first developed by
D. S. Ornstein and B. Weiss [20], when they proved that any sufficiently
invariant finite subset of an amenable group can be covered almost entirely
by almost-disjoint translates of a finite collection of tiles with good invariance
properties. The existence of these quasitilings, obtained by using Følner
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sets, has far-reaching applications in the study of many problems concerning
amenable groups. A more general version of this theory, valid not only for
finite subsets of the group but also for finite labelled graphs, was introduced
by G. Elek [4].

Amenable groups are in a way groups of a finite-like nature, in the sense
that they can be approximated by finite Følner sets. Residually finite groups,
in which elements can be distinguished in finite quotients, are of a similar
nature in that they can be approximated by finite groups. As a joint gen-
eralisation of both amenable and residually finite groups arise sofic groups,
first introduced by M. Gromov [9] in 1999 as groups whose Cayley graphs
can be approximated by finite graphs. Soon after in 2000, B. Weiss [25] gave
these groups the name sofic, a term that comes from the Hebrew word for
finite. Both amenable and residually finite groups are sofic, and there are
currently no known examples of non-sofic groups. In [6], using the theory
of quasitilings applied to the sofic approximations of an amenable group, G.
Elek and E. Szabó were able to characterise amenable groups amongst sofic
groups as those whose sofic approximations are all conjugate.

In this same spirit of using finite approximations to obtain information
about infinite objects, we have the Sofic Lück Approximation Conjecture, a
version of a conjecture that has its origin in a work of W. Lück on approx-
imations of L2-Betti numbers of compact manifolds. Given an element of
the group algebra of a sofic group over some field, we can naturally define
an operator for each element in the sofic approximation of our group. The
Sofic Lück Approximation Conjecture then asks whether the normalised di-
mensions of the kernels of these associated operators converge, and whether
this convergence is independent of the chosen sofic approximation.

In the case that we are working in a field of characteristic zero, this
conjecture has been extensively studied, and was eventually shown to be true
for any sofic group by A. Jaikin-Zapirain [12]. The proof of this fact relies
heavily on techniques from functional analysis, in particular the spectral
theory of self-adjoint operators, which cannot be readily exported to the
case of positive characteristic. As such, the positive characteristic case of
the conjecture remains open.

Nonetheless, the conjecture can be shown to hold for amenable groups,
independent of the characteristic of the field, by making use of the previously
mentioned result by Elek and Szabó from [6] that says that any two sofic
approximations of an amenable group are conjugate.

The proof of the conjecture in characteristic zero relies on the construc-
tion of a sequence of measures, each associated to an element of the sofic
approximation of the group. Proving the conjecture is then reduced to the
problem of showing that these measures converge pointwise at zero, inde-
pendent of the approximation.

Suppose now that we are working over the field of fractions of some
discrete valuation ring, e.g. the ring of p-adic integers Zp with its field of
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fractions Qp. Using the Smith normal form of a matrix over a principal
ideal domain, we can define a measure on the space of ideals of our discrete
valuation ring for each element of the sofic approximation. For amenable
groups, these measures can be shown to converge at each ideal, independent
of the sofic approximation.

This construction can be generalised to the case of number fields, whose
rings of integers are Dedekind domains. This time, the construction of
the associated measures on the space of ideals is done not by using the
Smith normal form, but the decomposition of finitely generated modules
over Dedekind domain. In this case, we are able to prove the strong con-
vergence of the measures for amenable groups, independent of the sofic ap-
proximation.

Chapter 1 serves as a standard introduction to the theory of amenable
groups and their basic properties. Throughout the chapter, a number of
the many different characterisations of amenability are discussed, before
eventually proving in the last section the equivalences between them. We
also make some room in the middle of the chapter for the proof of the
Banach-Tarski Paradox.

In Chapter 2, we develop the theory of quasitilings of graphs for amenable
groups, starting with by defining what an approximation of a Cayley graph
before going on to prove that quasitilings always exist for amenable groups.
We then present a different version of this result using linear combinations
of graphs.

Chapter 3 begins with a brief discussion of residually finite groups, after
which we introduce the concept of sofic groups via sofic approximations. We
also discuss a characterisation of sofic groups making use of ultraproducts
of finite symmetric groups.

In Chapter 4, we discuss the Sofic Lück Approximation Conjecture and
we prove it for amenable groups and over the field Q.

In Chapter 5, we construct a sequence of measures associated to the
operators that appear in the Sofic Lück Approximation Conjecture, first
over discrete valuation rings, and then over number fields, and study the
convergence of these measures for amenable groups.





Chapter 1

Amenable Groups

In this chapter we will study amenable groups and some of their many char-
acterisations. Our introduction to the concept of amenability will be through
the original definition in terms of invariant finitely additive probability mea-
sures. We will also discuss its relation to means and the closure properties
of the class of amenable groups. Afterwards, we will study the characteri-
sation of amenable groups in terms of the Følner condition, and the related
concepts of Følner nets and sequences. We will then discuss paradoxical
decompositions, after which we will make a slight digression to prove the
Banach-Tarski Paradox. Then, we will introduce the concepts of ultrafilters
and the Stone-C̆ech compactification, in order to later prove some charac-
terisations of amenability in terms of fixed points and measures of certain
actions. We will conclude the chapter by finally proving the equivalences
between all of the characterisations of amenability that we have discussed.
This chapter is mainly based on [2, §4], [15, §4.1] and [8].

1.1 Finitely Additive Measures and Means

In 1924, S. Banach and A. Tarski [1] proved that the unit ball in R3 can
be partitioned into five pieces which can then be used to form two disjoint
copies of the original ball using only translations and rotations. This result,
known as the Banach-Tarski Paradox, can be reformulated as saying that
there is no finitely additive measure on R3 that is invariant under transla-
tions and rotations. Amenable groups were originally defined in 1929 by J.
von Neumann [23] whilst studying the Banach-Tarski Paradox. We will now
present his original definition in terms of invariant finitely additive proba-
bility measures.

Definition 1.1.1. A finitely additive probability measure on a group G is a
map

µ : P(G) −→ [0, 1]

satisfying the following properties:

1



2 1.1. Finitely Additive Measures and Means

(i) µ(G) = 1.

(ii) µ(X ∪· Y ) = µ(X) + µ(Y ) for all disjoint X,Y ⊆ G, where ∪· denotes
disjoint union.

Furthermore, we say that µ is right-invariant if it satisfies the following
additional property:

(iii) µ(Xg) = µ(X) for all X ⊆ G and g ∈ G.

We can now give our first definition of amenable groups.

Definition 1.1.2. A group G is said to be amenable if there exists a right-
invariant finitely additive probability measure on G.

Examples 1.1.3. (i) Let G be a finite group. Then, we can define a
right-invariant finitely additive probability measure µ on G by setting

µ(X) =
|X|
|G|

for any X ⊆ G, and so G is amenable.

(ii) Let F (a, b) be the free group on two generators. Then, F (a, b) is not
amenable. Indeed, for each s ∈ {a±1, b±1} denote by W (s) the set of
reduced words ending with s. Then, we can write

F (a, b) = {1} ∪· W (a) ∪· W (a−1) ∪· W (b) ∪· W (b−1)

= W (a) ∪· W (a−1)a

= W (b) ∪· W (b−1)b.

Assume by contradiction that there is a right-invariant finitely additive
probability measure µ on F (a, b). Then, on the one hand we have that

1 = µ
(
F (a, b)

)
= µ

(
W (a)

)
+ µ

(
W (a−1)

)
= µ

(
W (b)

)
+ µ

(
W (b−1)

)
.

On the other hand,

µ
(
F (a, b)

)
≥ µ

(
W (a)

)
+ µ

(
W (a−1)

)
+ µ

(
W (b)

)
+ µ

(
W (b−1)

)
= 2,

so we have a contradiction. Therefore, F (a, b) is not amenable.

Remarks 1.1.4. (i) It is not difficult to see that the existence of a right-
invariant finitely additive probability measure on G is equivalent to
the existence of a left-invariant finitely additive probability measure
on G, i.e. a finitely additive probability measure µ on G such that
µ(gX) = µ(X) for all X ⊆ G and g ∈ G.
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(ii) We are dealing exclusively with discrete groups. Nonetheless, a more
general theory of amenability can be developed for locally compact
groups.

If we denote by PM(G) the set of finitely additive probability measures
on the group G, then we can define a right action of G on PM(G) by setting

µg(X) = µ(Xg−1)

for µ ∈ PM(G) and X ⊆ G. Observe that PM(G)G, the subset of G-
invariant elements in PM(G), is precisely the set of right-invariant finitely
additive probability measures on G. Thus, G is amenable if and only if
PM(G)G 6= ∅.

The definition of amenability that we have given suffers from the fact
that, in general, finitely additive measures are not σ-additive and, as a
consequence, we cannot make full use of the theory of Lebesgue integration.
For this reason, M. Day gave in [3] a new characterisation of amenability
that allows us to use techniques from Functional Analysis.

Recall that for a set Ω the space `∞R (Ω) of bounded functions x : Ω −→ R
is a Banach space with the supremum norm

‖x‖∞ = sup
w∈Ω
|x(w)|.

Given λ ∈ R, we denote by λ the constant map in `∞R (E) taking the constant
value λ on all Ω. We can order `∞R (E) by setting x ≤ y if and only if
x(w) ≤ y(w) for all w ∈ Ω.

If G is a group, then we can consider the action of G on `∞R (G) given by

xg(h) = x(hg−1)

for x ∈ `∞R (G) and h ∈ G.
Let us now introduce the concept of a mean.

Definition 1.1.5. A mean on a group G is a linear map

m : `∞R (G) −→ R

satisfying the following properties:

(i) m(1) = 1.

(ii) m(x) ≥ 0 for all x ∈ `∞R (G) such that x ≥ 0.

Furthermore, we say that m is right-invariant if it satisfies the following
additional property:

(iii) m(xg) = m(x) for all x ∈ `∞R (G) and g ∈ G.
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Denoting by M(G) the set of means on the group G, we have that the
action of G on `∞R (G) restricts to an action of G on M(G). Then, M(G)G,
the subset of G-invariant elements in M(G), is precisely the set of right-
invariant means on G.

Let m be a mean on G. Given any X ⊆ G, we can consider its character-
istic function χX ∈ `∞R (G). We can then define a finitely additive probability
measure µm on G by setting

µm(X) = m(χX)

and, if m is right-invariant, then so is µ.
Conversely, given a right-invariant finitely additive probability measure

µ on G, we can construct an integral in a manner analogous to the con-
struction of the Lebesgue integral of a σ-additive measure, although some
of the properties of the Lebesgue integral fail in our case due to the lack of
σ-additivity. First, we consider R[G] the space of functions in `∞R (G) with
finite support. Then, given x ∈ R[G] we can define∫

G
x dµ =

∑
λ∈x(G)

λµ
(
x−1(λ)

)
.

It is easy to see that this integral satisfies the following properties:

(i) It is linear, i.e.∫
G

(αx+ βy) dµ = α

∫
G
x dµ+ β

∫
G
y dµ

for any x, y ∈ R[G] and α, β ∈ R.

(ii) It is bounded, i.e. ∣∣∣∣∫
G
x dµ

∣∣∣∣ ≤ ‖x‖∞
for any x ∈ R[G].

(iii) It is right-invariant, i.e. ∫
G
xg dµ =

∫
G
x dµ

for any x ∈ R[G] and g ∈ G.

As a consequence, this integral defines a right-invariant bounded functional
on R[G]. Now, R[G] forms a dense subspace of `∞R (G), and so the integral
can be extended to a right-invariant bounded functional on the whole `∞R (G).
Therefore, the map mµ : `∞R (G) −→ R defined by

mµ(x) =

∫
G
x dµ
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for x ∈ `∞R (G) is a right-invariant mean on G. A more detailed version of
this construction can be found in [2].

The previous discussion shows that there is a bijection between the sets
M(G)G and PM(G)G, which leads us to the following characterisation of
amenability.

Theorem 1.1.6. Let G be a group. Then, G is amenable if and only if
there exists a right-invariant mean on G.

1.2 Closure Properties

We will now study some closure properties of the class of amenable groups.
Specifically, we will show that amenability is closed under taking subgroups,
extensions and direct limits. But first, let us quickly recall the notion of
direct limit of groups.

Definition 1.2.1. Let I be a directed set, i.e. a partially ordered set such
that for any i, j ∈ I there is some k ∈ I with i, j ≤ k. A direct system
of groups consists of a collection of groups (Gi)i∈I and homomorphisms
φij : Ai −→ Aj for all i ≤ j such that the following hold:

(i) φii = idGi for all i ∈ I.

(ii) φik = φjk ◦ φij for all i, j, k ∈ I with i ≤ j ≤ k.

The direct limit of the direct system (Gi)i∈I is then defined as the group

lim−→
i∈I

Gi =

(⋃
i∈I

Gi

)
/ ∼,

with the equivalence relation ∼ given by setting gi ∼ gj for gi ∈ Gi and
gj ∈ Gj if and only if there exists some k ∈ I with i, j ≤ k such that
φik(gi) = φjk(gj).

Example 1.2.2. Given any group G, we can order the family I of finitely
generated subgroups of G by inclusion, which is thus turned into a direct
system of groups. We can then easily see that

G = lim−→
H∈I

H.

Consequently, every group can be written as the direct limit of its finitely
generated subgroups.

Proposition 1.2.3. Let G be a group. Then, the following properties hold:

(i) If G is amenable and H ≤ G, then H is amenable.
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(ii) If N E G, then G is amenable if and only if both N and G/N are
amenable.

(iii) If (Gi)i∈I is a direct system of amenable groups and

G = lim−→
i∈I

Gi,

then G is amenable.

Proof. (i) Let µ be a right-invariant finitely additive probability measure
on G, and T be a left transversal of H in G, i.e. a set of representatives
of the left cosets of H in G. Then, we define

µ̃(X) = µ(TX)

for any X ⊆ H. We can easily check that µ̃ : P(H) −→ R is a right-
invariant finitely additive probability measure on H. Indeed, we have
that

µ̃(H) = µ(TH) = µ(G) = 1.

Furthermore, if X,Y ⊆ H are disjoint, then so are TX and TY , and
as a consequence

µ̃(X ∪· Y ) = µ
(
T (X ∪· Y )

)
= µ(TX ∪· TY )

= µ(TX) + µ(TY )

= µ̃(X) + µ̃(Y ).

Finally, given any X ⊆ H and h ∈ H we have that

µ̃(Xh) = µ(TXh) = µ(TX) = µ̃(X).

Therefore, H is amenable.

(ii) Assume first that G is amenable. Then, item (i) implies that N is also
amenable. Now, let µ be a right-invariant finitely additive probability
measure on G. Then, we define

µ̃(X/N) = µ(X)

for any X/N ⊆ G/N . We have that

µ̃(G/N) = µ(G) = 1.

Furthermore, if X/N, Y/N ⊆ G/N are disjoint, then so are X and Y ,
and as a consequence

µ̃(X/N ∪· Y/N) = µ̃
(
(X ∪· Y )/N

)
= µ(X ∪· Y )

= µ(X) + µ(Y )

= µ̃(X/N) + µ̃(Y/N).
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Finally, given any X/N ⊆ G/N and gN ∈ G/N we have that

µ̃
(
(X/N)(gN)

)
= µ̃

(
(Xg)/N

)
= µ(Xg)

= µ(X)

= µ̃(X/N).

Therefore, G/N is amenable.

Conversely, assume that both N and G/N are amenable. Let µN and
µG/N be right-invariant, finitely additive probability measures on N
and G/N , respectively. Then, for any gN ∈ G/N the map µgN defines
a finitely additive probability measure on gN . Note that this measure
does not depend on the representative of gN chosen, for if gN = hN ,
then

µgN = µgh
−1h

N = µh

because gh−1 ∈ N and µN is N -invariant.

Now, given X ⊆ G we set

γX(gN) = µgN (X ∩ gN)

for gN ∈ G/N . Then, it is clear that γX ∈ `∞R (G/N). Furthermore,
if X,Y ⊆ G are disjoint, then so are X ∩ gN and Y ∩ gN for all
gN ∈ G/N , and hence,

γX∪· Y (gN) = µgN
(
(X ∪· Y ) ∩ gN

)
= µgN (X ∩ gN) + µgN (Y ∩ gN)

= γX(gN) + γY (gN)

for any gN ∈ G/N . Moreover, given g ∈ G, we have that

γgX(hN) = γX(hNg−1)

= µhg
−1

N (X ∩ hg−1N)

= µhN (Xg ∩ hN)

= γXg(hN)

for any hN ∈ G/N .

Then, we define

µ(X) =

∫
G/N

γX dµG/N

for X ⊆ G. It is now clear from the aforementioned properties of γX
that µ is a right-invariant finitely additive probability measure on G.
Therefore, G is amenable.
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(iii) For each i ∈ I, let ρi : Gi −→ G be the canonical homomorphism and
Hi = ρ(Gi), which is amenable by item (ii), and so it has a right-
invariant finitely additive probability measure µi.

Consider the set PMi of all µ ∈ PM(G) such that µ(Xh) = µ(X) for
all X ⊆ G and h ∈ Hi. For every i ∈ I, we can set

µ̄i(X) = µi(X ∩Hi)

for X ⊆ G, and so µ̄i ∈ PMi. The set [0, 1]P(G) is compact by
Tychonoff’s Theorem, and PMi is a closed subset of [0, 1]P(G) because
it can be written as the intersection of preimages of closed sets by
continuous functions.

Furthermore, given any i, j ∈ I there exists some k ∈ I such that
Hi, Hj ≤ Hk, and thus PMk ⊆ PMi ∩ PMj , which implies that
PMi ∩ PMj 6= ∅. Hence, {PMi}i∈I is a collection of non-empty
closed subsets of the compact space [0, 1]P(G) with the finite intersec-
tion property, and so their intersection is non-empty, i.e. there exists
some µ ∈

⋂
i∈I PMi. Therefore, µ is a right-invariant finitely additive

probability measure on G, and so G is amenable.

Remarks 1.2.4. (i) As mentioned in Example 1.2.2, every group can be
written as the direct limit of its finitely generated subgroups. In light
of Proposition 1.2.3, this implies that a group is amenable if and only
if all of its finitely generated subgroups are amenable.

(ii) As we saw in Example 1.1.3, the free group of rank 2 is not amenable.
As such, no group with a free non-abelian subgroup can be amenable.
It was conjectured for some time that the converse of this result
was true as well. This conjecture, which came to be known as the
von Neumann Conjecture, was eventually shown to be false by A. Y.
Ol’shanskii in [19].

1.3 The Følner Condition

We will now present a characterisation of amenability given by E. Følner
in [7]. The so-called Følner condition is satisfied when a group has arbi-
trarily invariant finite subsets. This will give us another characterisation of
amenable groups as those that satisfy the Følner condition.

Definition 1.3.1. A group G is said to satisfy the Følner condition if for
every finite X ⊆ G and every ε > 0 there exists a finite non-empty subset
F ⊆ G such that

|F \ Fg|
|F |

< ε
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for all g ∈ X.

The Følner condition can be restated in terms of nets of almost invariant
subsets. Let us now briefly recall the notion of net and some of its basic
properties.

Definition 1.3.2. Let X be a topological space. A net in X is a family
(xi)i∈I of points of X indexed by some directed set I.

We say that the net (xi)i∈I converges to the point x ∈ X if, for every
neighbourhood V ⊆ X of x, there is some i0 ∈ I such that xi ∈ V for all
i ≥ i0. If the limit is unique, we write

x = lim
i∈I

xi.

Proposition 1.3.3. Let X be a topological space. Then, the following hold:

(i) The space X is Hausdorff if and only if every convergent net has a
unique limit point.

(ii) The space X is compact of and only if every net has a convergent
subnet.

The Følner condition can then be stated in terms of the existence of a
net of finite subsets that grow more and more invariant.

Definition 1.3.4. A net (Fi)i∈I of finite non-empty subsets of a group G
is said to be a Følner net if

lim
i∈I

|Fi \ Fig|
|Fi|

= 0

for every g ∈ G. When I = N, we refer to a sequence (Fn)n∈N satisfying the
above property as a Følner sequence.

Examples 1.3.5. (i) If G is a finite group, then the constant sequence
(Fn)n∈N with Fn = G for all n ∈ N is clearly a Følner sequence.

(ii) Consider the group of integers Z. For each n ∈ N, consider the finite
set

Fn = [−n, n] ∩ Z.

Then, for each k ∈ Z we have that

|Fn \ (Fn + k)|
|Fn|

≤ |k|
2n+ 1

for all n ∈ N, and so (Fn)n∈N is a Følner sequence in Z.
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Remark 1.3.6. A group G satisfies the Følner condition if and only if for
every finite X ⊆ G and every ε > 0 there exists a finite non-empty subset
F ⊆ G such that

|F∆Fg|
|F |

< ε

for all g ∈ X. Similarly, the net (Fi)i∈I is Følner if and only if

lim
i∈I

|Fi∆Fig|
|Fi|

= 0

for every g ∈ G. We will use these characterisations when convenient.

Theorem 1.3.7. Let G be a group. Then, G satisfies the Følner condition
if and only if there is a Følner net in G.

Proof. Assume first that there is a Følner net (Fi)i∈I in G. Then, given
ε > 0 and a finite subset X ⊆ G, there exists some i ∈ I such that

|Fi \ Fig|
|Fi|

< ε

for all g ∈ X. Hence, G satisfies the Følner condition.
Conversely, assume that G satisfies the Følner condition. Let I be the

set of pairs (X, ε) with X ⊆ G finite and ε > 0. We can define a partial
order � on I by setting (X, ε) � (X ′, ε′) if and only if X ⊆ X ′ and ε ≥ ε′.
Given (X, ε), (X ′, ε′) ∈ I, we have that

(X, ε), (X ′, ε′) �
(
X ∪X ′,min{ε, ε′}

)
,

and so I is a directed set. By the Følner condition, for every i ∈ I there
exists some finite non-empty subset Fi ⊆ G such that

|Fi \ Fig|
|Fi|

< ε

for all g ∈ X. Hence, (Fi)i∈I is a Følner net in G.

We will now show that every group satisfying the Følner condition is
amenable. Later on, we will be able to prove that the converse also holds,
as part of Theorem 1.7.1.

Theorem 1.3.8. Let G be a group. If G satisfies the Følner condition, then
G is amenable.

Proof. Given any finite subset X ⊆ G and ε > 0, denote by PMX,ε the set
of finitely additive probability measures µ on G such that

|µ(Y )− µ(Y g)| ≤ ε
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for all g ∈ X and Y ⊆ G. We have that PMX,ε is a closed subset of
[0, 1]P(G), for it can be written as the intersection of zero sets of continuous
functions.

Moreover, [0, 1]P(G) is compact as a consequence of Tychonoff’s Theorem,
and so PMX,ε is compact. By the Følner condition, there exists some finite
non-empty subset F ⊆ G such that

|F \ Fg|
|F |

< ε

for all g ∈ X, so we can set

µX,ε(Y ) =
|Y ∩ F |
|F |

for Y ⊆ G. Then, µX,ε ∈ PMX,ε and the set PMX,ε is non-empty. We also
have that

PMX∩X′,min{ε,ε′} ⊆ PMX,ε ∩ PMX′,ε′ ,

and the intersection is non-empty. Hence, {PMX,ε} is a collection of closed
non-empty subsets of [0, 1]P(G) with the finite intersection property and,
because [0, 1]P(G) is compact, there must exist some µ ∈

⋂
PMX,ε. This µ

is a right-invariant finitely additive probability measure on G, and so G is
amenable.

We can now show, with the help of Følner sequences, that a number of
different classes of groups are amenable.

Examples 1.3.9. (i) The group Z is amenable, for as we saw in Exam-
ple 1.3.5, the sequence (Fn)n∈N with

Fn = [−n, n] ∩ Z

for each n ∈ N is a Følner sequence in Z.

(ii) Abelian groups are amenable. Indeed, every finitely generated abelian
group is of the form G = Zr × H with r ≥ 0 and H finite. Since
both Z and H are amenable, and extensions of amenable groups are
amenable, we have that G is amenable. Finally, because amenabil-
ity is closed under taking direct limits, we reach the conclusion that
arbitrary abelian groups are amenable.

(iii) Solvable groups are amenable. Recall that a group G is solvable if it
has a subnormal series

1 = G0 EG1 E · · ·EGn = G

such that the quotient Gk/Gk−1 is abelian for all k = 1, . . . , n. If n
is the minimum length of any such series, we say that G is solvable
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of class n. By induction on the solvability class n of G, assume that
every solvable group of class less than n is amenable. Then, Gn−1 EG
is solvable of class less than n, so it is amenable by induction. Further-
more, G/Gn−1 is also amenable by virtue of being abelian. Therefore,
G is an extension of amenable groups, and so it is itself amenable.

When our group is countable, and in particular when it is finitely gener-
ated, the existence of Følner sequences is equivalent to satisfying the Følner
condition.

Theorem 1.3.10. A group G has a Følner sequence if and only if G satisfies
the Følner condition and is countable.

Proof. Suppose that G satisfies the Følner condition and is countable. Be-
cause G is countable, we can write

G =
⋃
n∈N

Xn

with Xn ⊆ G finite and Xn ⊆ Xn+1 for all n ∈ N. Now, because G satisfies
the Følner condition, for each n ∈ N there exists a finite subset Fn ⊆ G such
that

|Fn \ Fng|
|Fn|

<
1

n

for every g ∈ Xn. From this, we deduce that

lim
n→∞

|Fn \ Fng|
|Fn|

= 0

for every g ∈ G, and so (Fn)n∈N is a Følner sequence in G.
Suppose now that G has a Følner sequence (Fn)n∈N. Then, G satisfies

the Følner condition by Theorem 1.3.7. Now, for each n ∈ N define

Xn = {xy−1 | x, y ∈ Fn}.

Given g ∈ G, there is some N ∈ N such that

|Fn \ Fng|
|Fn|

<
1

2

for all n ≥ N , implying that Fn ∩ Fng 6= ∅, and so g ∈ Xn. Therefore,

G =
⋃
n∈N

Xn

and, because every Xn is finite, G is countable.

Let us now see some alternative characterisations of Følner sequences.
For that, we will need to introduce some concepts related to invariance of
subsets of a group.
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Definition 1.3.11. Let G be a group, F,X ⊆ G be non-empty finite subsets
of G and ε > 0. We say that X is (F, ε)-invariant if∣∣{g ∈ X | gF ⊆ X}∣∣ > (1− ε)|X|.

Definition 1.3.12. Let G be a group and F,X ⊆ G be non-empty finite
subsets of G. The F -boundary of X is the set

∂FX =
{
g ∈ G | gF ∩X 6= ∅ and gF ∩ (G \X) 6= ∅

}
.

We can now prove the following characterisations of Følner sequences.

Proposition 1.3.13. Let G be a countable group and (Fn)n∈N be a sequence
of non-empty finite subsets of G. Then, the following are equivalent:

(i) The sequence (Fn)n∈N is Følner, i.e. for every g ∈ G we have that

lim
n→∞

|Fn∆Fng|
|Fn|

= 0.

(ii) For any finite subset F ⊆ G and any ε > 0, there exists some N ∈ N
such that Fn is (F, ε)-invariant for every n ≥ N .

(iii) For any finite subset F ⊆ G and any ε > 0, there exists some N ∈ N
such that |∂FFn| < ε|Fn| for every n ≥ N .

Proof. First, let us see that (i) implies (iii). Given a finite subset F ⊆ G
and ε > 0, there exists some N ∈ N such that

|Fn∆Fng|
|Fn|

<
ε

|F |2

for all g ∈ FF−1. Observe that we can write

∂FFn =

( ⋃
s∈F

Fns
−1

)
\
( ⋂
s∈F

Fns
−1

)
=
⋃
s,t∈F

(Fns
−1∆Fnt

−1),

and so

|∂FFn| =
∣∣∣∣ ⋃
s,t∈F

(Fns
−1∆Fnt

−1)

∣∣∣∣
≤
∑
s,t∈F
|Fn∆Fnt

−1s|

< ε|Fn|
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for every n ≥ N .

Let us now prove that (iii) implies (ii). Given a finite subset F ⊆ G
and ε > 0, if we take the set F ′ = F ∪ {1}, there exists some N ∈ N such
that |∂F ′Fn| < ε|Fn| for every n ≥ N . Assume by contradiction that Fn is
not (F ′, ε)-invariant, i.e.∣∣{s ∈ Fn | sF ′ ⊆ Fn}∣∣ ≤ (1− ε)|Fn|.

Because 1 ∈ F ′, we can write

{s ∈ Fn | sF ′ ⊆ Fn} =
⋂
s∈F ′

(Fn ∩ Fns−1) =
⋂
s∈F ′

Fns
−1,

and so

|∂F ′Fn| =
∣∣∣∣ ⋃
s∈F ′

Fns
−1

∣∣∣∣− ∣∣∣∣ ⋂
s∈F ′

Fns
−1

∣∣∣∣
≥ |Fn| − (1− ε)|Fn|
= ε|Fn|.

Therefore, Fn must be (F ′, ε)-invariant for every n ≥ N and, because F ⊆ F ′
and

{s ∈ Fn | sF ′ ⊆ Fn} ⊆ {s ∈ Fn | sF ⊆ Fn},

this implies that Fn is (F, ε)-invariant for every n ≥ N .

Finally, let us show that (ii) implies (i). Given g ∈ G and ε > 0, there
exists some N ∈ N such that Fn is ({g−1}, ε2)-invariant for every n ≥ N .
Now, we have that

2|Fn ∩ Fng| =
(
|Fn| − |Fn \ Fng|

)
+
(
|Fng| − |Fng \ Fn|

)
= 2|Fn| − |Fn∆Fng|.

Thus, (
1− ε

2

)
|Fn| <

∣∣{s ∈ Fn | sg−1 ∈ Fn}
∣∣

= |Fn ∩ Fng|

= |Fn| −
1

2
|Fn∆gFn|,

from where we obtain that

|Fn∆Fng|
|Fn|

< ε

for every n ≥ N . Therefore, (Fn)n∈N is a Følner sequence.
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A particular type of Følner sequence is what we will call Følner exhaus-
tion, i.e. a Følner sequence (Fn)n∈N in the group G such that

1 ∈ F1 ⊆ · · · ⊆ Fn ⊆ · · ·

and
G =

⋃
n∈N

Fn.

We will now see that the existence of Følner sequences is equivalent to the
existence of Følner exhaustions.

Proposition 1.3.14. Let G be a countable group. Then, G has a Følner
sequence if and only if it has a Følner exhaustion.

Proof. Every Følner exhaustion is by definition a Følner sequence. Thus, we
only need to show that whenever we have a Følner sequence we can obtain
a Følner exhaustion.

Let (Fn)n∈N be a Følner sequence in G. First, we will see that we
can obtain from (Fn)n∈N a nested Følner sequence, i.e. a Følner sequence
(F ′k)k∈N such that

1 ∈ F ′1 ⊆ · · · ⊆ F ′k ⊆ · · · .

Without loss of generality, assume that 1 ∈ F1, and take F ′1 = F1. Suppose
by induction that we have constructed finite subsets F ′1 ⊆ · · · ⊆ F ′k−1 of G.
Because (Fn)n∈N is a Følner sequence, by Proposition 1.3.13 there is some
nk ∈ N such that Fnk

is (F ′k−1, 1)-invariant, i.e.∣∣{g ∈ Fnk
| gF ′k−1 ⊆ Fnk

}
∣∣ > 0,

and so there exists some gk ∈ Fnk
such that gkF

′
k−1 ⊆ Fnk

. If we define

F ′k = g−1
k Fnk

, then F ′k−1 ⊆ F ′k. Furthermore, given any g ∈ G we have that

|F ′k \ F ′kg| =
∣∣gk(Fnk

\ Fnk
g)
∣∣ = |Fnk

\ Fnk
g|,

and so the sequence (F ′k)k∈N that we have constructed is a nested Følner
sequence.

Assume now that (Fn)n∈N is a nested Følner sequence in G. Because G
is countable, we can write

G =
⋃
n∈N

Xn

with Xn ⊆ G finite and Xk ⊆ Xk+1 for all k ∈ N. Define now F rn = FnXr for
each n, r ∈ N. Observe that Fn ⊆ F rn , and so |Fn| ≤ |F rn | for any n, r ∈ N.
Then, for any finite subset F ⊆ G we have that

|∂FF rn | ≤
∑
g∈Xr

∣∣∂F (Fng)
∣∣ ≤ |Xr||∂FFn|,
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and so
|∂FF rn |
|F rn |

≤ |Xr|
|∂FFn|
|Fn|

for every n, r ∈ N. Now, for each r ∈ N take nr ∈ N such that

|∂FFnr |
|Fnr |

<
1

r|Xr|

and nr ≥ nr−1 for r > 1. Thus, if we set F ′r = F rnr
for each r ∈ N, we have

that

|∂FF ′r| ≤ |Xr||∂FFnr |

<
|Fnr |
r

≤ |F
′
r|
r
.

Therefore,

lim
r→∞

|∂FF ′r|
|F ′r|

= 0

for any finite subset F ⊆ G, meaning that (F ′r)r∈N is a Følner sequence in
G. Furthermore, it is a nested sequence because (Fn)n∈N is nested. Finally,
we have that Xr ⊆ F ′r for every r ∈ N, and so

G =
⋃
r∈N

F ′r,

which implies that (F ′r)r∈N is a Følner exhaustion.

1.4 Paradoxical Decompositions

The characterisation of amenability that we will study in this section is also
intimately related to the Banach-Tarski Paradox. Essentially, we will char-
acterise amenable groups as those for which a Banach-Tarski-like paradox
cannot happen, i.e. the pieces of any finite decomposition of an amenable
group cannot be rearranged in such a way that we obtain two copies of the
group.

Definition 1.4.1. Let G be a group acting on a set Ω. Then, the action of
G on Ω is said to be paradoxical, and Ω is said to be G-paradoxical, if there
exist pairwise disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of Ω, and elements
g1, . . . , gn and h1, . . . , hm in G such that

Ω =

( n⋃
·
i=1

Xi

)
∪·
( m⋃
·

j=1

Yj

)
=

n⋃
·
i=1

Xigi =

m⋃
·

j=1

Yjhj .
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In that case, we also say that Ω has a G-paradoxical decomposition. The
group G is said to be paradoxical if the action of G on itself by right multi-
plication is paradoxical.

Using the terminology we have just introduced, amenable groups can be
characterised as those that are non-paradoxical, as we will show later.

We will now see that the requirements in the definition of paradoxical
decompositions can be relaxed.

Proposition 1.4.2. Let G be a group acting on a set Ω. Then, the following
are equivalent:

(i) There exist pairwise disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of Ω,
and elements g1, . . . , gn and h1, . . . , hm in G such that

Ω =

( n⋃
·
i=1

Xi

)
∪·
( m⋃
·

j=1

Yj

)
=

n⋃
·
i=1

Xigi =
m⋃
·

j=1

Yjhj .

(ii) There exist pairwise disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of Ω,
and elements g1, . . . , gn and h1, . . . , hm in G such that

Ω =
n⋃
·
i=1

Xigi =
m⋃
·

j=1

Yjhj .

(iii) There exist pairwise disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of Ω,
and elements g1, . . . , gn and h1, . . . , hm in G such that

Ω =
n⋃
i=1

Xigi =
m⋃
j=1

Yjhj .

Proof. The fact that (i) implies (iii) is trivial.

Let us show that (iii) implies (ii). Assume that there exist pair-
wise subsets X1, . . . , Xn and Y1, . . . , Ym of Ω, and elements g1, . . . , gn and
h1, . . . , hm in G such that

Ω =
n⋃
i=1

Xigi =
m⋃
j=1

Yjhj .

Without loss of generality, we may assume that g1 = h1 = 1. Take X ′1 = X1

and define inductively

X ′k = Xk \
( k−1⋃
i=1

X ′igi

)
g−1
k
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for k = 2, . . . , n. Similarly, take Y ′1 = Y1 and define inductively

Y ′k = Yk \
( k−1⋃
j=1

Y ′jhj

)
h−1
k

for k = 2, . . . ,m. We can check that the sets X ′1, . . . , X
′
n and Y ′1 , . . . , Y

′
m are

pairwise disjoint, and

Ω =
n⋃
·
i=1

X ′igi =
m⋃
·

j=1

Y ′jhj .

Finally, let us see that (ii) implies (i). Assume that there exist pairwise
disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of Ω, and elements g1, . . . , gn and
h1, . . . , hm in G such that

Ω =
n⋃
·
i=1

Xigi =
m⋃
·

j=1

Yjhj .

Without loss of generality, we may assume that h1 = 1. Write

X =
n⋃
i=1

Xi, Y =
m⋃
j=1

Yj .

Observe that X ∩ Y = ∅. Now, given any α ∈ Ω there exist a unique
j ∈ {1, . . . ,m} and some f(α) ∈ Yj such that α = f(α)hj . This defines a
map f : Ω −→ Y . Let

Z = X ∪
( ⋃
k∈N

fk(X)

)
, Z0 = (G \X) \ f(Z).

Then, we have that

X ∩ f(Z) = ∅, X ∪ f(Z) = Z.

Moreover, if we put Zj = Yj ∩ Zh−1
j , since h1 = 1, we obtain that

Ω = X ∪·

(
(Z0 ∪· Z1) ∪·

( m⋃
·

j=2

Zj

))

=

n⋃
·
i=1

Xigi

= (Z0 ∪· Z1)h1 ∪·
( m⋃
·

j=2

Zjhj

)
.
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Remark 1.4.3. As we can see in the proof of Proposition 1.4.2, the number
of pieces is preserved when we go from one type of decomposition to another.
This allows us to define the Tarski number of a G-set Ω as the smallest
number of pieces of any G-paradoxical decomposition of Ω.

Example 1.4.4. Consider the free F (a, b) on two generators. As we saw in
Examples 1.1.3 (ii), we can write

F (a, b) = {1} ∪· W (a) ∪· W (a−1) ∪· W (b) ∪· W (b−1)

= W (a) ∪· W (a−1)a

= W (b) ∪· W (b−1)b,

where W (s) is the set of reduced words ending with s ∈ {a±1, b±1}. There-
fore, F (a, b) is paradoxical. Furthermore, it is clear that any paradoxical
decomposition must have at least 4 pieces, and so the Tarski number of
F (a, b) is 4. It can actually be shown that a group has Tarski number 4 if
and only if it contains a subgroup isomorphic to F (a, b), see [21, Theorem
5.8.38].

We will now show that whether a group is paradoxical is entirely depen-
dent on whether it has paradoxical actions.

Theorem 1.4.5. Let G be a group. Then, the following are equivalent:

(i) The group G is paradoxical.

(ii) Every free action of G is paradoxical.

(iii) There exists a paradoxical action of G.

Proof. First, let us show that (i) implies (ii). Assume that there ex-
ist pairwise disjoint subsets X1, . . . , Xn and Y1, . . . , Ym of G, and elements
g1, . . . , gn and h1, . . . , hm in G such that

G =
n⋃
i=1

Xigi =
m⋃
j=1

Yjhj .

Let Ω be a set on which G acts freely. Using the Axiom of Choice, we can
select a set T ⊆ Ω of representatives of the orbits of Ω under the action of
G. Then, we can write

Ω =
⋃
·

g∈G
Tg,

for if αg = βh for some α, β ∈ T and g, h ∈ G, then α = β by the definition
of T , and the action being free implies that g = h. Now, define

X̃i =
⋃
·

g∈Xi

Tg, Ỹj =
⋃
·

g∈Yj

Tg
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for i = 1, . . . , n and j = 1, . . . ,m. Then, the X̃1, . . . , X̃n and Ỹ1, . . . , Ỹm are
pairwise disjoint, and

Ω =

n⋃
i=1

X̃igi =

m⋃
j=1

Ỹjhj .

Therefore, the action of G on Ω is paradoxical.

It is clear that (ii) implies (iii), for the action of G on itself by right
multiplication is free.

Finally, let us prove that (iii) implies (i). Assume that there is a
paradoxical action of G on some set Ω. Then, if we fix an element α ∈
Ω, the action of G on the orbit αG must also be paradoxical. By the
Orbit-Stabiliser Theorem, this action is equivalent to the action of G by
right multiplication on the right coset space G/Gα, where Gα denotes the
stabiliser of α. Now, any paradoxical decomposition of G/Gα can be lifted
to a paradoxical decomposition of G. Thus, G itself is paradoxical.

1.5 The Banach-Tarski Paradox

We will now prove the Banach-Tarski Paradox, which states that the closed
unit ball in the euclidean space R3 can be decomposed into a finite number
of pieces that can then be rearranged using only isometries of R3. The proof
of the paradox relies on the paradoxicality of the free group of rank 2. The
group of rotations of R3 contains a free subgroup of rank 2, which produces
a paradoxical decomposition of the unit sphere. This decomposition of the
unit sphere can then be extended to a paradoxical decomposition of the
whole unit ball.

Recall that SO(3) is the group of rotations about the origin in R3 under
composition, and is identified with the group of orthogonal 3 × 3 real ma-
trices with determinant 1 under matrix multiplication. We will also need to
consider E(3), the group of isometries of the euclidean space R3.

Throughout the rest of this section, we will denote the unit sphere cen-
tred at the origin in R3 by S2, and the closed unit ball centred at the origin
in R3 by B3.

The key fact in the proof of the Banach-Tarski Paradox is the following
result.

Proposition 1.5.1. The group SO(3) contains a subgroup H which is iso-
morphic to the free group F (a, b).

Proof. Consider the matrices A,B ∈ SO(3) given by

A =
1

7

6 2 −3
2 3 6
3 −6 2

 , B =
1

7

 2 6 −3
−6 3 2
3 2 6

 ,
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and the groupH = 〈A,B〉 ≤ SO(3). Let w ∈ F (a, b) be a non-trivial reduced
word. We will now show that w(A,B) 6= I, thus proving that H ∼= F (a, b).
For the sake of simplicity, we will write w = w(A,B).

We may assume without loss of generality that w begins with A, other-
wise conjugate w by a sufficiently high power of A and invert if necessary.
Then, we can write w = AAk1B±k2 · · ·A±kt with ki ≥ 0 for all i = 1, . . . , t.

Write Ā±, B̄± for the reductions modulo 7 of the matrices 7A±1, 7B±1,
respectively. Then, if we put w̄ = Ā+Ā

k1
+ B̄

k2
± · · · Ā

kt
± , it is enough to show

that (1, 0, 0)w̄ 6= (1, 0, 0). Define

VĀ+
= {(3, 1, 2), (5, 4, 1), (6, 2, 4)},

VĀ− = {(3, 2, 6), (5, 1, 3), (6, 4, 5)},
VB̄+

= {(3, 5, 1), (5, 6, 4), (6, 3, 2)},
VB̄− = {(1, 5, 4), (2, 3, 1), (4, 6, 2)}.

Firstly, we have that

Ā+(1, 0, 0) = (6, 2, 4) ∈ VĀ+
.

Doing matrix computations, we can see that the following hold:

(i) If
v ∈ VĀ+

∪ VB̄+
∪ VB̄− ,

then Ā+v ∈ VĀ+
.

(ii) If
v ∈ VĀ− ∪ VB̄+

∪ VB̄− ,

then Ā−v ∈ VĀ− .

(iii) If
v ∈ VB̄+

∪ VĀ+
∪ VĀ− ,

then B̄+v ∈ VB̄+
.

(iv) If
v ∈ VB̄− ∪ VĀ+

∪ VĀ− ,

then B̄−v ∈ VB̄− .

Now, Ā+(1, 0, 0) ∈ VĀ+
, so Āk1+ (1, 0, 0) ∈ VĀ+

. Then, multiplying by B̄k2
±

we arrive at VB̄+
∪ VB̄− , and the next multiplication takes us to VĀ+

∪ VĀ− .
As we move right through w̄, at each step we are either in VĀ+

∪ VĀ− or in
VB̄+
∪ VB̄− , which means that

w̄(1, 0, 0) ∈ VĀ+
∪ VĀ− ∪ VB̄+

∪ VB̄− ,

and so w̄(1, 0, 0) 6= 0.
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In order to prove the Banach-Tarski Paradox, we will use the following
result, known as the Hausdorff Paradox.

Theorem 1.5.2 (Hausdorff). There exists a countable subset X ⊆ S2 such
that S2 \X is SO(3)-paradoxical.

Proof. Every non-trivial rotation in SO(3) fixes two antipodal points in S2.
Consider the set X ⊆ S2 of all points fixed by some rotation in H ≤ SO(3),
which is countable because H ∼= F (a, b) is finitely generated. Then, the
paradoxical group H acts freely on S2 \X, and so S2 \X is paradoxical by
Theorem 1.4.5.

Definition 1.5.3. Let G be a group acting on a set Ω. We say that two
subsets X,Y ⊆ Ω are G-equidecomposable, and write X ∼ Y , if there exist
subsets X1, . . . , Xn ⊆ X and Y1, . . . , Yn ⊆ Y with

X =
n⋃
·
i=1

Xi, Y =
n⋃
·
i=1

Yi,

and elements g1, . . . , gn ∈ G such that Yi = Xigi for all i = 1, . . . , n.

Remarks 1.5.4. (i) It is easy to see that being G-equidecomposable is
an equivalence relation on the family of subsets of Ω.

(ii) The condition of Ω being G-paradoxical can be reformulated by saying
that there exist disjoint subsets X,Y ⊆ Ω such that X ∼ Ω ∼ Y .

(iii) Clearly, if X is G-paradoxical and X ∼ Y , then Y is G-paradoxical as
well.

Proposition 1.5.5. Given a countable subset X ⊆ S2, then we have that
S2 \D is SO(3)-equidecomposable to S2.

Proof. Because X is countable, there is some line L ⊆ R3 going through the
origin such that L ∩X = ∅. Consider now the set Γ of all angles θ ∈ [0, 2π)
such that, if we denote by ρθ the rotation about L of angle θ, we have that
xρnθ ∈ X for some n ∈ N and some x ∈ X. Then, Γ is countable, and so
there is some angle θ ∈ [0, 2π) such that Xρnθ ∩X = ∅ for any n ∈ N. If we
consider the set

X̄ =

∞⋃
n=0

Xρnθ,

we have that

S2 = X̄ ∪ (S2 \ X̄)

∼ X̄ρ ∪ (S2 \ X̄)

= (X̄ \X) ∪ (S2 \ X̄)

= S2 \X.
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Corollary 1.5.6 (Banach-Tarski). The sphere S2 is SO(3)-paradoxical.

Connecting every point on S2 with a half-open segment to the origin,
the paradoxical decomposition of S2 yields a paradoxical decomposition of
the unit ball without the origin.

Corollary 1.5.7. The punctured ball B3 \ {0} is SO(3)-paradoxical.

There is just one final step left in order to prove the Banach-Tarski
Paradox.

Proposition 1.5.8. The punctured ball B3 \ {0} is E(3)-equidecomposable
to B3.

Proof. Let ρ ∈ E(3) be a rotation of infinite order about an axis crossing
B3 but without going through the origin, and such that 0 · ρn ∈ B3 for all
n ∈ N. Then, if we take X = {0} and

X̄ = {0 · ρn | n ≥ 0},

we have that

B3 = X̄ ∪ (B3 \ X̄)

∼ X̄ρ ∪ (B3 \ X̄)

= B3 \ {0}.

Finally, combining the previous results we obtain the Banach-Tarski
Paradox.

Theorem 1.5.9 (Banach-Tarski). The ball B3 is E(3)-paradoxical.

Proof. By Proposition 1.5.8, the ball B3 is E(3)-equidecomposable to the
punctured ball B3 \ {0}, which is in turn E(3)-paradoxical due to Corol-
lary 1.5.7. Therefore, we can conclude that B3 is E(3)-paradoxical.

1.6 Ultrafilters, the Stone-C̆ech Compactification
and Fixed Point Properties

The concept of amenability can be further characterised by the fixed points
of certain kinds of actions of our group on some spaces. One such character-
isation says that a group is amenable if and only if every affine continuous
action of the group on a non-empty convex compact subset of a Hausdorff
topological vector space has a fixed point.
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Amenable groups can also be characterised as those whose every contin-
uous action on a non-empty compact Hausdorff topological space fixes some
Borel probability measure.

In order to be able to prove these characterisations, we will introduce
the concepts of filters and ultrafilters and the Stone-C̆ech compactification
of a discrete topological space. We will also make use of ultrafilters in the
following chapters. For a more through exposition of the topics of ultrafilters
and the Stone-C̆ech compactification, see [10].

Definition 1.6.1. A filter on a set Ω is a collection ω of subsets of Ω
satisfying the following properties:

(i) Ω ∈ ω and ∅ 6∈ ω.

(ii) If X ∈ ω and X ⊆ Y , then Y ∈ ω.

(iii) If X,Y ∈ ω, then X ∩ Y ∈ ω.

An ultrafilter on Ω is a maximal filter, i.e. a filter that is not properly
contained in any other filter on X.

Examples 1.6.2. (i) If Ω is a topological space, then given any point
x ∈ Ω the set Nx of all neighbourhoods of x is a filter on Ω.

(ii) Given an element x ∈ Ω, we can define the ultrafilter

ωx = {X ⊆ Ω | x ∈ X},

which is called the principal ultrafilter based on x.

We can talk about convergence along filters on topological spaces. Given
a filter ω on a topological space Ω and a point x ∈ Ω, we say that ω converges
to x if Nx ⊆ ω. We then have the following properties.

Proposition 1.6.3. Let Ω be a topological space. Then, the following hold:

(i) The space Ω is Hausdorff if and only if every convergent filter on Ω
has a unique limit.

(ii) The space Ω is compact if and only if every ultrafilter on Ω is conver-
gent.

Filters also allow us to generalise the notion of limit of a function. Given
a set Ω, a topological space Υ and a filter ω on Ω, we say that a map
f : Ω −→ Υ converges to the point y ∈ Υ along ω if f−1(V ) ∈ ω for every
V ∈ Ny. If the limit is unique, we write

y = lim
x→ω

f(x).
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Example 1.6.4. Let (xn)n∈N be a sequence in the topological space Ω.
Then, (xn)n∈N converges to the point x ∈ Ω in the usual sense if and only if
it converges along the filter

{X ⊆ N | N \X is finite}

on N.
Further suppose that (xn)n∈N is bounded. Then, we have that (xn)n∈N

is convergent in the usual sense with

lim
n→∞

xn = x

if and only if
lim
n→ω

xn = x

for every non-principal ultrafilter ω on N.

Proposition 1.6.5. Let Ω be a set, Υ a compact topological space and ω an
ultrafilter on Ω. Then, a map f : Ω −→ Υ has a limit which is unique.

The concept of ultrafilter now allows us to define the Stone-C̆ech com-
pactification of a discrete topological space.

Definition 1.6.6. Let Ω be a discrete topological space. The set of all ul-
trafilters on Ω is called the Stone-C̆ech compactification of Ω, and is denoted
by βΩ.

Given X ⊆ Ω non-empty, we can consider

βX = {ω ∈ βΩ | X ∈ ω} ⊆ βΩ.

This set can be naturally identified with the Stone-C̆ech compactification of
X, which justifies our abuse of notation.

Proposition 1.6.7. Let Ω be a discrete topological space and X,Y ⊆ Ω.
Then, the following properties hold:

(i) Given X,Y ⊆ Ω, we have that

β(X ∩ Y ) = βX ∩ βY.

(ii) Given X,Y ⊆ Ω, we have that

β(X ∪ Y ) = βX ∪ βY.

(iii) Given X ⊆ Ω, we have that

β(Ω \X) = βΩ \ βX.
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Proof. Let us first prove (i). Given X,Y ⊆ Ω and ω ∈ βΩ, we have that
ω ∈ β(X ∩ Y ) if and only if X ∩ Y ∈ ω, which is in turn equivalent to
X,Y ∈ ω. But this is precisely the condition that ω ∈ βX ∩ βY .

Let us now show that (ii) holds. Given X,Y ⊆ Ω and ω ∈ βX, we have
that ω ∈ β(X ∪ Y ) if and only if X ∪ Y ∈ ω. Assume by contradiction that
X,Y 6∈ ω. Then, we must have that Ω \X,Ω \ Y ∈ ω, leading us to deduce
that

Ω \ (X ∪ Y ) = (Ω \X) ∩ (Ω \ Y ) ∈ ω,

which implies that X ∪Y 6∈ ω. Therefore, X ∪Y ∈ ω is equivalent to having
X ∈ ω or Y ∈ ω. But this is precisely the condition that ω ∈ βX ∪ βY .

Finally, let us prove (iii). Let X ⊆ Ω and ω ∈ βΩ. Because ω is an
ultrafilter, it is easy to see that either X ∈ ω or Ω \ X ∈ ω, and the two
possibilities are mutually exclusive. This implies that ω ∈ βX if and only if
ω 6∈ β(Ω \X).

The above result shows that the family

{βX | X ⊆ Ω}

forms the basis for a topology on βΩ. The Stone-C̆ech compactification of
a discrete space Ω is thus the largest compact Hausdorff space into which
Ω can be embedded as a dense subset, as can be gleaned from its universal
property.

Theorem 1.6.8. Let Ω be a discrete topological space. Then, βΩ is a com-
pact Hausdorff topological space containing Ω as a dense subset. Further-
more, if Υ is a compact Hausdorff space, any continuous map f : Ω −→ Υ
admits a unique continuous extension βf : βΩ −→ Y .

Proof. We can identify Ω with the subspace of βΩ formed by the principal
ultrafilters, i.e.

Ω = {ωx | x ∈ Ω}.

Then, given any non-empty subset X ⊆ Ω and a point x ∈ X we have that
ωx ∈ βX, and so βX ∩ Ω 6= ∅. Hence, Ω is dense in βΩ.

Let us now show that βΩ is a Hausdorff space. Given ω1, ω2 ∈ βΩ with
ω1 6= ω2, there must be some subset X ⊆ Ω with X ∈ ω1 and X 6∈ ω2. But
then, Ω\X ∈ ω2. Hence, βX, β(Ω\X) ⊆ βΩ are open, disjoint subsets with
ω1 ∈ βX and ω2 ∈ β(Ω \X). Therefore, βΩ is a Hausdorff space.

Now, we need to prove that βΩ is compact. Let {βXi}i∈I be a covering
of βΩ by basic open sets. Suppose by contradiction that⋃

i∈J
Xi 6= βΩ
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for every finite subset J ⊆ I. Then, this implies that⋂
i∈J

(Ω \Xi) 6= ∅

for every finite subset J ⊆ I, i.e. {Ω \ Xi}i∈I has the finite intersection
property. Hence, using Zorn’s Lemma we can find an ultrafilter ω ∈ βΩ
such that Ω \Xi ⊆ ω for all i ∈ I. Then, we have that

βΩ \
(⋃
i∈I

βXi

)
=
⋂
i∈I

β(Ω \Xi) 6= ∅,

contradicting that {βXi}i∈I is a covering of βΩ. Therefore, we can extract
from {βXi}i∈I a finite subcovering, and so βΩ is a compact space.

Finally, let Υ be a compact Hausdorff space and f : Ω −→ Υ be a con-
tinuous map. Then, because Υ is both compact and Hausdorff, the map f
has a unique limit along every ultrafilter ω ∈ βΩ, and so we can define

βf(ω) = lim
x→ω

f(x)

for ω ∈ βΩ. We can then easily check that βf : βΩ −→ Υ defined in this
manner is the unique continuous extension of f to βΩ.

We can use the Stone-C̆ech compactification to prove the characterisa-
tion of amenability in terms of continuous actions fixing Borel measures.
The key fact will be that the action of a group G on itself can be extended
to an action on βG by using the universal property of the Stone-C̆ech com-
pactification.

Proposition 1.6.9. Let G be a group. Then, the action of G on itself by
right multiplication can be extended uniquely to an action of G on βG by
homeomorphisms.

Proof. Given g ∈ G, consider the right translation τg : G −→ G given by
τg(h) = hg. Then, the universal property of βG given in Theorem 1.6.8
implies that there is a unique continuous extension βτg : βG −→ βG of τg
to βG for each g ∈ G. Now, because τ1 = idG and the extension is unique,
we have that

βτ1 = idβG .

Furthermore, given g, h ∈ G, using that τg ◦ τh = τgh and that the extension
is unique, we obtain that

βτg ◦ βτh = βτgh.

In particular, we have that

βτg ◦ βτg−1 = βτg−1 ◦ βτg = idβG

for any g ∈ G, and so βτg is a homeomorphism of βG for every g ∈ G.
Therefore, the action of G by right multiplication extends uniquely to an
action of G on βG by homeomorphisms.
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1.7 Characterisations of Amenability

We are now ready to come full circle and prove that all the different char-
acterisations of amenability that we have discussed up to this point are
actually equivalent.

Theorem 1.7.1. Let G be a group. Then, the following are equivalent:

(i) There is a right-invariant finitely additive probability measure on G.

(ii) There is a right-invariant mean on G.

(iii) The group G satisfies the Følner condition.

(iv) There is a Følner net in G.

(v) The group G is non-paradoxical.

(vi) Every affine continuous action of G on a non-empty convex compact
subset of a Hausdorff topological vector space has a fixed point.

(vii) Every continuous action of G on a non-empty compact Hausdorff topo-
logical space has an invariant Borel probability measure.

Proof. We will prove the implications in the following diagram:

i

ii

iii

iv

v

vi

vii

First, the fact that (ii) is equivalent to (i) is precisely Theorem 1.1.6.

Furthermore, the fact that (iii) implies (i) is a consequence of Theo-
rem 1.3.8.

We also know that (iii) is equivalent to (iv) by Theorem 1.3.7.

Let us see that (v) implies (iii). We will actually show that G not
satisfying the Følner condition implies the existence of a paradoxical de-
composition of G. Suppose that G does not satisfy the Følner condition.
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Then, there exist a finite subset X0 ⊆ G and ε > 0 such that, for every finite
non-empty subset F ⊆ G, there is some g ∈ X0 satisfying that

|F \ Fg|
|F |

> ε.

Without loss of generality, we may assume that 1 ∈ X0. Thus, for any finite
non-empty subset F ⊆ G we have that

|F | − |FX0| = |F \ FX0|
≥ |F \ Fg|
> ε|F |,

and so we have a finite subset X0 ⊆ G and some λ > 1 such that

|FX0| ≥ λ|F |.

Taking n ∈ N large enough that λn ≥ 2 and writing X = Xn
0 , we obtain a

finite subset X ⊆ G such that

|FX| ≥ 2|F |

for every finite subset F ⊆ G.
Let Ω be the collection of families

{X(g,i)}(g,i)∈G×{1,2}

of finite subsets of G satisfying the following conditions:

• For any finite subset Φ ⊆ G× {1, 2}, we have that∣∣∣∣ ⋃
(g,i)∈Φ

X(g,i)

∣∣∣∣ ≥ |Φ|.
• For every (g, i) ∈ G× {1, 2}, we have that

X(g,i) ⊆ gX.

Note that Ω is non-empty, for {gX}(g,i)∈G×{1,2} ∈ Ω. Indeed, any finite
subset Φ ⊆ G× {0, 1} can be written as

Φ =
(
F1 × {1}

)
∪
(
F2 × {2}

)
with F1, F2 ⊆ G finite, and so∣∣∣∣ ⋃

(g,i)∈Φ

gX

∣∣∣∣ =
∣∣(F1 ∪ F2)X

∣∣
≥ 2|F1 ∪ F2|
≥ |Φ|.



30 1.7. Characterisations of Amenability

We can order Ω by component-wise inclusion. Then, every chain{
X1

(g,i)

}
(g,i)∈G×{1,2} ≥

{
X2

(g,i)

}
(g,i)∈G×{1,2} ≥ · · ·

has a lower bound, namely{ ⋂
r∈N

Xr
(g,i)

}
(g,i)∈G×{1,2}

.

By Zorn’s Lemma, Ω has a minimal element {M(g,i)}(g,i)∈G×{1,2}. Let us see
that |M(g,i)| = 1 for all (g, i) ∈ G×{1, 2}. The construction of Ω implies that
the M(g,i) are all non-empty. Assume by contradiction that |M(g0,i0)| > 1 for
some (g0, i0) ∈ G × {1, 2}, and take g1, g2 ∈ M(g0,i0) distinct. For l = 1, 2,

construct the family {M l
(g,i)}(g,i)∈G×{1,2} by replacing in {M(g,i)}(g,i)∈G×{1,2}

the set M(g0,i0) with M(g0,i0) \ {gl}. By the minimality of M(g,i), neither

of the families {M l
(g,i)}(g,i)∈G×{1,2} are in Ω. Thus, there exist finite sets

Φl ⊆ G× {1, 2} not containing (g0, i0) such that∣∣∣∣M l
(g0,i0) ∪

⋃
(g,i)∈Φl

M l
(g,i)

∣∣∣∣ < |Φl|+ 1.

Write
M l = M l

(g0,i0) ∪
⋃

(g,i)∈Φl

M l
(g,i).

Then,

|Φ1|+ |Φ2| ≥ |M1|+ |M2|
= |M1 ∪M2|+ |M1 ∩M2|

=

∣∣∣∣∣M(g0,i0) ∪
( ⋃

(g,i)∈Φ1∩Φ2

M(g,i)

)∣∣∣∣∣
+

∣∣∣∣∣(M(g0,i0) \ {g1, g2}
)
∪
( ⋃

(g,i)∈Φ1∩Φ2

M(g,i)

)∣∣∣∣∣
≥ 1 + |Φ1 ∪ Φ2|+ |Φ1 ∩ Φ2|
= 1 + |Φ1|+ |Φ1|,

a contradiction. This shows that |M(g,i)| = 1 for all (g, i) ∈ G×{1, 2}. Also,
the singletons M(g,i) must be pairwise disjoint by the properties of Ω.

Now, we define for each x ∈ X the sets

Yx = {g ∈ G | gx ∈M(g,1)}, Zx = {g ∈ G | gx ∈M(g,2)}.

Write M(g,i) = {h(g,i)}. Given g ∈ G, by the properties of Ω we have that
M(g,i) ⊆ Xg for i = 1, 2, so there exists xi ∈ X such that gxi = h(g,i),
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meaning that g ∈ Yx1 and g ∈ Zx2 . Furthermore, if g ∈ Yx ∩ Yx′ then
gx = gx′, implying that x = x′ and the Yx are pairwise disjoint. The same
is clearly true for the Zx. Note also that all the Yx and the Zx are distinct
due to the elements h(g,i) being distinct. Therefore, we can write

G =
⋃
·

x∈X
Yx =

⋃
·

x∈X
Zx.

Finally, we have that

Yxx ∩ Zx′x′ = Yxx ∩ Yx′x′ = Yxx ∩ Zxx = ∅,

for all distinct x, x′ ∈ X, and so G is paradoxical by Proposition 1.4.2.

Let us now show that (i) implies (v). We will prove that if G is para-
doxical, then there cannot be any right-invariant finitely additive probability
measure on G. Suppose that we have pairwise disjoint subsets X1, . . . , Xn

and Y1, . . . , Ym of G, and elements g1, . . . , gn and h1, . . . , hm in G such that

G =

( n⋃
·
i=1

Xi

)
∪·
( m⋃
·

j=1

Yj

)
=

n⋃
·
i=1

Xigi =
m⋃
·
i=1

Yjhj .

Assume now by contradiction that there is a right-invariant finitely additive
probability measure µ on G. On the one hand, we have that

n∑
i=1

µ(Xi) = µ

( n⋃
·
i=1

Xigi

)
= µ(G) = 1,

and analogously,
m∑
j=1

µ(Yi) = 1.

On the other hand,

µ(G) = µ

(( n⋃
·
i=1

Xi

)
∪·
( m⋃
·

j=1

Yj

))

=

n∑
i=1

µ(Xi) +
m∑
j=1

µ(Yi)

= 2,

which contradicts the fact that µ(G) = 1. Therefore, no such a µ can exist
on G.

Let us prove that (iv) implies (vi). Let X be Hausdorff topological
vector space and C ⊆ X a non-empty convex compact subset. Assume that
G acts on X, and consequently on C, via an affine continuous action. Let
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(Fi)i∈I be a Følner net in G. Choose a point x ∈ C and, for each i ∈ I,
define

ci =
1

|Fi|
∑
h∈Fi

xh.

Note that ci ∈ C because C is convex. Without loss of generality, we may
assume that the net (ci)i∈I converges – otherwise, since C is compact, we
can take a convergent subnet. Write then

c = lim
i∈I

ci.

For any g ∈ G, we have that

cig =
1

|Fi|
∑
h∈Fig

xh,

and so

cig − ci =
1

|Fi|

( ∑
h∈Fig\Fi

xh−
∑

h∈Fi\Fig

xh

)

=
|Fi \ Fig|
|Fi|

(
1

|Fi \ Fig|
∑

h∈Fig\Fi

xh− 1

|Fi \ Fig|
∑

h∈Fi\Fig

xh

)

for every i ∈ I. Because (Fi)i∈I is a Følner net and C is compact, we can
conclude that

cg − c = lim
i∈I

(cig − ci) = 0.

Therefore, c is a fixed point for the action of G on C.

Let us now see that (vi) implies (vii). If Ω is a compact Hausdorff
topological space, then the space M(Ω) of complex regular Borel measures on
Ω can be identified by the Riesz Representation Theorem with the dual space
of C(Ω), the space of continuous functions from Ω to C. Denote by P(Ω) the
set of Borel probability measures on Ω. Then, we have that P(Ω) ⊆M(Ω)
and P(Ω) is clearly convex. Furthermore, P(Ω) can be written as the zero
set of a continuous map on M(Ω). Moreover, P(Ω) is contained in the unit
ball of M(Ω), which is compact by the Banach-Alaoglu Theorem. Finally,
the action of G on Ω naturally induces an action on P(Ω), given by

µg(X) = µ(Xg−1)

for X ⊆ Ω and g ∈ G. Therefore, by hypothesis we must have P(Ω)G 6= ∅.
Finally, let us see that (vii) implies (i). By Proposition 1.6.9, the action

of G on itself extends to a continuous action on its Stone-C̆ech compactifica-
tion βG, which is a non-empty compact Hausdorff topological space. Then,
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by hypothesis there must be some G-invariant Borel probability measure µ
on βG. Define then µ̄ : P(G) −→ [0, 1] by

µ̄(X) = µ(βX)

for X ⊆ G. It is clear that

µ̄(G) = µ(βG) = 1.

Moreover, given any disjoint X,Y ⊆ G, we have that βX, βY ⊆ βG are
disjoint as well, and so

µ̄(X ∪· Y ) = µ
(
β(X ∪· Y )

)
= µ(βX ∪· βY )

= µ(βX) + µ(βY )

= µ̄(X) + µ̄(Y ).

Finally, given X ⊆ G and g ∈ G, we have that β(Xg) = (βX)g because G
acts by homeomorphisms, and so

µ̄(Xg) = µ
(
β(Xg)

)
= µ(βXg) = µ(βX) = µ̄(X).

Therefore, µ̄ is a right-invariant finitely additive probability measure on G,
and so G is amenable.





Chapter 2

Quasitilings

In this chapter we will develop the theory of quasitilings for finitely generated
amenable groups, and prove a result originally by D. S. Ornstein and B.
Weiss stating that quasitilings always exist. Quasitilings prove to be a key
tool in the proof of a number of results for finitely generated amenable
groups. This chapter is primarily based on [4], [5] and [15, §4.5].

2.1 Cayley Graphs and Graph Approximations

Before introducing the Cayley graph of a finitely generated group, let us fix
some notation. A graph X will consist of a set of vertices V (X) and a set
of edges E(X). We will frequently identify X with its set of vertices.

Let S be a finite set. An S-labelled graph is a graph X such that every
directed edge (x, y) ∈ E(X) is labelled by some s ∈ S±1, in such a way that
(y, x) is labelled by s−1 ∈ S±1 and for each x ∈ X and s ∈ S±1 there is at
most one edge from x labelled by s.

Definition 2.1.1. Let G be a group generated by a finite set S. Then, the
Cayley graph of G with respect to S, denoted by Cay(G,S), is the S-labelled
graph with vertex set G and directed edges (g, gs) labelled by s ∈ S±1, with
g ∈ G.

Remark 2.1.2. Given a finite set S, consider the free group F (S) on S.
Then, an S-labelled graph is the same as an F (S)-set. Indeed, an action of
F (S) on any set automatically turns it into an S-labelled set, whereas the
labels of an S-labelled graph give us an action of F (S).

We can consider Følner sequences in the Cayley graph of a finitely gener-
ated group, which turn out to be the same as Følner sequences in the group
itself.

Definition 2.1.3. Let G be a group generated by a finite set S ⊆ G. A
sequence (Fn)n∈N of finite subgraphs of Cay(G,S) is called a Følner sequence

35
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in Cay(G,S) if for all ε > 0 there exists some N ∈ N such that

|∂SFn|
|Fn|

< ε

for all n ≥ N .

Remark 2.1.4. It can be easily seen that this definition does not depend
on the generating set, and so a Følner sequence in some Cayley graph of a
group is a Følner sequnce in any Cayley graph of the group, and is in fact
a Følner sequence in the group itself.

We will now study approximations of graphs. Whenever we have a graph
X, we can define a metric on X by setting the distance between any two
vertices of X to be the shortest length of a path between them. Given r > 0
and x ∈ X, we denote by Br(x) the ball of radius r centred at x.

Definition 2.1.5. Let G be a group generated by a finite set S ⊆ G, X be
a finite S-labelled graph and r ∈ N. We say that X is an r-approximation
of Cay(G,S) if there exists some subgraph X ′ ⊆ X such that

|X ′| >
(

1− 1

r

)
|X|

and Br(x) is isomorphic to Br(1) as an S-labelled graph for every x ∈ A.

This definition allows us to give another characterisation of Følner se-
quences.

Proposition 2.1.6. Let G be a group generated by a finite set S ⊆ G. A
sequence (Fn)n∈N of finite subgraphs of Cay(G,S) is a Følner sequence if
and only if for every r ∈ N there exists some N ∈ N such that Fn is an
r-approximation of Cay(G,S) for all n ≥ N .

Now, we proceed to define the notion of r-isomorphism of labelled graphs.

Definition 2.1.7. Let S be a finite set and r ∈ N. Two S-labeled graphs
X1 and X2 are said to be r-isomorphic if there are subgraphs X ′i ⊆ Xi such
that ∣∣E(X ′i)

∣∣ ≥ (1− 1

r

)∣∣E(Xi)
∣∣

for i = 1, 2 and X ′1 is isomorphic to X ′2 as an S-labelled graph.

Lemma 2.1.8. Let X, Y and Z be S-labelled graphs and r ∈ N. If X is
2r-isomorphic to Y and Y is 2r-isomorphic to Z, then X is r-isomorphic
to Z.
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Proof. Because X and Y are 2r-isomorphic, there exist X ′ ⊆ X and Y ′ ⊆ Y ,
and an isomorphism ϕ : X ′ −→ Y ′, such that

∣∣E(X ′)
∣∣ ≥ (1− 1

2r

)∣∣E(X)
∣∣, ∣∣E(Y ′)

∣∣ ≥ (1− 1

2r

)∣∣E(Y )
∣∣.

Similarly, there are Y ′′ ⊆ B and Z ′ ⊆ Z, and an isomorphism ψ : Y ′′ −→ Z ′,
such that

|E(Y ′′)| ≥
(

1− 1

2r

)∣∣E(Y )
∣∣, ∣∣E(Z ′)

∣∣ ≥ (1− 1

2r

)∣∣E(Z)
∣∣.

We can obtain Y ′ ∩ Y ′′ from Y ′ by erasing at most 1
2r |E(Y )| edges from Y ′.

If we write

X ′′ = ϕ−1(Y ′ ∩ Y ′′),

we have that ∣∣E(X ′′)
∣∣ =

∣∣E(Y ′ ∩ Y ′′)
∣∣

≥
(

1− 1

2r

)∣∣E(Y ′)
∣∣

=
(

1− 1

2r

)∣∣E(X ′)
∣∣.

Thus, we can obtain X ′′ from X ′ by erasing at most 1
2r |E(X ′)| edges from

X ′, and so we can obtain X ′′ from X by erasing at most 1
r |E(X)| edges from

X. Analogously, we can obtain

Z ′′ = ψ(Y ′ ∩ Y ′′)

from Z by erasing at most 1
r |E(Z)| edges from Z. Hence, ψ ◦ϕ : X ′′ −→ Z ′′

is an isomorphism, and

∣∣E(X ′′)
∣∣ ≥ (1− 1

r

)∣∣E(X)
∣∣, ∣∣E(Z ′′)

∣∣ ≥ (1− 1

r

)∣∣E(Z)
∣∣,

meaning that X is r-isomorphic to Z.

2.2 Quasitilings

We will now prove a version of the Ornstein-Weiss Quasitiling Theorem for
graphs presented in [4]. Before talking about quasitilings, we will need a
number of auxiliary concepts about coverings of finite sets.

Definition 2.2.1. Let F be a finite set, (Xi)i∈I a family of subsets of F ,
and λ, ε ≥ 0.
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(i) We say that (Xi)i∈I is a λ-even covering of F with multiplicity M if∑
i∈I

χXi ≤M,

where χXi is the characteristic function of Xi, and∑
i∈I
|Xi| ≥ λM |F |.

(ii) We say that (Xi)i∈I λ-covers F if∣∣∣⋃
i∈I

Xi

∣∣∣ ≥ λ|F |.
(iii) We say that (Xi)i∈I is ε-disjoint if for each i ∈ I there exists Yi ⊆ Xi

such that

|Yi| ≥ (1− ε)|Xi|

and (Yi)i∈I is a family of pairwise disjoint sets.

Lemma 2.2.2. Let F be a finite set, 0 < λ < 1 and (Xi)i∈I a λ-even
covering of F . Then, for every subset Y ⊆ F there exists some i ∈ I such
that

|Xi ∩ Y |
|Xi|

≤ |Y |
λ|F |

.

Proof. Suppose by contradiction that there is some Y ⊆ F such that

|Xi ∩ Y |
|Xi|

>
|Y |
λ|F |

for all i ∈ I. Then, if the λ-even covering (Xi)i∈I has multiplicity M , we
have that ∑

i∈I
|Xi ∩ Y | >

|Y |
λ|F |

∑
i∈I
|Xi|

≥ |Y |M

≥
∑
y∈Y

χY (y)
∑
i∈I

χXi(y)

=
∑
i∈I

∑
y∈Y

χXi∩Y (y)

=
∑
i∈I
|Xi ∩ Y |,

a contradiction.
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Lemma 2.2.3. Let F be a finite set, 0 ≤ ε ≤ 1
2 and 0 < λ ≤ 1. If (Xi)i∈I is

a λ-even covering of F by non-empty sets, then we can extract an ε-disjoint
subcollection of (Xi)i∈I that ελ-covers F .

Proof. Let Ω be the collection of families {(Xi, Yi)}i∈I′ with I ′ ⊆ I and
Yi ⊆ Xi satisfying that

|Yi| ≥ (1− ε)|Xi|

for every i ∈ I ′ and the sets Yi are pairwise disjoint. We can order Ω by
setting {

(Xi, Yi)
}
i∈I′ �

{
(Xi, Zi)

}
i∈I′′

if I ′ ⊆ I ′′ and Yi = Zi for all i ∈ I ′. It is clear that Ω is non-empty, for given
any i0 ∈ I we have that {(Xi0 , Xi0)} ∈ Ω. Thus, Ω has a maximal element,
say {(Xi, Yi)}i∈J . Assume by contradiction that (Xi)i∈J does not ελ-cover
F , i.e. ∣∣∣⋃

i∈J
Xi

∣∣∣ < ελ|F |.

Then, Lemma 2.2.2 implies that there exists some i0 ∈ I such that

|Xi0 ∩
⋃
i∈J Xi|

|Xi0 |
≤
|
⋃
i∈J Xi|
λ|F |

< ε.

Thus, we can add the pair (Xi0 , Xi0\
⋃
i∈J Xi) to the collection {(Xi, Xi)}i∈J ,

contradicting its maximality.

We are now ready to study quasitilings. We will introduce the version
of quasitilings developed in [4] for graphs.

Let G be a group generated by a finite set S ⊆ G. Given a finite S-
labelled graph X and r > 0, we denote by Qr(X) the set of vertices x ∈ X
such that the ball Br(x) ⊆ X is isomorphic to the ball Br(1) ⊆ Cay(G,S)
as an S-labelled graph.

For each point x ∈ Qr(X), we have an isomorphism of S-labelled graphs
φx : Br(1) −→ Br(s). Given ε > 0, we will say that a collection (T1, . . . , Tm)
of finite subsets of Br/2(1) ⊆ Cay(G,S) is an ε-quasitiling of X if there exist
C1, . . . , Cm ⊆ Qr(X) such that the family

m⋃
k=1

{
φx(Tk) | x ∈ Ck

}
is ε-disjoint and (1− ε)-covers X.

Whenever our group is amenable, every finite graph which is a sufficiently
good approximation of the Cayley graph of the group can be quasitiled by
elements of a Følner sequence.
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Theorem 2.2.4 ([4, Theorem 2]). Let G be a finitely generated amenable
group with S ⊆ G a finite generating set and (Fn)n∈N a Følner exhaus-
tion of G. Given ε > 0, there exist some r > 0 and a finite subcollection
(T1, . . . , Tm) of (Fn)n∈N with Ti ⊆ Br/2(1) for i = 1, . . . ,m such that every
finite S-labelled graph X satisfying that∣∣Qr(X)

∣∣
|X|

> 1− ε

4

is ε-quasitiled by (T1, . . . , Tm).

Proof. Take m ∈ N such that (1 − ε
2)m < ε. Choose some n1 ∈ N and

write T1 = Fn1 . Then, take r1 ≥ 1 such that T1 ⊆ Br1/2(1). Now, because
(Fn)n∈N is a Følner exhaustion, we can take n2 ∈ N such that Br1/2 ⊆ Fn2

and ∣∣Br1(Fn2) \ Fn2

∣∣
|Fn2 |

=

∣∣Fn2 ·Br1(1) \ Fn2

∣∣
|Fn2 |

<
ε

8
.

Write T2 = Fn2 and choose r2 ≥ 8ri. Continuing in this manner, we can
extract from (Fn)n∈N a subcollection (T1, . . . , Tm) such that

T1 ⊆ Br1/2(1) ⊆ T2 ⊆ · · · ⊆ Tm ⊆ Brm/2,

and ∣∣Bri(Ti+1) \ Ti+1

∣∣
|Ti+1|

<
ε

8
,

with r1 ≥ 1 and ri ≤ ri+1

8 for i = 1, . . . ,m− 1.
Let X be a finite S-labelled graph satisfying that∣∣Qrm(X)

∣∣
|X|

> 1− ε

4
.

For each x ∈ Qrm(X), we can consider the isomorphism of S-labelled graphs
φx : Brm(1) −→ Brm(x). Note that (φx(Tm))x∈Qrm (X) is a 1

2 -even covering
of X. Indeed, any y ∈ φx(Tm) is also in Qrm/2, and so x ∈ φy(T−1

m ). Thus,
every vertex of X is covered by at most |Tm| tiles, i.e.∑

x∈Qrm (X)

χφx(Tm) ≤ |Tm|.

Furthermore, ∑
x∈Qrm (X)

|φx(Tm)| = |Qrm(X)||Tm|

>
(

1− ε

4

)
|X||Tm|

>
1

2
|Tm||X|,
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thus showing that (φx(Tm))x∈Qrm (X) is a 1
2 -even covering of X with mul-

tiplicity |Tm|. Therefore, Lemma 2.2.3 allows us to extract an ε-disjoint
subcollection (φx(Tm))x∈Cm with Cm ⊆ Qrm(X) that ε

2 -covers X.

Assume now that for 1 ≤ k < m we have constructed sets Ck+1, . . . , Cm
with Ci ⊆ Qri(X) such that the collection

m⋃
i=k+1

{
φx(Ti) | x ∈ Ci

}
is ε-disjoint and λ-covers X, where

λ = min

{
1− ε, 1−

(
1− ε

2

)m−k+2
}
.

Let

XK = X \
( m⋃
i=k+1

⋃
x∈Ci

φx(Ti)

)
.

If |Xk| < ε|X|, we can simply take C1, . . . , Ck to be the empty set and we
are finished. Assume then that |Xk| ≥ ε|X|. Because

m⋃
i=k+1

{
φx(Ti) | x ∈ Ci

}
is 1

2 -disjoint and

∣∣∣∣ m⋃
i=k+1

⋃
x∈Ci

φx(Ti)

∣∣∣∣ ≤ |X| ≤ 1

ε
|Xk|,

we have that∣∣∣∣ m⋃
i=k+1

⋃
x∈Ci

(
φx
(
Brk(Ti)

)
\ φx(Ti)

)∣∣∣∣ ≤ ε

8

m∑
i=k+1

|Ti||Ci|

≤ ε

4

∣∣∣∣ m⋃
i=k+1

⋃
x∈Ci

φx(Ti)

∣∣∣∣
≤ 1

4
|Xk|.

Observe that ∣∣Qrk(X)
∣∣

|X|
> 1− ε

4
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because rk ≤ rm. Consequently,

∣∣Qrk(Xk)
∣∣ =

∣∣∣∣Qrk(X) \
m⋃

i=k+1

⋃
x∈Ci

(
φx(Ti) ∪ φx

(
Brk(Ti)

)
\ φx(Ti)

)∣∣∣∣
=
∣∣Qrk(X)

∣∣− ∣∣∣∣ m⋃
i=k+1

⋃
x∈Ci

φa(Ti)

∣∣∣∣
−
∣∣∣∣ m⋃
i=k+1

⋃
x∈Ci

(
φx
(
Brk(Ti)

)
\ φx(Ti)

)∣∣∣∣
>
(

1− ε

4

)
|X| −

(
|X| − |Xk|

)
− 1

4
|Xk|

>
1

2
|Xk|,

and so ∣∣Qrk(Xk)
∣∣

|Xk|
> 1− 1

2
.

Therefore, the collection (φx(Tk))x∈Qrk
(Xk) is a 1

2 -even covering of Xk, and
so Lemma 2.2.3 implies that we can extract an ε-disjoint subcollection
(φx(Tk))x∈Ck

with Ck ⊆ Qrk(Xk) that ε
2 -covers Xk. Hence,

m⋃
i=k

{
φx(Ti) | x ∈ Ci

}
is ε-disjoint and (1− (1− ε

2)m−k+1)-covers X. Therefore, we can recursively
construct sets C1, . . . , Cm with Ci ⊆ Qri(X) such that

m⋃
i=1

{
φx(Ti) | x ∈ Ci

}
is ε-disjoint and (1− ε)-covers X, i.e. the finite S-labelled graph X can be
ε-quasitiled by (T1, . . . , Tm).

We will now present a classical application of quasitilings in the form of
the Subadditive Function Theorem.

Definition 2.2.5. Let G be a group and f be a function from the set of
finite subsets of G to R. We say that f(X) converges to λ as X becomes
more and more invariant if for every ε > 0 there exist a finite subset F ⊆ G
and δ > 0 such that |f(X) − λ| < ε for every non-empty (F, δ)-invariant
finite subset X ⊆ G.

Theorem 2.2.6. Let G be a finitely generated amenable group with S ⊆ G
a finite generating set, and ϕ be a function from the set of finite subsets of
G to [0,∞) satisfying the following conditions:
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(i) ϕ(Xg) = ϕ(X) for every finite subset X ⊆ G and g ∈ G.

(ii) ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) for all finite X,Y ⊆ G.

Then, ϕ(X)
|X| converges to a limit as X becomes more and more invariant.

Proof. Let (Fn)n∈N be a nested Følner sequence in G. First, observe that
the subadditivity of ϕ implies that

ϕ(X) ≤ |X|ϕ
(
{1}
)

for any finite subset X ⊆ G. Thus, the sequence (ϕ(Fn)
|Fn| )n∈N is bounded in

R, and so we can define

λ = lim inf
n→∞

ϕ(Fn)

|Fn|
.

Let ε > 0. Given any 0 < η < 1
2 , we can extract from (Fn)n∈N a fi-

nite subcollection (T1, . . . , Tm) that η-quasitile every (Tm,
η
4 )-invariant finite

subset of G, and such that

ϕ(Ti)

|Ti|
≤ λ+

ε

2

for every i = 1, . . . ,m. Let X ⊆ G be a (Tm,
η
4 )-invariant finite subset of G.

Then, there exist C1, . . . , Cm ⊆ G such that

n⋃
i=1

TiCi ⊆ X

and the family
n⋃
k=1

{Tic | c ∈ Ci}

is ε-disjoint and (1 − ε)-covers X. Then, for each Tic there exists a subset
T̃ic with

|T̃ic| ≥ (1− ε)|Tic| = (1− ε)|Ti|

and such that the T̃ic are pairwise disjoint. Then, we have that

|X| ≥
n∑
i=1

∑
c∈Ci

|T̃ic| ≥ (1− ε)
n∑
i=1

∑
c∈Ci

|T̃i|,
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and so

ϕ(X) ≤ ϕ
( n⋃
i=1

⋃
c∈Ci

Tic

)
+ ϕ

(
X \

n⋃
i=1

⋃
c∈Ci

Tic

)

≤
n∑
i=1

∑
c∈Ci

ϕ(Ti) + ε|X|ϕ
(
{1}
)

≤
(
λ+

ε

2

) n∑
i=1

∑
c∈Ci

|Ti|+ ε|X|ϕ
(
{1}
)

≤
(
λ+

ε

2

) |X|
1− η

+ ε|X|ϕ
(
{1}
)
.

Hence,
ϕ(X)

|X|
≤ 1

1− η

(
λ+

ε

2

)
+ ηϕ

(
{1}
)
,

and we can take η small enough that

ϕ(X)

|X|
< λ+ ε

for every (Tm,
η
4 )-invariant subset X ⊆ G. Therefore, ϕ(X)

|X| converges to λ
as X becomes more and more invariant.

2.3 Approximations by Linear Combinations

In this section, we will introduce the concept of linear combination of a
sequence of graphs. This will allow us to reformulate Theorem 2.2.4 and
then give a stronger version of this same result that we will need in the
following chapter.

Definition 2.3.1. Let T = (T1, . . . , Tm) be a finite sequence of S-labelled
graphs and α = (α1, . . . , αm) ∈ Nm0 . We define the linear combination of T
with coefficient vector α, denoted by αT , as the disjoint union of αi copies
of Ti for each i = 1, . . . ,m.

Lemma 2.3.2. Let T = (T1, . . . , Tm) be a finite sequence of S-labelled
graphs, each of them with at least one edge. Then, given r ∈ N there exists
some M ∈ N such that, for all α, β ∈ Nm0 \ {0} satisfying that ‖β‖ ≥M‖α‖
and ∥∥∥∥ α

‖α‖
− β

‖β‖

∥∥∥∥ ≤ 1

M
,

we have that βT is r-isomorphic to tα · T for some t ∈ N.
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Proof. Let

E = max
1≤i≤m

∣∣E(Ti)
∣∣

and r > 0. TakeM ≥ 2mEr and α, β ∈ Nm\{0} such that that ‖β‖ ≥M‖α‖
and ∥∥∥∥ α

‖α‖
− β

‖β‖

∥∥∥∥ ≤ 1

M
.

Now, consider t ∈ N the largest integer such that ‖tα‖ ≤ ‖β‖. Note that we
must have M ≤ t and ‖α‖ ≥ 1. Consequently,

‖β − tα‖ ≤ ‖α‖+ t

∥∥∥∥ α

‖α‖
− β

‖β‖

∥∥∥∥
≤ ‖α‖+

t

M

≤ 2t

M
‖α‖,

and so each coordinate of β differs from the corresponding coordinate of tα
by at most 2t

M ‖α‖. Therefore, βT can be obtained from tαT by adding or
deleting at most 2t

M ‖α‖ copies of each Ti, and the number of edges either
added or deleted is at most 2mEt

M ‖α‖.
Furthermore, the graph tαT has at least t‖α‖ edges, and βT has at

least ‖β‖ ≥ t‖α‖ edges. Thus, because M ≥ 2mEr, we obtain that βT is
r-isomorphic to tαT .

The following is a reformulation of Theorem 2.2.4 in terms of graph
approximations and r-isomorphisms of labelled graphs.

Theorem 2.3.3 ([6, Proposition 2.7]). Let G be a finitely generated amenable
group with S ⊆ G a finite generating set and (Fn)n∈N a Følner exhaustion
in G. Then, given r ∈ N there exists some R ∈ N and a finite subcollection
(T1, . . . , Tm) of (Fn)n∈N such that every R-approximation of Cay(G,S) is
r-isomorphic to some linear combination of (T1, . . . , Tm).

This result can be refined in order to obtain a stronger version of the
theorem that gives us quasitings of a particular type, which will prove to
play a key role in the proof of Theorem 3.3.2.

Theorem 2.3.4 ([6, Proposition 2.8]). Let G be a finitely generated amenable
group with S ⊆ G a finite generating set and (Fn)n∈N a Følner exhaustion
in G. Then, given r ∈ N there exists some R ∈ N, a finite subsequence
T = (T1, . . . , Tm) of (Fn)n∈N and some α ∈ Nm0 \ {0} such that every Ti is
a 2r-approximation of Cay(G,S), and every R-approximation of Cay(G,S)
is 2r-isomorphic to tα · T for some t ∈ N.
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Proof. Let r ∈ N. Assume without loss of generality that every set in
(Fn)n∈N is a 2r-approximation of Cay(G,S). Using Theorem 2.3.3 we can
obtain a subsequence T = (T1, . . . , Tm) of (Fn)n∈N and some R0 ∈ N such
that every R0-approximation of Cay(G,S) is 8r-isomorphic to some linear
combination of T . Now, take (F ′n)n∈N a subsequence of (Fn)n∈N such that
every F ′n is an R0-approximation of Cay(G,S).

For each n ∈ N, take βn ∈ Nm0 \ {0} such that Fn is 8r-isomorphic to
βn · T . Then, ( βn

‖βn‖)n∈N is a sequence of unit vectors in Rm, so it must
have an accumulation point v ∈ Rm. Applying Lemma 2.3.2, we get that
there exists some M ∈ N such that for all α, β ∈ Nm0 \ {0} satisfying that
‖β‖ ≥M‖α‖ and ∥∥∥∥ α

‖α‖
− β

‖β‖

∥∥∥∥ ≤ 1

M

we have that βT is 8r-isomorphic to some integer multiple of αT . Take
some N ∈ N such that ∥∥∥∥ βN

‖βN‖
− v
∥∥∥∥ < 1

2M
,

and extract from (F ′n)n∈N a subsequence (F ′nk
)k∈N such that∥∥∥∥ βnk

‖βnk
‖
− v
∥∥∥∥ < 1

2M

and ‖βnk
‖ ≥ M for all k ∈ N. The sequence (F ′nk

)k∈N is still a Følner
exhaustion, and it satisfies that∥∥∥∥ βN

‖βN‖
− βnk

‖βnk
‖

∥∥∥∥ < 1

M

for all k ∈ N. Thus, we have that βnk
· T is 8r-isomorphic to t0βN · T for

some t0 ∈ N.
Applying Theorem 2.2.4 with the sequence (F ′nk

)k∈N, we obtain a finite
subfamily Q = (Q1, . . . , Ql) of (F ′nk

)k∈N and some R1 ∈ N such that every
R1-approximation of Cay(G,S) is 8r-isomorphic to a linear combination of
Q. Let X be an R1-approximation of Cay(G,S). Then, every Qi is 8r-
isomorphic to the corresponding βnk

· T , which is in turn 8r-isomorphic to
t0βN · T , and so Lemma 2.1.8 yields the result that X is 2r-isomorphic to
tβN · T for some t ∈ Z.



Chapter 3

Sofic Groups

In this chapter we will review the concept of sofic groups. Before fully
focusing on them, we will discuss the family of residually finite groups.
After that, we will introduce sofic groups as groups whose Cayley graphs
can be approximated by finite graphs. In the last section, we will present
a characterisation of soficity in terms of ultraproducts of finite symmetric
groups. The main references for this chapter are [2, §4, §7], [6], [5] and [22].

3.1 Residually Finite Groups

We will now briefly introduce the concept of residually finite groups, which
are groups in which elements can be distinguished by taking finite quotients.
They serve as a generalisation of finite groups.

Definition 3.1.1. A group G is said to be residually finite if for any g ∈ G
with g 6= 1 there is some normal subgroup N EG of finite index such that
g 6∈ N .

Proposition 3.1.2. Let G be a group. Then, G is residually finite if and
only if for every finite subset F ⊆ G there exist a finite group H and a
homomorphism ϕ : G −→ H which is injective in F .

Proof. Assume that G is residually finite and let F ⊆ G be finite. Then, for
every g, h ∈ F with g 6= h there exists some normal subgroup NghEG of
finite index such that gh−1 6∈ Ngh. Hence, the natural projection

ϕ : G −→
∏
g,h∈F
g 6=h

G/Ngh

is a homomorphism from G to a finite group which is injective in F .
Let us now prove the converse. Assume that for any finite subset of G

there is a homomorphism as required. Given g ∈ G with g 6= 1, there exist
a finite group H and a homomorphism ϕ : G −→ H such that ϕ(g) 6= 1.
Then, kerϕEG has finite index and g 6∈ kerϕ.
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Examples 3.1.3. (i) Finite groups are residually finite.

(ii) Infinite simple groups, as well as groups with no non-trivial finite quo-
tients, are never residually finite.

(iii) The direct product of residually finite groups is once again residually
finite. Indeed, let

G =
∏
i∈I

Gi

with Gi a residually finite group for each i ∈ I. Then, given any
g = (gi)i∈I ∈ G with g 6= 1, there is some i0 ∈ I such that gi0 6= 1.
Because Gi0 is residually finite, we can find some normal subgroup
Ni0 EGi0 of finite index in Gi0 such that gi0 6∈ Ni0 . Set now Ni = Gi
for each i 6= i0, and

N =
∏
i∈I

Ni.

It is then clear that N EG has finite index and g 6∈ N .

(iv) Every finitely generated abelian group is residually finite. Due to the
fact that finitely generated groups are direct products of finite groups
and copies of Z, it follows from the previous examples that we only
have to show that the group Z is residually finite. Indeed, given any
n ∈ Z with n 6= 1, take any m ∈ Z such that m - n. Then, we have
that mZEZ is of finite index and n 6∈ mZ.

(v) The group Q is not residually finite. Given any finite group H with
|H| = n, every homomorphism ϕ : Q −→ H is trivial, for we must have
that

ϕ(x) = ϕ

(
x

n

)n
= 1

for every x ∈ Q. This same argument implies that the additive group
of a field of characteristic zero is never residually finite.

(vi) Free groups are residually finite. Let F (S) be the free group on the
set S. Take w ∈ F (S) with w 6= 1, and write w = s1 · · · sn in reduced
form with si ∈ S±1. We can now define a map f : S −→ Sn+1. Let
s ∈ S. If s 6∈ {s±1

1 , . . . , s±1
n } we set f(s) = id. Otherwise, consider the

sets
Xs = {i | si = s}, Ys = {i | s−1

i = s},

and set f(s) to be some σ ∈ Sn+1 such that i ·σ = i+ 1 for i ∈ Xs and
(i+ 1) · σ = i for i ∈ Ys. Note that this is well-defined due to w being
in reduced form. Making use of the universal property of F (S), we can
extend the map f : S −→ Sn+1 to a homomorphism f̄ : F (S) −→ Sn+1.
Furthermore, we can see that f̄(w) sends 1 to n+ 1, and so f̄(w) 6= id.
Therefore, ker f̄ EF (S) has finite index and w 6∈ ker f̄ .
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3.2 Sofic Groups

Sofic groups serve as a generalisation of both amenable and residually finite
groups. They were first introduced in [9] by M. Gromov in 1999. Their
name, given to them in 2000 by Weiss in [25], comes from the Hebrew word
for finite.

Let G be a finitely generated group with S ⊆ G a finite generating set
of G, and consider the free group F (S). Then, we can write G = F (S)/N
for some normal subgroup N E F (S). Now, let (Xn)n∈N be a sequence of
finite F (S)-sets, and write

Pr(Xn) =
{
x ∈ Xn | if w ∈ Br(1F (S)), then xw = x if and only if w ∈ N

}
for each n, r ∈ N.

Definition 3.2.1. Let G be a finitely generated group with S ⊆ G a finite
generating set. We say that a sequence (Xn)n∈N of finite F (S)-sets is a sofic
approximation of G if

lim
n→∞

∣∣Pr(Xn)
∣∣

|Xn|
= 1

for all r ∈ N.

This concept of sofic approximation leads us to the definition of sofic
groups.

Definition 3.2.2. A finitely generated group with a sofic approximation is
called a sofic group. In general, a group is said to be sofic if all of its finitely
generated subgroups are sofic.

This definition of soficity can be interpreted in a more geometric manner.
Let G be a finitely generated group with a finite generating set S ⊆ G and
(Xn)n∈N a sequence of finite F (S)-sets. The action of F (S) on Xn turns it
into an S-labelled graph for each n ∈ N. Then, for every n, r ∈ N we have
that

Pr(Xn) ⊆ Qr(Xn) ⊆ P2r(Xn),

where Qr(Xn) is the set of all x ∈ Xn such that Br(x) ⊆ Xn is isomorphic to
Br(1) ⊆ Cay(G,S) as an S-labelled graph. It follows from this that (Xn)n∈N
is a sofic approximation of G if and only if

lim
n→∞

∣∣Qr(Xn)
∣∣

|Xn|
= 1

for all r ∈ N. This last condition means that for every r ∈ N there exists
some N ∈ N such that Xn is an r-approximation of Cay(G,S) for all n ≥ N .

We will now introduce another characterisation of soficity that looks
quite similar to the characterisation of residually finite groups in Proposi-
tion 3.1.2.
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Given n ∈ N, we can consider the symmetric group Sn, on which we can
define the normalised Hamming distance dn : Sn × Sn −→ [0, 1] by

dn(σ, τ) =

∣∣{i | σ(i) 6= τ(i)}
∣∣

n

for σ, τ ∈ Sn. It is not difficult to see that dn defines a bi-invariant metric
on the group Sn, i.e. a metric such that

dn(γσ, γτ) = dn(σγ, τγ) = dn(σ, τ)

for every σ, τ, γ ∈ Sn.

Proposition 3.2.3. Let G be a finitely generated group. Then, G is sofic if
and only if for every finite subset F ⊆ G and ε > 0 there exist some n ∈ N
and a map ϕ : G −→ Sn satisfying the following conditions:

(i) For every g, h ∈ F , we have that

dn
(
ϕ(gh), ϕ(g)φ(h)

)
< ε.

(ii) We have that

dn
(
ϕ(1), idn

)
< ε.

(iii) For every g ∈ F \ {1}, we have that

dn
(
ϕ(g), idn

)
≥ 1− ε.

Proof. Assume first that G is sofic, with S ⊆ G a finite generating set of
G. Let ε > 0 and F ⊆ G a finite subset. We choose r ∈ N such that
F 2 ⊆ Br(1G). Let X be an S-labelled graph with a subgraph X ′ ⊆ X such
that

|X ′| ≥ (1− ε)|X|

and for every x ∈ X ′ there is an isomorphism ψx : Br(1G) −→ Br(x) of
S-labelled graphs. We can then define a map ϕ : G −→ S(F ) by setting
x ·ϕ(g) = ψx(g) if g ∈ Br(1G), and choosing ϕ(g) arbitrarily otherwise. We
can easily check that conditions (i), (ii) and (iii) are satisfied.

Let us now prove the converse. Given any r ∈ N, take F = B2r+2(1G)
and ε > 0. Let ϕ : G −→ Sn be a map satisfying conditions (i), (ii) and
(iii) for our chosen F and ε, and write X = {1, . . . , n}. For each x ∈ X,
define ψx : Br+1(1G) −→ X by setting ψx(g) = x · ϕ(g) for g ∈ Br+1(1G).
Let X ′ ⊆ X be the set of points x ∈ X satisfying the following conditions:

(a) ψx(gs) = ψψx(g)(s) for all g ∈ Br(1G) and s ∈ S.

(b) ψx(g) 6= ψx(h) for any g, h ∈ Br+1(1G).
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Now, the directed edges of X are (x, ψx(s)) labelled by s, with x ∈ X and
s ∈ S. It can be seen that Br(x) = ψx(Br(1G)) and all the edges coming
out of it are in Br+1(x) = ψx(Br+1(1G)), for each x ∈ X ′. Conditions (a)
and (b) imply that ψx preserves the edges coming out of ψx(g) and that ψx
is injective for x ∈ X ′ and g ∈ Br(1G), respectively. Therefore, we have
that ψx : Br(1G) −→ Br(x) is an isomorphism of S-labelled graphs for every
x ∈ X ′.

Moreover, condition (a) gives us |Br(1G)||S| equations to check. But
condition (i) says that each of these can only fail on a subset of X of size at
most ε|X|. Furthermore, condition (c) gives us |Br+1|2 inequalities. Given
g, h ∈ Br+1(1G) and x ∈ X, applying conditions (i), (ii) and (ii) we get that

ψx(g) · ϕ(g−1) = x · ϕ(g−1g)

= x

6= x · ϕ(g−1h)

= ψx(h) · ϕ(g−1),

and so ψx(g) 6= ψx(h) for every x ∈ X save for those in a set of size at most
4ε|X|. Therefore, if we take

ε <
1

r
(
4|Br+1(1G)|2 + |Br(1G)||S|

) ,
we have that

|X ′| ≥ (1− ε)|X|,

and so G is sofic.

We are now ready to show that amenable groups and residually finite
groups are sofic. These classes of groups constitute our main two examples
of sofic groups.

Examples 3.2.4. (i) Amenable groups are sofic. Let G be a finitely gen-
erated amenable group with S ⊆ G a finite generating set and (Fn)n∈N
a Følner sequence in G. Given r ∈ N, we have that

Qr(Fn) =
{
x ∈ Fn | xBr(1G) ⊆ Fn

}
for all n ∈ N. By Proposition 1.3.13, for any ε > 0 there exists some
N ∈ N such that ∣∣Qr(Fn)

∣∣ ≥ (1− ε)|Fn|

for all n ≥ N , implying that

lim
n→∞

|Qr(Fn)|
|Fn|

= 1

for every r ∈ N. Therefore, (Fn)n∈N is a sofic approximation of G.
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(ii) Residually finite groups are sofic. This is a direct consequence of
Proposition 3.1.2 and Proposition 3.2.3, along with Cayley’s Theorem
stating that every finite group is a subgroup of some finite symmetric
group.

Remarks 3.2.5. (i) The class of sofic groups is closed under taking sub-
groups, direct products, inverse limits, direct limits, free products and
amenable extensions, as shown in [5].

(ii) One of the big open problems on the topic of sofic groups is the question
of whether every group is sofic. There are no currently known non-sofic
groups.

3.3 Ultraproducts

There is another characterisation of soficity via ultraproducts of finite sym-
metric groups. Our main interest in this characterisation is that it allows
us to state Theorem 3.3.2, which gives us a characterisation from [6] of
amenable groups as those sofic groups whose sofic approximations are con-
jugate.

If we fix a non-principal ultrafilter ω on N and take a sequence (kn)n∈N
in N, we can define a map

dω :
∏
n∈N

Skn ×
∏
n∈N

Skn −→ [0, 1]

given by

dω(σ, τ) = lim
n→ω

dkn(σkn , τkn)

for elements

σ = (σkn)n∈N, τ = (τkn)n∈N ∈
∏
n∈N

Skn .

We can see that

Nω =

{
σ ∈

∏
n∈N

Skn | dω(id, σ) = 0

}
is a normal subgroup of

∏
n∈N Skn , and so we can consider the quotient

Σω =

(∏
n∈N

Skn

)
/Nω.

We say that Σω is the ultraproduct of (Skn)n∈N with respect to ω.

We can then show that a finitely generated group is sofic if and only
if it can be embedded in a faithful manner into such an ultraproduct of
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finite symmetric groups. We will only give an outline of the proof of this
characterisation.

Let G be a finitely generated group with a finite generating set S ⊆ G
and a sofic approximation (Xn)n∈N. Given a non-principal ultrafilter ω on
N, consider the ultraproduct

Σω =

(∏
n∈N

S(Xn)

)
/Nω.

Write G = F (S)/N with N EF (S). The actions of F (S) on the Xn induce
a homomorphism θ : F (S) −→ Σω by considering each element w ∈ F (S)
as an element of the symmetric group S(Xn). We have that ker θ = N ,
and so this in turn induces an embedding ϕ : G −→ Σω. Furthermore, this
embedding is faithful, i.e. dω(id, ϕ(g)) = 1 for every g ∈ G \ {1}.

On the other hand, if we are given a faithful embedding ϕ : G −→ Σω for
some non-principal ultrafilter ω on N, then we can consider a representative

ϕ̃ : G −→
∏
n∈N

Skn

of ϕ. Write ϕ̃ = (ϕ̃n)n∈N with ϕ̃n : G −→ Skn . For each n ∈ N, take the set
Xn = {1, . . . , kn} and turn it into an S-labelled graph with directed edges
(i, i · ϕ̃n(s)) for i ∈ Xn labelled by s ∈ S±1. From the definition of the
ultraproduct, we have that

lim
n→ω

dnk

(
ϕ̃n(gh), ϕ̃n(g)ϕ̃n(h)

)
= 0

for all g, h ∈ G and
lim
n→ω

dkn
(

idkn , ϕ̃n(g)
)

= 1

for all g ∈ G \ {1}. This implies that

lim
n→ω

∣∣Qr(Xn)
∣∣

|Xn|
= 1,

and so
{n ∈ N | Xn is an r-approximation} ∈ ω

for every r ∈ N. In particular, we can extract a sofic approximation of G
from (Xn)n∈N.

The previous discussion can be summarised in the form of the following
result.

Proposition 3.3.1. Let G be a finitely generated sofic group. Then, the
following conditions are equivalent.

(i) The group G is sofic.
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(ii) For every non-principal ultrafilter ω on N, there is an ultraproduct Σω

of finite symmetric groups (Skn)n∈N and a faithful embedding of G into
Σω.

(iii) For some non-principal ultrafilter ω on N, there is an ultraproduct Σω

of finite symmetric groups (Skn)n∈N and a faithful embedding of G into
Σω.

The next result is extracted from [6], and states that all sofic approxi-
mations of an amenable group are, asymptotically speaking, conjugate. The
proof of this theorem relies heavily on the theory of quasitilings developed
during Chapter 2.

Theorem 3.3.2 ([6, Theorem 2]). Let G be a finitely generated amenable
group with S ⊆ G a finite generating set, ω a non-principal ultrafilter on
N and Σω an ultraproduct of finite symmetric groups (Skn)n∈N. Then, any
two faithful embeddings ϕ,ψ : G −→ Σω are conjugate, i.e. there exists some
σ ∈ Σω such that

ϕ(g) = σ−1(ψ(g))σ

for all g ∈ G.

Proof. For each n ∈ N, take

Xn = Yn = {1, . . . , kn}

to be S-labelled graphs, with Xn associated to ϕ and Yn to ψ in the same
manner as before. For each n ∈ N, let h(n) ∈ N be the largest integer such
that both Xn and Yn are h(n)-approximations of Cay(G,S). Then,

{n ∈ N | h(n) ≥ r} ∈ ω

for every r ∈ N. Given a Følner exhaustion (Fn)n∈N of G and r ∈ N,
using Theorem 2.3.4 we can obtain a finite subsequence T = (T1, . . . , Tm) of
(Fn)n∈N and some α ∈ Nm0 \ {0} such that, if h(n) is large enough, then Xn

is 4r-isomorphic to t1α · T and Yk is 4r-isomorphic to t2α · T with t1, t2 ∈ N.
We have that

lim
n→ω

∣∣E(Xn)
∣∣∣∣E(Yn)
∣∣ = 1,

and so for n large enough we have that t1α · T is 4r-isomorphic to t2α · T .
Applying Lemma 2.1.8 twice we obtain that Xn and Yn are r-isomorphic for
n large enough.

Now, for each n ∈ N let l(n) ∈ N be the largest integer for which Xn

and Yn are l(n)-isomorphic, and note that

{n ∈ N | l(n) ≥ r} ∈ ω
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for all r ∈ N. Let σn ∈ Skn be a bijection with X ′′n ⊆ Xn and Y ′′n ⊆ Yn such
that ∣∣E(X ′′n)

∣∣ ≥ (1− 1

l(n)

)∣∣E(Xn)
∣∣, ∣∣E(Y ′′n )

∣∣ ≥ (1− 1

l(n)

)∣∣E(Yn)
∣∣,

and σn : X ′′n −→ Y ′′n is an isomorphism of S-labelled graphs. Then, if we
write σ = (σn)n∈N, for every g ∈ G and i ∈ {1, . . . , kn} we have that

lim
n→ω

dkn
(
i · σnϕ̃n(g), i · ψ̃n(g)σn

)
= lim

n→ω

1

l(n)
= 0,

and so we can conclude that ψσ = σϕ.

Remark 3.3.3. As shown in [6], the converse of this result is also true, i.e.
if G is a finitely generated sofic group such that any two faithful embed-
dings into an ultraproduct Σω are conjugate, then G is amenable. Hence, it
characterises finitely generated amenable groups as those finitely generated
sofic groups for which all their sofic approximations are conjugate.





Chapter 4

The Sofic Lück
Approximation Conjecture

In this chapter we will introduce the Sofic Lück Approximation Conjecture,
a version of a conjecture that has its origins in the study of L2-invariants.
We will begin by explaining the general statement of the conjecture. After-
wards, we will show how the conjecture can be proved for amenable groups
by making use of the techniques developed in the previous chapters. We will
then conclude the chapter with a brief discussion of the proof of the con-
jecture for general groups over the field Q, in order to motivate the results
that will be developed in the next chapter. This chapter is primarily based
on [13, §2,§7,§10] and [10, §4].

4.1 Statement of the Conjecture

Let G be a finitely generated sofic group with a finite generating subset
S ⊆ G and a sofic approximation (Xn)n∈N, and let K be a field. For
each n ∈ N, the free group F (S) acts on Xn, and so given any matrix
A ∈ Matk×l(K[F (S)]) we can consider the linear map of K-vector spaces
φAXn

: K[Xn]k −→ K[Xn]l defined by

φAXn
(x1, . . . , xk) = (x1, . . . , xk)A.

Now, we can define the rank of A with respect to Xn as

rkXn(A) = k −
dimK kerφAXn

|Xn|
=

dimK imφAXn

|Xn|
.

We will be interested in the study of the convergence of these ranks. More
specifically, we want to know whether these ranks converge, and whether
convergence depends in any way on the sofic approximation that we have
chosen. We will now state the Sofic Lück Approximation Conjecture, which
tries to provide an answer to these questions.
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Conjecture 4.1.1 (Lück). Let G be a finitely generated group with S ⊆ G
a finite generating set and (Xn)n∈N a sofic approximation of G. Let K be a
field and A ∈ Matk×l(K[F (S)]). Then, the following hold:

(i) The limit limn→∞ rkXn(A) exists.

(ii) The limit limn→∞ rkXn(A) is independent of the sofic approximation
(Xn)n∈N.

It is not currently known whether the Sofic Lück Approximation Conjec-
ture holds in general, i.e. for any sofic group and over any field. Nevertheless,
in some particular instances, such as when the group is amenable, or when
the field has characteristic 0, the conjecture has been proven to be true.

4.2 The Conjecture for Amenable Groups

The Sofic Lück Approximation Conjecture can easily be shown to be true
over any field in the case where our group is amenable by using Theo-
rem 3.3.2.

We will study the case where G is a finitely generated amenable group
with a finite generating subset S ⊆ G and a sofic approximation (Xn)n∈N.
For the sake of simplicity, we will only consider elements of the group algebra
and not matrices. Hence, if K is a field and a ∈ K[F (S)], for each n ∈ N
we have a K-linear map φaXn

: K[Xn] −→ K[Xn], and

rkXn(a) = 1−
dimK kerφaXn

|Xn|
=

dimK imφaXn

|Xn|
.

Observe then that the convergence of the ranks rkXn(a) is equivalent to
the convergence of the normalised dimensions

dimK kerφaXn

|Xn|
.

As a consequence, in order to prove the Sofic Lück Approximation Conjec-
ture, we will study the normalised dimensions of these kernels.

Theorem 4.2.1. Let G be a finitely generated amenable group with S ⊆ G
a finite generating subset and (Xn)n∈N a sofic approximation of G. Given
any field K, an element a ∈ K[F (S)] and a non-principal ultrafilter ω on
N, the limit

lim
n→ω

dimK kerφaXn

|Xn|

exists and is independent of the sofic approximation (Xn)n∈N.
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Proof. Any subsequence of a sofic approximation of G is once again a sofic
approximation of G. Thus, if the statement of the theorem fails, we can find
two sofic approximations (X1

n)n∈N and (X2
n)n∈N of G such that

lim
n→ω

dimK kerφa
Xi

n

|Xi
n|

exists for i = 1, 2 but

lim
n→ω

dimK kerφaX1
n

|X1
n|

6= lim
n→ω

dimK kerφaX2
n

|X2
n|

. (4.1)

Assume by contradiction that two such sofic approximations of G exist.
Consider then

Y 1
n = Y 2

n = X1
n ×X2

n,

with F (S) acting on Y i
n by acting on the i-th coordinate for i = 1, 2. Then,

(Y 1
n )n∈N and (Y 2

n )n∈N are both sofic approximations of G. Furthermore, we
have that |Y 1

n | = |Y 2
n | and

dimK kerφa
Y i
n

|Y i
n|

=
dimK kerφa

Xi
n

|Xi
n|

(4.2)

for i = 1, 2 and for all n ∈ N.

By Theorem 3.3.2, for each n ∈ N there is some bijection σn : Y 1
n −→ Y 2

n

such that, if we denote by

Y 1
n
′
=
{
x ∈ Y 1

n | (σ−1
n ◦ φaY 2

n
◦ σn)(x) = φaY 1

n
(x)
}
, Y 2

n
′
= σn(Y 1

n
′
),

then

lim
n→ω

|Y 1
n
′|

|Y 1
n |

= lim
n→ω

|Y 2
n
′|

|Y 2
n |

= 1.

Observe that, given x ∈ K[Y 1
n
′
], we have that x ∈ kerφY 1

n
if and only if

σn(x) ∈ kerφY 2
n

. Consider then the restrictions of φaY 1
n

to K[Y 1
n
′
] and of φaY 2

n

to K[Y 2
n
′
], which we will denote by φa

Y 1
n
′ and φa

Y 2
n
′ , respectively. Thus, we

have that

kerφa
Y 1
n
′ = kerφaY 1

n
∩K[Y 1

n
′
], kerφa

Y 2
n
′ = kerφaY 2

n
∩K[Y 2

n
′
],

and

kerφa
Y 1
n
′ ∼= kerφa

Y 2
n
′

for every n ∈ N. Furthermore, the Second Isomorphism Theorem implies
that

kerφaY 1
n
/ kerφa

Y 1
n
′ . K[Y 1

n ]/K[Y 1
n
′
].
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As a consequence, we obtain that

dimK kerφaY 1
n

= dimK kerφa
Y 1
n
′ + dimK(kerφaY 1

n
/ kerφa

Y 1
n
′)

≤ dimK kerφa
Y 1
n
′ + dimK

(
K[Y 1

n ]/K[Y 1
n
′
]
)

= dimK kerφa
Y 1
n
′ + |Y 1

n | − |Y 1
n
′|

for all n ∈ N. Analogously, we obtain the inequality

dimK kerφaY 2
n
≤ dimK kerφa

Y 2
n
′ + |Y 2

n | − |Y 2
n
′|

for all n ∈ N. Therefore, we obtain that

lim
n→ω

dimK kerφaY 1
n

|Y 1
n |

= lim
n→ω

dimK kerφa
Y 1
n
′

|Y 1
n |

= lim
n→ω

dimK kerφa
Y 2
n
′

|Y 2
n |

= lim
n→ω

dimK kerφaY 2
n

|Y 2
n |

,

which along with (4.2) contradicts (4.1). Hence, we can conclude that

lim
n→ω

dimK kerφaXn

|Xn|

exists and is independent of the sofic approximation (Xn)n∈N.

This result now automatically gives us a proof of the conjecture in the
case that our group is amenable.

Theorem 4.2.2. The Sofic Lück Approximation Conjecture holds for finitely
generated amenable groups.

Proof. Let G be a finitely generated amenable group with a finite generating
set S ⊆ G. Let K be a field and a ∈ K[F (S)].

Any subsequence of a sofic approximation of G is once again a sofic
approximation of G. Thus, if either condition (i) or (ii) in Conjecture 4.1.1
fails, we can find two sofic approximations (Xn)n∈N and (Yn)n∈N of G such
that both limits

lim
n→∞

rkXn(a), lim
n→∞

rkYn(a)

exist but

lim
n→∞

rkXn(a) 6= lim
n→∞

rkYn(a).

Using the same argument as in the proof of Theorem 4.2.1, we can assume
without loss of generality that |Xn| = |Yn| for all n ∈ N.
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Now, for any non-principal ultrafilter ω on N, we have that

lim
n→ω

dimK kerφaXn

|Xn|
= lim

n→ω

dimK kerφaYn
|Yn|

as a consequence of Theorem 4.2.1. But then,

lim
n→∞

rkXn(a) = lim
n→ω

rkXn(a)

= 1− lim
n→ω

dimK kerφaXn

|Xn|

= 1− lim
n→ω

dimK kerφaYn
|Yn|

= lim
n→ω

rkYn(a)

= lim
n→∞

rkYn(a),

which is a contradiction. Therefore, we conclude that the Sofic Lück Ap-
proximation Conjecture holds in this case.

4.3 The Conjecture over the Field Q

We will now discuss the proof of the Sofic Lück Approximation Conjecture
over the field Q for general groups. We will refrain from giving all the details,
as our main goal is to motivate the techniques that we will develop in the
next chapter. For a detailed proof, see [13].

Let G be a finitely generated sofic group with S ⊆ G a finite generating
set, G = F (S)/N with N EF (S) and (Xn)n∈N a sofic approximation of G.
For the sake of simplicity, we will once more restrict our attention to the
case where a ∈ Q[F (S)]. This element defines a linear map of Q-vector
spaces φaXn

: Q[Xn] −→ Q[Xn] by

φaXn
(x) = xa.

Then, the rank of a with respect to Xn is

rkXn(a) = 1−
dimK kerφaXn

|Xn|
=

dimK imφaXn

|Xn|
.

The group G acts on the Hilbert space `2(G) by both left and right
multiplication. The element a ∈ Q[F (S)] thus defines a bounded operator
φaG : `2(G) −→ `2(G) by

φaG(v) = va

for v ∈ `2(G). Given a left-invariant closed subspace V ≤ `2(G), we can
consider projV : `2(G) −→ V , the orthogonal projection onto V . Then, we
can define

dimG V =
〈
projV (1G), 1G

〉
.
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In order to prove the Sofic Lück Approximation Conjecture, we will work
towards proving that

lim
n→∞

dimQ kerφaXn

|Xn|
= dimG kerφaG

independent of the sofic approximation (Xn)n∈N. In order to do this, we
will construct a sequence of measures whose values at zero coincide with the
normalised dimensions of the kernels of the associated operators. Then, we
will show that these measures converge weak-∗, and finally that their values
at zero converge.

Write the element a ∈ Q[F (S)] as

a =
∑

w∈F (S)

aww

with aw ∈ Q for w ∈ F (S). The adjoint of a is then the element

a∗ =
∑

w∈F (S)

aww
−1.

Given any x ∈ Q[Xn], we have that xa = 0 if and only if x(aa∗) = 0, and so

dimQ kerφaXn
= dimQ kerφaa

∗
Xn
.

Moreover, the adjoint of the operator φaXn
is (φaXn

)∗ = φa
∗
Xn

. Analogously,
we have that

dimG kerφaG = dimG kerφaa
∗

G

and (φaG)∗ = φa
∗
G .

Therefore, we may assume that a = bb∗ for some b ∈ Q[F (S)], and so
a = a∗. Thus, φaXn

and φaG are positive self-adjoint operators, and so their
spectra are compact and contained in [0,∞). In fact, we have that

specφaXn
⊆
[
0, ‖φaXn

‖
]
, specφaG ⊆

[
0, ‖φaG‖

]
.

For each n ∈ N, we can define a probability measure

µaXn
=

1

|Xn|
∑

λ∈specφaXn

δλ

on specφaXn
, where δλ denotes the Dirac measure concentrated at the point

λ. Moreover, we have that

µaXn

(
{0}
)

=
dimQ kerφaXn

|Xn|
. (4.3)

We can also associate a probability measure to the operator φaG, using the
concept of spectral measures of self-adjoint operators. Let H be a Hilbert
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space, A ∈ B(H) be a bounded self-adjoint operator, and v ∈ H. Then,
there exists a unique positive Radon measure µA,v on specA, called the
spectral measure associated to A and v, satisfying that∫

specA
f dµA,v =

〈
f(A)v, v

〉
for every continuous function f on specA. Furthermore, we have that

µA,v(specA) = ‖v‖2 <∞.

For more information on spectral measures associated to bounded self-adjoint
operators, see [16, §3].

Because φaG is a self-adjoint operator, we can thus define a probability
measure µaG on specφaG associated to φaG by

µaG = µφaG,1G .

Moreover, we can show that

µaG
(
{0}
)

=
〈
χ0(φaG)1G, 1G

〉
= dimG kerφaG. (4.4)

Because of 4.3 and 4.4, our goal will now be to prove that

lim
n→∞

µaXn

(
{0}
)

= µaG
(
{0}
)
.

Before doing this, we will need some compact space on which all of the
measures are defined, which will then allow us to show that there is weak-∗
convergence.

It is possible to find a uniform bound for the norms of the operators
φaXn

. If we denote by

S(a) = |{w ∈ F (S) | aw 6= 0}|

the size of the support of a ∈ Q[F (S)] and set

|a| =
∑

w∈F (S)

|aw|,

we can prove the following result.

Lemma 4.3.1. Given a ∈ Q[F (S)] with a = a∗, we have that

‖φaXn
‖ ≤ S(a)|a|

for all n ∈ N.
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As a consequence of this bound, we can deduce that there is some con-
stant c > 0 such that

‖φaG‖ ≤ c, ‖φaXn
‖ ≤ c

for all n ∈ N. Due to the fact that

specφaXn
⊆
[
0, ‖φaXn

‖
]
, specφaG ⊆

[
0, ‖φaG‖

]
,

this leads us to the conclusion that µaG and µaXn
are probability measures on

the same interval [0, c] for all n ∈ N.
The set of complex regular Radon measures on the compact Hausdorff

space [0, c] is identified by the Riesz Representation Theorem with the dual
space C([0, c])∗. As such, we say that a sequence of measures µn ∈ C([0, c])∗
converges weak-∗ to µ ∈ C([0, c])∗ if

lim
n→∞

∫ c

0
f dµn =

∫ c

0
f dµ

for all f ∈ C([0, c]).
Now, we will see that (µaXn

)n∈N converges weak-∗ to µG.

Lemma 4.3.2. For every n, l ∈ N, we have that∫ c

0
tl dµaXn

=
1

|Xn|
tr
(
(φaXn

)l
)
.

Proof. From the definition of µaXn
, it follows that∫ c

0
tl dµaXn

=
1

|Xn|
∑

λ∈specφaXn

λl =
1

|Xn|
tr
(
(φaXn

)l
)
.

Lemma 4.3.3. For every l ∈ N, we have that

lim
n→∞

∫ c

0
tl dµaXn

=

∫ c

0
tl dµaG

independent of the sofic approximation (Xn)n∈N.

Proof. Note that ∫ c

0
tl dµaXn

=

∫ c

0
t dµa

l

Xn
,

and the analogous result is true for µaG, so we may assume that l = 1. In
light of Lemma 4.3.2, we need to study the limit

lim
n→∞

1

|Xn|
trφaXn

.
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Further note that if

a =
∑

w∈F (S)

aww,

then

φaXn
=

∑
w∈F (S)

awφ
w
Xn
,

and so
1

|Xn|
trφaXn

=
∑

w∈F (S)

aw
1

|Xn|
trφwXn

.

Analogously,

φaG =
∑

w∈F (S)

awφ
w
G,

which implies that∫ c

0
t dµaG =

∑
w∈F (S)

aw
〈
φwG(1G), 1G

〉
=

∑
w∈F (S)

∫ c

0
t dµwG.

We may thus assume that a = w ∈ F (S). Then, we have that

trφwXn
=
∣∣{x ∈ Xn | xw = x}

∣∣,
and due to the fact that (Xn)n∈N is a sofic approximation we get that

lim
n→∞

1

|Xn|
trφwXn

=

{
1 if w ∈ N,
0 if w 6∈ N.

Finally, ∫ c

0
t dµwG = 〈w, 1G〉 =

{
1 if w ∈ N,
0 if w 6∈ N,

and so

lim
n→∞

∫ c

0
t dµwXn

=

∫ c

0
t dµwG.

The Weierstrass Approximation Theorem says that the polynomials form
a dense subset of C([0, c]), which along with the Bounded Convergence The-
orem and the previous lemma gives us the following result.

Proposition 4.3.4. The sequence of probability measures (µaXn
)n∈N on [0, c]

converges weak-∗ to µaG.

Now that we have weak-∗ convergence of the measures, our goal will be
to prove the convergence at the point 0.
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Remark 4.3.5. In general, weak-∗ convergence of the measures does not
imply convergence of the value at any given point. As an example, consider
the sequence of measures (δ1/n)n∈N on [0, 1], which converges weak-∗ to δ0.
Nonetheless, δ1/n({0}) = 0 for all n ∈ N, whereas δ0({0}) = 1.

In order to prove our result, we will make use of a classical theorem in
measure theory.

Theorem 4.3.6 (Portmanteau). Let Ω be a compact metric space. Let µ
and µn for n ∈ N be Borel probability measures on Ω. Then, the following
are equivalent:

(i) The sequence (µn)n∈N converges weak-∗ to µ.

(ii) For every closed subset V ⊆ Ω we have that

lim sup
n→∞

µn(V ) ≤ µ(V ).

(iii) For every open subset U ⊆ Ω we have that

lim inf
n→∞

µn(U) ≥ µ(U).

As a consequence of Proposition 4.3.4, the Portmanteau Theorem auto-
matically tells us that

lim sup
n→∞

µaXn

(
{0}
)
≤ µaG

(
{0}
)
, (4.5)

so we are left with the other inequality to prove.
In principle, we have that a ∈ Q[F (S)]. Nevertheless, multiplying by

some constant if necessary, we can assume that a ∈ Z[F (S)]. Then, for each
n ∈ N we define

det+φ
a
Xn

=
∏

λ∈specφaXn
\{0}

λ.

Under the assumption that a ∈ Z[F (S)], we can easily prove the following
result.

Lemma 4.3.7. For every n ∈ N we have that det+ φ
a
Xn
∈ N.

Proof. Because a ∈ Z[F (S)], every element in specφaXn
is an algebraic

integer. Furthermore, det+ φ
a
Xn

is invariant under the action of the Ga-
lois group of the splitting field of the characteristic polynomial of φaXn

, so
det+ φ

a
Xn
∈ Q. Therefore, det+ φ

a
Xn
∈ Z. Finally, since specφaXn

⊆ [0, c], we
have that det+ φ

a
Xn

> 0, and so det+ φ
a
Xn
∈ N.

Given 0 < ε < 1, we can find a uniform bound for µaXn
((0, ε)) with the

help of the previous result.
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Lemma 4.3.8. Given 0 < ε < 1, we have that

µaXn

(
(0, ε)

)
≤ − log c

log ε

for every n ∈ N.

Proof. By Lemma 4.3.7, we have that det+ φ
a
Xn
∈ N, and so det+ φ

a
Xn
≥ 1.

On the other hand,

det+φ
a
Xn

=
∏

λ∈specφaXn
\{0}

λ

=

( ∏
λ∈specφaXn

0<λ<ε

λ

)
·
( ∏
λ∈specφaXn

λ≥ε

λ

)

≤ ε|Xn|µaXn

(
(0,ε)
)
· c|Xn|,

and so we have that

ε|Xn|µaXn

(
(0,ε)
)
· c|Xn| ≥ 1.

Taking logarithms, we obtain that

|Xn|
(
µaXn

(
(0, ε)

)
log ε+ log c

)
≥ 0.

Hence, we have that

µaXn

(
(0, ε)

)
≤ − log c

log ε
.

Applying the Portmanteau Theorem once again along with the bound in
Lemma 4.3.8, we obtain that

µaG
(
{0}
)
≤ µg

(
[0, ε)

)
≤ lim inf

n→∞
µaXn

(
[0, ε)

)
≤ lim inf

n→∞
µaXn

(
{0}
)
− log c

log ε
.

Thus, if we make ε tend to 0, we get that

µaG
(
{0}
)
≤ lim inf

n→∞
µaXn

(
{0}
)
. (4.6)

Therefore, the inequalities (4.5) and (4.6) imply that

lim
n→∞

µaXn

(
{0}
)

= µaG
(
{0}
)
.

Consequently, we obtain the following result.
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Theorem 4.3.9 (Lück). Let G be a finitely generated group with S ⊆ G a
finite generating set and a ∈ Q[F (S)]. Then, for every sofic approximation
(Xn)n∈N of G we have that

lim
n→∞

dimQ kerφaXn

|Xn|
= dimG kerφaG.

In particular, the Sofic Lück Approximation Conjecture holds over Q.



Chapter 5

Convergence of Adelic
Measures Associated to Sofic
Representations

In this final chapter we will present a generalisation of the Sofic Lück Ap-
proximation Conjecture, first for discrete valuation domains and then for
rings of integers of number fields. Associated to each of the operators ap-
pearing in the conjecture, we will construct a probability measure on the
space of ideals of our ring, and then study the convergence of these measures
for amenable groups, proving that they converge strongly to some limit mea-
sure. The main results in this chapter are original. Some of the auxiliary
results in the second section have been taken from [12, §8.3, §8.4].

5.1 Approximation of Local Measures

Let O be a discrete valuation domain, i.e. a principal ideal domain with a
unique non-zero maximal ideal m, and let K be the field of fractions of O. If
the ideal m is generated by the prime element π ∈ O, then every non-trivial
ideal of O is of the form mi = πiO with i ∈ N. We will denote the set of
ideals of O by

I(O) = {0,O,m,m2, . . . }.

Furthermore, given an ideal mi ∈ I(O) with i ∈ N we will write

[0,mi] = {0,mi,mi+1, . . . }.

Let G be a finitely generated amenable group with a finite generat-
ing subset S ⊆ G and a sofic approximation (Xn)n∈N. Consider then an
element a ∈ O[F (S)] and the associated linear map of K-vector spaces
φaXn

: K[Xn] −→ K[Xn] for each n ∈ N. Then, φaXn
can be associated to a

matrix An ∈ Mat|Xn|(O).

69
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Remark 5.1.1. We will only consider elements in O[F (S)], for given any
element a ∈ K[F (S)], we can always multiply it by some constant λ ∈ O so
that λa ∈ O[F (S)].

We will now use of the Smith normal form of a matrix defined over a
principal ideal domain in order to construct a measure associated to φaXn

for
each n ∈ N.

Proposition 5.1.2 (Smith normal form). Let R be a principal ideal domain
and A ∈ Matk(R). Then, there exist invertible matrices P,Q ∈ GLk(R) and
a diagonal matrix

D =



α1

. . .

αt
0

. . .

0


∈ Matk(R)

with αi | αi+1 for all i = 1, . . . , t − 1, such that A = PDQ. Furthermore,
the elements α1, . . . , αt ∈ R are unique up to multiplication by units. The
matrix D is called the Smith normal form of A.

For a proof of the existence and uniqueness of the Smith normal form,
see [11].

Remark 5.1.3. Given a matrix A ∈ Matk(R) with Smith normal form D,
if α1, . . . , αt ∈ R are the non-zero elements that appear in the diagonal of
D, then the R-module Rk/RkA can be written as

Rk/RkA ∼= R/α1R⊕ · · · ⊕R/αtR⊕Rr,

with r ≥ 0 being the number of zeroes in the diagonal of D. This decom-
position of Rk/RkA is the one given by the Structure Theorem of finitely
generated modules over principal ideal domains.

Using the Smith normal form of An, we can assume that φaXn
is associated

to a diagonal matrix of the form

Dn =



πk1

. . .

πkt

0
. . .

0


∈ Mat|Xn|(O)
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with ki ≤ ki+1 for all i = 1, . . . , t− 1. This allows us to define a probability
measure

νaXn
=

1

|Xn|

(
t∑
i=1

δmki +

|Xn|∑
i=t+1

δ0

)
on the space of ideals I(O) for each n ∈ N. Our goal will now be to prove
that these measures converge at each ideal independent of the chosen sofic
approximation (Xn)n∈N.

Firstly, observe that the measure at zero is

νaXn

(
{0}
)

=
dimK kerφaXn

|Xn|
= 1− rkXn(a)

for each k ∈ N. Therefore, convergence at zero is equivalent to the Sofic
Lück Approximation Conjecture, which holds for amenable groups by The-
orem 4.2.2. Thus, we have the following result.

Lemma 5.1.4. The limit

lim
n→∞

νaXn

(
{0}
)

exists and is independent of the sofic approximation (Xn)n∈N.

We will now seek a formula for the measures at each mi ∈ I(O). In order
to do this, we need to introduce the concept of length of a module over a
ring.

Let R be a commutative unitary ring. Given an R-module M , we can
define the length of M over R, which we denote by LR(M), as the supremum
of the lengths of chains of R-submodules of the form

0 = M0 (M1 ( · · · (Mk = M.

This concept serves as a generalisation for modules of the concept of dimen-
sion for vector spaces.

The length function satisfies some key properties.

• If the chain of R-submodules

0 = M0 (M1 ( · · · (Mk = M

is maximal, i.e. Mi−1 is a maximal R-submodule of Mi for i = 1, . . . , k,
then k = LR(M).

• If
0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence of R-modules, then

LR(M) = LR(M ′) + LR(M ′′).
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Let us now return to the case that we were studying, with O a discrete
valuation ring and m its maximal ideal. For each i ∈ N, we have the maximal
chain of O/mi-modules

0 ( mi−1/mi ( · · · ( m/mi ( O/mi,

and so LO/mi(O/mi) = i. Furthermore, because

O/m ∼= (O/mi)/(m/mi)

as (O/mi)-modules, we have that LO/mi(O/m) = 1.
Now, for an element a ∈ O[F (S)] and n ∈ N, not only can we consider the

associated O-module homomorphism φaXn
: O[Xn] −→ O[Xn], but also the

induced (O/mi)-module homomorphism φaXn,i
: (O/mi)[Xn] −→ (O/mi)[Xn]

for each i ∈ N.
We are now going to find a way to compute νaXn

using the lengths of the
kernels of these induced homomorphisms.

Lemma 5.1.5. For each n, i ∈ N, we have that

LO/mi(kerφaXn,i
)

|Xn|
=

∑
j∈N∪{∞}

νaXn

(
{mj}

)
min{j, i},

where m∞ = 0.

Proof. Assume that φaXn
is associated to a diagonal matrix Dn ∈ Mat|Xn|(O)

in Smith normal form as before, with πk1 , . . . , πkt the non-zero elements in
the diagonal of Dn. Then, given x ∈ O[Xn] of the form

x = α1x1 + · · ·+ αtxt + αt+1xt+1 + · · ·+ α|Xn|x|Xn|,

we have that
Dnx = α1π

k1x1 + · · ·+ αtπ
ktxt.

Now, for eachi ∈ N the induced homomorphism φaXn,i
is associated to the

reduction of Dn modulo mi, which we will denote by Dn,i. Then,

Dn,ix = α1π
k1x1 + · · ·+ αrπ

krxr,

where
r = max{1 ≤ j ≤ t | kj < i}.

Therefore, x ∈ kerφaXn,i
if and only if αj ∈ mi−kj for all j = 1, . . . , r. Hence,

kerφaXn,i
∼= (mi−k1/mi)⊕ · · · ⊕ (mi−kr/mi)⊕

|Xn|⊕
j=r+1

(O/mi),

and so
LO/mi(kerφaXn,i) = |Xn|

∑
j∈N∪{∞}

νaXn

(
{mj}

)
min{j, i}.
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As a direct consequence of this result, we obtain the following one.

Lemma 5.1.6. For each n ∈ N, we have that

νaXn

(
[0,m]

)
=
LO/m(kerφaXn,1

)

|Xn|
,

and

νaXn

(
[0,mi]

)
=
LO/mi(kerφaXn,i

)

|Xn|
−
LO/mi−1(kerφaXn,i−1)

|Xn|
for i ≥ 2.

Then, we can compute

νaXn

(
{mi}

)
= νaXn

(
[0,mi]

)
− νaXn

(
[0,mi+1]

)
for each n, i ∈ N. Consequently, if we prove the convergence of the measures
of intervals, we will also obtain the convergence at each ideal. In order to
do so, following Lemma 5.1.6 we will show that

LO/mi(kerφaXn,i
)

|Xn|

converges for each i ∈ N independent of the sofic approximation (Xn)n∈N.
The proof of this is very similar to that of Theorem 4.2.1.

Proposition 5.1.7. Let (Xn)n∈N and (Yn)n∈N be two sofic approximations
of G and ω be a non-principal ultrafilter on N. Then,

lim
n→ω

LO/mi(kerφaXn,i
)

|Xk|
= lim

n→ω

LO/mi(kerφaYn,i)

|Yn|

for every i ∈ N.

Proof. Using the same argument as in the proof of Theorem 4.2.1, we may
assume without loss of generality that |Xn| = |Yn| for each n ∈ N. As
a consequence of Theorem 3.3.2, for each n ∈ N there is some bijection
σn : Xn −→ Yn such that, if we denote by

X ′n =
{
x ∈ Xn | (σ−1

n ◦ φaYn ◦ σn)(x) = φaXn
(x)
}
, Y ′n = σn(X ′n),

then

lim
n→ω

|X ′n|
|Xn|

= lim
n→ω

|Y ′n|
|Yn|

= 1.

Observe that, given x ∈ (O/mi)[X ′n], we have that x ∈ kerφaXn,i
if and only if

σn(x) ∈ kerφaYn,i. Consider then the restrictions of φaXn,i
to (O/mi)[X ′n] and
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of φaYn,i to (O/mi)[Y ′n], which we will denote by φaX′n,i and φaY ′n,i, respectively.
Thus, we have that

kerφaX′n,i = kerφaXn,i ∩ (O/mi)[X ′n], kerφaY ′n,i = kerφaYn,i ∩ (O/mi)[Y ′n],

and

kerφaX′n,i
∼= kerφaY ′n,i

for every i ∈ N. Furthermore, the Second Isomorphism Theorem implies
that

kerφaXn,i/ kerφaX′n,i . (O/mi)[Xn]/(O/mi)[X ′n].

As a consequence, from the short exact sequence of (O/mi)-modules

0 −→ kerφX′n,i −→ kerφXn,i −→ kerφXn,i/ kerφX′n,i −→ 0

we obtain that

LO/mi(kerφaXn,i) = LO/mi(kerφaX′n,i) + LO/mi(kerφaXn,i/ kerφaX′n,i)

≤ LO/mi(kerφaX′n,i) + LO/mi

(
(O/mi)[Xn]/(O/mi)[X ′n]

)
= LO/mi(kerφaX′n,i) + |Xn| − |X ′n|

for all n ∈ N. Analogously, we obtain the inequality

LO/mi(kerφaYn,i) ≤ LO/mi(kerφaY ′n,i) + |Yn| − |Y ′n|

for all n ∈ N. Therefore, since kerφaX′n,i
∼= kerφaY ′n,i, we obtain that

lim
n→ω

LO/mi(kerφaXn,i
)

|Xn|
= lim

k→ω

LO/mi(kerφaX′n,i)

|Xk|

= lim
n→ω

LO/mi(kerφaY ′n,i)

|Yn|

= lim
n→ω

LO/mi(kerφaYn,i)

|Yn|

for each i ∈ N.

As a consequence of this result along with Lemma 5.1.4 and Lemma 5.1.6,
we obtain the pointwise convergence of our measures νaXn

.

Corollary 5.1.8. The limit

lim
n→∞

νaXn

(
{I}
)

exists and is independent of the approximation (Xn)n∈N for every I ∈ I(O).
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We would now want to prove that this gives us strong convergence of the
measures (νaXn

)n∈N to a probability measure νaG on I(O), so that we have
that

νaG(Ω) = lim
n→∞

νaXn
(Ω)

for any subset Ω ⊆ I(O).

Nevertheless, in order to show this in general, we would need some sort
of uniform bound on the measures, which we have not found. In the next
section, we will work over number fields in order to develop a global version
of this construction, and in that case we will be able to obtain a uniform
bound that will allow us to prove the strong convergence of the measures
constructed.

5.2 Approximation of Adelic Measures

We will now develop a global version of the construction from the previous
section. We will work over number fields and, using the structure theory
of finitely generated modules over Dedekind domains, we will develop an
analogue of the measures constructed in the previous section.

Let K be a number field with ring of integers O. Then, O is a Dedekind
domain, and so every non-zero ideal can be written in a unique way as a
product of maximal ideals. We will denote by I(O) the space of ideals of O
and by I(O)max ⊆ I(O) the set of maximal ideals.

Because O is a Dedekind domain, a finitely generated O-module M can
be written as a direct sum

M ∼= Mtors ⊕M/Mtors,

where Mtors is the torsion submodule of M and M/Mtors is torsion-free.
Now, the torsion part is of the form

Mtors
∼= O/I1 ⊕ · · · ⊕ O/It

with I1, . . . , It ∈ I(O) non-trivial ideals. Furthermore, it is possible to find
such a decomposition with Ii+1 ⊆ Ii for i = 1, . . . , t − 1, in which case the
ideals I1, . . . , It are unique. On the other hand, the torsion-free part is of
the form

M/Mtors
∼= J1 ⊕ · · · ⊕ Jr

with J1, . . . , Jr ∈ I(O) non-zero ideals. Hence, we have that

M ∼= O/I1 ⊕ · · · ⊕ O/It ⊕ J1 ⊕ · · · ⊕ Jr.

For more information on the structure of finitely generated modules over
Dedekind domains, see [18, §1.3].
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Given a maximal ideal m ∈ I(O)max and a non-zero ideal I ∈ I(O) we
can consider the m-adic valuation of I, denoted by vm(I), which is defined
as the biggest integer n ≥ 0 such that I ⊆ mn. We also define vm(0) = ∞.
Setting vm(α) = vm(αO) for α ∈ O, this defines a discrete valuation on O
that is extended naturally to K. Now, we may consider

Om = {α ∈ K | vm(α) ≥ 0},

the localisation of O at m, which is a discrete valuation ring with unique
maximal ideal mOm.

Let G be a finitely generated amenable group, with S ⊆ G a finite gener-
ating set, G = F (S)/N with N EF (S) and (Xn)n∈N a sofic approximation
of G. Take an element a ∈ O[F (S)]. For each n ∈ N, we have the induced
linear map of K-vector spaces φaXn

: K[Xn] −→ K[Xn].
Consider now the O-module

Mn = O[Xn]/O[Xn]a.

Then, Mn can be written in the form

Mn
∼= O/I1 ⊕ · · · ⊕ O/It ⊕ J1 ⊕ · · · ⊕ Jr,

where Ii, Jj ∈ I(O) are non-zero ideals such that Ii+1 ⊆ Ii ( O for any
i = 1, . . . , t − 1 and j = 1, . . . , r. Furthermore, the ideals I1, . . . , It are
unique. We can then write

Mn
∼= (O/O)s ⊕O/I1 ⊕ · · · ⊕ O/It ⊕ J1 ⊕ · · · ⊕ Jr

with s ∈ N such that
s+ t+ r = |Xn|.

Using this decomposition of the O-module Mn, we can define for each
n ∈ N a probability measure νaXn

on I(O) by

νaXn
=

1

|Xn|

( s∑
i=1

δO +
t∑
i=1

δIi +
r∑
i=1

δ0

)
.

Observe that

K[Xn]/K[Xn]a ∼= K ⊗OMn
∼= Kr,

meaning that

νaXn

(
{0}
)

=
dimK kerφaXn

|Xn|
.

Therefore, convergence at zero is once again equivalent to the Sofic Lück Ap-
proximation Conjecture, which holds for amenable groups by Theorem 4.2.2.
Thus, we have the following result.
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Lemma 5.2.1. The limit

lim
n→∞

νaXn

(
{0}
)

exists and is independent of the sofic approximation (Xn)n∈N.

Given a non-trivial ideal I ∈ I(O), for each n ∈ N we can consider the
induced (O/I)-module homomorphism φaXn,I

: (O/I)[Xn] −→ (O/I)[Xn].
Also, denote by

[0, I] = {J ∈ I(O) | J ⊆ I}.

We are now going to find a way to compute the measures of intervals using
the lengths of the kernels of these induced homomorphisms.

Lemma 5.2.2. For each non-trivial ideal I ∈ I(O), we have that

LO/I(kerφaXn,I
)

|Xn|
=

∑
J∈I(O)

νaXn

(
{J}

)( ∑
m∈I(O)max

min
{
vm(I), vm(J)

})
.

Proof. We have that

LO/I(kerφaXn,I
)

|Xn|
=

∑
m∈I(O)max

I⊆m

LOm/IOm
(kerφaXn,IOm

)

|Xn|
. (5.1)

Now, Lemma 5.1.5 implies that

LOm/IOm
(kerφaXn,IOm

)

|Xn|
=

∑
j∈N∪{∞}

νaXn,Om

(
{mjOm}

)
min

{
vm(I), j

}
, (5.2)

where νaXn,Om
denotes the local measure induced on I(Om) for each maximal

ideal m ∈ I(O)max. Now, for each j ∈ N ∪ {∞} we have that

νaXn,Om

(
{mjOm}

)
=

∑
J∈I(O)
vm(J)=j

νaXn

(
{J}

)
. (5.3)

Hence, from (5.1), (5.2) and (5.3) we obtain that

LO/I(kerφaXn,I
)

|Xn|
=

∑
m∈I(O)max

∑
j∈N∪{∞}

∑
J∈I(O)
vm(J)=j

νaXn

(
{J}

)
min

{
vm(I), vm(J)

}

=
∑

J∈I(O)

νaXn

(
{J}

)( ∑
m∈I(O)max

min
{
vm(I), vm(J)

})
.
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Now, if we take a maximal ideal m ∈ I(O)max and d ∈ N, we have that

LO/md(kerφa
Xn,md)

|Xn|
−
LO/md−1(kerφa

Xn,md−1)

|Xn|
=

∑
J∈[0,md]

νaXn
(J)

= νaXn

(
[0,md]

)
.

Take now two maximal ideals m1,m2 ∈ I(O)max and exponents d1, d2 ∈ N.
Then, if we write I = md1

1 md2
2 and I ′ = md1−1

1 md2−1
2 , we have that

LO/I(kerφaXn,I
)

|Xn|
−
LO/I′(kerφXn,I′)

|Xn|
=

=
∑

J∈[0,m
d1
1 ]

J 6∈[0,m
d2
2 ]

νaXn
(J) +

∑
J 6∈[0,m

d1
1 ]

J∈[0,m
d2
2 ]

νaXn
(J) +

∑
J∈[0,m

d1
1 m

d2
2 ]

2νaXn
(J)

= νaXk

(
[0,md1

1 ]
)

+ νaXk

(
[0,md2

2 ]
)

+ 2νaXk

(
[0,md1

1 md2
2 ]
)
.

We can thus show that, if I = md1
1 · · ·mdn

n and I ′ = md1−1
1 · · ·mdn−1

n with
m1, . . . ,mn ∈ I(O)max distinct maximal ideals and d1, . . . , dn ∈ N, then

LO/I(kerφaXn,I
)

|Xn|
−
LO/I′(kerφXn,I′)

|Xn|
=

=
n∑
j=1

∑
1≤i1<···<ij≤n

jνaXn

(
[0,m

di1
i1
· · ·m

dij
ij

]
)
,

and so we can inductively write νaXn
([0, I]) in terms of the lengths of the

kernels of φaXn,J
for J ∈ I(O) with I ⊆ J .

We can now prove the following result, which is analogous to Proposi-
tion 5.1.7.

Proposition 5.2.3. Let (Xn)n∈N and (Yn)n∈N be two sofic approximations
of G and ω be a non-principal ultrafilter on N. Then,

lim
n→ω

LO/I(kerφaXn,I
)

|Xn|
= lim

n→ω

LO/I(kerφaYn,I)

|Yn|

for every non-trivial ideal I ∈ I(O).

Proof. Formula (5.1) tells us that we can write

LO/I(kerφaXn,I
)

|Xn|
=

∑
m∈I(O)max

I⊆m

LOm/IOm
(kerφaXn,IOm

)

|Xn|
,

LO/I(kerφaYn,I)

|Ynk|
=

∑
m∈I(O)max

I⊆m

LOm/IOm
(kerφaYn,IOm

)

|Yn|
.
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We can then apply Proposition 5.1.7 to obtain that

lim
n→ω

LOm/IOm
(kerφaXn,IOm

)

|Xn|
= lim

n→ω

LOm/IOm
(kerφaYn,IOm

)

|Yn|

for every m ∈ I(O)max with I ⊆ m. Because there are only finitely many of
these summands, this leads us to conclude that

lim
n→ω

LO/I(kerφaXn,I
)

|Xn|
= lim

n→ω

LO/I(kerφaYn,I)

|Yn|
.

As a consequence of Lemma 5.2.2 and Proposition 5.2.3, we obtain the
convergence of the measures of intervals.

Proposition 5.2.4. Given an ideal I ∈ I(O), the limit

lim
n→∞

νaXn

(
[0, I]

)
exists and is independent of the approximation (Xn)n∈N.

Now that we have obtained convergence of our measures for intervals,
we will work towards proving point-wise convergence. In order to do this,
we will seek to write the measure of an ideal in terms of the measures of a
finite number of intervals.

Observe that, given a non-zero ideal I ∈ I(O), we can write

[0, I] = {I} ∪
( ⋃

m∈I(O)

[0,mI]

)
.

From this, we can obtain that

νaXn

(
{I}
)

= νaXn

(
[0, I]

)
− νaXn

( ⋃
m∈I(O)

[0,mI]

)

for each n ∈ N. Our goal will now be to approximate the measures of this
union by the measures of a finite union of intervals. We will do this by
studying the sizes of the ideals that can appear in the decompositions of the
modules Mn = O[Xn]/O[Xn]a.

If I ∈ I(O) is a non-zero ideal, we can consider its norm, defined as

N(I) = |O/I|.

Then, for α ∈ O we have that

N(αO) =
∣∣NK:Q(α)

∣∣,
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where

NK:Q(α) =

( k∏
i=1

αi

)|K:Q|/k

with α1, . . . , αk ∈ Z̄ the roots of the minimal polynomial of α over Q. Fur-
thermore, it is well-known that for any constant λ > 0 there are only finitely
many non-trivial ideals I ∈ I(O) such that N(I) < λ.

Now, given any matrix A ∈ Matk(O), we can consider the finitely gen-
erated O-module

MA = Ok/OkA.

Then, we can define

det+(A) =
∣∣(MA)tors

∣∣.
In particular, identifying the O-module homomorphism φaXn

with its asso-
ciated matrix, we can write

det+(φaXn
) =

∣∣(Mn)tors

∣∣.
Lemma 5.2.5. Let A ∈ Matk(O) with dimK imA = t and I ∈ I(O) the
ideal generated by all the non-zero t× t minors of A. Then, we have that

det+(A) = N(I).

Proof. First, observe that if we write

(MA)tors
∼= O/I1 ⊕ · · · ⊕ O/It

with I1, . . . It ∈ I(O) non-trivial ideals, then

Okm/OkmA ∼= Om ⊗OMA,

and so

(Okm/OkmA)tors
∼= Om ⊗O (MA)tors

∼= Om/I1Om ⊕ · · · ⊕ Om/ItOm

for any maximal ideal m ∈ I(O)max. But in the local case, we have that∣∣(Okm/OkmA)tors

∣∣ = |Om/IOm|

due to the existence of the Smith normal form and Remark 5.1.3, and so we
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can compute

det+(A) =
∣∣(MA)tors

∣∣
= |O/I1 ⊕ · · · ⊕ O/It|

=
∏

m∈I(O)max

|Om/I1Om ⊕ · · · ⊕ Om/ItOm|

=
∏

m∈I(O)max

∣∣Om ⊗O (MA)tors

∣∣
=

∏
m∈I(O)max

|Om/IOm|

= |O/I|
= N(I).

Given an element α ∈ O, let α1, . . . , αk ∈ Z̄ be the roots of the minimal
polynomial of α over Q. Then, define

dαe = max
i=1,...,k

|αi|.

Remark 5.2.6. Given α, β ∈ O, we can check that

dα+ βe ≤ dαe+ dβe

and
dαβe ≤ dαedβe.

More generally, given a non-zero matrix A = (aij) ∈ Matk(O), we can
define

dAe = max
j=1,...,k

k∑
i=1

daije,

and set d0e = 1.

Lemma 5.2.7. Given a non-zero α ∈ O, we have that

N(αO) ≤ dαe|K:Q|.

Proof. Let α1, . . . , αk ∈ Z̄ be the roots of the minimal polynomial of α over
Q. Then, we have that

det+(α) =
∣∣NK:Q(α)

∣∣
=

( k∏
i=1

|αi|
)|K:Q|/k

≤ dαe|K:Q|.
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This bound can now be generalised to matrices.

Lemma 5.2.8. Given A ∈ Matk(O), we have that

det+(A) ≤ dAek|K:Q|.

Proof. Let t = dimK imA and I ∈ I(O) be the ideal generated by all the
non-zero t× t minors of A. By Lemma 5.2.5, we have that det+(A) = N(I).
In particular, if β ∈ O is a non-zero t× t minor of A, we have that

det+(A) = |O/I| ≤ |O/βO| = N(βO).

Then, by Remark 5.2.6 we have that

dβe ≤ dAet ≤ dAek,

and so
det+(A) ≤ N(βO) ≤ dβe|K:Q| ≤ dAek|K:Q|.

Now, given a ∈ O[F (S)] of the form

a =
∑

w∈F (S)

aww,

we set
dae =

∑
w∈F (S)

dawe.

Lemma 5.2.9. Given a ∈ O[F (S)], we have that

dφaXn
e ≤ dae

for all n ∈ N.

Proof. Assume that
Xn = {x1, . . . , xk}

and φaXn
is associated to the matrix An = (aij). Then, for each i = 1, . . . , k

we have that
φaXn

(xi) = ai1x1 + · · ·+ ainxk. (5.4)

On the other hand, if we write

a =
∑

w∈F (S)

aww,

then for each i = 1, . . . , k we have that

φaXn
(xi) = xia =

∑
w∈F (S)
xiw=x1

awx1 + · · ·+
∑

w∈F (S)
xiw=xk

awxk. (5.5)
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Therefore, combining (5.4) and (5.5) and applying Remark 5.2.6, we obtain
that

k∑
i=1

daije =
k∑
i=1

⌈ ∑
w∈F (S)
xiw=xj

aw

⌉

≤
k∑
i=1

∑
w∈F (S)
xiw=xj

dawe

≤
∑

w∈F (S)

dawe

= dae

for all j = 1, . . . , k. As a consequence,

dφaXn
e = max

j=1,...,k

k∑
i=1

daije ≤ dae

for all n ∈ N.

This result allows us to give a uniform bound for det+(φaXn
).

Corollary 5.2.10. Given a ∈ O[F (S)], we have that

det+(φaXn
) ≤ dae|Xn||K:Q|

for all n ∈ N.

Proof. Applying both Lemma 5.2.8 and Lemma 5.2.9, we obtain that

det+(φaXn
) ≤ dφaXn

e|Xn||K:Q| ≤ dae|Xn||K:Q|

for any n ∈ N.

Consequently, we can bound

det+(φaXn
) ≤ c|Xn|

with some c > 0 for every n ∈ N. This allows us to bound the measures of
sets of big ideals.

Lemma 5.2.11. Given Ω ⊆ I(O) \ {O, 0} and c = dae|K:Q|, we have that

νaXn
(Ω) ≤ 1

logc minI∈Ω

{
N(I)

}
for every n ∈ N.
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Proof. If k = |Xn|νaXn
(Ω), then we must have

(Mn)tors
∼= (O/I1 ⊕ · · · ⊕ O/Ik)⊕ (O/Ik+1 ⊕ · · · ⊕ O/It)

with I1, . . . , Ik ∈ Ω and Ik+1, . . . , It 6∈ Ω, and so

det+(φaXn
) =

∣∣(Mn)tors

∣∣
≥ N(I1) · · ·N(Ik)

≥ min
I∈Ω

{
N(I)k

}
.

Applying now Corollary 5.2.10, we obtain that

min
I∈Ω

{
N(I)k

}
≤ c|Xn|,

which taking logarithms gives us that

νaXn
(Ω) ≤ 1

logc minI∈Ω

{
N(I)

}
for all n ∈ N.

Now, given λ > 0 we will denote by

I(O)λ =
{
J ∈ I(O) \ {O, 0} | N(J) > λ

}
.

Using the previous result, we can show that the measures of I(O)λ are small
for large λ.

Proposition 5.2.12. Given ε > 0, there exists some λ > 0 such that

νaXn

(
I(O)λ

)
< ε

for all n ∈ N.

Proof. If we take λ > c1/ε, then Lemma 5.2.11 implies that

νaXn

(
I(O)λ

)
≤ 1

logc λ
< ε

for all n ∈ N.

Remark 5.2.13. The previous result can be summed up by saying that
for big λ > 0 the value νaXn

(I(O)λ) is uniformly small. It can be seen as
an analogue to Lemma 4.3.8, which said that for small ε > 0 the value
µaXn

((0, ε)) was uniformly small.
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Let I ∈ I(O) be a non-zero ideal. Then, we have that

[0, I] = {I} ∪
( ⋃

m∈I(O)max

[0,mI]

)
,

Given ε > 0, as a consequence of Proposition 5.2.12 there is some λ > 0
such that νaXn

(I(O)λ) < ε for all n ∈ N. Furthermore, there are only finitely
many distinct maximal ideals m1, . . . ,mk ∈ I(O)max with N(miI) ≤ λ for
i = 1, . . . , k. Then, we have that

⋃
m∈I(O)max

[0,mI] =

( k⋃
i=1

[0,miI]

)
∪
(
I(O)λ ∩ [0, I]

)
.

Using now that
[0,miI] ∩ [0,mjI] = [0,mimjI]

for any i 6= j, we can apply the inclusion–exclusion principle to compute

νaXn

( k⋃
i=1

[0,miI]

)
=

k∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤k
νaXn

(
[0,mi1 · · ·mijI]

)
,

which converges independent of the approximation (Xn)n∈N because the
measures of the intervals converge by Proposition 5.2.4. Furthermore, if we
write

I(O)′λ = [0, I] \

(
{I} ∪

( k⋃
i=1

[0,miI]

))
⊆ I(O)λ ∩ [0, I],

then
νaXn

(
I(O)′λ

)
≤ νaXn

(
I(O)λ

)
< ε.

Therefore,

νaXn

( k⋃
i=1

[0,miI]

)
≤ νaXn

( ⋃
m∈I(O)max

[0,mI]

)
< νaXn

( k⋃
i=1

[0,miI]

)
+ ε

for every n ∈ N, which implies that

νaXn

( ⋃
m∈I(O)max

[mI, 0]

)

converges independent of the approximation (Xn)n∈N. As a consequence,

νaXn

(
{I}
)

= νaXn

(
[I, 0]

)
− νaXn

( ⋃
m∈I(O)max

[mI, 0]

)
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converges as well for any non-zero I ∈ I(O) independent of the approxima-
tion (Xn)n∈N.

More generally, the uniform bound in Proposition 5.2.12 allows us to ap-
proximate uniformly the measures of each subset Ω ⊆ I(O) by the measures
of a finite number of ideals. This implies that for each Ω ⊆ I(O) the limit

lim
n→∞

νaXn
(Ω)

exists and is independent of the approximation (Xn)n∈N. Indeed, because
I(O) is a countable space, we can write

νaXn
(Ω) =

∑
I∈Ω

νaXn

(
{I}
)

and, because of Proposition 5.2.12, this series converges uniformly. There-
fore, taking limits commutes with the sum, and

lim
n→∞

νaXn
(Ω) =

∑
I∈Ω

lim
n→∞

νaXn

(
{I}
)

As a consequence, we can consider the limit probability measure νaG on
I(O), given by

νaG(Ω) = lim
n→∞

νaXn
(Ω)

for any subset Ω ⊆ I(O). This can be summed up in the following result.

Theorem 5.2.14. Let G be a finitely generated amenable group with S ⊆ G
a finite generating set and (Xn)n∈N a sofic approximation. Let K be a num-
ber field with ring of integers O, and a ∈ O[F (S)]. Then, the sequence of
probability measures (νaXn

)n∈N converges strongly to some probability mea-
sure νaG on I(O), independent of the sofic approximation (Xn)n∈N.

5.3 Adelic Lück Approximation

Throughout this chapter, we have always worked with amenable groups,
which allowed us to use the characterisation of amenability in Theorem 3.3.2
to prove the convergence of our measures. Nevertheless, the constructions
of the measures themselves are not dependent on whether our group is
amenable or not.

We would then like to finish by conjecturing that the measures con-
structed in the last section converge in general, even for non-amenable
groups. This conjecture, which we will call the Adelic Lück Approxima-
tion Conjecture, serves as a generalisation of the Sofic Lück Approximation
Conjecture.



Chapter 5. Convergence of Adelic Measures Associated to Sofic
Representations 87

Conjecture 5.3.1. Let G be a finitely generated sofic group with S ⊆ G
a finite generating set, (Xn)n∈N a sofic approximation of G, K a number
field with ring of integers O, and a ∈ O[F (S)]. Consider for each n ∈ N the
measure νaXn

as before. Then, the sequence of probability measures (νaXn
)n∈N

converges strongly to some probability measure νaG on I(O), independent of
the sofic approximation (Xn)n∈N.
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