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ABSTRACT

Abstract Linear regression is an useful tool to study the relationship
between different variables or address classification and prediction problems.
Furthermore, functional data analysis is a field of growing attention in statistics
and provides a framework to deal with infinite-dimensional data. In this
work, we present a study of different approaches to partial least squares (PLS)
for functional data. For this purpose, we first examine the finite-dimensional
multivariate case and present different points of view of PLS that lead to different
properties. This provides different possible extensions of PLS for functional data,
which are not totally straightforward since both data and parameter space have
infinite dimension and, as a consequence, some issues arise. Moreover, we also
provide a comparison with synthetic and real data that benchmarks PLS against
principal component regression (PCR). The final objective is to show that PLS is
a good alternative to PCR and it can perform better in some scenarios or, at least,
it achieves the same performance.
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1INTRODUCTION

1.1 Motivation
Nowadays, machine learning, deep learning, or data science and analytics are

topics where both industry and academy are investing resources in. Although
data is normally massive, it is important and profitable for companies. In
this light, they face problems such as data heterogeneity (i.e. data is available
in different schemes: images, time series, categorical variables, etc.), data
dimensionality (i.e. data contains thousands of variables, sometimes even more
than the number of available samples) and collinearity and dependence (i.e.
correlation among variables is too high or variables are redundant).

Consequently, statistics must deal with several challenges to analyze this data.
Many problems in statistics are formalized in terms of two spaces: the sample
space X and the parameter space Θ. When the sample size (hereinafter n) is
much bigger than the dimension of the both X (hereinafter d) and Θ (hereinafter
m), classic multivariate statistics techniques usually apply.

Nevertheless, current problems go far beyond that and we run into a critical
obstacle: d and m can be bigger than n and even in some cases, the dimension of
these spaces might be infinity. This is the case of both high dimensional problems
(n < d) and Functional Data Analysis (FDA) (X is a function space such as
L2([0, 1]), e.g. samples are signals or time series). Table 1.1 summarizes the
differences between univariate statistics, multivariate statistics, high dimensional
problems, and functional data. Also, FDA copes with other issues due to the
structure of the sample curves. For instance, if sample curves are continuous, we
expect that the value of the curve at two close points must be similar, i.e. they are
highly correlated.

To deal with the aforementioned modern challenges, regularization and
smoothing techniques, shrinkage methods, and variable selection methods cope
with some issues such as dimensionality and collinearity. These methods reduce
the dimension avoiding over-fitting, ill-posed or unsolvable problems due to the
dimensions of Θ and X .
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1. INTRODUCTION
Univariate Multivariate High dimensional Functional data

Model Random variable Random vector Random vector Stochastic process
Samples X = R X = Rd (d� n) X = Rd (d > n) X = L2([0, 1])

Parameters Θ ⊂ Rm Θ ⊂ Rm (m� n) Θ ⊂ Rm Θ ⊂ Rm or L2([0, 1])

Table 1.1: Comparison of FDA with univariate statistics, multivariate statistics
and high dimensional data.

This work covers a shrinkage technique, Partial Least Squares (PLS), for the
linear regression model with functional data, where both X and Θ belong to
L2([0, 1]). We have focused in only one particular method and problem, but there
are many more open problems that could be studied in this setting. The technique
we have chosen illustrates how the application of a certain method may strongly
depend on the type of data, finite dimensional or functional. The decision of
choosing PLS over other techniques has a particular reason behind: state of the
art of PLS is confusing and often hard to understand. Thus, one of the goals of
this work is to clarify several aspects of PLS both in the finite dimensional and
the functional cases.

1.2 State of the art
The topic of PLS has been studied both in the multivariate case and in the

functional case. PLS was originally proposed in [Wold, 1966] and even the
name was different: projection to latent structures. The proposed algorithm in
this paper is usually referred as NIPALS [Wold, 1975] and its applications were
focused on sociology. Nowadays, it is most widely used in chemometrics and
also in other areas such as bioinformatics, medicine or neuroimaging [Krishnan
et al., 2011].

Several PLS versions have been developed throughout the years, with
different properties. The version known as SIMPLS [de Jong, 1993] is one of the
most popular ones because it is equivalent to NIPALS if the response is scalar
and it is significantly faster than NIPALS. In particular, S. de Jong is a prolific
author in this topic, [Phatak and de Jong, 1997], [de Jong, 1995] and [Jong, 1993]
are remarkable examples.

Many different flavours of PLS have been documented in the state of the art.
For instance, [Andersson, 2019] compares nine PLS algorithms including SIMPLS
and NIPALS. This comparison ranks algorithms with different criteria such as
numerical stability or speed. On the other side, we focus on an agnostic point of
view as long as algorithms solve the same problem, i.e. the obtained result is the
same under infinite precision arithmetic.

Although the state of the art of PLS in the multivariate case is rich, the
situation in FDA is totally different. One the most cited and relevant books
on FDA is [Ramsay and Silverman, 1997]. In particular, this book covers
the functional regression problem both with scalar and functional responses
using different methods. Among these methods, the most relevant ones
are: regularization, based on a penalized least squares regression, and basis
smoothing or truncating, based on a truncated basis expansion. Although it is
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1.3. Organization of the document

a key reference of basis fitting and a wide variety of topics, PLS is not one of
these topics.

Moreover, [Ferraty and Vieu, 2006] is a popular book in this area that
covers selected topics such as classification or regression asymptotic results.
Furthermore, a few comments can be found about PLS, but not directly on the
functional regression problem but on the construction of a semi-metric, i.e. tools
to show the curves in a reduced dimensional space.

Aside from books, [Preda and Saporta, 2005] proposed a version of PLS for
FDA inspired in finite dimensional approaches. They claim the consistency and
convergence with the number of components, although proofs of these facts can
not be found in the paper.

On the other hand, [Delaigle and Hall, 2012] proposed a different approach
called alternative PLS (APLS) based on a nonorthogonal basis. For this
procedure, they were able to prove both consistency under certain regularity
conditions and a convergence rate for the algorithm. They insisted on the
simplicity of the algorithm compared to standard PLS. Their results require
highly technical proofs that go step by step proving the consistency of several
intermediate estimated operators or quantities.

Furthermore, [Febrero-Bande et al., 2017] performed an interesting
comparison among different regularization techniques for the functional
regression problem: PCR, PLS and Ridge regression. They provided an approach
to PLS similar to [Preda and Saporta, 2005] and the present work contains some
simulations fairly similar to the ones they described.

1.3 Organization of the document
This document is divided in six chapters. First, this chapter provides a

introduction to PLS and functional data to put everything in a context. Chapter 2
adds some preliminary results that are useful to understand the document.
Chapter 3 address several definitions of PLS for the finite dimension model,
whereas chapter 4 explores same concepts for functional data. Next, results and
simulations are performed and results are shown in chapter 5. Finally, chapter 6
is reserved for final comments and conclusions.
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2PRELIMINARY RESULTS

2.1 Introduction
This chapter presents a collection of results that are useful for the complete

understanding of the whole document. These results are classified into several
categories: stochastic process theory, functional data analysis, reproducing kernel
Hilbert spaces, and other results.

2.2 Stochastic Process Theory
This section covers some required aspects about the covariance function,

integrability and Gaussian processes.

2.2.1 Covariance function and stationary processes
Several of the operators that are commonly used in functional data statistics

are related to the covariance function and its properties. Continuity, symmetry,
normality, and other properties play an important role and can help to obtain
stronger results.

Definition 2.2.1 (Covariance function). Let {X(t); t ≥ 0} be an L2 process taking
complex values. The covariance function of this process is defined as

K(s, t) = Cov(X(s), X(t)) = E
[
(X(s)−m(s))(X(t)−m(t))

]
,

where m(t) = E(X(t)).

Some useful properties are:

1. K(s, t) = E((X(s)−m(s))(X(t)−m(t))) = E(X(s)X(t))−m(s)m(t)

2. |K(s, t)|2≤ ‖X(s)−m(s)‖2 ‖X(t)−m(t)‖2 = K(s, s)K(t, t)
(Cauchy-Schwarz inequality in L2(Ω))
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2. PRELIMINARY RESULTS

3. K(s, t) = K(t, s) (Hermitian or symmetric in real-valued spaces)

Although the results also hold in a complex-valued linear space of functions,
we are only interested in real-valued spaces of functions.

Definition 2.2.2 (Stationary or stationary in a weak sense). Let {X(t); t ∈ T}
be an L2 process. Let m(t) = E(X(t)) and let K be its covariance function. It is said
to be stationary in a weak sense if:

1. m(t) = m(t+ h) for all t, t+ h ∈ T . (So m is constant.)

2. K(s+ h, t+ h) = K(s, t) for all s, t, s+ h, t+ h ∈ T .

In other words, the covariance function is a one variable function since it only
depends on the difference between s and t, K(s, t) = K(s − t, 0). Abusing the
notation, K(t) := K(s+ t, s). By applying the Cauchy-Schwarz inequality,

|K(t)|= |K(s+ t, s)|≤
√
K(s+ t, s+ t)K(s, s) = K(0) = ‖X(s)−m‖2 .

Definition 2.2.3 (Strictly stationary). Let {X(t); t ∈ T} be an L2 process. Let
Ft1,...,tn(x1, ..., xn) = P (X(t1) ≤ x1, ..., X(tn) ≤ xn). It is said to be strictly
stationary if

Ft1,...,tn = Ft1+h,...,tn+h,

for all t1 < t2 < ... < tn and ti, ti + h ∈ T , and for all i = {1, ..., n}.

This means that the joint distribution of X(t1), ..., X(tn) does only depend on
the differences t2 − t1, ..., tn − tn−1.

Proposition 2.2.4. Let {X(t); t ∈ T} be an L2 process. If it is strictly stationary,
then it is stationary in a weak sense.

Proof.

〈X(s), X(t)〉 =

∫∫
xy dFs,t(x, y) =

∫∫
xy dFs+h,t+h(x, y) = 〈X(s+h), X(t+h)〉

E((X(t))) =

∫
xdFt(x) =

∫
xdFt+h(x) = E((X(t+ h)))

The proof shows that strict stationarity is stronger than weak stationarity,
since stationarity in the weak sense only place restrictions on the first two
moments. The converse is clearly false.
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2.2. Stochastic Process Theory

2.2.2 Gaussian processes and continuity
Brownian Motion is a really common Gaussian process that appear in many

applications in physics or economics. We described briefly some properties of
Brownian Motion and Gaussian processes.

Definition 2.2.5 (Gaussian process). Let {X(t); t ∈ T} be an L2 process. It is said
to be a Gaussian process if for every n ∈ N and any finite sequence t1 ≤ t2... ≤ tn,
the vector [X(t1), ..., X(tn)] is a multidimensional normal vector.

Definition 2.2.6 (Brownian Motion). A Brownian Motion {B(t); t ≥ 0} is a
Gaussian process with E(B(t)) = 0 and K(s, t) = σ2 min(s, t) with t, s ≥ 0 and
σ > 0

Proposition 2.2.7. Let {B(t); t ≥ 0} be a stochastic process. The following are
equivalent:

1. It is a Brownian Motion.

2. It is a process with independent increments such that B(0) = 0 and
B(s)−B(t) ∼ N(0, σ2|s− t|).

Also, some useful properties are:

1. B(0) = 0 a.s.

2. Let 0 ≤ t1 ≤ t2... ≤ t2n. [B(t2)−B(t1), ... ,B(t2n)−B(t2n−1)] are uncorrelated.
Since they are a multidimensional normal distribution with no correlation,
they are also independent. This is the key idea to prove Proposition 2.2.7.

3. {B(t+h)−B(t); t ≥ 0} is a stationary process. It is also said that {B(t); t ≥ 0}
has stationary increments.

2.2.3 Second order calculus
In next section, the continuity of the process is important to ensure the

continuity of the covariance function and of some operators associated with it.
Also, it is necessary to define briefly the meaning of L2-integrability.

Definition 2.2.8 (L2-continuous process). Let {X(t); t ∈ T} be an L2 process. It

is said to be L2-continuous if X(t+ h)
L2

→ X(t) as h→ 0.

This subsection just recall some basic results of functional analysis in L2. This
first lemma follows from the continuity of inner product.

7



2. PRELIMINARY RESULTS

Lemma 2.2.9. If Yn
L2

→ Y and Xn
L2

→ X . Then 〈Yn, Xn〉 → 〈Y,X〉.

Lemma 2.2.10. Let {X(t); t ∈ T} be an L2 process. Let t0 ∈ T . Then the following
are equivalent:

1. There exists a X ∈ L2 such that X(t)
L2

→ X as t→ t0.

2. There exists a constant L such that for all sequences tn and t′n that tend to t0,
〈X(tn), X(t′n)〉 → L as n,m→∞.

Continuity of processes is necessary for some results and, in some cases,
stronger results can be given if the process is stationary.

Theorem 2.2.11. Let {X(t); t ∈ T} be an L2 process with m(t) = E(X(t))
a continuous function and K the covariance function. Then the following are
equivalent:

1. The process is L2-continuous at r.

2. K is continuous at (r, r).

Corollary 2.2.11.1. Let {X(t); t ∈ T} be an L2 process. If it is continuous at (r, r)
for every r, it is continuous at (s, t) for every s, t.

Corollary 2.2.11.2. Let {X(t); t ∈ T} be an L2 stationary process. If it is
continuous at r for some r, it is continuous at 0. If it is continuous at 0, it is
continuous everywhere

Theorem 2.2.12. Let {X(t); t ∈ T} be an L2 stationary process with covariance
function K. If it is differentiable everywhere, then K is twice differentiable and
{X ′(t); t ∈ T} is a stationary process with covariance −K ′′.

We will consider in many points of this work the integral of an stochastic
process multiplied by a function. Therefore, it is necessary to properly state the
definition of this integral:

Definition 2.2.13 (L2 integral). Let {X(t); a ≤ t ≥ b} be an L2 process with
covariance K and mean m. Let g a complex-valued function. Let ∆ be a partition
a = t0 ≤ t1... ≤ tn = b and |∆|= max1≤i≤n(ti − ti−1). We define I as follows:

8 Partial Least Squares for Functional Data



2.2. Stochastic Process Theory

I(∆) =
n∑
k=1

g(tk)X(tk)(tk − tk−1).

If I(∆) converges in L2 to some random variable I as |∆|→ 0, then it is said that
g(t)X(t) is L2-integrable on [a, b] and

I =

∫ b

a

g(t)X(t)dt.

As mentioned before, continuity and integrability are related and, as long as
the process is continous (m and K are continous), the process is L2-integrable.

Theorem 2.2.14 (L2-integrability sufficient condition). Let {X(t); a ≤ t ≥ b}
be an L2 process with covariance function K and mean m. Let g be a continuous
functions on [a, b]. If K is continuous on [a, b]× [a, b] and m is continuous on [a, b],
then g(t)X(t) is L2-integrable on [a, b].

Also, the zero mean property can lead to interesting results on E [〈g,X〉] and
E [〈g,X〉〈h,X〉]. In particular, the zero mean of 〈g,X〉 is interesting for our
regression problem and allows simplifications if both X and Y are centered.

Theorem 2.2.15. Let {X(t); a ≤ t ≥ b} be an L2 process with covariance function
K and mean m = 0. Let g, h continuous functions and K continuous. Then the
following equalities hold:

E

[∫ b

a

g(s)X(s)ds

]
= E

[∫ b

a

h(t)X(t)dt

]
= 0,

and

E

[∫ b

a

g(s)X(s)ds

∫ b

a

h(t)X(t)dt

]
=

∫ b

a

∫ b

a

g(s)h(t)K(s, t)dsdt.

These results are important since they mean that if X has zero mean, the
regression predictor 〈g,X〉 also has zero mean and the covariance of 〈g,X〉 with
〈h,X〉 is:

Cov(〈g,X〉, 〈h,X〉) = E [(〈g,X〉 − E(〈g,X〉))(〈h,X〉 − E(〈h,X〉))]
= E [〈g,X〉〈h,X〉] (Zero mean)

=

∫ b

a

∫ b

a

g(s)h(t)K(s, t)dsdt

9
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Theorem 2.2.16. Let {X(t); a ≤ t ≥ b} be an L2 process with covariance function
K and mean m = 0. Let g be a continuous functions and K continuous. Then,

E

[
X(s)

∫ b

a

g(t)X(t)dt

]
=

∫ b

a

h(t)K(s, t)dt.

Hereinafter, we will be assuming these results. Consequently, we will assume
that m = E(X(t)) and K(t, s) are continuous functions.

2.3 Functional Data Analysis
This section covers some results about the eigenvalues of the covariance

operator and how this can be applied to decompose the stochastic process.

Theorem 2.3.1 (Mercer’s theorem). Let K be a continuous symmetric non-
negative definite kernel. Then there is an orthonormal basis {en}n≥1 of L2[a, b]
consisting of eigenfunctions with nonnegative eigenvalues {λ}i≥1 such that K has
the following representation:

K(s, t) =
∞∑
j=1

λjej(s)ej(t),

where the convergence of the series is both absolute and uniform.

This decomposition leads to the Karhunen-Loève expansion.

Theorem 2.3.2 (Karhunen-Loève Expansion). Let {X(t); a ≤ t ≥ b} be an L2

process with continuous covariance function K and mean m = 0. Let {en}n≥1 be
an orthonormal basis for the space of eigenfunctions with nonzero eigenvalues of the
kernel K and {λn}n≥1 the corresponding eigenvalues. Then X(t) can be expressed
as

X(t) =
∞∑
n=1

Znen(t), a ≤ t ≤ b

where Zn = 〈X(t), en(t)〉 are orthogonal random variables with E(Zn) = 0 and
E(|Zn|2) = λn and this series converges in L2 uniformly in t.

Also, if process is Gaussian, it leads to a stronger result.

Corollary 2.3.2.1. Let {X(t); a ≤ t ≥ b} be an L2 process with continuous
covariance function K and mean m = 0. If the process is Gaussian, [Z1, ...Zk]
are jointly Gaussian for every k with Cov(Zi, Zj) = δi,j and therefore they are
independent.

10 Partial Least Squares for Functional Data
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2.4 Regularization techniques
This section describes other regularization techniques that are related to PLS.

First, we define the principal component regression, i.e. the regression over
the principal components of the process. These components are known to be
direction in which the variance is maximized.

Definition 2.4.1 (Principal Component Regression, PCR). Let X be a stochastic
process under the assumptions of Theorem 2.3.2. The principal components of X
are the en(t) of Theorem 2.3.2, and we define the principal component regression
estimates:

β̂
(PCR)
k = arg min

β∈span{e1,...,ek}
E(〈X, β〉 − Y )2.

In the definition above, Y stands for the (scalar) response variable in the
regression model (to be defined more precisely later on).

Another possibility to avoid overfitting and bias is to add a penalty to the least
squares expression:

Definition 2.4.2 (Ridge Regression, RR). Let X be an L2 process. We define the
ridge regression estimate:

β̂
(RR)
k = arg min

β∈L2

[
E(〈X, β〉 − Y )2 + k ‖β‖2] ,

where ‖β‖2 =
∫ b
a
β2(t)dt.

There are many more estimates on this topic, but here we only covered the
ones that we mention on the document. See chapters 3 and 5 of [Hastie et al.,
2001] to find more alternatives for the linear regression model.

2.5 Reproducing Kernel Hilbert spaces
First, we state the definition of a Reproducing Kernel Hilbert Space (RKHS):

Definition 2.5.1 (RKHS). Let X be a topological space and H be a Hilbert space of
functions from X to R or C. H is called a Reproducing Kernel Hilbert Space if the
evaluation functional δx(f) := f(x) in every x ∈ X is continuous in H, i.e. for any
x ∈ X we have that there exists M > 0 such that

|δx(f)|≤M ‖f‖H .

As a remark, this can be expressed as

δx ∈ H∗ = B(H,C),

whereH∗ is the dual space ofH, i.e. the bounded applications fromH to R.

11
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Corollary 2.5.1.1 (Convergence in H =⇒ pointwise convergence). If H is
RKHS and fn

H→ f , then fn(x)→ f(x) for any x ∈ X .

This corollary shows that RKHS are not trivial spaces and, indeed, if we have
convergence in the RKHS, we have pointwise convergence. Next, we have to
explore the concept of kernel that will help us to prove that a space is an RKHS.

Definition 2.5.2 (Kernel, Feature map and Feature space). Let X be a non-
empty set. k : X × X → C is a kernel if there exists a Hilbert space G and a map
φ : X → G so that

k(x, x′) = 〈φ(x′), φ(x)〉G.

φ is called feature map and G feature space.

It can be shown that kernel functions have two main properties:

Corollary 2.5.2.1 (Kernel properties). If k is a kernel, then the following properties
hold:

1. (symmetry, hermitian) k(x, y) = k(y, x).

2. (positive definite) for any n ∈ N, αi ∈ C and xi ∈ X , i = 1, . . . , n.

n∑
i=1

n∑
j=1

αiαjk(xi, xj) ≥ 0.

Nevertheless, it is not simple to associate RKHSs to kernels. The concept that
it is closely related to RKHS is reproducing kernel.

Definition 2.5.3 (Reproducing kernel). LetX be a non-empty set. k : X×X → C
is a reproducing kernel ofH (Hilbert space) if

• (Canonical feature map) φ(x) = k(·, x) ∈ H.

• (Reproducing property) f(x) = 〈f, k(·, x)〉H for all x ∈ X and f ∈ H.

Corollary 2.5.3.1 (Reproducing kernels are kernels). Taking φ = k(·, x) ∈ H
and G = H, k is a kernel.

Then, we have that:

Reproducing kernel =⇒ kernel =⇒ positive definite and symmetric.

But how is this related to RKHS?
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Proposition 2.5.4 (RKHS and Reproducing kernels).

H is a RKHS ⇐⇒ H admits a reproducing kernel.

Moreover, this correspondence is unique.

Proof. =⇒ )

By Riesz Representation Theorem, f(x) = δx(f) = 〈f,Kx〉. We have just to
define k(x, y) = 〈Ky, Kx〉, and k is clearly a reproducing kernel.

⇐= ) Just by the reproducing property and Cauchy-Schwarz inequality,
we obtain

|f(x)|= |〈f, k(·, x)〉|≤ ‖f‖ ‖k(·, x)‖ ≤M ‖f‖ .

To end this section, we conclude that indeed it is enough to show that k is
positive definite and symmetric.

Theorem 2.5.5 (Moore–Aronszajn). Let k : X ×X → C be positive-definite and
hermitian. Then, k is a reproducing kernel and there exists H, RKHS, whose kernel
is k.

This means that it is enough to analyze the properties of k to prove that there
exists an underlying RKHS for which k is a reproducing kernel.

2.6 Other results
To end this chapter, we reserve this space to other results on topics that can

not be easily classified into the previous categories.

Lemma 2.6.1. Let A be a symmetric, positive definite matrix n × n matrix and
b ∈ Rn. The following problems are equivalent:

1. x = arg minx∈Rn

(
1
2
x′Ax− b′x

)
.

2. Find x such that Ax = b.

Proof. Let f(x) = 1
2
x′Ax − b′x. To find the minimum, we calculate the

differential of f :

Dfx(v) =
1

2
v′Ax+

1

2
x′Av − b′v.

Since the scalar product and A are symmetric, we have that

Dfx(v) = v′Ax− v′b = v′(Ax− b).

13
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If x is a minimum, Dfx(v) = 0 for any v ∈ Rn, so Ax − b = 0 must be zero.
Consequently, Ax = b must hold.
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3PARTIAL LEAST SQUARES IN FINITE
DIMENSION

3.1 Introduction
The goal of this chapter to clarify the different approaches that can be found

in the state of the art of PLS estimation in the case of the finite dimensional
linear regression model. Although some implementations will be referenced, the
computational and numerical aspects of the algorithm are out of the scope of this
chapter and this project. The objectives are:

1. Summarize the different methodologies employed to define PLS.

2. Study the properties that are derived from each definition.

3. Prove or disprove the equivalence among different definitions.

Prior to go deep into PLS, we formulate the linear regression model in the
finite dimensional situation. Let X be a random vector of size d and Y be a
random variable, for each observation of X and Y , called Xi and Yi respectively,
the linear regression model is:

Yi = X ′iβ + εi,

where β is a constant vector of size d and all the εi form a random vector ε
of dimension n, the number of observations, which has multivariate normal
distribution with zero mean and a covariance matrix Σ = σIn (identity matrix
of size n).

3.2 Definition 1: Minimization in Krylov Spaces
Krylov spaces play an outstanding role in the PLS regularization technique.

Next section covers the definition of our minimization problem based on Krylov
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spaces and also includes some useful properties. Note that the complete notion
of Krylov space and the implications behind it are covered throughout the whole
chapter.

3.2.1 Krylov spaces and definition of PLS
This subsection contains the first definition of PLS. This definition was chosen

as the main one since other regularization techniques (e.g. Principal Components
Regression (PCR), Ridge regression) can be also expressed in similar terms, that
is, as a least squares minimization problem subject to appropriate restrictions.
Moreover, using Krylov spaces to define PLS makes this technique clearer than
other approaches that will be considered in subsequent subsections.

Before defining PLS, Krylov spaces must be properly defined.

Definition 3.2.1 (Krylov space of order q). Let A be a positive definite, symmetric
d× d matrix and b ∈ Rd, b 6= 0. The Krylov space of order q defined by A and b is:

Kq(A, b) = Kq := span(b, Ab,A2b, . . . , Aq−1b). (3.1)

Hereinafter, we will denote by X and Y the data matrices, which are n × d
and n× 1 respectively. This is, we are denoting by n the sample size and by d the
dimension of the regressor.

PLS estimators are just least squares estimators constrained to Krylov spaces:

Definition 3.2.2 (PLS Version 1). The PLS estimator with q components is defined
as

β̂
(q)
PLS := arg min

β∈Kq

‖Xβ − Y ‖2 = arg min
β∈Kq

(
n∑
i=1

(x′iβ − yi)2

)
, (3.2)

where Kq = Kq(A, b) with A = X ′X and b = X ′Y .

Note that this problem can be solved explicitly and a closed formula of the
estimator β̂(q)

PLS of β can be obtained. Given an orthonormal basis of Kq(A, b), β̂(q)
PLS

can be computed in the same way we calculate the ordinary least squares linear
estimator:

Proposition 3.2.3. According to Definition 3.2.2, if R′qX ′XRq is invertible, then

β̂
(q)
PLS = Rqâ, (3.3)

where â = (R′qX
′XRq)

−1R′qX
′Y and Rq is a d × q matrix whose columns conform

an orthonormal basis of Kq(A, b).

Proof. Consider (3.2) and express the squared norm as a scalar product:

‖Xβ − Y ‖2 = (Xβ − Y )′(Xβ − Y ) = β′X ′Xβ − 2Y ′Xβ + Y ′Y.
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Any term that does not depend on β can be ignored. Moreover, multiplying
by a positive constant does not change the solution of a minimization problem.
Thus,

β̂
(q)
PLS = arg min

β∈Kq

(
1

2
β′X ′Xβ − Y ′Xβ

)
. (3.4)

We consider Rq, an orthonormal basis of Kq, and express any β in terms
of that basis, i.e. β = Rqα. Then, the minimization problem can be written
without constraints as follows:

â = arg min
α∈Rq

(
1

2
α′R′qX

′XRqα− Y ′XRqα

)
.

Using Lemma 2.6.1, this problem is equivalent to solving the equation

R′qX
′XRqâ = R′qX

′Y,

and its solution is
â = (R′qX

′XRq)
−1R′qX

′Y.

Observation: Is it always R′qX ′XRq invertible? Only if X ′X is invertible, note
that Rq is a orthonormal matrix so it is invertible.

3.2.2 The idea behind Krylov spaces
In this section we explain why considering Krylov spaces is suitable in the

context of least squares estimation.

It is useful for the results that follow to consider the polynomial of a matrix,
i.e. if P (x) =

∑m
i=0 dix

i, then P (A) =
∑m

i=0 diA
i where A is a squared matrix and

A0 = I , the identity matrix of the same size.

The following result of linear algebra provides a representation of the inverse
matrix in terms of the powers of the matrix, this is, as an element of a Krylov
space:

Proposition 3.2.4. Let A be a d × d symmetric square matrix with det(A) 6= 0.
Then, there exists a polynomial P of degree m− 1 that satisfies A · P (A) = I , where
m ≤ d is the number of distinct eigenvalues of A.

Proof. Let Q∗(λ) = det(A − λI) be the characteristic polynomial of A. Then
Q(A) = 0 where Q(x) is the minimal polynomial of Q∗, i.e. the monic
polynomial of minimum degree that have the same roots of Q∗, which exists
because A is symmetric and all eigenvalues are real. Also, det(A) 6= 0 says that
Q(0) 6= 0. If Q(A) = c0I + c1A+ · · ·+ cmA

m = 0, then c0I = −A(c1 + c2A+ · · ·+

17
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cmA
m−1). If we define P (A) = − 1

c0
(c1 + c2A+ · · ·+ cdA

m−1), then we have that
AP (A) = I .

Put it in another way, this proposition means that A−1 = P (A) =
∑m−1

i=1 αiA
i.

Recalling the expression for least squares estimator, β̂OLS = (X ′X)−1X ′Y , this
means that β̂OLS =

∑m−1
i=1 αiA

ib, with A = X ′X and b = X ′Y . Therefore,
β̂OLS ∈ Km(A, b). This is particularly convenient when we have a small number of
distinct eigenvalues of A. Thus, if the eigenvalues of A are concentrated around
a small number of values, PLS provides a good approximation to OLS. Indeed,
β̂

(q)
PLS → β̂OLS as q → m ≤ d. Krylov spaces are not well documented in the

literature of statistics. Indeed, this concept arose in numerical iterative methods
that were employed to obtain the eigenvalues of linear operators or solving linear
systems with large matrices avoiding product of matrices.

It is important to point out this relationship between numerical methods and
PLS, so that the following sections explore different ideas based on numerical
analysis techniques.

3.3 Definition 2: Partial Conjugate Gradient
In this section, conjugate direction methods are studied in detail. Although

they arise as a way to accelerate methods for solving linear systems and to solve
quadratic or nearly quadratic optimization problems, our goal here is to clarify
the relation of these methods with PLS and Krylov spaces.

3.3.1 Introduction
Conjugate direction methods were proposed to deal with the following

quadratic optimization problem:

min
x∈Rn

(
1

2
x′Ax− b′x

)
, (3.5)

where A is an n × n symmetric positive definite matrix and b ∈ Rn a constant.
Note that solving (3.5) is equivalent to find the solution of the linear system
Ax = b. This result was already proved in Lemma 2.6.1. Next, we define the
conjugate gradient algorithm that allows us to define a second version of PLS.

Proposition 3.3.1. (Conjugate Gradient Algorithm)

Let x0 ∈ Rn be an initial approximation vector. Define v0 = −g0 = b − Ax0.
The following iterative method converge to the solution of problem (3.5) in at most n
steps:

xk+1 = xk + αkvk, (3.6)
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where
gk = Axk − b,

αk = − g′kvk
v′kAvk

,

vk+1 = −gk+1 + γkvk,

and
γk =

g′k+1Avk

v′kAvk
.

Subsequent sections will cover the main properties of the conjugate gradient
algorithm. Proof of the convergence will be covered at the end of the section.

3.3.2 Conjugate directions
The concept of conjugate vectors is similar to orthogonality but replacing the

euclidean scalar product by the inner product defined by a matrix:

Definition 3.3.2. (Conjugate with respect toA) Given a symmetric d×d symmetric
matrix A, two elements x ∈ Rd and y ∈ Rd are said to be conjugate with respect to
A or A-orthogonal if x′Ay = 0.

Nevertheless, for many interesting properties we require that A is positive
definite. From now on, A will be a symmetric positive definite matrix.

Proposition 3.3.3. Let A be a symmetric positive definite matrix and {vi}di=1 a set
of conjugate directions with respect to A. If vi is not zero for every i ∈ {1, ..., d}, then
the vectors vi are linearly independent.

Proof. Let v =
∑n

j=1 αjvj = 0. Then, v′iAv = v′iA(
∑n

j=1 αjvj) = 0. Using that
the vectors {vj}dj=1 are conjugated, this yields αiv′iAvi = 0. Since A is positive
definite, v′iAvi > 0. Therefore, αi = 0 for every i = 1, . . . , d.

As a consequence, if d is the dimension of the space, then {v1, . . . , vd} form a
basis of the whole space.

Theorem 3.3.4. (Conjugate Direction Theorem) Let {vi}n−1
i=0 be a sequence of

nonzero conjugated (with respect to A) vectors of Rn and let x0 ∈ Rn be an initial
approximation vector. Then the following iterative method converge to the solution
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of problem (3.5) in n steps, that is, xn = x∗, where x∗ is the solution of (3.5). For
k = 1, 2 . . . , n− 1,

xk+1 = xk + αkvk, (3.7)

where
gk = Axk − b,

and
αk = − g′kvk

v′kAvk
.

Proof. Using proposition 3.3.3, the {vi}n−1
i=0 are linearly independent so that they

form a basis of Rn. Thus, x∗ − x0 can be expressed in that basis: x∗ − x0 =∑n−1
i=0 γivi. Note that the coefficients in this expression are

γk =
v′kA(x∗ − x0)

v′kAvk
=
v′kb− v′kAx0

v′kAvk

. Indeed,

x∗ − x0 =
n−1∑
i=0

γivi,

A(x∗ − x0) =
n−1∑
i=0

γiAvi, (Apply A and linearity)

v′kA(x∗ − x0) =
n−1∑
i=0

γiv
′
kAvi (Multiply by vk)

= γkv
′
kAvk. (A− orthogonality)

Also, applying the definition of xk recursively, we obtain

xk = αk−1vk−1 + xk−1 = · · · =
k−1∑
i=0

αivi + x0,

and following the same reasoning:

xk − x0 =
k−1∑
i=0

αivi,

A(xk − x0) =
k−1∑
i=0

αiAvi, (Apply A and linearity)

v′kA(xk − x0) =
k−1∑
i=0

αiv
′
kAvi (Multiply by vk)

= 0. (A− orthogonality)
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then, v′kAx0 = v′kAxk. Substituting into the expressión of γk, we get

γk =
v′kb− v′kAx0

v′kAvk
=
−v′k(Axk − b)

v′kAvk
=
−g′kvk
v′kAvk

.

In other words, γi = αi for i = 1, . . . , k − 1, which implies that xn =
x0 +

∑n−1
i=0 αivi = x∗.

As a corollary, the gradients are gk are orthogonal to the space
span{v0, . . . , vk−1}.

Corollary 3.3.4.1. Under the hypothesis of theorem 3.3.4, we have that for k =
1, . . . , d and j = 0, . . . , k − 1, v′jgk = 0.

Proof. For k = 1, . . . , d,

gk+1 = gk + αkAvk

= gk −
g′kvk
v′kAvk

Avk.

Then,

v′kgk+1 = v′kgk −
v′kgk
v′kAvk

v′kAvk = 0. (3.8)

Reasoning by induction, we have already proved it for k = 1, i.e. g′1v0 = 0.
Assuming it is true the property for gk, we write gk+1

v′jgk+1 = v′jgk −
v′kgk
v′kAvk

v′jAvk.

For j = 1, . . . , k − 1, the first term cancels due to the induction hypothesis
and the second one because the vectors are conjugate. For j = k, we checked
that it is zero in (3.8). This is, for j = 0, . . . , k,

v′jgk+1 = 0.

3.3.3 Conjugate Gradient Algorithm
Any conjugate direction method converges to the solution x∗ of the linear

equation Ax = b and also solves the minimization problem (3.5). It can also
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be proved a richer result, ensuring that xk, k = 1, 2, . . . d, is the solution to the
problem minx∈x0+Bk

f(x) where Bk = span{v0, v1, ..., vk−1} and f(x) = 1
2
x′Ax−b′x.

Corollary 3.3.4.2. (Expanding Subspace) With the same notation and assumptions
of Theorem 3.3.4, xk is the solution to the problem:

min
x∈Bk

(
1

2
x′Ax− b′x

)
,

where Bk = span(v0, v1, ..., vk−1).

Proof. Defining f(x) = 1
2
x′Ax− b′x, it is clear that f is a strictly convex function

if A is positive definite, so we just need to show that the gradient of f at xk is
orthogonal to the space Bk−1. Since∇f(xk) = Axk−b, it is enough to show that
Axk − b ⊥ Bk−1.

Furthermore, we have proved in Corollary 3.3.4.1 that Axk−b is orthogonal
to v0, ..., vk−1. Then Axk − b ⊥ Bk−1.

With all these results, the second definition of PLS can be stated.

Definition 3.3.5 (PLS Version 2). Let x0 = 0, A = X ′X and b = X ′Y . We define
β̂

(q)
PLS = xq, where xq is the value obtained after q steps of the conjugate gradient

algorithm.

Since we want to show the equivalence between definition 3.2.2 and
definition 3.3.5, it is required that xq ∈ Kq(A, b), the Krylov space of dimension q.
The following proposition verifies this and other properties about the conjugate
gradient algorithm:

Proposition 3.3.6. Let x∗ be the true solution to the optimization problem (3.5).
If xk 6= x∗, the iterations of the algorithm described in Theorem 3.3.1 satisfy the
following properties:

(a) span{g0, . . . , gk} = span{v0, . . . , vk} = Kk+1(A, g0) = span{g0, Ag0..., A
kg0}.

(b) vk is conjugate to any vi with i < k.

Proof. (a) First, we prove span{g0, . . . , gk} = Kk+1(A, g0) By induction, it is
trivial for k = 0, since v0 = −g0 ∈ span{g0}. Suppose it is true for k, then
for k + 1 we have that:

gk+1 = Axk+1 − b = Axk − b︸ ︷︷ ︸
gk

+αkAvk = gk + αkAvk.
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By the hypothesis, gk ∈ Kk+1(A, g0) ⊂ Kk+2(A, g0), so the only thing
to prove is that Avk ∈ Kk+2(A, g0). Since vk ∈ Kk+1(A, g0), this means
that vk =

∑k
i=0 ciA

ig0. Consequently, Avk =
∑k

i=0 ciA
i+1g0 and thus Avk ∈

Kk+2(A, g0). Moreover, gk+1 is a new vector that expands the Krylov space,
i.e. gk+1 6∈ Kk+1(A, g0). This a consequence of the Corollary 3.3.4.1, gk+1 ⊥
span{v0, . . . , vk} = Kk+1(A, g0).

Then, we have obtained that span{g0, . . . , gk+1} = Kk+2(A, g0).

Also, span{v0, . . . , vk+1} = Kk+2(A, g0) since vk+1 = −gk+1 + γkvk where
we have already checked that gk+1 ∈ Kk+2(A, g0) and vk ∈ Kk+1(A, g0) ⊂
Kk+2(A, g0). Also, since vk+1 is conjugate to the previous ones, it is also
independent from any of them, therefore it expands the Krylov Space and
again: span{v0, . . . , vk+1} = Kk+2(A, g0).

(b) The last thing to check is that vk+1 is conjugate to any vi with i < k + 1.
For i = k, the scalar product is zero due to the definition of γk =

g′k+1Avk

v′kAvk
.

v′k+1Avk = (−gk+1 + γkvk)
′Avk

=
g′k+1Avk

v′kAvk
v′kAvk − g′k+1Avk

= 0.

If i < k,

v′k+1Avi = (−gk+1 + γkvk)
′Avi

=
g′k+1Avk

v′kAvk
v′kAvi − g′k+1Avi

= 0.

The first term vanish due to the induction hypothesis. The second term vanish
because gk+1 is orthogonal to span{v0, . . . , vi+1} due to corollary 3.3.4.1 and

Avi ∈ span{v0, . . . , vi+1}.

Finally, we are able to state the main result that shows the equivalence
between the two definitions of PLS.

Theorem 3.3.7 (Equivalence of PLS version 1 and PLS version 2).
Definition 3.2.2 and definition 3.3.5 are equivalent.

Proof. In proposition 3.3.6, we proved that the directions {vi}qi=1 obtained in
the conjugate gradient are conjugate vectors of Kq(A, b). Then, corollary 3.3.4.2
implies that xq, iteration of the conjugate gradient algorithm solves
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xk = arg min
x∈Kq(A,b)

(
1

2
x′Ax− b′x) = arg min

β∈Kq(A,b)

(
1

2
β′X ′Xβ − Y ′Xβ).

Equation (3.4) shows a representation of β̂(q)
PLS that is the same as the one

above, which proves that both methods solve the same minimization problem.

Once we proved that the two previous definition are the same, we end the
section with a result that will be used in the sequel:

Proposition 3.3.8. Let u ∈ Kq(A, b). Then, there exists a polynomial of degree at
most q, P (·), such that P (0) = 1 and the following equality holds:

x∗ − u = P (A)x∗,

where x∗ fulfills Ax∗ = b.

Proof. Let P (t) =
∑q

i=0 λit
i. It is quite trivial to find the coefficients λi by just

imposing the conditions over P . First, P (0) = 1 implies that λ0 = 1, i.e.
P (A)x∗ = x∗ +

∑q
i=1 λiA

qx∗. Since Ax∗ = b, P (A)x∗ = x∗ +
∑q

i=1 λiA
q−1b, and

x∗ − P (A)x∗ ∈ Kq(A, b). Recalling that u ∈ Kq(A, b), i.e. u =
∑q−1

i=0 αiA
ib, we

just have to choose λi = αi−1, for i = 1, . . . , q.

3.4 Definition 3: Filter factors
3.4.1 Singular Value Decomposition

First, we recall that the Singular Value Decomposition (SVD) of a rectangular
matrix X is:

X = UΣV ′ (3.9)

where

1. X is the n× d data matrix,

2. U is an orthogonal n× d matrix,

3. Σ is a non-negative d× d diagonal matrix. The elements of the diagonal are
ordered (σ1 ≥ . . . ≥ σd),

4. V is an orthogonal d× d matrix.

Some useful properties makes this decomposition really convenient for the
regression analysis [Mandel, 1982]:
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Proposition 3.4.1. Let X be a n × p real matrix. The following statements are
satisfied:

1. The singular value decomposition of X always exists.

2. U is a matrix whose columns are the eigenvectors of XX ′ with eigenvalues not
equal to zero.

3. V is a matrix whose columns are the eigenvectors of X ′X with eigenvalues not
equal to zero.

4. The elements of the diagonal of Σ are the square root of the eigenvalues of X ′X .

5. (Moore-Penrose pseudoinverse) β̂OLS = X†Y , where X† is known as the
Moore-Penrose pseudoinverse and it is just an approximation to the inverse
in terms of the SVD, i.e. X† = V Σ−1U ′, where Σ−1 denotes to the matrix with
non-null elements inverted.

Further information about this result and many more that might be useful can
be found in [Golub and Reinsch, 1970].

3.4.2 Relationship with regression analysis
In particular, from property 5, an interesting formula can be given:

β̂OLS = V Σ−1U ′Y =
d∑
i=1

u′iY

σi
vi, (3.10)

where ui and vi are the column vector of U and V respectively and σi is the ith
element of the diagonal of Σ. Note that the singular values σi are connected to
the vi in a way that is really similar to PCA. Observing the equations, it is simple
to see that PCR (definition 2.4.1) has the following formula:

β̂
(m)
PCR =

m∑
i=1

u′iY

σi
vi =

d∑
i=1

1[0,m](i)
u′iY

σi
vi.

Less obvious but also true is that Ridge Regression (definition 2.4.2) has also
a formula in terms of the SVD:

β̂
(k)
RR =

d∑
i=1

σ2
i

σ2
i + k

u′iY

σi
vi.

Since the proof for Ridge Regression is completely unrelated to any other
incoming results, the proof is elided.
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Definition 3.4.2 (Filter factors). If we express an arbitrary regression estimator as

β̂ =

p∑
i=1

wi
u′iY

σi
vi, (3.11)

the weights wi are called filter factors. Equivalently,

β̂ = V D−1Fw,

where F is a d × d matrix whose diagonal is the vector U ′Y , D is a d × d matrix
whose diagonal is the vector (σ1, . . . , σd) and V is the orthogonal basis of the SVD.

With the aforementioned expressions in mind, it is simple to see that the filter
factors of β̂OLS, β̂(m)

PCR and β̂
(k)
RR are

w
(OLS)
i = 1,

w
(PCR(m))
i = 1[0,m](i),

and

w
(RR(k))
i =

σ2
i

σ2
i + k

.

The next question is: can β̂
(q)
PLS be expressed in the same way? Then, which

are the filter factors of β̂(q)
PLS? To answer this question, we must pay attention to

Krylov spaces. They are connected to SVD. Let KM the maximal Krylov space,
i.e. KM−1 ( KM = KM+1, then the following result provides the dimension of
the maximal Krylov space:

Lemma 3.4.3. Let KM be the maximal Krylov space, Λ be the set of all eigenvalues
of X ′X and Pλ be the orthogonal projector onto the eigenspace generated by the
eigenvector whose corresponding eigenvalue is λ. Then:

• {PλX ′Y }λ∈Λ is a basis of KM .

• PλX
′Y =

∑p
i=1 1{λi=λ}σi(u

′
iY )vi.

Therefore, M is the number of eigenvalues λ for which u′iY 6= 0.

The proof of this lemma can be found at [Parlett, 1998]. It leads itself
to important consequences, such as knowing the number of iterations of the
Conjugate Gradient to reach β̂OLS.

The key question of this section is: Can β̂
(q)
PLS be expressed in (3.11) for some

suitable filter factors? By applying the previous lemma, we see that the answer
to this question is affirmative.

First, a simple form that proof its existence is given, although a more
convenient result drive us to many more properties:
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Theorem 3.4.4. Let F be the d× d matrix whose diagonal is the vector U ′Y and w
the column vector of the filter factors. Then,

β̂
(q)
PLS = V D−1Fw,

given by the solution to the system where w is

Fw = DV ′β̂
(q)
PLS = U ′PY,

where P = XRq(R
′
qX
′XRq)

−1(XRq)
′ and Rq is a basis of Kq

Proof. Assuming β̂(q)
PLS = V D−1Fw, we have

Fw = DV ′β̂
(q)
PLS.

Using definition 1 of PLS, i.e. equation (3.2) and also U ′U = I :

DV ′β̂
(q)
PLS = U ′(UDV ′Rq(R

′
qX
′XRq)

−1R′qX
′Y ).

Using the SVD and the definition of P, we finally obtain:

Fw = U ′(XRq(R
′
qX
′XRq)

−1(XRq)
′︸ ︷︷ ︸

P

Y ) = U ′PY.

As it was anticipated, another characterization of wi can be given. This
characterization follows a numerical approach to solve the problem. First, the
Ritz values are defined:

Definition 3.4.5 (Ritz values). For any orthonormal basis of Kq(A, b) given as a
matrix Rq of column vectors, the eigenvalues

θ1 ≥ θ2 . . . ≥ θm

of R′qARq are called Ritz values. The corresponding eigenvectors are called Ritz
vectors.

If θ were an eigenvalue with eigenvector v, we would have that Av − θv = 0.
Being a Ritz value is weaker.

The connection between PLS and these Ritz values is behind the conjugate
gradient method. The following lemma associates the Ritz values to conjugate
gradient.
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Lemma 3.4.6. Let x0 = 0 and let xk be the k iteration of conjugate gradient.
Assuming the common notation A = X ′X , b = X ′Y and x∗ the solution of Ax = b.
The following equality holds:

x∗ − xq = Rq(A)x∗, (3.12)

where Rq(A) =
∏q

i=1
θ
(q)
i I−A
θ
(q)
i

and {θ(q)
i }

q
i=1 are the Ritz values corresponding to

Kq(A, b).

Proof. Step 1: Prove that the Ritz vectors and b are not orthogonal

Let θ(q)
i be a Ritz value and let vi be the corresponding Ritz vector. Also,

consider Bq = (v1, . . . , vq) a matrix whose columns form an orthonormal basis
of Kq(A, b). Note that for k < q we have that

v′i(B
′
qABq)

kb = (B′qABq)
′v′i(B

′
qABq)

k−1b (B′qABq is self-adjoint)

= θ
(q)
i v′i(B

′
qABq)

k−1b (vi is a Ritz vector)

= . . . (k iterations)

= (θ
(q)
i )kv′ib.

This implies that if vi ⊥ b, then vi ⊥ (B′qABq)
kb for any k < q. Note that

(B′qABq)
k = B′qA

kBq = Ak because Ak ∈ Kq(A, b). Hence, vi ⊥ Kq(A, b).
But, this is itself a contradiction. If vi ⊥ Kq(A, b), this means that vi is 0 since
vi ∈ Kq(A, b). This is a contradiction and thus we have v′ib 6= 0.

Step 2: Prove that a polynomial exists

In proposition 3.3.8, we proved that if xq ∈ Kq(A, b), then there exists p
polynomial of degree q such that x∗ − xq = p(A)x∗.

This simplifies a lot our effort, since we have already proved the existence,
we only need to prove that Rq = p.

Step 3: Check that polynomials p and Rq have the same roots

It is clear that x∗−xk isA-orthogonal to all the vectors in Kq(A, b), implying
that p(A)x∗ is also A-orthogonal. If p(A)x∗ is A-orthogonal, p(A)b is orthogonal
to Kq(A, b), i.e. for any v ∈ Kq(A, b):

v′Ap(A)x∗ = v′p(A)Ax∗ = v′p(A)b = 0.

It holds that B′qp(A)bBq = 0 because the columns of Bq belong in Kq(A, b).
Doing some computations, we have:

0 =B′qp(A)bBq

=B′qp(A)BqB
′
qbBq (BqB

′
q = Id, identity of size d)

=B′qp(A)Bqb (b ∈ Kq(A, b))

=p(B′qABq)b (B′qA
iBq = (B′qABq)

i and linearity)

28 Partial Least Squares for Functional Data



3.4. Definition 3: Filter factors

Consequently, if we consider the diagonalization of B′qABq = UDU−1,
where D = diags(θ

(q)
1 , . . . , θ

(q)
q ) and U a matrix whose columns are the

eigenvectors of B′qABq, i.e. the Ritz vectors. With this, we can conclude that:

0 =p(B′qABq)b

=p(UDU−1)b (Diagonalization)
=Up(D)U−1b,

i.e. either v′b = 0 or p(D) = 0. Since we already prove that v′b 6= 0, the p(D) = 0,
that is, p(θ(q)

i ) = 0 for i = 1, . . . , q.

This means that the conjugate gradient iteration can be expressed as

xq = (1−Rq(A))x∗.

Thanks to theorem 3.3.7 that exposes the equivalence between PLS definition
and Conjugate Gradient, this can be expressed in terms of the notation of the
problem we want to solve, i.e.

β̂
(q)
PLS = (I −Rq(X

′X))β̂OLS (3.13)

Notice that Rq(θ
(q)
i ) = 0 for any Ritz value θ(q)

i and Rq(0) = 1. With all these
ingredients, it is possible to proof the following result

Definition 3.4.7 (PLS Version 3). Let X = UΣV ′ be the SVD of the data and
let {θ(q)

i }
q
i=1 the Ritz values associated to Kq(X

′X,X ′Y ). Also, let λi = σ2
i be the

eigenvalues of X ′X . Then, the estimator of PLS as a filter factors expression is:

β̂
(q)
PLS =

p∑
i=1

wi
u′iY

σi
vi, (3.14)

with wi = 1−Rq(λi).

Theorem 3.4.8. Definition 3.2.2 and definition 3.4.7 are equivalent.

Proof. Starting from (3.13), we couple in β̂OLS

β̂
(q)
PLS = (I −Rq(X

′X))β̂OLS = (I −Rq(X
′X))V Σ−1U ′Y.
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Now, we want to express Rq(X
′X) in terms of the SVD. Easily, X ′X =

V Σ2V ′, where Σ2 is a p × p diagonal matrix whose entries are the eigenvalues
λi of X ′X in decreasing order. Writting Rq, we are able to see that (3.14) arises.

Rq(V Σ2V ′) =

q∏
i=1

θ
(q)
i I − V Σ2V ′

θ
(q)
i

=

q∏
i=1

θ
(q)
i V V ′ − V Σ2V ′

θ
(q)
i

= V

q∏
i=1

θ
(q)
i V ′ − Σ2V ′

θ
(q)
i

Rq(V Σ2V ′) = V

q∏
i=1

θ
(q)
i V ′ − Σ2V ′

θ
(q)
i

= V

(
q∏
i=1

θ
(q)
i I − Σ2

θ
(q)
i

)
︸ ︷︷ ︸

Σ∗

V ′.

We notice that Σ∗ is a diagonal matrix whose elements are σ∗i =
θ
(q)
i −λi
θ
(q)
i

=

Rq(λi), i.e. Σ∗ = Rq(Σ
2). Coupling this expression in the first formula of β̂OLS

and using V is orthogonal (V V ′ = V ′V = I), we arrive at

β̂
(q)
PLS = (V V ′ − V Σ∗V ′)V Σ−1U ′Y = V (I − Σ∗)V ′V Σ−1U ′Y = V (I − Σ∗)Σ−1U ′Y.

Once again, (I − Σ∗)Σ−1 is a diagonal matrix whose elements are 1−Rq(λi)

σi
.

This means then that the filter factors are 1−Rq(λi) and thus the PLS estimator
can be written as follows:

β̂
(q)
PLS = V (I − Σ∗)Σ−1U ′Y =

p∑
i=1

wi
u′iY

σi
vi =

p∑
i=1

(1−Rq(λi))
u′iY

σi
vi.

3.4.3 Connection to Lanczos and Arnoldi methods
The main reason to study the Lanczos method in this context is the possibility

of provide convergence results of θ(q)
i , Ritz value, to λi, real eigenvalue of A.

Originally proposed in [Lanczos, 1950], Lanczos method is an adaption of the
power methods to find the m biggest eigenvalues and eigenvectors of hermitian
matrices. On the other hand, Arnoldi method works similarly but with all kind
of matrices. Both algorithms compute the approximation to the eigenvectors (i.e.
the Ritz vectors) by decomposing the matrix and using the QR decomposition to
find them.

Definition 3.4.9 (Lanczos method). Let A be a hermitian matrix of size d × d.
Let v1 ∈ Rd with norm 1, then the following iterative method is defined for
j = 1, . . . , q ≤ m:
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• If j = 1:

– b1 = Av1,

– α1 = b′1v1,

– w1 = b1 − α1v1.

• For j = 2, . . . ,m:

– γj = ‖wj−1‖.

– vj =

{
wj/γj if γj 6= 0

any orthonormal vector to v1, · · · , vj−1 otherwise

– bj = Avj ,

– αj = b′jvj ,

– wj = bj − αjvj .

The result is a matrix V whose columns are the vectors {vj}mj=1 and a tridiagonal
matrix

T =



α1 γ2 0
γ2 α2 γ3

γ3 α3
. . .

. . . . . . γm−1

γm−1 αm−1 γm
0 γm αm


.

The eigenvalues of T are the Ritz values of order m, i.e. {θ(m)
j }mj=1

Note first that if γj = 0 for some j, it means that Avj − αjvj = 0, i.e. vj is an
eigenvector and αj is an eigenvalue. Kaniel–Paige convergence theory states how
the eigenvalues of T are related to the eigenvalues of A. The following theorem
presents a results related to eigenvalues and Ritz values.

Theorem 3.4.10. Let A be a d×d symmetric matrix and T be the tridiagonalization
obtained by Lanczos algorithm after q steps. Let λ1 be the biggest eigenvalue of A
and θ(q)

1 be the biggest eigenvalue of T . Then,

λ1 − θ(q)
1 ≤ 4

1− |d1|2

|d1|2
(λ1 − λn)R−2(q−1),

where {dj}dj=1 are the coefficients of v1 in the eigenvector basis, i.e. v1 =
∑d

j=1 zjdj ,
zj eigenvector of A; and R = exp(arccosh(1 + 2ρ)) with ρ = λ1−λ2

λ2−λn .

This fact shows that Lanczos method, Ritz values and PLS are closely related. An
improved result that deals not only with the largest Ritz value can be found in
theorem 12.4.1 of [Parlett, 1998]. Furthermore, Kaniel-Paige convergence theory
provides results of convergence that might be useful to investigate the structure
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of Rq(x) =
∏q

i=1
θ
(q)
i −x
θ
(q)
i

. Nevertheless, this already yields out of the scope of this

project and only some few results [Phatak and de Hoog, 2002] can be found in
the state of the art.

3.5 Definition 4: statistical criterion
The preceding definitions are based on optimization and linear algebra

concepts but they lack a clear statistical interpretation, despite the connections we
have established between PLS and PCR and Ridge/Lasso in the previous section.
Consequently, this section aims at giving a statistical meaning for PLS.

No matter which flavour of PLS is consulted, all versions aggrees on using
conjugate directions that maximize the covariance. There are two particular
versions strongly used in the state of the art: NIPALS [Wold, 1966] and
SIMPLS [de Jong, 1993]. Indeed, for the vast majority of modifications of PLS,
if Y is scalar, they are equivalent. For the sake of simplicity, we will employ
NIPALS version:

Definition 3.5.1 (PLS Version 4). Let X be the centered n × d data matrix and Y
the response vector.

1. Initialization: X0 = X

2. Iteration: for i = 1, . . . , q:

a) wi =
X′i−1Y

‖X′i−1Y ‖
,

b) ti =
X′i−1wi

‖X′i−1wi‖ ,

c) pi = X ′i−1ti,

d) Xi = Xi−1 − tip′i,

3. Result: the sequences {wi}qi=1, {ti}qi=1 and {pi}qi=1

Given the following matrices Wq = (w1 . . . wq), Tq = (t1 . . . tq) and Pq =
(p1 . . . pq), we have that

β̂
(q)
PLS = Wq(P

′
qWq)

−1TqY. (3.15)

Next, we want to state a result relating this definition to Krylov spaces.

Proposition 3.5.2. The vectors in NIPALS algorithm satisfy the following
properties:

1. {wi}qi=1 is a orthonormal sequence.

2. span({wi}qi=1) = Kq(X
′X,X ′Y ).
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3. {ti}qi=1 is a orthonormal sequence.

4. span({ti}qi=1) = Kq(XX
′, XX ′Y ).

The proof of this proposition can be found in [Eldén, 2004] (proposition 3.1). As
we see, this proposition together with (3.15) provides an easy way of seeing that
β̂

(q)
PLS ∈ Kq(X

′X,X ′Y ). The only thing left to prove is that this minimizes a least
squares expression. Indeed, this is immediate consequence of the algorithm, since
each iteration applies regression to the residuals.

Theorem 3.5.3. Definition 3.2.2 and Definition 3.5.1 are equivalent.

This is a classic result that appears in many reviews and books on this topic, such
as [Tenenhaus, 1998] and [Eldén, 2004] (proposition 3.1 and 3.2). Also, another
proof that relies on using Definition 3.4.7 is available at [de Jong, 1995].

The relevant question in this part is: which is the difference between different
PLS algorithms? Most of the times, the difference relies on the basis of the Krylov
space that is considered and on numerical issues. Thus, we should not see any
difference in the results under infinite precision arithmetic. On the other side,
alternative approaches can be proposed and they might not be equivalent to
NIPALS, SIMPLS or one of our definitions. In such cases, we will not consider
them as PLS. As a commentary, discrepancies of the PLS definition are common
for the case of multivariate Y , for instance NIPALS and SIMPLS lead to different
results. Nevertheless, they are unusual for the case of Y being a scalar.
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4PARTIAL LEAST SQUARES FOR
FUNCTIONAL DATA

After reviewing the different techniques that can be applied to the finite-
dimensional linear model, we want to explore the possible extensions for
functional data.

4.1 The Functional LinearModel
The first section of this chapter aims at reproducing the basic theory for

finite-dimensional linear regression models in the functional setting. In order
to properly separate the regularization techniques from concepts and limitations
of the linear models, this section will not cover any regularization method.
Regularization aspects will be studied deeply in next section.

4.1.1 Definition of themodel
First of all, it is required to define formally the functional linear model.

Compared to finite-dimensional linear models, here the covariates X is not in Rp

but X(ω, ·) ∈ L2(T), a separable Hilbert space of functions for some domain T.
Depending on the characteristic of the response, two kinds of regression models
can be established:

1. Functional regression with scalar response, i.e. the response Y ∈ R.

yi = α +

∫
T

xi(t)β(t)dt+ εi.

2. Functional regression with functional response, i.e. the response Y ∈ L2(T).
This can be a concurrent linear model (linear regression on each time t)

yi(t) = α + β(t)xi(t) + εi,

or a fully functional model

yi(t) = α(t) +

∫
T

β(t, s)xi(s)ds+ εi.
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Since each approach leads to a rather different situation, we focus in only one
model. For the sake of simplicity, only the first model will be considered, i.e.

Y =

∫
T

β∗(t)X(t)dt+ ε (4.1)

whereX is an L2 process withE ‖Xi‖2 <∞, ε is a random variable withE(ε) = 0,
Var(ε) = E(ε2) = σ2 and E(X(t)ε) = 0 and β∗ ∈ L2(T).

4.1.2 Issues in the infinite-dimensional setting
The finite-dimensional linear regression model has been deeply studied

through the years and has been used extensively in many practical applications.
This is due to the fact that this model is rich in nice properties. Nevertheless,
linear regression model in the functional setting loses some important properties
that must be highlighted before starting our study of PLS:

• The covariance operator, analogous to X ′X , is no longer invertible. This
is due to the fact that the covariance operator is compact and compact
operators in infinite-dimensional Hilbert spaces are not invertible.

• When we present the βOLS estimator, we write it as βOLS = (X ′X)−1X ′Y .
This is known to be the best linear unbiased estimator (Gauss-Markov
theorem). Due to the high dimension of the space, in the functional setting
there are not direct equivalents to βOLS and thus, we have not an optimality
result such as Gauss-Markov theorem. We usually build estimators using a
basis representation and truncating it, that is, some kind of regularization is
unavoidable.

4.2 Extensions of PLS for functional data
4.2.1 Krylov spaces in the functional data context

To begin with, Krylov spaces must be defined in the functional setting:

Definition 4.2.1 (Krylov space). Let X be an L2(T)-integrable stochastic process
and let R be the corresponding covariance integral operator of L2(T) defined by

Rf(t) =

∫
T

ρ(t, s)f(s)ds,

where ρ(t, s) = Cov(X(t), X(s)). The Krylov space of dimension q is defined as
follows:

Kq(R, f) = span{f,Rf, . . . , Rq−1f},

where f ∈ L2(T).

The following result gives a sufficient condition for the continuity of the
operator R, which is often required:
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Proposition 4.2.2. Let Rβ =
∫
T
ρ(t, s)β(s)ds. If ρ ∈ L2(R2), then R is a

continuous operator in L2(R) and ‖R‖ ≤ ‖ρ‖

Proof can be found in chapter 8 of [Heil, 2018] (see theorem 8.2.1). Note that
we are requiring that ‖ρ‖2 =

∫
T

∫
T
ρ(t, s)2dtds is bounded. We check it:

‖ρ‖2 =

∫
T

∫
T

[E(X(t)X(s))]2 dtds

≤
∫
T

∫
T

E(X(t)2)E(X(s)2)dtds (Cauchy-Schwarz in L2(Ω))

=

∫
T

E(X(t)2)dt

∫
T

E(X(s)2)ds

=

[∫
T

E(X(t)2)dt

]2

=

[
E

(∫
T

X(t)2dt

)]2

(Fubini’s theorem)

=
[
E(‖X‖2)

]2
<∞,

because we imposed the hypothesis E ‖X‖2 < ∞, i.e. R is always continuous
under our assumptions.

Now, we relate the operator R with the parameter β. We start from the model
equation

Y = 〈X, β〉+ ε,

multiply by X and take expectation at both sides:

E(X(t)Y ) = E(X(t)〈X, β〉) + E(X(t)ε).

Since E(X(t)ε) = 0, it follows

E(X(t)Y ) = E(X(t)〈X, β〉).

Using Fubini and taking into account the model, we can rewrite this in terms of
the operator R

E(X(t)〈X, β〉) =

∫
Ω

X(t)

∫
T

X(s)β(s)dsdP

=

∫
T

∫
Ω

X(t)X(s)dPβ(s)ds

=

∫
T

ρ(t, s)β(s)ds

= Rβ.

Consequently, our problem is now:

E(X(t)Y ) = Cov(X(t), Y ) = Rβ,

and it is equivalent to solve the following minimization problem that becomes
our definition of FPLS, as we did in the finite dimensional case.
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Definition 4.2.3 (FPLS Version 1). Let X be a (centered) L2-integrable stochastic
process and Y an L2(Ω) random variable, the (centered) response. Then, β(q)

PLS ∈
L2(T) is defined as follows

β
(q)
PLS := arg min

β∈Kq

E(〈X, β〉 − Y )2, (4.2)

where Kq = Kq(R, b) is determined by Rf(t) =
∫
T
ρ(t, s)f(s)ds and b(t) =

Cov(X(t), Y ).

The minimization problem is simpler than it seems because Kq(R, b) is a
finite dimensional space, so the problem is equivalent to find the coefficients that
minimize

∥∥∑q−1
i=0 ci〈X,Rif〉 − Y

∥∥
L2(Ω,P )

.

4.2.2 Functional conjugate gradient
In the previous chapter, we covered the conjugate gradient algorithm and

show that it is equivalent to other PLS definitions. The advantage of using
the conjugate gradient instead of approaching directly the problem is that this
method is numerically stable, in other words, it was thought to be implemented
in a computer so that the error in each step is not accumulated.

Definition 4.2.4 (FPLS Version 2). Let R be the operator Rf = Rf(t) =∫
T
ρ(t, s)f(s)ds and let b(t) = E(X(t)Y ). Let x0 be an initial approximation that

can be 0 and v0 = −g0 = b − Rx0. The solution for x of the system Rx = b can be
computed using the conjugate gradient algorithm as follows:

xk+1 = xk + αkvk, (4.3)

where
gk = Rxk − b,

αk = − 〈gk, vk〉
〈vk, Rvk〉

,

vk+1 = −gk+1 + γkvk,

and
γk =

〈gk+1, Rvk〉
〈vk, Rvk〉

.

In next steps, we will reproduce the same results that led us to the equivalence
between the two definitions in the finite-dimensional case. Whenever needed,
stronger hypothesis are imposed.

Theorem 4.2.5. (Functional Conjugate Direction Theorem) Let R be a continuous
linear operator of L2(T). Let {vi}∞i=0 be a sequence of nonzero conjugated (with
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respect to R) functions of L2(T) and x0 ∈ L2(T) an initial approximation. Suppose
that the solution β∗ to the problem Rβ∗ = b exists and it can be expressed in terms of
the sequence {vi}∞i=0, i.e. β∗ = x0 +

∑∞
i=0 γivi Then the following iterative method

converge to the solution of problem Rβ = b

xk+1 = xk + αkvk, k ≥ 0 (4.4)

where
gk = Rxk − b

and
αk = − g′kvk

v′kRvk
.

Proof. As for the finite case, we compute an expression for the coefficient γi:

β∗ − x0 =
∞∑
i=0

γivi,

R(β∗ − x0) = R

(
∞∑
i=0

γivi

)
(Apply operator R)

=
∞∑
i=0

γiRvi, (Continuity and linearity)

〈vk, R(β∗ − x0)〉 = 〈vk,
∞∑
i=0

γiRvi〉 (Multiply by vk)

=
∞∑
i=0

γi〈vk, Rvi〉 (Continuity of scalar product)

= γk〈vk, Rvk〉. (Conjugated functions)

This leads to the expression

γk =
〈vk, R(β∗ − x0)〉
〈vk, Rvk〉

=
〈vk, b−Rxk〉
〈vk, Rvk〉

.

For xk, we apply (4.4) recursively:

xk = xk−1 + αk−1vk−1 = · · · = x0 +
k−1∑
i=0

αivi,

what leads to the useful equality 〈vk, Rx0〉 = 〈vk, Rxk〉. Then,

γk =
〈vk, b−Rxk〉
〈vk, Rvk〉
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xk − x0 =
k−1∑
i=0

αivi,

R(xk − x0) =
k−1∑
i=0

αiR(vi), (Apply operator R and linearity)

〈vk, R(xk − x0)〉 =
k−1∑
i=0

αi〈vk, R(vi)〉 (Multiply by vk and linearity)

= 0. (Conjugated functions)

Applying this last equality in the expression of γk, we get:

γk =
〈vk, b−Rxk)〉
〈vk, Rvk〉

= − 〈vk, gk〉
〈vk, Rvk〉

= αk,

which implies that limk→∞ xk = β∗.

As a corollary, we get that gk is orthogonal to span{vi}k−1
i=0 .

Corollary 4.2.5.1. Under the hypothesis of the previous theorem, gk is orthogonal to
span{vi}k−1

i=0 .

Proof. By induction, the result is clear for k = 0 because the space is empty.
Assume the result is true for k and consider the expression of gk+1.

gk+1 = gk + αkRvk,

〈vi, gk+1〉 = 〈vi, gk〉+ αk〈vi, Rvk〉 (Scalar product with vk)
= 0.

Both terms vanish if i < k, the first one due to the induction hypothesis,
and the second one because the sequence {vi}k−1

i=0 is conjugate to vk. If i = k, we
have just to recall the expression of αk and check that it is also 0.

〈vk, gk+1〉 = 〈vk, gk〉+ αk〈vk, Rvk〉

〈vk, gk+1〉 = 〈vk, gk〉 −
〈vk, gk〉
〈vk, Rvk〉

〈vk, Rvk〉

= 0
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Once we proved that, under certain hypothesis, the algorithm must converge,
we need to prove that the sequence {vi}i∈N generated by the algorithm of
functional conjugate gradient is indeed a sequence of conjugated functions.

Theorem 4.2.6. Consider the algorithm of definition 4.2.4. If xk 6= xk+1, the
following properties hold:

(a) span{g0, . . . , gk} = span{v0, . . . , vk} = Kk+1(R, g0) = span{g0, Rg0..., R
kg0}.

(b) vk is conjugate to any vi, i.e. 〈vk, Rvi〉, with i < k.

Proof. The proof of (a) is by induction. For k = 0, we have span{g0} =
span{v0} = K1(R, g0) = span{g0}. Assume the equalities hold for k, and
consider the expressions for k + 1:

gk+1 = gk + αkRvk.

It is clear that gk+1 ∈ Kk+2(R, g0), because gk ∈ Kk+1(R, g0) ⊂ Kk+2(R, g0)
and vk ∈ Kk+1(R, g0) (i.e. Rvk ∈ Kk+2(R, g0)).

Moreover, gk+1 6∈ Kk+1(R, g0). Because, by induction hypothesis,
Kk+1(R, g0) = span{v0, . . . , vk} and gk+1 is orthogonal to span{v0, . . . , vk} due
to corollary 4.2.5.1. Consequently, it can be concluded that:

span{g0, . . . , gk+1} = span{g0, Rg0, . . . , R
k+1g0}.

To prove the second equality, we write the formula for vk+1,

vk+1 = −gk+1 + γkvk,

which implies that vk+1 ∈ Kk+2(R, g0) and span{v0, . . . , vk+1} =
span{g0, Rg0, . . . , R

k+1g0}. To prove (b), we need to show that 〈vk+1, Rvi〉 = 0
for i < k. For i = k, the scalar product is zero due to the definition of
γk = 〈gk+1,Rvk〉

〈vk,Rvk〉
.

〈vk+1, Rvk〉 = 〈−gk+1 + γkvk, Rvk〉

=
〈gk+1, Rvk〉
〈vk, Rvk〉

〈vk, Rvk〉 − 〈gk+1, Rvk〉

= 0.
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If i < k, first term vanish due to the induction hypothesis. The second term
vanish because gk+1 is orthogonal to span{v0, . . . , vi+1} due to corollary 4.2.5.1.

〈vk+1, Rvi〉 = 〈−gk+1 + γkvk, Rvi〉

=
〈gk+1, Rvk〉
〈vk, Rvk〉

〈vk, Rvi〉 − 〈gk+1, Rvi〉

= 0.

4.2.3 Extended statistical criterion
Several authors, such as [Delaigle and Hall, 2012, Febrero-Bande et al., 2017]

and [Preda and Saporta, 2005], have defined PLS for functional data from a
statistical point of view. [Febrero-Bande et al., 2017, Preda and Saporta, 2005]
present the algorithm that we will be employing in this work and a simple
convergence result.

Although the method in [Delaigle and Hall, 2012] achieves both convergence
and convergence rates, the method relies on explicit construction of non-
orthogonal PLS directions. This means that the method might be slightly different
from the standard definition in numerical experiments and consequently, we
choose as a reference the one presented in [Febrero-Bande et al., 2017].

Definition 4.2.7 (FPLS Version 3). Let y0 = y−E(Y ) and X0 = X(t)−E(X(t))

For l = 0, 1, . . . , the following iteration is defined:

• Let φl+1 ∈ L2(T) such that it maximizes Cov2(yl, 〈Xl, φl+1〉). Hereinafter,
pl+1 = 〈Xl, φl+1〉. This function can be explicitly expressed as:

φl+1 =
Cov(yl, Xl(t))

‖Cov(yl, Xl(t))‖
.

• Let yl+1 = yl − vl+1pl+1 where vl+1 is

vl+1 =
Cov(yl, pl+1)

Var(pl+1)
.

• Let Xl+1(t) = Xl(t)− pl+1%l+1(t) where %l+1(t) is

%l+1(t) =
Cov(Xl(t), pl+1)

Var(pl+1)
.

Given the q-th iteration, we have that
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β
(q)
PLS(t) =

q∑
l=1

vlϕl(t),

where ϕl(t) = φl(t)−
∑

1<j<l 〈%j, φl〉ϕj .

The following result presents the principal statistical properties of this version
of PLS:

Proposition 4.2.8. Using the notation of Definition 4.2.7, the following properties
hold:

• {pl}l∈N is an orthogonal basis of L2(X), such that

X(t) = E(X(t)) +
∞∑
l=1

pl%l(t).

• Y = E(Y ) +
∑∞

l=1 vlpl + e.

• β(t) =
∑∞

l=1 vlϕl(t) where ϕl(t) = φl(t)−
∑

1<j<l 〈%j, φl〉ϕj .

• The coefficient of determination can be computed as follows:

R2 =
∞∑
l=1

Corr2(y, pl).

Also, if there exists a β∗ ∈ L2(T) such that b = E(X(t)Y ) = Rβ∗. Let Y (q)
PLS be

the response estimated by PLS of order q, then Y (q)
PLS = E(Y ) + c1t1 + · · ·+ cqtq and

lim
q→∞

E(|Y (q)
PLS − 〈X, β

∗〉|2) = 0.

The proof can be found in [Preda and Saporta, 2005]

4.3 Properties of PLS
4.3.1 Structure of RKHS

The following results establish some relationships between Krylov spaces and
RKHS.

Theorem 4.3.1 (Kernel operator). Let ρ(t, s) = Cov(X(t), X(s)) be the
covariance function. Define k : L2(T)× L2(T)→ R as

k(f, g) =

∫
T

∫
T

ρ(t, s)f(t)g(s)dtds. (4.5)
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Then, k is a kernel (that is, it is symmetric and positive definite).

Proof. The operator is clearly symmetric because ρ(t, s) is symmetric. Let
fi ∈ L2(T) and let αi ∈ R for i = 1, . . . ,M . Also, without loss of generality,
we assume EX(t) = 0 and we use Fubini

k(f, g) =

∫
T

∫
T

ρ(t, s)f(t)g(s)dtds

=

∫
T

∫
T

E(X(t), X(s))f(t)g(s)dtds

= E

(∫
T

∫
T

X(t)X(s))f(t)g(s)dtds

)
(Fubini’s theorem)

= E

(∫
T

X(t)f(t)dt

∫
T

X(s)g(s)ds

)
= E (〈X, f〉〈X, g〉)
= Cov [〈X, f〉, 〈X, g〉] .

Hence, we have that

M∑
i=1

M∑
j=1

αiαjk(fi, fj) = k

(
M∑
i=1

αifi,
M∑
j=1

αjfj

)
(Bilinearity of k)

= Var

[
M∑
i=1

αi〈X, fi〉

]
≥ 0

This proves that k is positive definite and then, a kernel.

Observe that due to the Moore-Aroszajn theorem (Theorem 2.5.5), there exists
a unique RKHS for which k is a reproducing kernel.

Corollary 4.3.1.1 (Operator R and kernel operator). If k is the aforementioned
kernel and Rf(·) =

∫
T
ρ(t, ·)f(t)dt, then

〈f,Rg〉 = 〈Rf, g〉 = k(f, g).

In particular, R is self-adjoint.
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Proof. It is an immediate consequence of the symmetry of ρ

〈Rf, g〉 =

∫
T

∫
T

ρ(t, s)f(t)dtg(s)ds

=

∫
T

∫
T

ρ(t, s)f(t)g(s)dtds

=

∫
T

∫
T

ρ(s, t)f(t)g(s)dsdt

= 〈f,Rg〉.

Note that since the conjugate gradient and some other implementations of
PLS use sequences of R-orthogonal vectors, this means that these sequences are
orthogonal in the RKHS defined by the kernel k. Nevertheless, this RKHS has a
special property with respect to uncorrelation.

Theorem 4.3.2. Let k be the kernel asociated to ρ as defined above. Also, let
f, g ∈ L2(T) deterministic functions. Then, k is given by

k(f, g) = Cov(〈X, f〉, 〈X, g〉), (4.6)

and k(f, g) = 0 means that 〈X, f〉 and 〈X, g〉 are uncorrelated random variables.

Proof. Without loss of generality, assume X is centered. Then, using Fubini
(everything is L2, so product is in L1), we can write that

k(f, g) =

∫
T

∫
T

ρ(t, s)f(t)g(s)dtds

=

∫
T

∫
T

E(X(t)X(s))f(t)g(s)dtds

= E

[∫
T

f(t)X(t)dt

∫
T

g(s)X(s)ds

]
= E [〈X, f〉〈X, g〉] .

Note that E [〈X, f〉] is 0 because X is centered

E [〈X, f〉] = E

[∫
T

X(t)f(t)dt

]
=

∫
T

E [X(t)] f(t)dt

= 0.

Thus, the expression before is the Cov(〈X, f〉, 〈X, g〉), i.e.
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k(f, g) = Cov(〈X, f〉〈X, g〉).

This result is key in understanding what happens behind the PLS algorithm,
because it allowed us to link sequences of R-orthogonal functions to sequences
of uncorrelated predictions. Unfortunately, we can not ensure this is connected
to independence at all unless we have strong assumptions on the distribution of
X .

Theorem 4.3.3. Let X be a Gaussian process with 0 mean and continuous
covariance function ρ. Let k be the kernel asociated to ρ as defined above. Then,
if k(f, g) = 0, 〈X, f〉 and 〈X, g〉 are independent random variable with normal
distribution.

Proof. Under these hypothesis, X can be decomposed using the Karhunen-
Loève expansion: (Theorem 2.3.2)

X(t) =
∞∑
i=1

Ziei(t),

where Zi = 〈X, ei〉 are jointly Gaussian (Corollary 2.3.2.1) and {ei}i∈N form
a basis of L2(T). Let f =

∑∞
i=1 αiei(t) and let g =

∑∞
i=1 γiei(t). Then, the

bidimensional vector of scalar products of X with f and g can be written as
follows:

[〈X, f〉, 〈X, g〉] = [〈
∞∑
i=1

Ziei(t),
∞∑
i=1

αiei(t)〉, 〈
∞∑
i=1

Ziei(t),
∞∑
i=1

γiei(t)〉]

= [
∞∑
i=1

∞∑
j=1

Ziαj〈ei, ej〉,
∞∑
i=1

∞∑
j=1

Ziγj〈ei, ej〉]

= [
∞∑
i=1

αiZi,
∞∑
i=1

γiZi]

=
∞∑
i=1

[αiZi, γiZi].

This means, [〈X, f〉, 〈X, g〉] is a series of independent normal bivariate
random vectors. To ensure that this series converges to a normal bivariate
random vector, we use the characteristic functions of a Gaussian:

∞∏
i =1

exp
(
µi
′t + 1

2
t′Σit

)
= exp

( ∞∑
i=1

µi
′t + 1

2

∞∑
i=1

t′Σit
)

= exp

((
∞∑
i=1

µi
′

)
t + 1

2
t′

(
∞∑
i=1

Σi

)
t

)
.
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Given that
∑∞

i=1 µi and
∑∞

i=1 Σi are convergent series, by Lévy’s continuity
theorem, the series converges in distribution to a normal bivariate random
vector. Consequently, if 〈X, f〉 and 〈X, g〉 are uncorrelated, this means that
they are also independent.

In conclusion, this section connected k and R to the well-known idea of
maximizing covariance of PLS. Also, stronger hypothesis lead to stronger results
such as independence.

4.4 Residuals of gradient methods
Proving the equivalence of definitions 4.2.3 and 4.2.4 relies on different

arguments in the infinite dimensional situation compare to those in the finite-
dimensional case. The following proposition shows that conjugate gradient is
the solution to a minimization problem:

Proposition 4.4.1. Let xq be the q-th iteration of the conjugate gradient algorithm.
Assume that there exists β∗ ∈ L2(T) such that Rβ∗ = b. Then, xq is a solution to
the minimization problem

xq = arg min
β∈Kq(R,b)

E (β) = arg min
β∈Kq(R,b)

k(β∗ − β, β∗ − β).

Proof. Let z ∈ Kq(R, b), we compute E (z)− E (xq):

E (z)− E (xq) = E (xq − (xq − z))− E (xq)

= k(β∗ − xq + (xq − z), β∗ − xq + (xq − z))− k(β∗ − xq, β∗ − xq)
= 〈β∗ − xq + (xq − z), R(β∗ − xq + (xq − z))〉 − 〈β∗ − xq, R(β∗ − xq)〉
= 2〈β∗ − xq, R(xq − z)〉+ 〈xq − z,R(xq − z)〉,

where in the last equality we have applied Corollary 4.3.1.1. Next,
〈β∗ − xq, R(xq − z)〉 can be easily seen to vanish:

〈β∗ − xq, R(xq − z)〉 = 〈R(β∗ − xq), xq − z〉 (R is self-adjoint)
= 〈b−Rxq, xq − z〉 (Rβ∗ = b)

= −〈gq, xq − z〉 (gq = Rxq − b)
= 0. (z, xq ∈ Kq(R, b) and gq ⊥ Kq(R, b))

This implies that:

E (z)− E (xq) = 〈xq − z, R(xq − z)〉
= k(xq − z, xq − z) > 0, (k is positive definite)

and consequently, xq is a minimum of E .
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Another ingredient to achieve the proof of the equivalence is that the problem
in the last result is equivalent to minimization of squared residuals in a Krylov
space:

Corollary 4.4.1.1. Let xq as in the previous theorem. Let β∗ be such that Y =
〈X, β∗〉 + ε for some ε random variable with zero mean and finite variance that is
independent of X . Then, xq also solves the following minimization problem:

xq = arg min
β∈Kq(R,b)

E(Y − 〈X, β〉)2.

Proof. Without loss of generality, assume E(X(t)) = 0. Let xq =
arg minβ∈Kq(R,b) E (β) = arg minβ∈Kq(R,b) k(β∗ − β, β∗ − β). Then:

xq = arg min
β∈Kq(R,b)

k(β∗ − β, β∗ − β)

= arg min
β∈Kq(R,b)

〈β∗ − β,R(β∗ − β)〉

= arg min
β∈Kq(R,b)

E
(
(〈X, β∗〉 − 〈X, β〉)2) (Fubini’s theorem)

= arg min
β∈Kq(R,b)

E
(
(Y − ε− 〈X, β〉)2) (Relation between β∗ and Y )

= arg min
β∈Kq(R,b)

E
(
(Y − 〈X, β〉)2 + ε2 − 2ε(Y − 〈X, β〉)

)
(a− b)2 = a2 + b2 − 2ab

= arg min
β∈Kq(R,b)

E
(
(Y − 〈X, β〉)2 − 2ε(Y − 〈X, β〉)

)
(E(ε2) is a constant)

= arg min
β∈Kq(R,b)

E
(
(Y − 〈X, β〉)2) . (ε is independent of X(t))

Note that the last two results, give us the equivalence between definitions 4.2.3
and 4.2.4 under certain assumptions. Recall that β∗ ∈ L2(T) is such that Y =
〈X, β∗〉 + ε, where ε is a random variable independent from X , with zero mean
and finite variance. Recall also that Rβ∗ = b:

Rβ∗ =

∫
T

ρ(t, s)β∗(t)dt

=

∫
T

E(X(t)β∗(t)X(s))dt

= E(〈X, β∗〉X(s)) (Fubini’s theorem)
= E(Y X(s))− E(εX(s))

= b. (Independence)

Next, we want to investigate the convergence of xq when q → ∞, that is the
dimension of the Krylov space get larger.
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4.4. Residuals of gradient methods

Theorem 4.4.2. Under the assumptions of Corollary 4.4.1.1, let

xq = arg min
β∈Kq(R,b)

E
(
(Y − 〈X, β〉)2)

and
x∞ = arg min

β∈
⋃∞

q=1 Kq(R,b)

E
(
(Y − 〈X, β〉)2) .

Then, ‖xq − x∞‖2
L2(T) → 0 when q →∞.

Proof. First, if there exists a maximal Krylov space (KQ(R, b) =
⋃∞
q=1 Kq(R, b)),

the result is clearly true since xi = xQ for i > Q. Assume
⋃∞
q=1 Kq(R, b) is a

infinite dimensional space, i.e. there is no maximal Krylov space.

Let B = {b, Rb,R2b, . . . } be a basis of
⋃∞
q=1 Kq(R, b). Performing a Gramm-

Schmidt orthonormalization, we build an orthonormal basis B = {v1, v2, . . . }.
Let Bq = {v1, v2, . . . vq} be a orthonormal basis of Kq(R, b).

Next, we write xq and x∞ in terms of these basis: xq =
∑q

i=1 αivi
and x∞ =

∑∞
i=1 αivi. Coefficients {αi} happen to be the same because

regression is performed in orthogonal components, i.e. X can be decomposed

X0, X1, X2, . . . where X0 ∈
⋃∞
q=1 Kq(R, b)

⊥
and Xi is the projection of X onto vi

for i ∈ N, and regression can be performed on each component separately.

We write then the difference

xq − x∞ =

q∑
i=1

(αivi(t))−
∞∑
i=1

(αivi(t))

=
∞∑
i=q

αivi(t)

and we have just to use Parseval’s identity to compute the L2-norm

‖xq − x∞‖2
L2(T) =

∞∑
i=q

α2
i → 0,

since
∑∞

i=q α
2
i is the tail of the convergent series

∑∞
i=1 α

2
i = ‖x∞‖2.

As a corollary, we can write that xq converges to β∗ in the L2 sense.
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Corollary 4.4.2.1. Let xq be the q− th conjugate gradient iteration. Let β∗ ∈ L2(T)

such that β∗ ∈
⋃∞
i=1 Ki(R, b) and Rβ∗ = b. Then,

‖xq − β∗‖2
L2(T) → 0,

when q →∞.

Proof. Since β∗ = arg minβ∈L2(T) E
(
(Y − 〈X, β〉)2) and β∗ ∈

⋃∞
i=1 Ki(R, b),

x∞ = arg minβ∈⋃∞i=1 Ki(R,b)
E
(
(Y − 〈X, β〉)2) = β∗. Applying previous theorem,

we have that ‖xq − x∞‖2
L2(T) = ‖xq − β∗‖2

L2(T) → 0.

Note that the hypothesis of β∗ ∈
⋃∞
i=1 Ki(R, b) can be replaced by the stronger

assumption:
∞⋃
i=1

Kq(R, b) = L2(T).

An interesting open question is to study conditions (probably in terms of the
eigenvalues of R) such that the last equality holds. Under such conditions the
conjugate gradient we have described would converge to β∗, for any β∗ ∈ L2(T).

4.5 Computational aspects
4.5.1 Calculating scalar products and basic operations

It is important to remark which operations must be performed over functional
observations to ensure the feasibility of the algorithm in a computer. These
operations can be summarized into these basic computations:

• Multiply a functional observation by a constant,

• Add two functional observations,

• Compute the scalar product between two functional observations,

• Compute the integral operator R.

Because of the difference in complexity between the first three operations and
the last one, the last one will be covered in the next subsection. As a remark, one
must notice that the first two properties aim at computing linear combinations of
functional observations, so that the mean or our conjugate direction methods can
be performed.

For the scalar product problem, we need to consider a basis, preferably
an orthonormal basis. Since the computer can not deal with infinitely-many
elements, the basis also should have some properties to represent properly the
functional samples. Through the adoption of one basis instead of another, one
can change the way the scalar products are computed and the final result of the
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4.5. Computational aspects

Algorithm 4.1 Implementation of integral operator R
R <- function(fd, g, inprod = fda::inprod) {

N = length(fd$coefs[1,])
s = 0 * g
innerProducts = inprod(fd,g)
for (i in 1:N) {

x = fd[i]
s = s + innerProducts[i] * x

}
return(s * (1/N))

}

process. Consequently, several basis are tested in order to ensure the reliability of
the scalar product computations.

4.5.2 Calculating the kernel operator R and the transformation of the response
The formula of the kernel operator is not directly computable in a computer

Rf(t) =

∫
T

ρ(t, s)f(s)ds

but we recall that we proved that

Rf(t) = E(X(t)〈X, f〉).

Note that this expression does not explicitly includes either the integral
operator or the covariance operator. Also, it was computed in terms of scalar
products and linear combinations of functional observations. In a similar way,
we can compute the transformation of the response

E(X(t)Y ) ≈ 1

N

N∑
i=1

Xi(t)Yi

which is computed again in terms of linear combinations of observations.
Algorithm 4.1 and Algorithm 4.2 contains both implementations in R. Note that
the function SUM does not work as intended but returns a value that it is not the
sum of the functional observations.
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Algorithm 4.2 Implementation of operator b(t) = E(X(t)Y )

YX_t <- function(fd, y) {
N = length(fd$coefs[1,])
s = 0 * fd[1]
for (i in 1:N) {

x = fd[i]
s = s + y[i] * x

}
return(s * (1/N))

}
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5APPLICATIONS AND PERFORMANCE
COMPARISONS

5.1 Introduction
This chapter presents a collection of results in both simulations and real-

world datasets to benchmark PLS and PCR to check whether there are some
improvements and in which situations we expect to see them.

5.2 Algorithms and implementations
5.2.1 Partial Least Squares

We have studied in previous chapters several ways of implementing PLS. For
instance, [Febrero-Bande et al., 2017] implements PLS through a estimation of
the PLS directions and doing regression on these directions. [Delaigle and Hall,
2012] implements PLS in a similar way but using nonorthogonal components.
We think that this method can be ill-conditioned under some cases, whereas
Conjugate Gradient is a simple, geometric algorithm that allows us to solve the
system in a consistent and stable way. Algorithm 5.1 shows the implementation
of the algorithm we want to use for the experiments and hereinafter will be our
implementation of PLS.

5.2.2 Principal Components Regression
On the other hand, PCR relies on a simpler algorithm that just consists on:

1. Compute the (orthonormal) principal components ψk and the scores aik, i.e.
the ith-sample xi(t) =

∑∞
k=1 aikψk. We truncate this expression to retain K

terms.

2. We compute the least-squares estimate Z of the regression AZ = Y , where
A = (aik)k=1,...,K;i=1,...,n and Z = (zi)i=1,...,K .

3. We define β̂(K)
PCR = z0 +

∑K
i=1 ziψk
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Algorithm 5.1 Functional Conjugate Gradient implementation of PLS
library("fda")
# Solve the system R x(t) = b(t)
FCG <- function(Afd, bfd, k = 3) {

# Initial values
d = bfd
g = bfd * (-1)
x = 0 * bfd
sols <- list()
for (j in 1:k) {

Ad = R(Afd, d)
alpha = - inprod(g, d) / inprod(d, Ad)
x = x + alpha * d
sols[[j]] <- x
g = R(Afd, x) - bfd
beta = inprod(g, Ad) / inprod(d, Ad)
d = beta * d - g

}
return(sols)

}

FPLS <- function(Xfd, Y, order=3) {
# Y = \int_t X \beta dt + eps
# E(Y X(s)) = E (X(s)<X,beta>) = \int_T \int_\Omega X(s)X(t) beta(t)
b = YX_t(Xfd, Y)
A = Xfd
return(FCG(A, b, k = order))

}

5.3 Simulations and synthetic data
This section covers the process of evaluation of our model with Monte

Carlo methods. These experiments were carried out in R, using the fda
package [Ramsay et al., 2018] and the fda.usc [Febrero-Bande and Oviedo de la
Fuente, 2012] package. The objective is to provide a wide summary of the
performance of the aforementioned techniques in differents cases.

5.3.1 Design of the experiments
The design of an experiment is usually critical, specially when providing

feedback about which method is the most suitable depending the situation. Thus,
we reproduce the experiments of another authors that previously investigated
regularization topics on regression.
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5.3. Simulations and synthetic data

We fix the time-domain T = [0, 1]. The experiments are based on the following
stochastic process:

X(t, ω) =
∞∑
k=1

gkZk(ω)ψk(t), (5.1)

where {Zi}i∈N is a sequence independent and identically distributed normal
random variables with mean 0 and variance 1, {ψi}i∈N is the sequence of
eigenfunctions of R and {gi}i∈N is the sequence of the square roots of the
magnitude of the eigenvalues.

Recalling that our model is Yi = 〈Xi, β〉+ εi, we should also define {εi}i∈N. As
usual, this will be Gaussian error of mean zero and variance σ2

ε = 0.1.

Moreover, some practical issues are not yet solved. First, we should truncate
the series that defined X to 50 elements. Therefore, we will consider {gi}i∈N to be
decreasing, so that we always take the most significant eigenfunctions. Second,
we need to fix a basis for computing the scalar product. For this purpose, we
choose a basis of B-splines with 20 elements of order 6, which fits the data well.
Lastly, we fix sample sizes n varying from 50 to 200 for training and tests sets.
The number of Monte Carlo simulations will be fixed for all experiments to be
500.

For the performance evaluation, we always choose the best parameter among
a range of reasonable ones, i.e. we try different number of principal components,
differents orders for PLS. To compare them, we choose two metrics:

1. Mean Square Error (MSE) of β

MSE =
∥∥∥β − β̂∥∥∥2

L2(T)
=

∫
T

(
β − β̂

)2

dt

2. Mean Square Prediction Error (MSPE)

MSPE =
1

n

n∑
i=1

(yi − ŷi)2

Note that for the MSPE, the test set must be employed whereas MSE does not
depend on it. Next, we present five scenarios where PLS and PCR are compared.
Some cases are known to be worst-case scenarios for PCR and we want to know
whether PLS has similar issues or outperforms PCR.

5.3.1.1 Scenario 1

The first scenario is based on [Cardot et al., 2003]. We take as eigenfunction ψk =√
2 sin((k − 0.5)πt), eigenvalues gk = 1

(k−0.5)π
and β(t) =

√
2ψ1 + 2

√
2ψ2 + 5

√
2

2
ψ3,

i.e. a finite linear combination of the first eigenfunctions.

Table 5.1 shows comparative results. Figure 5.1 displays boxplots for MSE and
MSPE for the 500 Monte-Carlo experiments of size n = 50. It is clear than for this
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Figure 5.1: Boxplots for MSE and MSPE for 500 simulations of scenario 1

PCR PLS

Metric n Mean
(std)

Median
(mad)

Mean
(std)

Median
(mad)

MSE 50 2.719 · 10−2

(1.375 · 10−3)
1.243 · 10−2

(1.673 · 10−2)
1.474 · 10−2

(1.685 · 10−4)
1.125 · 10−2

(9.520 · 10−3)

100 1.515 · 10−2

(4.194 · 10−4)
6.118 · 10−3

(8.293 · 10−3)
6.272 · 10−3

(3.061 · 10−5)
4.956 · 10−3

(4.013 · 10−3)

200 6.709 · 10−3

(1.102 · 10−4)
3.007 · 10−3

(4.030 · 10−3)
3.209 · 10−3

(8.277 · 10−6)
2.435 · 10−3

(1.906 · 10−3)

MSPE 50 8.902 · 10−3

(1.644 · 10−4)
3.954 · 10−3

(5.374 · 10−3)
1.182 · 10−4

(1.870 · 10−8)
6.859 · 10−5

(7.215 · 10−5)

100 5.082 · 10−3

(4.883 · 10−5)
2.038 · 10−3

(2.690 · 10−3)
1.128 · 10−4

(2.082 · 10−8)
6.045 · 10−5

(6.674 · 10−5)

200 2.282 · 10−3

(1.144 · 10−5)
1.053 · 10−3

(1.342 · 10−3)
1.052 · 10−4

(1.817 · 10−8)
4.973 · 10−5

(5.894 · 10−5)

Table 5.1: Mean, standard deviation, median and MAD of MSE and MSPE for
scenario 1

simple case, PLS outperforms PCR, as shown in Figure 5.1. Table 5.1 shows the
same consequences for different sizes of n.

5.3.1.2 Scenario 2

The second scenario is based again on [Cardot et al., 2003]. We take as
eigenfunction ψk =

√
2 sin((k − 0.5)πt), eigenvalues gk = 1

(k−0.5)π
and β(t) =

log(1.5t2 + 10) + cos(4πt), i.e. a infinite linear combination of the eigenfunctions.

Table 5.2 shows comparative results. Figure 5.2 displays boxplots for MSE and
MSPE. For this scenario, we observe a surprising phenomenon: although PLS
MSE is worse than PCR MSE, the prediction error is better for the PLS estimates.
This provides an example of why we consider both metrics at the same time.
Besides, the metrics for PCR in both scenarios have several outliers were as PLS
metrics seem to be more stable with less noticeable outliers.
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Figure 5.2: Boxplots for MSE and MSPE for 500 simulations of scenario 2

PCR PLS

Metric n Mean
(std)

Median
(mad)

Mean
(std)

Median
(mad)

MSE 50 4.084 · 10−2

(2.580 · 10−3)
2.150 · 10−2

(2.190 · 10−2)
1.576 · 10−1

(2.490 · 10−3)
1.542 · 10−1

(5.036 · 10−2)

100 2.399 · 10−2

(7.024 · 10−4)
1.430 · 10−2

(1.301 · 10−2)
1.601 · 10−1

(1.724 · 10−3)
1.605 · 10−1

(4.136 · 10−2)

200 1.293 · 10−2

(1.536 · 10−4)
8.390 · 10−3

(5.325 · 10−3)
1.666 · 10−1

(1.303 · 10−3)
1.671 · 10−1

(3.857 · 10−2)

MSPE 50 1.147 · 10−2

(2.601 · 10−4)
5.313 · 10−3

(7.173 · 10−3)
2.088 · 10−4

(2.313 · 10−8)
1.719 · 10−4

(9.825 · 10−5)

100 6.157 · 10−3

(6.794 · 10−5)
3.100 · 10−3

(3.977 · 10−3)
2.059 · 10−4

(2.003 · 10−8)
1.635 · 10−5

(8.792 · 10−5)

200 2.800 · 10−3

(1.504 · 10−5)
1.374 · 10−3

(1.670 · 10−3)
2.182 · 10−4

(2.263 · 10−8)
1.712 · 10−4

(9.730 · 10−5)

Table 5.2: Mean, standard deviation, median and MAD of MSE and MSPE for
scenario 2

5.3.1.3 Scenario 3

The third scenario is based on [Hall and Hosseini-Nasab, 2006]. We take as
eigenfunction ψk =

√
2 cos(kπt), eigenvalues gk = 1

k
and β(t) = π2(t2 − 1

3
), i.e.

a infinite linear combination of the eigenfunctions.

Table 5.3 shows comparative results. Figure 5.3 displays boxplots for MSE
and MSPE. For this scenario, we observe the reversed effect: in this case PLS has a
clearly better MSE but a slightly worse. In contrast to previous case, the difference
in the MSPE is not extremely high and both methods perfom in a similar way.

This scenario represents a simple case of next ones, that will deal with cases
where eigenvalues are well-spaced or closely spaced and β is a infinite linear
combination with decreasing coefficients. It is known that these scenarios are
more complicated for principal components techniques and we want to check
whether PLS can perform better.

57



5. APPLICATIONS AND PERFORMANCE COMPARISONS

0.0

0.5

1.0

PLSPCR

MSE −  Scenario 3

0e+00

5e−04

1e−03

PLSPCR

MSPE −  Scenario 3

Figure 5.3: Boxplots for MSE and MSPE for 500 simulations of scenario 3

PCR PLS

Metric n Mean
(std)

Median
(mad)

Mean
(std)

Median
(mad)

MSE 50 1.627 · 10−1

(4.758 · 10−2)
7.196 · 10−2

(1.004 · 10−1)
1.407 · 10−3

(1.790 · 10−6)
9.867 · 10−4

(8.160 · 10−4)

100 7.326 · 10−2

(8.948 · 10−3)
3.433 · 10−2

(4.714 · 10−2)
8.770 · 10−4

(5.496 · 10−7)
6.696 · 10−4

(5.472 · 10−4)

200 3.820 · 10−2

(2.844 · 10−3)
1.703 · 10−2

(2.288 · 10−2)
6.922 · 10−4

(2.335 · 10−7)
5.797 · 10−4

(3.932 · 10−4)

MSPE 50 9.312 · 10−5

(1.744 · 10−8)
5.418 · 10−5

(5.418 · 10−5)
1.121 · 10−4

(1.827 · 10−8)
6.271 · 10−5

(6.165 · 10−5)

100 9.887 · 10−5

(1.794 · 10−8)
4.740 · 10−5

(6.367 · 10−5)
1.103 · 10−4

(1.830 · 10−8)
6.136 · 10−5

(6.842 · 10−5)

200 9.437 · 10−5

(3.864 · 10−8)
3.864 · 10−5

(5.402 · 10−5)
1.027 · 10−4

(1.685 · 10−8)
4.709 · 10−5

(5.523 · 10−5)

Table 5.3: Mean, standard deviation, median and MAD of MSE and MSPE for
scenario 3

5.3.1.4 Scenario 4

The fourth scenario is based on [Hall and Horowitz, 2007]. We take as
eigenfunction ψ1 = 1, ψk =

√
2 cos(kπt) for k ≥ 2, eigenvalues gk = (−1)k+1 1

k

and β(t) =
∑∞

k=1 bkψk, where bk is defined as b1 = 0.3 and bk = 4(−1)k+1 1
k2

. This
case, compared to next one, has well-spaced eigenvalues, which benefits PCR.

Table 5.4 shows comparative results. Figure 5.4 displays boxplots for MSE
and MSPE. For this scenario, we observe that in both metrics PLS outperforms
PCR. Nevertheless, next scenario is the most complicated one for PCR since
eigenvalues are not well-spaced.
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Figure 5.4: Boxplots for MSE and MSPE for 500 simulations of scenario 4

PCR PLS

Metric n Mean
(std)

Median
(mad)

Mean
(std)

Median
(mad)

MSE 50 2.757 · 10−1

(1.747 · 10−1)
1.186 · 10−1

(1.642 · 10−1)
2.281 · 10−3

(6.759 · 10−6)
1.561 · 10−3

(1.308 · 10−3)

100 1.604 · 10−1

(5.509 · 10−2)
7.469 · 10−2

(1.026 · 10−1)
1.128 · 10−3

(9.005 · 10−7)
8.292 · 10−4

(6.591 · 10−4)

200 9.376 · 10−2

(4.436 · 10−2)
4.436 · 10−2

(5.779 · 10−2)
8.213 · 10−4

(3.532 · 10−7)
6.821 · 10−4

(4.740 · 10−4)

MSPE 50 2.648 · 10−1

(1.497 · 10−1)
1.139 · 10−1

(1.587 · 10−1)
1.232 · 10−4

(1.713 · 10−8)
7.816 · 10−5

(7.511 · 10−5)

100 1.596 · 10−1

(5.295 · 10−2)
7.085 · 10−2

(9.817 · 10−2)
1.069 · 10−4

(1.870 · 10−8)
5.855 · 10−5

(6.367 · 10−5)

200 9.357 · 10−2

(1.933 · 10−2)
4.380 · 10−2

(5.826 · 10−2)
1.009 · 10−4

(1.708 · 10−8)
4.777 · 10−5

(5.641 · 10−5)

Table 5.4: Mean, standard deviation, median and MAD of MSE and MSPE for
scenario 4

5.3.1.5 Scenario 5

The last scenario is based on [Hall and Horowitz, 2007]. We take as
eigenfunctions ψ1 = 1, ψk =

√
2 cos(kπt) for k ≥ 2, eigenvalues

gk =


1 if k = 1

0.2(−1)k+1(1− 0.0001k) if k = 2, 3, 4

0.2(−1)k+1( 1
5n
− 0.0001j) if k = 5n+ j

and β(t) =
∑∞

k=1 bkψk, where bk is defined as b1 = 0.3 and bk = 4(−1)k+1 1
k2

. As
mentioned before, this case is built to disadvantage PCR because eigenvalues are
not well-spaced.

Table 5.5 shows comparative results. Figure 5.5 displays boxplots for MSE and
MSPE. For this scenario, we have the same consequences of scenario 4. In both
metrics, PLS surpasses PCR in this case.
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Figure 5.5: Boxplots for MSE and MSPE for 500 simulations of scenario 5

PCR PLS

Metric n Mean
(std)

Median
(mad)

Mean
(std)

Median
(mad)

MSE 50 2.972 · 10−1

(1.899 · 10−1)
1.411 · 10−1

(1.922 · 10−1)
5.948 · 10−3

(4.684 · 10−5)
3.541 · 10−3

(3.234 · 10−3)

100 1.805 · 10−1

(5.580 · 10−2)
9.348 · 10−2

(1.276 · 10−1)
3.074 · 10−3

(1.518 · 10−5)
1.903 · 10−3

(1.790 · 10−3)

200 7.144 · 10−2

(9.241 · 10−3)
3.116 · 10−2

(4.206 · 10−2)
1.896 · 10−3

(5.570 · 10−6)
1.209 · 10−3

(9.816 · 10−4)

MSPE 50 2.966 · 10−1

(2.233 · 10−1)
1.421 · 10−1

(1.891 · 10−1)
1.120 · 10−4

(2.021 · 10−8)
6.197 · 10−5

(7.183 · 10−5)

100 1.760 · 10−1

(5.290 · 10−2)
8.777 · 10−2

(1.211 · 10−1)
1.040 · 10−4

(1.945 · 10−8)
5.022 · 10−5

(6.104 · 10−5)

200 7.042 · 10−2

(9.055 · 10−3)
3.192 · 10−2

(4.311 · 10−2)
1.001 · 10−4

(2.071 · 10−8)
4.835 · 10−5

(6.137 · 10−5)

Table 5.5: Mean, standard deviation, median and MAD of MSE and MSPE for
scenario 5

5.4 Real data
This second section aims to describe the performance of PLS against its

alternatives in real-life environments. Note that the lack of a ground truth makes
some metrics such as MSE not computable, therefore, only MSPE will be employ.

5.4.1 Water, Fat and Protein content of meat samples (Tecator)
This dataset is commonly used for regression for FDA, consequently, we will

use it as a reference. The dataset is composed of 250 absorbances curves, where
the horizontal axis is the wavelength (mm) and the vertical axis is the absorbance.
Note that in contrast to what we did in other cases, the horizontal axis does not
represent time but wavelength. Anyway, the method is still applicable since it is
a continuous function taking values in a continuous interval.

The response in this case is the water, fat and protein contain of the meat
sample. This means that the problem we are facing is how to estimate water, fat
and protein of a meat sample given its absorbance curve. Usually, the regressor
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Figure 5.6: Spectometric curves and their second derivative

0

500

1000

1500

1 2 3 4 5 6 7 8

Order

S
S

re
s

Algorithm

PCR

PLS

0.940

0.945

0.950

0.955

0.960

0.965

1 2 3 4 5 6 7 8

Order

R
2

Algorithm

PCR

PLS

Figure 5.7: Sum of residuals and coefficient of determination of PLS and PCR for
tecator dataset

is not the absorbance curve itself but the second derivative of the curves, which
is computed using the basis. The shape of the curves can be observe in figure 5.6.

For this experiment, 100 samples of the 250 of the dataset are employed as
training set, i.e. we use our algorithms to build β̂. We use the rest of them as a
test dataset, i.e. we use the β̂ and the curve to compute the estimated response
and compare it to the real response.

In contrast to the simulations, we want to see the differences in performance
between PCR and PLS varying with the number of components or order.
Therefore, figure 5.7 displays the MSPE for PLS and PCR with different order
and number of components.

In the light of the results, PLS performs better than PCR and it is noticeable
in the sum of the residuals. This difference is less noticeable when the
order/number of components increases.
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Figure 5.8: Log-periodgrams for both train and test set of curves
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Figure 5.9: Bar plot of misclassification rate for PLS and PCR (left) and confussion
matrix (right) for phoneme dataset

5.4.2 Benchmark Phoneme dataset
We consider the phoneme dataset, extracted from [Hastie et al., 2009] and

available in this link1. Instead of a regression problem, we consider now a
classification problem, i.e. the response Y is a categorical variable and takes
only five values: ac, aa, dcl, iy and sh. The X curves are not time series but
their Fourier transform, i.e. the x-axis represents frequencies. To consider a
regression problem instead of a classification problem, we just simplify each class
to a number (-2, -1, 0, 1 and 2 respectively) and estimate the class by choosing the
closest integer of the regression estimation.

Figure 5.8 shows training and test curves. Figure 5.9 shows a bar plot of
misclassification rate depending the order/number of components. As shown,
PLS performs much better for low number of components. Nevertheless, PLS
and PCR are very similar when the number of components increases. On the
right-hand side of Figure 5.9, confussion matrix is displayed for the lowest

1https://web.stanford.edu/~hastie/ElemStatLearn/datasets/phoneme.data
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Figure 5.10: Time series of mitochondrial calcium overload and its first derivative
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Figure 5.11: Bar plot of misclassification rate for PLS and PCR (left) and
confussion matrix (right) for MCO dataset

misclassification rate of PLS. This help us to diagnose where the system performs
the worst, that is, when distinguishing between phonemes ac and aa.

5.4.3 Mitochondrial calcium overload (MCO) of control and under-treatment
groups

Next, we look at the MCO dataset. It can be found as part of the fda.usc
package. We will study curves X that are time series of concentration of
mitochondrial calcium in intact cells. The response Y is a binary variable that
indicates whether the patient was under-treatment or in the control group, we
will identify each group as −1 and 1 for our regression model. Figure 5.10
displays time series of mitochondrial calcium overload and their first derivative.
In this case, we use the first derivative as regressor because the accomplished
results are better.

Figure 5.11 shows misclassification rate for different order/number of
componenets of PLS and PCR. In this case, PLS scores significantly better than
PCR. We also show the confussion matrix for the best case of PLS.
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Furthermore, we see that PCR is not able to match PLS even for large number
of components. This was analyzed and the conclusion is that there are 5-10 curves
that PCR is not able to correctly classify. Also, for small number of components
such as 3 or 4, we see a huge different between PLS and PCR. As we mentioned
before, PLS is a good alternative to PCR for a small number of components.

5.5 Conclusion
This chapter consider five synthetic scenarios and three real datasets. In three

(1, 4 and 5) out of five synthetic scenarios, PLS clearly outperformed PCR. In the
other two, we see scenario 2 where PLS has a larger MSE but a better MSPE and
scenario 3 where PLS performs as good as PCR.

Furthermore, PLS scored better than PCR in the three real datasets. We
distinguish two cases: first, PLS performs better than PCR for a low number of
components but this difference is not relevant when the number of components
increases and, second, PLS performs better than PCR in every case.

Tecator and phoneme datasets are in this first case, where PLS should be
consider over PCR when a small number of components is necessary. For a large
number of components, this difference does not justify the use of one algorithm
over other, but PLS offers no disadvantage over PCR. For MCO, we see that PLS
perfoBrms better. This was because PCR can not classify properly 5-10 samples
that makes a huge difference for PLS, possibly because this data lies on one of the
worst cases of PCR.
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6CONCLUSION

6.1 Summary
In this work, we provided a thorough view of PLS for functional data.

First, we have tried to clarify the different approaches that lead to PLS in
the finite-dimensional context. Although most of this part is not novel, it is
insightful in order to extend PLS techniques for functional data. We examined
four different approaches to PLS: least squares minimization with restrictions,
conjugate gradient algorithms, SVD decomposition and filter factors and, finally,
the statistical definition. Depending on the goals, we may prefer one definition
over the rest. For the purpose of this work, we choose the first definition as main
criterion since it is a simple definition that allows us to express PLS in the same
form of many other approaches such as Ridge regression of PCR. Conveniently,
we managed to show the equivalence among the definitions and thus, we showed
many different properties of PLS.

For functional data, PLS is a developing topic of the state of the art.
Consequently, bibliography are neither complete nor clear for some parts. This
means that the challenge relied on adapting the different techniques and showing
how they are related. Here, we proposed three definitions: least squares
minimization with restrictions, conjugate gradient algorithms, and an adapted
statistical approach. We showed the equivalence between the first two ones and
we stated some properties of the statistical criterion that lead to partial results
about the equivalence. Additionally, we provided a collection of interesting
properties of PLS for functional data, such as some links with RKHS theory or
convergence when the dimension of the Krylov spaces grows.

To illustrate the usefulness of our algorithm we checked also that there are
many situation where it performs better than PCR. We checked out five synthetic
scenarios and three real data problems. It is arguable that PLS performs better
than PCR in all scenarios, but this chapter showed many examples where PLS
was a fair alternative to PCR. For instance, PLS performed generally better

65



6. CONCLUSION

for a low number of components/order. On the other hand, this difference
was negligible when the number of components grows. The conclusion of
these experiments is that PLS showed no disadvantage over PCR and even we
managed to observed some improvements.

6.2 Future work
Although we have deeply analyzed PLS, there are still open topics that can

be tackled. First of all, we talked briefly about Ritz values and Kaniel-Paige
convergence theory. We proved that the filter factors associated to PLS are

wk = 1 − Rq(λk) = 1 −
∏q

i=1
θ
(q)
i −λk
θ
(q)
i

and Kaniel-Paige theory bounds the error

of λk − θ
(q)
k . This would provide a metric of how a principal component is

represented in the qth order PLS estimate. This can provides a precise description
of how PLS, PCR, and OLS are related and when they are similar.

Furthermore, we did not provide the equivalent of Definition 3.4.7 for
functional data. SVD decompositions exists for functional data and similar
approaches can be found for PCR. Even, we can guess that filter factor expression
will be the aforementioned wk. Nevertheless, the matrix-based computations
associated to the proofs is not immediate. Consequently, we decided to check this
definition and its equivalence in future work together with the previous research
line.

Moreover, we think that Definition 3.5.1, Definition 4.2.7, and many more
variants of them are usually hard to analyze and, usually, authors tend to use
alternative definitions such as conjugate gradient or NIPALS. It is a common
assumption that the definitions are equivalent, but we are not able to find a formal
proof of the equivalence of the many different available flavours of PLS. Indeed,
this is also a research challenge to categorize the available variations of PLS and
see which of them are equivalent to standard definitions.
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