Análisis genómico del potencial biodegradador de *Rhodococcus* sp. WAY2

Paula San Segundo Lobato

Máster en Microbiología

MÁSTERES DE LA UAM 2018 - 2019

Facultad de Ciencias

UNIVERSIDAD AUTÓNOMA DE MADRID MÁSTER EN MICROBIOLOGÍA ~ Itinerario ambiental ~

Trabajo de Fin de Máster

Análisis genómico del potencial biodegradador de *Rhodococcus* sp. WAY2

Paula San Segundo Lobato

Directores: Rafael Rivilla Palma Daniel Garrido Sanz

Departamento de Biología, Facultad de Ciencias, UAM

Madrid | Julio, 2019.

Dr. Rafael Rivilla Palma y Daniel Garrido Sanz

Certifican:

Que la memoria titulada "Análisis genómico del potencial biodegradador de *Rhodococcus* sp. WAY2" que presenta Paula San Segundo Lobato se ha realizado bajo su dirección en el Departamento de Biología de la Universidad Autónoma de Madrid, y como directores del trabajo autorizan su presentación.

Para lo cual firman el presente documento en Madrid, a 27 de junio de 2019.

Fdo.: Rafael Rivilla Palma

Fdo.: Daniel Garrido Sanz

RESUMEN

El género Rhodococcus, incluido en la clase Actinobacteria, está presente de manera ubicua en el ambiente, habiéndose aislado cepas pertenecientes a este género de diversos hábitats como suelos de zonas templadas, frías y polares, desiertos, océanos, lagos y aguas subterráneas, generalmente contaminados con distintos compuestos orgánicos. La variedad de hábitats en los que se encuentra Rhodococcus se basa en su versatilidad metabólica y capacidad de adaptación a cambios ambientales, que a su vez podrían tener su explicación en la complejidad que presentan sus genomas. La cepa Rhodococcus sp. WAY2 (WAY2) fue previamente aislada de un consorcio bacteriano crecido aeróbicamente con bifenilo como única fuente de carbono y energía en un estudio metagenómico. En este trabajo se ha secuenciado y analizado el genoma de WAY2 mediante Illumina MiSeq300 y PacBio RS II con el objetivo de obtener información sobre su capacidad de degradación de distintos compuestos orgánicos, además de situar a esta cepa dentro de un contexto filogenético. Asimismo, se ha llevado a cabo una caracterización funcional para complementar y validar la información obtenida en la anotación de su genoma. Rhodococcus sp. WAY2 presenta un genoma multipartito formado por un cromosoma circular de 6,6 Mbp, tres replicones lineales de 0,99, 0,46 y 0,35 Mbp y un plásmido circular pequeño de 14,8 Kbp. El análisis filogenético del gen 16S rRNA y de genomas completos mediante GBDP de todas las cepas tipo disponibles de Rhodococcus sitúan a WAY2 claramente diferenciada del resto y sugieren que constituye una nueva especie. La comparación funcional mediante placas de Biolog con otras cepas tipo cercanas, validan esta distinción de WAY2 en una nueva especie. El crecimiento de WAY2 en diferentes sustratos ha demostrado su capacidad para utilizar bifenilo, naftaleno, ácido benzoico, pentadecano, heptadecano, tetracosano y 1-butanol como única fuente de carbono y energía, y sugieren también la oxidación de etilbenceno, fenantreno, dibenzofurano y tolueno. La capacidad de degradar todos estos compuestos se explica por la presencia de distintas rutas metabólicas periféricas. El genoma de WAY2 contiene cinco clústeres de genes (dos bph, dos etb y un nah) que putativamente están involucrados en la degradación de estos compuestos y que filogenéticamente pertenecen a tres grupos caramente diferenciados. Adicionalmente, el genoma de WAY2 contiene varias alcano monooxigenasas (alkB y ladA) y metano monooxigenasas (mmo y pmo) que explican el uso de alcanos de distinta longitud de cadena como fuente de carbono y energía. Los resultados obtenidos muestran que Rhodococcus sp. WAY2 presenta un gran potencial para ser usado en biorremediación de múltiples compuestos orgánicos.

ÍNDICE DE CONTENIDOS

Introducción	
El género Rhodococcus	pág. 3
Degradación de compuestos aromáticos	pág. 5
Degradación de alcanos	pág. 6
Objetivos	pág. 7
Materiales y Métodos	
Condiciones de crecimiento	
y caracterización funcional de Rhodococcus sp. WAY2	pág. 7
Extracción de DNA genómico y secuenciación	pág. 8
Procesamiento de lecturas, ensamblaje y anotación	pág. 8
Comprobación de la topología de los plásmidos	pág. 9
Análisis de las regiones teloméricas de los plásmidos lineales	pág. 11
Análisis filogenético del gen 16S rRNA	pág. 11
Análisis filogenómico	pág. 11
Filogenia de BphA1, EtbA1 y NahA1 de Rhodococcus sp. WAY2	pág. 12
Resultados	
Control de la calidad de las lecturas y ensamblaje	pág. 12
Descripción general del genoma de Rhodococcus sp. WAY2	pág. 13
Topología de los plásmidos	pág. 14
Análisis filogenético del 16S rRNA y análisis filogenómico	pág. 15
Contenido funcional general	pág. 17
Caracterización funcional	pág. 19
Metabolismo central	pág. 22
Rutas centrales de degradación de compuestos aromáticos	pág. 22
Metabolismo periférico	pág. 23
Rutas periféricas de degradación de compuestos aromáticos	pág. 23
Filogenia de BphA1, NahA1 y EtbA1	pág. 24
Degradación de alcanos	pág. 25
Discusión	pág. 26
Conclusiones	pág. 30
Referencias	pág. 31
Anexos	pág. I

INTRODUCCIÓN

El género Rhodococcus

Rhodococccus es un género de bacterias Gram-positivas, inmóviles, no esporulantes, quimioorganotróficas y aerobias, incluido en la familia *Nocardiaceae*, dentro de la clase *Actinobacteria* (Gürtler & Seviour, 2010). Otros géneros importantes pertenecientes a esta clase y, por tanto, relacionados con *Rhodococcus*, son *Nocardia, Gordonia, Streptomyces y Mycobacterium* (Gürtler & Seviour, 2010; Anastasi *et al.*, 2016).

Rhodococcus es un género ubicuo en el ambiente, habiendo sido aislado de múltiples y diversos tipos de hábitats en regiones geográficas muy diversas. Se han encontrado miembros de este género en suelos de zonas templadas y frías (Margesin et al., 2003; Andreoni et al., 2004), áridas (Peressutti et al., 2003), desérticas (Radwan et al., 1995) y árticas (Bej et al., 2000; Whyte et al., 2002; Ruberto et al., 2005), en océanos y mares de zonas templadas (Koronelli et al., 1987) y polares (Mergaert et al., 2001; Marcos et al., 2009), en lagos de agua dulce (Hernández-Raquet et al., 2000), aguas subterráneas (Ivshina et al., 1981; Ryu et al., 2006) y en rocas y arenas de zonas costeras (Alonso-Gutiérrez et al., 2009). Incluso, anecdóticamente, cabe mencionar la presencia de R. jostii en restos óseos de una tumba medieval (Takeuchi et al., 2002) y el aislamiento de R. baikonurensis del aire de un laboratorio de la estación espacial rusa MIR (Li et al., 2004). Por otro lado, algunos miembros de este género son conocidos patógenos. Por ejemplo, R. equi es causante de infecciones en caballos y oportunista en humanos, afectando principalmente las vías respiratorias, provocando neumonía granulomatosa y abscesos pulmonares (Prescott, 1991). Por su parte, R. fascians es un patógeno de plantas, causando malformaciones en las partes aéreas, como agallas foliares (Cornelis et al., 2001). Otros integrantes de este género se han aislado del tracto intestinal de insectos, donde viven como simbiontes, como R. rhodnii (Rodríguez et al., 2011) y R. triatomae (Yassin, 2005).

La presencia de *Rhodococcus* en tal variedad de ecosistemas puede explicarse por su gran repertorio metabólico, así como a la capacidad de adaptar su metabolismo a un amplio rango de condiciones nutricionales (Álvarez & Silva, 2013). Estos microorganismos tienen la capacidad de usar alternativamente diferentes rutas glicolíticas (Álvarez *et al.*, 2010). Además, pueden producir distintos compuestos de reserva, como polihidroxialcanoatos, triacilgliceroles, glucógeno y polifosfatos, lo cual permite a las células responder rápidamente a cambios nutricionales y desviar su metabolismo según las condiciones ambientales, utilizando este tipo de compuestos durante periodos de escasez de nutrientes (Hernández *et al.*, 2008).

Esta versatilidad metabólica de los integrantes del género *Rhodococcus* podría tener su explicación en la aparente complejidad y gran tamaño de sus genomas (hasta más de 10 Mpb), siendo comúnmente genomas multipartitos constituidos por un cromosoma, que puede ser circular o lineal, y la presencia de plásmidos lineales grandes, así como de plásmidos circulares pequeños que contribuyen al repertorio genético de *Rhodococcus* (Larkin *et al.*, 2010). El genoma de *Rhodococcus jostii* RHA1 fue el primero del género *Rhodococcus* en ser secuenciado por completo. Esta cepa posee uno de los genomas bacterianos más grandes secuenciados, con 9,7 Mpb repartidos en un cromosoma lineal (7,8 Mpb) y tres plásmidos lineales grandes (pRHL1 con 1,1 Mpb, pRHL2 con 0,45 Mpb

y pRHL3 con 0,33 Mpb) (McLeod et al., 2006). Por su parte, el genoma de R. opacus B4 consiste en seis replicones: un cromosoma lineal de 7,91 Mbp, dos plásmidos lineales (pROB01 y pROB02) de 0,56 y 0,24 Mpb, respectivamente, y tres plásmidos circulares pequeños (pKNR, pKNR01 y pKNR02) con tamaños de 0,11 Mpb, 4,37 Kpb y 2,77 Kpb, respectivamente (Na et al., 2005a; Na et al., 2005b). También se encuentran cromosomas circulares, como ocurre en R. erythropolis PR4, cuyo genoma se compone de un cromosoma circular de 6,5 Mpb, un plásmido lineal (pREL1) de 0,27 Mb y dos plásmidos circulares (pREC1 y pREC2) con tamaños de 0,10 Mpb y 3,64 Kpb, respectivamente (Sekine et al., 2006). Los replicones lineales han sido muy estudiados sobre todo en el género Streptomyces, perteneciente, igual que Rhodococcus, a la clase Actinobacteria. La replicación de estos replicones lineales comienza en un origen interno y avanza bidireccionalmente hacia las regiones teloméricas (Chang & Cohen, 1994). Estas regiones teloméricas se caracterizan por tener motivos centrales GCTXCGC flanqueados por repeticiones terminales invertidas (TIRs, de sus siglas en inglés terminal inverted repeats), que provocan la formación de estructuras secundarias a las que se unen proteínas terminales (Tpg) y proteínas asociadas a telómeros (Tap), que son esenciales para la replicación de estas regiones teloméricas (Kalkus et al., 1998; Bao & Cohen, 2003). Las proteínas Tap son las encargadas de sintetizar DNA para rellenar los huecos monocatenarios que se forman durante la replicación en los extremos, mientras que las proteínas Tpg sirven de cebadores para la actividad de las Tap (Yang et al., 2015).

La habitual posesión de plásmidos contribuye al inmenso repertorio catabólico de *Rhodococcus*, ya que su contenido funcional está implicado en la degradación de una amplia variedad de sustratos, incluyendo distintos compuestos orgánicos contaminantes (Larkin *et al.*, 2010; Álvarez & Silva, 2013). Por ejemplo, los plásmidos lineales pRHL1 y pRHL2 de *R. jostii* RHA1 contienen los genes que codifican las rutas de degradación de bifenilo y etilbenceno (Shimizu *et al.*, 2001) y el plásmido circular pKNR01 de *R. erythropolis* PR4 los que codifican las enzimas implicadas en la degradación de benceno (Na *et al.*, 2005a; Na *et al.*, 2005b). Esta característica explica la frecuente presencia de *Rhodococcus* en suelos, aguas y sedimentos de lugares contaminados por causas de diversa índole, como derramamientos de petróleo (Koronelli *et al.*, 1987; Alonso-Gutiérrez *et al.*, 2009), tratamientos agrícolas con pesticidas y herbicidas (Warton *et al.*, 2001; Fazlurrahman *et al.*, 2009) o incluso explosivos como trinitrofenol (Shen *et al.*, 2008).

Todas estas propiedades hacen que *Rhodococcus* sea un género de microorganismos potencialmente candidatos para la biorremediación de ambientes contaminados con compuestos que pueden suponer graves riesgos ambientales y de salud por sus propiedades recalcitrantes y tóxicas (Kuyukina & Ivshina, 2010; Álvarez & Silva, 2013). En ensayos en los que se ha analizado la utilización de *Rhodococcus* en diferentes estrategias de biorremediación de suelos y aguas, se han obtenido resultados exitosos en la degradación de naftaleno (Cavalca *et al.*, 2007), PAHs (hidrocarburos aromáticos policíclicos) (Kim & Lee, 2007; Ringelberg *et al.*, 2001), petróleo crudo (Whyte *et al.*, 1998; Peressutti *et al.*, 2003), diésel (Hong *et al.*, 2007), BTEX (benceno, tolueno, etilbenceno y xileno) (Taki *et al.*, 2004; Fahy *et al.*, 2006; Taki *et al.*, 2007) y PCBs (bifenilos policlorados) (Fava *et al.*, 2003).

Degradación de compuestos aromáticos

Los compuestos aromáticos están formados por uno o varios anillos bencénicos donde, adicionalmente, uno o varios de sus átomos de hidrógeno pueden estar sustituidos por otros átomos o radicales. Su excepcional estabilidad química es una de las razones por las que su producción y uso están extendidos en numerosas aplicaciones industriales (Yam et al., 2010), encontrándose ampliamente distribuidos en la biosfera. El benceno y sus derivados se usan en las industrias química y petrolera y en agricultura. Por ejemplo, la gasolina contiene una mezcla de benceno, tolueno, etilbenceno e isómeros de xileno, conjuntamente conocida como BTEX, que frecuentemente contaminan aguas subterráneas como consecuencia de fugas en tanques de combustible (Yam et al., 2010). Por otro lado, los hidrocarburos aromáticos policíclicos (PAHs) contienen entre dos (naftaleno) y siete (rubiceno) anillos bencénicos fusionados en su estructura. Estos compuestos son producidos en la combustión incompleta de combustibles fósiles y biomasa, y muchos de ellos están considerados por la EPA (Agencia de Protección Ambiental de EE.UU.) como contaminantes prioritarios debido a su toxicidad, mutagenicidad y carcinogenicidad (Álvarez & Silva, 2013). Adicionalmente, estos compuestos aromáticos pueden tener sustituyentes halogenados como flúor, cloro o bromo, entre otros, lo cual incrementa su toxicidad y resistencia a ser degradados por microorganismos (Yam et al., 2010). Los PCBs (bifenilos policlorados), formados por dos anillos de benceno donde uno o varios átomos de hidrógeno pueden estar sustituidos por átomos de cloro (formando los 209 congéneres teóricos), fueron extensamente usados en la fabricación de pesticidas, disolventes, aditivos para pinturas y retardantes de llama, entre otras aplicaciones. Aunque su producción y comercialización está prohibida desde hace décadas debido a sus efectos nocivos para la salud (Kuyukina & Ivshina, 2010), su extendido uso provocó su liberación en grandes cantidades al ambiente, donde su persistencia y relativa volatilidad han hecho que notables cantidades de estos compuestos sigan distribuidos por todo el mundo (Gomes et al., 2013). Los PCBS junto con los PBDEs (difenil éteres polibromados), que también se han usado en la fabricación de retardantes de llama, son considerados como algunos de los contaminantes orgánicos más recalcitrantes y tóxicos (Yam et al., 2010).

Pese a ser compuestos xenobióticos, existen diferentes organismos capaces de degradar estos compuestos. El catabolismo bacteriano de los compuestos aromáticos implica dos pasos clave: la activación del anillo bencénico, que es termodinámicamente muy estable, y su subsiguiente rotura. La degradación aerobia de los compuestos aromáticos se inicia por la oxidación del anillo bencénico mediante la incorporación de dos grupos hidroxilo, reacción catalizada por dioxigenasas hidroxilantes (Mason & Cammack, 1992), siendo estas enzimas las más importantes en las etapas iniciales de las rutas de degradación de compuestos aromáticos y donde reside la especificidad de sustrato (Mallick et al., 2011). Las dioxigenasas hidroxilantes de compuestos aromáticos pertenecen generalmente a la familia de proteínas Rieske oxigenasas; complejos multienzimáticos compuestos por una oxigenasa, con un centro de Rieske (2F-2S), y varias proteínas que actúan como sistema transportador de electrones, frecuentemente una reductasa y una ferredoxina (Ensley & Gibson, 1983; Iwata et al., 1996; Ferraro et al., 2017). Muchas de estas enzimas no tienen una especificidad de sustrato muy estricta y pueden actuar sobre un amplio rango de compuestos. Por ejemplo, la degradación de naftaleno mediante la ruta codificada por los genes nah, se inicia por la enzima naftaleno

1,2-dioxigenasa que, además, es capaz de catalizar la dioxigenación o monoxigenación de múltiples compuestos aromáticos que tienen dos o tres anillos bencénicos: naftaleno, bifenilo, antraceno, fenantreno, fluoreno, estireno, dibenzofurano, tolueno, etilbenceno y xileno, entre otros (Resnick *et al.*, 1996; Ferraro *et al.*, 2017). Por otro lado, la degradación de bifenilo, mediante la ruta codificada por los genes *bph*, es iniciada por la enzima la bifenilo 2,3-dioxigenasa, que es capaz de actuar sobre el bifenilo y diferentes congéneres de PCBs mediante su co-metabolismo, teniendo un papel crucial en la degradación de estos contaminantes (Brühlmann & Chen, 1998; Gibson & Parales, 2000; Furukawa *et al.*, 2004). La degradación de etilbenceno, mediante la ruta codificada por los genes *etb*, es iniciada por la etilbenceno 1,2-dioxigenasa y también se ha visto que puede actuar sobre diversos sustratos incluyendo etilbenceno, bifenilo, naftaleno, fenantreno, dibenzofurano, tolueno, *o*-xileno y clorobenceno (Iwasaki *et al.*, 2006; Iwasaki *et al.*, 2007; Patrauchan *et al.*, 2008).

Este primer paso de activación del anillo lleva a la producción de cis-dioles, sobre los que pueden actuar dioxigenasas de rotura, segundo paso clave de la degradación de compuestos aromáticos (Vaillancourt *et al.*, 2006). Estas dioxigenasas de rotura pueden actuar entre los grupos hidroxilo (rotura en *orto* o intradiol) o de manera adyacente a ellos (rotura en *meta* o extradiol). Tras la rotura del anillo bencénico, se producen sucesivas reacciones que acaban en compuestos entre los que se incluyen algunos intermediarios del ciclo de los ácidos tricarboxílicos (TCA) (Yam *et al.*, 2010).

El catabolismo de compuestos aromáticos está organizado de manera que, a través de un gran número de rutas periféricas, un amplio rango de sustratos se transforma en metabolitos intermediarios cuya degradación se completa mediante un número más restringido de rutas centrales. Normalmente, las rutas centrales están codificadas únicamente en el cromosoma, mientras que las rutas periféricas pueden encontrarse tanto en plásmidos como en el cromosoma (Yam *et al.*, 2010).

Degradación de alcanos

Los alcanos son hidrocarburos saturados que pueden ser lineales, ramificados o cíclicos, y son producidos en procesos geoquímicos y biológicos. Plantas, algas y bacterias pueden producir alcanos como productos de desecho, elementos estructurales, mecanismos de defensa o quimioatrayentes (Van Beilen *et al.*, 2003). Los alcanos son, además, el mayor constituyente del petróleo crudo y gas natural junto con los hidrocarburos aromáticos, por lo que su degradación tiene un interés especial a la hora de recuperar lugares afectados por derrames de combustibles fósiles (Ji *et al.*, 2013).

Se han descrito cuatro rutas diferentes a través de las cuales los microorganismos pueden degradar *n*-alcanos de manera aerobia, utilizándolos como fuente de carbono y energía (Ji *et al.*, 2013; Garrido-Sanz *et al.*, 2019). Dos de estas rutas bien caracterizadas empiezan con la oxidación terminal o subterminal de un grupo metilo o metileno, llevada a cabo por alcano monooxigenasas, resultando en la producción de alcoholes primarios o secundarios, respectivamente, que posteriormente se oxidan gracias a alcohol y aldehído deshidrogenasas, transformándose en ácidos grasos que entran en la ruta de β -oxidación (Kotani *et al.*, 2003; Van Beilen *et al.*, 2003; Feng *et al.*, 2007; Throne-Holst *et al.*, 2007). Las enzimas que catalizan la oxidación inicial de alcanos, terminal o subterminal son AlkB (alcano 1-monooxigenasa) y LadA (monooxigenasa de alcanos de cadena larga).

AlkB es una proteína integral de membrana implicada en la oxidación de alcanos entre 5 y 12 átomos de carbono a 1-alcanoles (Van Beilen *et al.*, 1994b), mientras que LadA es una flavoproteína que oxida alcanos a partir de más de 15 átomos de carbono (Li *et al.*, 2008).

OBJETIVOS

El objetivo de este estudio ha sido analizar el potencial degradador de *Rhodococcus* sp. WAY2 mediante la secuenciación y análisis de su genoma y su caracterización funcional. Mediante la secuenciación y anotación del genoma completo, se pretende obtener información sobre la estructura del genoma y la presencia de genes y rutas metabólicas implicadas tanto en la degradación de distintos compuestos del metabolismo periférico (aromáticos y alcanos), como rutas del metabolismo central. Además, conocer la secuencia de WAY2 nos permitirá clasificar a esta cepa dentro del género para obtener el contexto filogenético en el que se sitúa. Finalmente, la caracterización funcional, mediante el análisis del uso de distintos compuestos orgánicos como fuente de carbono y energía, permitirá validar la información obtenida de su secuenciación y análisis del genoma.

MATERIALES Y MÉTODOS

Condiciones de crecimiento y caracterización funcional de Rhodococcus sp. WAY2

La cepa *Rhodococcus* sp. WAY2 fue previamente aislada de un consorcio bacteriano crecido aeróbicamente con bifenilo como única fuente de carbono y energía en un estudio metagenómico (Garrido-Sanz *et al.* 2018). WAY2 fue crecida rutinariamente a 28°C en medio LB (Bertani, 1951) y PCA (*Plate Count Agar*; Atlas, 2004) líquido con agitación a 200 rpm o sólido añadiendo al medio agar al 1,5% (p/v).

El rango de temperatura a la cual WAY2 es capaz de crecer se comprobó mediante el cultivo de la cepa en medio PCA sólido (Atlas, 2004) a las siguientes temperaturas: 5°C, 12°C, 20°C, 28°C, 37°C y 40°C.

Para la caracterización funcional de WAY2, se utilizó medio mínimo (MM: 0,1 g/L de NaCl, 0,1 g/L de MgSO₄ · 7H₂O, 1 g/L de K₂HPO₄, 0,5 g/L de KH₂PO₄ y 1 g/L de (NH₄)₂SO₄) (Brazil *et al.*, 1995) suplementado con 1 mL/L de sales PAS (19,5 g/L de MgSO₄, 5 g/L de MnSO₄ · H₂O, 1 g/L de FeSO₄ · H₂O y 0,3 g/L de CaCl₂), al que se añadieron diferentes compuestos orgánicos como única fuente de carbono y energía para analizar la capacidad de la cepa de utilizarlos. *Rhodococcus* sp. WAY2 se cultivó con 1 g/L o 1 mL/L de bifenilo, naftaleno, ácido benzoico, xileno (mezcla de *o*-, *m*-, *p*-xileno), tolueno, *n*-hexano, *n*-pentadecano, *n*-heptadecano y *n*-tetracosano. Fenantreno, dibenzofurano, etilbenceno, 1-butanol, 2-butanol y metanol fueron suplementados en forma de gas en la tapa de placas Petri con MM+PAS sólido (1,5% agar (p/v)). En todos los casos la temperatura de incubación fue de 28°C.

Adicionalmente, la capacidad de WAY2 de crecer en diferentes sustratos y en determinadas condiciones de pH y salinidad se evaluó mediante la placa multipocillos

GEN III MicroPlateTM (Biolog, Inc.), adaptando el protocolo especificado por la casa comercial. Se partió de tres cultivos frescos (48 horas) de WAY2 en PCA sólido, de los cuales se resuspendió biomasa bacteriana en 10 mL de MM+PAS, sin ninguna fuente de carbono, hasta alcanzar una densidad óptica (DO₆₀₀) aproximada de 0,04. Se repartieron 100 μ L de las suspensiones celulares en cada pocillo de las placas y se incubaron durante 16 h a 28°C con agitación a 130 rpm. Tras la incubación, se midió la densidad óptica (DO₆₀₀) en todos los pocillos de las placas mediante el espectrofotómetro SynergyTM HT Multi-Detection Microplate Reader de BioTek[®]. Los datos de densidad óptica de tres réplicas se analizaron estadísticamente mediante ANOVA bidireccional con el test de Dunnett para comparaciones múltiples (Dunnett, 1955) usando el programa GraphPad Prism v.7 (GraphPad Software Inc.), para determinar si había diferencias significativas (p-valor < 0.05) de crecimiento (aumento en DO) comparado con los controles negativo y positivo.

Extracción de DNA genómico y secuenciación

Para la extracción de DNA genómico de *Rhodococcus* sp. WAY2 se partió de un cultivo en LB líquido y se utilizó el kit de extracción NucleoSpin[®] Microbial DNA (Macherey-Nagel, Alemania), siguiendo el protocolo especificado por la casa comercial. El DNA extraído se cuantificó por espectrofotometría con NanoDrop[™] Spectrophotometer ND-1000 (Thermo Fisher Scientific).

La secuenciación del genoma de WAY2 fue llevada a cabo, por un lado, en el Parque Científico de Madrid (España) a través de la plataforma MiSeq de Illumina[®] (*paired-end* 2x150 pb) y, por otro lado, por Novogene Co., Ltd. (Pekín, China) a través de la plataforma RS II de Pacific Bioscience[®] (PacBio). La calidad de las lecturas obtenidas mediante ambas plataformas fue comprobada con el software FastQC v0.11.8 (Andrews, 2010), que permite medir la calidad media por base, el contenido en G+C, la distribución de la longitud de las lecturas y la presencia de adaptadores, entre otros parámetros.

Procesamiento de lecturas, ensamblaje y anotación

Las lecturas obtenidas con Illumina fueron filtradas y procesadas con el software Trimmomatic v0.36 (Bolger *et al.*, 2014), mediante el cual se eliminaron los adaptadores utilizados en la secuenciación, se recortaron de los extremos aquellas bases con una calidad baja (nivel de calidad *Pthread* < 3) y se descartaron aquellas lecturas cuya longitud, tras los procesados mencionados, fuese inferior a 70 nucleótidos. Los comandos utilizados para este software y el resto de los programas bioinformáticos mencionados en este trabajo están descritos en el Anexo 1. Las lecturas obtenidas con PacBio fueron ensambladas utilizando el software Canu v1.7.1 (Koren *et al.*, 2017), estableciendo un error de alineamiento máximo del 10,5% en los solapamientos. SPAdes v3.13.0 (Bankevich *et al.*, 2012) se utilizó para llevar a cabo el ensamblaje híbrido del genoma de WAY2, usando las lecturas filtradas de Illumina y PacBio y los *contigs* obtenidos en el ensamblaje de las lecturas de PacBio incluidos mediante el comando --trusted-contigs (únicamente usados para el cierre de *gaps* y la resolución de repeticiones), utilizando el modo *careful*, que intenta reducir el número de *mismatches* y pequeños *indels*, y los siguientes *k-mers*: 21, 33, 55, 77, 99 y 127. La calidad del ensamblaje fue evaluada utilizando QUAST v4.4 (Gurevich *et al.*, 2013). El genoma de WAY2 fue cerrado mediante la búsqueda de extremos solapantes en los *contigs* resultantes del ensamblaje con SPAdes, utilizando la opción *blastn* de BLAST+ v2.9.0 (*Basic Local Alignment Tool*) (Altschul *et al.*, 1990), y usando el ensamblaje de las lecturas de PacBio para cerrar *gaps* y resolver regiones repetidas.

Una vez ensamblado y cerrado el genoma, para su anotación se empleó RAST v2.0 (*Rapid Annotation using Subsytem Technology*) (Aziz *et al.*, 2008), utilizando las opciones *classic RAST*, *RAST gene caller* y la versión 70 de FIGfams (Meyer *et al.*, 2009) y aplicando corrección automática de errores y del marco de lectura. EggNOG-mapper v1.0.3 (Huerta-Cepas *et al.*, 2017) se utilizó para la clasificación funcional de las proteínas anotadas en COGs (*Clusters of Orthologous Genes*), usando la base de datos bacNOG v38. La opción *blastn* o *blastp* de BLAST+ v2.9.0 (Altschul *et al.*, 1990) se empleó para validar la anotación, utilizando la base de datos *nucleotide* (nt) o *nonredundant* (nr) del NCBI (descargada en marzo 2019), respectivamente. Por último, se utilizó RNAspace v.1.2.1 (Cros *et al.*, 2011) para la identificación y anotación de RNAs no codificantes (ncRNAs), usando búsquedas basadas en *blast* frente a la base de datos Rfam 10.0 (Gardner *et al.* 2009) y resto de parámetros por defecto.

Comprobación de la topología de los plásmidos

La topología lineal o circular de los plásmidos presentes en el genoma de Rhodococcus sp. WAY2 fue comprobada mediante PCR, empleando diferentes combinaciones de oligonucleótidos específicamente diseñados (Tablas 1 y 2) para alinear con los extremos de los plásmidos y resultar en amplificación en caso de ser circulares. Adicionalmente, se diseñaron oligonucleótidos para amplificar estos extremos como control positivo de la PCR. Todos los oligonucleótidos fueron diseñados en las regiones no homólogas de los extremos de los plásmidos. En el caso del plásmido pRWAY04, se diseñaron oligonucleótidos para amplificar mediante PCR fragmentos solapantes. La temperatura media de fusión y la probabilidad de formación de homodímeros y heterodímeros de dichos oligonucleótidos fueron analizadas con la herramienta OligoAnalyzer¹ (Integrated DNA Technologies[®]). Las reacciones de PCR de los plásmidos pRWAY01, pRWAY02 y pRWAY03 se llevaron a cabo en un volumen total de 25 µL conteniendo 2,5 µL de buffer de PCR 10x libre de MgCl₂, 1 µL de MgCl₂ 50 mM, 0,5 µL de DMSO (dimetilsulfóxido) al 10%, 0,5 µL de mezcla de dNTPs 10 mM (2,5 mM cada uno), 1 µL de cada oligonucleótido a una concentración de 10 µM, 1 µL de DNA Taq polimerasa 1 U/µL (Biotools[®]), 1 µL de DNA genómico a una concentración de 30-60 ng/µL y 16,5 µL de H₂O miliQ estéril. Las condiciones de PCR consistieron en una etapa inicial de desnaturalización a 95 °C durante 5 min, seguida de 27 ciclos de

¹ https://eu.idtdna.com/calc/analyzer

amplificación (desnaturalización a 95 °C durante 1 min, anillamiento a 60 °C durante 45 s y elongación a 72 °C durante 1 min y 15 s) seguidos de una etapa final de elongación a 72 °C durante 7 min. La amplificación del plásmido pRWAY04 se llevó a cabo en un volumen total de 25 μ L conteniendo 12,5 μ L de Master Mix Q5' High Fidelity 2x (New England BioLabs[®]) (en la que están incluidos los dNTPs, la DNA polimerasa Q5' High Fidelity y Mg²⁺), 1,25 μ L de cada oligonucleótido a una concentración de 10 μ M, 0,5 μ L de DMSO al 10% y 9,5 μ L de DNA genómico a una concentración de 30-60 ng/ μ L. Las condiciones de PCR consistieron en una etapa inicial de desnaturalización a 98 °C durante 3 min, seguida de 35 ciclos de amplificación (desnaturalización a 98 °C durante 10 s, anillamiento a 71 °C durante 30 s y elongación a 72 °C durante 7 min) seguidos de una etapa final de elongación a 72 °C durante 3 min.

Replicón	Nombre	Abr.	F./R.	Secuencia (5' – 3')	Tm (°C)	Coordenadas
1	F_WY01L_2	1L2	F	CAAACTCAGATCCCGCCTCACC	60,0	1.116 1.137
AY0	R_WY01L_3	1L3	R	CAGCCGCGAGTACGACCTC	60,4	2.357 2.375
RW	F_WY01R_1	1R1	F	GAACCGGAACCGCTGACCC	61,2	989.404 989.422
[d	R_WY01R_3	1R3	R	CGTTGGCTGCCTTCAAGTGGAAC	61,0	989.932 989.954
2	F_WY02L_1	2L1	F	GCATGACGGTGTCGACGTGTC	60,7	9981.018
AY0	R_WY02L_3	2L3	R	CCCGAACTCTCGCCACAGC	61,1	2.122 2.140
RW	F_WY02R_1	2R1	F	GGAGGGTTCAGTGTTCGGCTG	60,4	459.155 459.175
[d	R_WY02R_2	2R2	R	CCGGTTCCTGAGAGGATGCGTTC	61,7	460.267 460.289
3	F_WY03L_2	3L2	F	CGTCCTCCACCATGAGCCCC	60,6	1.354 1.372
AY0	R_WY03L_3	3L3	R	CATTCCCGCAACCAGTGGACC	61,0	2.233 2.253
RW.	F_WY03R_1	3R1	F	GTGTCGGTGACATCGAGTCGC	60,3	351.739 351.759
[d	R_WY03R_3	3R3	R	CGAAGGGGTGATCCGGGAAC	60,3	352.400 352.419
4	F_WY04_1	4F1	F	CTGTCTCCGGCTCGAGTGC	60,5	5169
AY0	F_WY04_2	4F2	F	GGAGATGCTGCAGGAAACAGGC	60,8	7.185 7.206
RW.	R_WY04_3	4R3	R	GGGCGGTGCGTATTTACTTCGC	61,0	9.951 9.972
Įd	R_WY04_4	4R4	R	CTCCCAATCCCCGTACAGTCG	59,5	2.617 2.637

Tabla 1. Oligonucleótidos utilizados en las amplificaciones mediante PCR.

Abr.: abreviatura del nombre; F.: forward; R.: reverse, Tm: temperatura media de fusión.

Tabla 2. Combinaciones de oligonucleótidos para las amplificaciones mediante PCR.

		Singenaereenaere	puiu ius uiii	
Replicón	Forward	Reverse	Abr.	Longitud esperada del fragmento (pb)
	F_WY01L_2	R_WY01L_3	1L2-1L3 ^a	1.260
pRWAY01	F_WY01R_1	R_WY01R_3	1R1-1R3 ^a	551
	F_WY01R_1	R_WY01L_3	1L3-1R1	-
	F_WY02L_1	R_WY02L_3	2L1-2L3 ^a	1.143
pRWAY02	F_WY02R_1	R_WY02R_2	2R1-2R2 ^a	1.135
	F_WY02R_1	R_WY02L_3	2L3-2R1	-
	F_WY03L_2	R_WY03L_3	3L2-3L3 ^a	900
pRWAY03	F_WY03R_1	R_WY03R_3	3R1-3R3 ^a	681
	F_WY03R_1	R_WY03L_3	3L3-3R1	-
DWA VOA	F_WY04_1	R_WY04_3	4F1-4R3	9.922
pk wA 104	F_WY04_2	R_WY04_4	4F2-4R4	10.306

Abr.: abreviatura del nombre de la combinación de oligonucleótidos.

^a Combinaciones usadas como control positivo de amplificación.

Los productos de PCR fueron separados mediante electroforesis en geles de agarosa al 0,8% (p/v), utilizando GelRed[®] (Biotium) como tinte intercalante y Gel Loading Dye Purple 6X (New England BioLabs[®]) como tampón de carga.

Análisis de las regiones teloméricas de los plásmidos lineales

Las secuencias de DNA de los extremos de los replicones pRWAY01, pRWAY02 y pRWAY03 de WAY2 se compararon con las regiones teloméricas caracterizadas del cromosoma de *R. jostii* RHA1 (NC_008268.1) y plásmidos pRHL1 (NC_008269.1), pRHL2 (NC_008270.1) y pRHL3 (NC_008271.1), del cromosoma de *R. opacus* B4 (NC_012522.1) y plásmidos pROB01 (NC_012520.1) y pROB02 (NC_012521.1) y del plásmido pR1CP1 (NZ_CP009112.1) de *R. opacus* 1CP, para identificar repeticiones terminales invertidas (TIRs, de sus siglas en inglés *tandem inverted repeats*). Las secuencias de los replicones mencionados se descargaron de la base de datos del NCBI en abril de 2019 y los alineamientos se llevaron a cabo con Clustal Omega (Sievers & Higgins, 2014), comparando 180 nts de cada uno de los extremos.

Análisis filogenético del gen 16S rRNA

Las secuencias del gen 16S rRNA de todas las cepas tipo de Rhodococcus validadas y recogidas en LPSN (List of Prokaryotic names with Standing in Nomenclature) (Parte, 2018) fueron descargadas de la base de datos del NCBI en abril de 2019, excepto la secuencia de *R. obuensis* ATCC 33610^T, por ser una secuencia parcial muy limitada (505 pb), resultando en un total de 65 secuencias de cepas tipo. Estas secuencias y las cuatro copias del gen del 16S rRNA de WAY2 (Anexo 2) fueron alineadas mediante Clustal Omega (Sievers & Higgins, 2014). Posteriormente, sus extremos fueron recortados tomando como referencia el 16S rRNA (731.952 ... 733.471) de WAY2, desde la posición 108 hasta la 1.331, para ajustarlas todas a la misma longitud de alineamiento (1239 pb). Gblocks v0.91b (Castresana, 2000; Talavera & Castresana, 2007) (Anexo 1) fue usado para eliminar las columnas pobremente alineadas y las regiones altamente divergentes, estableciendo una longitud mínima de bloque de dos nucleótidos y permitiendo gaps en todas las secuencias. Se construyó un árbol filogenético (dendrograma) por el método de maximum-likelihood (ML) utilizando el paquete Pthreads-parallelized del software RAxML v8.2.10 (Stamakis, 2014) (Anexo 1), usando el modelo GTR de sustitución de nucleótidos (Tavaré, 1986) combinado con el modelo de distribución Gamma de heterogeneidad de frecuencias (Gu et al., 1995) y con el algoritmo BFGS (Broyden-Fletcher-Goldfarb-Shanno) para la optimización de la sustitución. También se aplicó un bootstrap rápido con búsqueda subsecuente del mejor árbol (Stamakis et al., 2008) combinado con el criterio autoMRE (Pattengale et al., 2010). La secuencia del 16S rRNA de Nocardia brasiliensis DSM 43758^T (AF430038.1) fue utilizada como *outgroup*.

Análisis filogenómico

El genoma de WAY2 y todos los genomas completos disponibles de las cepas tipo de *Rhodococcus* reconocidas en LPSN (Parte, 2018), fueron descargados de la base de

datos del NCBI en abril de 2019, resultando en un total de 38 genomas (Anexo 3). Para el análisis filogenómico se calcularon las distancias intergenómicas y el porcentaje de hibridación DNA-DNA digital (dDDH) con el algoritmo Genome-to-Genome Blast Distance Phylogeny (GBDP) (Meier-Kolthoff *et al.*, 2013) a través del servicio web *Genome-to-Genome Distance Calculator* (GGDC) 2.1². Las distancias intergenómicas resultantes se utilizaron para construir la matriz de distancias, a partir de la cual se construyó un árbol filogenómico por el método de neighbor-joining (NJ) utilizando el software MEGA 7 (Kumar *et al.*, 2016). El genoma de *Nocardia brasiliensis* NCTC 11294^T (GCA_900454265.1) se utilizó como *outgroup*.

Filogenia de BphA1, EtbA1 y NahA1 de Rhodococcus sp. WAY2

Las secuencias de aminoácidos de la subunidad α de las dioxigenasas hidroxilantes BphA1a, BphA1b, EtbA1a, EtbA1b y NahA1 anotadas en el genoma de WAY2 fueron comparadas con otras 12 BphA, EtbA1 y NarA1 bien caracterizadas (Anexo 4), cuyas secuencias se descargaron de la base de datos del NCBI en abril de 2019. Las secuencias fueron alineadas mediante Clustal Omega. Se construyó un árbol filogenético por el método de ML utilizando el paquete Pthreads-parallelized del software RAxML v8.2.10 (Anexo 1), usando el modelo LG de sustitución de aminoácidos (Le & Gascuel, 2008) combinado con el modelo de distribución Gamma de heterogeneidad de frecuencias y con frecuencias empíricas de aminoácidos. También se aplicó un bootstrap rápido con subsecuente búsqueda del mejor árbol combinado con el criterio autoMRE.

RESULTADOS

Control de la calidad de las lecturas y ensamblaje

La secuenciación mediante Illumina del genoma de *Rhodococcus* sp. WAY2 resultó en un total de 12.447.110 lecturas *forward* y *reverse* (Tabla 3), cuya calidad se analizó con el software FastQC. El nivel de calidad media por base se situó en un rango aceptable (nivel de calidad *Pthread* > 30) tanto para las lecturas *forward* como *reverse*, aunque los valores de calidad disminuyen en los extremos (Anexo 5). La longitud de las lecturas osciló entre 35-151 pb y el contenido en G+C fue del 65% (Tabla 3). Ninguna de las lecturas presentaba adaptadores de secuenciación. Después del filtrado y procesado con Trimmomatic, se conservó un total de 11.576.266 lecturas *forward* y *reverse* emparejadas (93% de las lecturas originales), 528.819 de lecturas *forward* cuyo correspondiente *reverse* fue eliminado (4,25% de las lecturas originales) y 200.573 de lecturas *reverse* cuyo correspondiente *forward* fue eliminado (1,61% de las lecturas originales), y se eliminaron 141.452 lecturas emparejadas, es decir, que se eliminó tanto la lectura *forward* como la *reverse* (1,14% de las lecturas originales) (Tabla 3).

Mediante la secuenciación de WAY2 con PacBio se obtuvieron un total de 6.056 lecturas con una longitud de 37-39.123 pb y un contenido en G+C del 60%. Estas lecturas se ensamblaron con el software Canu y se evalúo la calidad del ensamblaje con QUAST, resultando en un total de 201 *contigs*, todos con una longitud mayor de 1.000 pb y siendo el valor N50 de 31.925 (Tabla 4).

² http://ggdc.dsmz.de/ggdc.php

Las lecturas de Illumina filtradas y procesadas junto con las obtenidas mediante PacBio, fueron ensambladas con el software SPAdes mediante un ensamblaje híbrido. La calidad del ensamblaje se evaluó con QUAST, resultando en un total de 4.843 *contigs*, siendo 556 de ellos mayores de 1.000 pb. La longitud total de los *contigs* mayores de 1.000 bp fue de ~10 Mpbs, siendo el valor N50 de 97.655 (Tabla 4).

	Sin pr	ocesar		Procesadas						
	Forward	Reverse	Forward paired	Reverse paired	Forward unpaired	Reverse unpaired	Eliminadas			
Nº de lecturas (% del total)	12.447.110	12.447.110	11.576.266 (93%)	11.576.266 (93%)	528.819 (4,25%)	200.573 (1,61%)	141.452 (1,14%)			
Longitud (nts)	35-151	35-151	70-151	70-151	70-151	70-151	-			
%GC	65	65	65	65	65	64	-			

Tabla 3. Resumen del filtrado y procesado de las lecturas de Illumina.

Tabla 4. Control de calidad de los ensamblajes.

	Nº de	contigs	Longitud a	Longitud contigs (pb)		ros parám	etros
Ensamblaje	Canu	SPAdes	Canu	SPAdes		Canu	SPAdes
Total	201	4.843	4.496.875	11.669.277	%GC	64,97	64,95
> 1.000 pb	201	556	4.496.875	10.009.307	N50	31.925	97.655
> 10.000 pb	142	117	4.170.036	8.688.103	N75	18.249	8.888
> 25.000 pb	54	80	2.681.188	8.104.164	L50 39		35
> 50.000 pb	17	54	1.423.006	7.199.030	L75	86	124
Contig más largo	-	-	180.839	446.159			

Descripción general del genoma de Rhodococcus sp. WAY2

El genoma de *Rhodococcus* sp. WAY2 contiene 8,4 Mpb organizadas en cinco replicones: un cromosoma circular de 6,6 Mpb, tres plásmidos lineales denominados pRWAY01, pRWAY02 y pRWAY03 de 0,99 Mpb, 0,46 Mpb y 0,35 Mpb respectivamente, y un pequeño plásmido circular denominado pRWAY04 de 14,9 Kpb (Tabla 5). El contenido en GC% del cromosoma es del 65,86%, similar al de los plásmidos lineares (65,04%, 64,92% y 65,10% respectivamente), mientras que el plásmido pRWAY04 tiene un contenido en GC% de 61,45% (Tabla 5).

		Replicones			
Cromosoma	pRWAY01	pRWAY02	pRWAY03	pRWAY04	Total
6.622.033	991.117	461.410	353.952	14.853	8.443.365
65,86	65,04	64,92	65,10	61,45	65,67
Circular	Lineal	Lineal	Lineal	Circular	-
90,40	80,35	81,19	78,90	87,90	88,23
6.204	1.082	526	404	20	8.236
6.127	1.081	523	403	20	8.154
29,82	53,75	45,51	59,55	70,00	35,57
51	1	0	0	0	52
12	0	0	0	0	12
14	0	3	1	0	18
	Cromosoma 6.622.033 65,86 Circular 90,40 6.204 6.127 29,82 51 12 12	Cromosoma pRWAY01 6.622.033 991.117 65,86 65,04 Circular Lineal 90,40 80,35 6.204 1.082 6.127 1.081 29,82 53,75 51 1 12 0 14 0	CromosomapRWAY01pRWAY026.622.033991.117461.41065,8665,0464,92CircularLinealLineal90,4080,3581,196.2041.0825266.1271.08152329,8253,7545,5151101203	RepliconesCromosomapRWAY01pRWAY02pRWAY036.622.033991.117461.410353.95265,8665,0464,9265,10CircularLinealLinealLineal90,4080,3581,1978,906.2041.0825264046.1271.08152340329,8253,7545,5159,555110012031	RepliconesCromosomapRWAY01pRWAY02pRWAY03pRWAY046.622.033991.117461.410353.95214.85365,8665,0464,9265,1061,45CircularLinealLinealCircular90,4080,3581,1978,9087,906.2041.082526404206.1271.0815234032029,8253,7545,5159,5570,00511000120310

Tabla 5. Características generales del genoma de Rhodococcus sp. WAY2 por replicón.

^a Proteínas anotadas como hipotéticas o con función desconocida.

Topología de los plásmidos

La linealidad de los replicones pRWAY01, pRWAY02 y pRWAY03 y la presencia del plásmido circular pequeño pRWAY04 fue comprobada mediante PCR. Para pRWAY01, pRYWA02 v pRWAY03, se diseñaron 3 combinaciones de oligonucleótidos; dos de ellas como control positivo de amplificación de los extremos izquierdo y derecho y una combinación que resultará positiva en caso de que los replicones sean circulares (Figura 1A). En el caso del replicón pRWAY04, se diseñaron dos parejas de oligonucleótidos de amplificación solapante de la totalidad del replicón (Figura 1B). Los resultados obtenidos (Figura 1C) muestran amplificación positiva con tamaños esperados en los controles de los extremos izquierdo y derecho en los replicones pRWAY01 (1L2-1L3 y 1R1-1R3, respectivamente), pRWAY02 (2L1-2L3 y 2R1-2R2, respectivamente) y pRWAY03 (3L2-3L3 y 3R1-3R3, respectivamente), pero en ningún caso se obtuvo amplificación mediante la combinación los oligonucleótidos diseñados en caso de que estos replicones fuesen circulares (1L3-1R1, 2L3-2R1 y 3L3-3R1 para los replicones pRWAY01, pRWAY02 y pRWAY03, respectivamente). En el caso de pRWAY04, las dos PCR resultaron en amplificación de los fragmentos solapantes, con tamaños esperados de 9,9 y 10,3 Kpb (Figura 1C).

Las regiones teloméricas de los extremos derecho e izquierdo de pRWAY01 y pRWAY02 y el extremo izquierdo de pRWAY03 contienen cuatro motivos centrales GCTXCGC, dos de ellos flanqueados por repeticiones terminales invertidas (TIRs). Las secuencias de estas regiones están altamente conservadas entre sí y son similares a las regiones teloméricas de replicones lineales en otros *Rhodococcus*: cromosoma y plásmidos pRHL1 y pRHL3 y el extremo derecho de pRHL2 de *R. jostii* RHA1; cromosoma y plásmido pROB02 y el extremo derecho de pROB01 de *R. opacus* B4; y al plásmido pR1CP1 de *R. opacus* 1CP (Anexo 6A). Sin embargo, la región telomérica del extremo derecho de pRWAY03 es distinta a la del resto de replicones lineares de WAY2, pero presenta igualmente dos motivos centrales GCTXCGC flanqueados por TIRs. La secuencia de esta región presenta alta identidad de secuencia con los extremos izquierdos de pRHL2 y pROB01 de *R. jostii* RHA1 y *R. opacus* B4, respectivamente (Anexo 6B).

Figura 1. Análisis mediante PCR de la topología de los plásmidos de *Rhodococcus* sp. WAY2. (A) Esquema de los oligonucleótidos diseñados para comprobar la topología de pRWAY01, pRWAY02 y pRWAY03. Las flechas en rojo indican la combinación de oligonucleótidos cuya amplificación indicaría una topología circular. Los números entre paréntesis indican la posición de los oligonucleótidos diseñados para comprobar la topología de pRWAY04. Los números entre paréntesis indican la posición de los oligonucleótidos diseñados para comprobar la topología de pRWAY04. Los números entre paréntesis indican la posición 5' donde se unen los oligonucleótidos. (C) Resultados de las PCRs en gel de agarosa al 0,8% (p/v). Las bandas observadas en los carriles marcados en negro corresponden a controles positivos (flechas) de los extremos de los replicones. La ausencia de amplificación en los carriles 3, 6 y 9 (rojo) indica que los replicones pRWAY01, pRWAY02 y pRWAY03 son lineales. Los carriles 10 y 11 indican que pRWAY04 es circular, ya que ambos fragmentos de DNA amplificados son solapantes. Los carriles "M" corresponden al marcador 1 Kb Plus DNA Ladder (InvitrogenTM, tamaños indicados en pb).

El genoma de WAY2 contiene, además, seis proteínas asociadas a telómeros (Tap, genes *tap*) distribuidas en los tres replicones lineales: tres en pRWAY01, una en pRWAY02 y dos en pRWAY03. También se han encontrado proteínas que presentan homología lejana con proteínas terminales (Tpg, genes *tpg*) de otras actinobacterias, como por ejemplo de *Rhodococcus erythropolis* PR4 (*tpg* del plásmido pREL1, WP_003942446.1) y *Streptomyces clavuligerus* ATCC 27064 (*tpg* del plásmido pSCL4, WP_003953098.1). En todos los casos, estas proteínas Tap y Tpg se encuentran de forma contigua en el genoma de WAY2 (Anexo 7).

Análisis filogenético del 16S rRNA y análisis filogenómico

Las cuatro copias del gen 16S rRNA presentes en el genoma de WAY2 fueron comparadas con las secuencias del 16S rRNA de las 65 cepas tipo del género

Rhodococcus validadas y recogidas en LPSN hasta la fecha (Anexo 2) mediante su análisis filogenético basado en ML. Los resultados se muestran en la Figura 2. Todas las copias del 16S rRNA de WAY2 se sitúan en el mismo clúster, aunque uno de los 16S rRNA de WAY2 (posición 732.952 ... 733.471) muestra cierta divergencia de secuencia comparada con el resto de 16S de WAY2 (99,41% de homología). *Rhodococcus maanshanensis* M712^T es la cepa tipo más cercana a WAY2, seguida de otras cepas tipo situadas en el mismo clúster, incluyendo *R. marinonascens* DSM 43752^T, *R. opacus* DSM 43205^T, *R. wratislaviensis* NCIMB 13082^T y *R. jostii* NBRC 16295^T (Figura 2).

Figura 2. Árbol filogenético basado en ML de los genes 16S rRNA de WAY2 (rojo) y 65 cepas tipo del género *Rhodococcus. Nocardia brasiliensis* DSM 43758^T fue usada como *outgroup*. Números de acceso del NCBI a los genes usados se indican entre paréntesis. Los valores de bootstrap se indican encima o debajo de los nodos.

Por otro lado, el genoma completo de WAY2 junto con 38 genomas completos disponibles de cepas tipo de *Rhodococcus* secuenciadas hasta la fecha (Anexo 3), fueron comparados usando el algoritmo GBDP. Las distancias intergenómicas resultantes fueron usadas para construir un árbol filogenómico mediante NJ (Figura 3A). El genoma de WAY2 se encuentra agrupado con los genomas de R. marinonascens NBRC 14363^T. R. jostii NBRC 16295^T, R. wratislaviensis NBRC 100605^T y R. opacus DSM 43205^T, similar al resultado obtenido mediante el análisis del 16S (Figura 2). Los valores de hibridación DNA-DNA digital (dDDH) obtenidos en todas las comparaciones entre los genomas de las cepas tipo incluidos en el análisis junto con el genoma de WAY2 (Figura 3B) muestran que WAY2 no corresponde a ninguna cepa tipo previamente secuenciada, ya que el valor máximo de dDDH alcanzado es de 28% en las comparaciones con R. opacus DSM 43205^T y R. imtechensis JCM 13270^T, no superando el 70% de dDDH (valor de corte para que dos genomas sean considerados la misma especie). Los valores de dDDH entre algunas cepas tipo validadas superaron este umbral. Este es el caso de *R. biphenylivorans* TG9^T y *R. pyridinivorans* DSM 44555^T (88% de dDDH), *R. equi* DSM 20307^T y *R. hoagii* DSM 20295^T (91% de dDDH), R. qingshengii JCM 15477^T y R. enclensis NIO 1009^T (88 % de dDDH), y R. opacus DSM 43205^T y R. imtechensis JCM 13270^T (81% de dDDH).

Figura 3. (A) Árbol filogenómico basado en las distancias intergenómicas obtenidas con GBDP y el método NJ usando el genoma de *Rhodococcus* sp. WAY2 (rojo) junto con los genomas de 38 cepas tipo de *Rhodococcus*. Genomas cuyos valores en la matriz de %dDDH (**B**) son superiores al 70% están marcados en gris.

Contenido funcional general

La anotación del genoma de WAY2 resultó en 8.236 genes que suponen el 88,23% del tamaño total del genoma (Tabla 5). Del total de genes, 8.154 (99%) son codificantes de proteínas, de las cuales 2.900 (35,57%) están anotadas como proteínas hipotéticas o con función desconocida (Tabla 5).

El cromosoma de WAY2 contiene cuatro operones de rRNA (16S, 23S y 5S rRNAs) y 59 genes que codifican todas las proteínas ribosomales (36 proteínas asociadas a la subunidad 50S y 20 asociadas a la subunidad 30S), excepto el gen de la proteína S21p (Anexo 8). El genoma contiene 52 genes codificantes de tRNAs: 51 en el cromosoma y una copia del tRNA^{Gly}CCC también presente en el plásmido pRWAY01, correspondientes a los 20 aminoácidos proteinogénicos, y 18 ncRNAs: 14 en el cromosoma, tres en el plásmido pRWAY02 y uno en el plásmido pRWAY03 (Tabla 5).

El cromosoma de WAY2 contiene el gen que codifica para el iniciador cromosómico de la replicación (*dnaA*) y los genes que codifican las proteínas implicadas en la replicación, incluyendo DNA helicasa (*dnaB*), proteína de unión a DNA monocatenario (*ssb*), DNA primasa (*dnaG*), DNA ligasa (*lig*), DNA girasa (*gyrAB*), DNA polimerasa I y DNA polimerasa III, entre otras (Anexo 9). Por otro lado, varias copias del sistema *parAB* de partición y segregación del cromosoma/plásmidos están presentes en todos los replicones. Una copia de *parA* está presente en cada uno de los replicones, mientras que copias de *parB* únicamente se encuentran en el cromosoma y el plásmido pRWAY01 (Anexo 9). El plásmido pRWAY04 contiene, además, una copia del sistema *repAB*, implicado en la iniciación de la replicación en plásmidos circulares (Anexo 9).

El contenido funcional del genoma y su distribución en los cinco replicones según la clasificación de las proteínas anotadas en COGs (*clusters of orthologous groups*), asignados mediante eggNOG, se muestran en la Figura 4 y Anexo 10. Algunos de estos COGs están claramente sobrerrepresentados en el cromosoma en comparación con los plásmidos, como es el caso del COG J, traducción y estructura de los ribosomas (2,67% en el cromosoma frente al 0% en los replicones pRWAY01, pRWAY02 y pRWAY04 y 0,25% en el replicón pRWAY03), del COG K, transcripción (8,39% en el cromosoma frente a 5,72%, 3,40%, 4,20% y 0% en pRWAY01, pRWAY02, pRWAY03 y pRWAY04, respectivamente), del COG E, transporte y metabolismo de aminoácidos (5,91% en el cromosoma frente a 0,83%, 0,76%, 0,25% y 0% en pRWAY01, pRWAY02, pRWAY04, respectivamente) y del COG F, transporte y metabolismo de nucleótidos (1,37% en el cromosoma frente a 0,18%, 0%, 0,25% y 0% en pRWAY01, pRWAY02, pRWAY03 y pRWAY04, respectivamente).

La categoría que incluye las funciones de replicación, recombinación y reparación del DNA (categoría L) está notablemente sobrerrepresentada en los plásmidos pRWAY01 (7,20%), pRWAY02 (20,79%) y pRWAY03 (5,19%) frente al cromosoma, donde esta categoría representa un 3,03%. No obstante, esta categoría corresponde sobre todo a transposasas, integrasas y recombinasas anotadas en los plásmidos, que son mucho menos abundantes en el cromosoma.

La categoría correspondiente al metabolismo secundario (COG Q) está más o menos equitativamente representada en el cromosoma y en los plásmidos lineales (4,05%, 3,97%, 5,10% y 1,48% en el cromosoma, pRWAY01, pRWAY02 y pRWAY03, respectivamente). Dentro de las proteínas anotadas pertenecientes a esta categoría, se incluyen, por ejemplo, las proteínas implicadas en la degradación de compuestos aromáticos, cuyas rutas presentes en WAY2 se describen más adelante en este trabajo.

El plásmido circular pRWAY04 tiene solo 20 proteínas anotadas, de las cuales la mayor parte (80%) son hipotéticas o con función desconocida (COG S).

Figura 4. Distribución funcional de los cinco replicones de WAY2 basada en la clasificación de las proteínas anotadas en COGs. COGs de almacenamiento y procesado de la información genética: procesado de RNA (A), estructura y dinámica de la cromatina (B), traducción y estructura de los ribosomas (J), transcripción (K), replicación, recombinación y reparación de DNA (L). COGs de procesos celulares: división celular y partición de cromosoma (D), síntesis de envueltas celulares (M), movilidad celular y secreción (N), modificación post-traduccional (O), mecanismos de transducción de señales (T), transporte intracelular (U), mecanismos de defensa (V), estructuras externas (W). COGs de metabolismo: producción y conversión de energía (C), transporte y metabolismo de aminoácidos (E), transporte y metabolismo de nucleótidos (F), transporte y metabolismo de carbohidratos (G), metabolismo de coenzimas (H), metabolismo de lípidos (I), transporte y metabolismo de iones inorgánicos (P), metabolismo secundario (Q). Genes que codifican proteínas con función desconocida: S. Genes sin asignación en COGs fueron también incluidos en la categoría S.

Caracterización funcional

Los resultados del crecimiento de WAY2 en diferentes sustratos y condiciones de temperatura, pH y salinidad se indican en la Tabla 6. El rango de temperatura a la cual WAY2 es capaz de crecer oscila entre 5°C y 37°C, siendo entre 20 y 37°C la temperatura óptima de crecimiento (48 h). *Rhodococcus* sp. WAY2 es capaz de crecer a pH 6, pero no a pH 5, y tolerar un 1% de NaCl (Tabla 6).

Respecto a los compuestos aromáticos evaluados como fuente de carbono y energía, se observó que WAY2 es capaz de crecer usando bifenilo, naftaleno, xileno y ácido benzoico (Tabla 6). En etilbenceno, fenantreno, dibenzofurano y tolueno no se observó crecimiento, pero se apreció un cambio de color (amarillo) en el medio de cultivo, coloración que no se observó en controles negativos únicamente con el medio y el compuesto. Respecto a los *n*-alcanos evaluados, WAY2 es capaz de crecer usando pentadecano, heptadecano y tetracosano como fuente de carbono y energía, pero no en hexano. También se observó crecimiento en 1-butanol, pero no en 2-butanol ni en metanol (Tabla 6).

Característica	1	2	3	4	5	Característica	1	2	3	4	5
Utilización de a:						Rango de T ^a de crec	imiento) ^a :			
Bifenilo	+	n	n	n	n	5°C	+	n	n	n	n
Naftaleno	+	n	n	n	n	12°C	+	+	+	+	n
Xileno	+	n	n	n	n	20°C	+	+	+	n	n
Etilbenceno	c	n	n	n	n	28°C	+	-	+	n	+
Fenantreno	c	n	n	n	n	37°C	+	-	-	n	n
Dibenzofurano	c	n	n	n	n	40°C	-	-	-	+	n
Tolueno	c	n	n	n	n						
Ác. benzoico	+	-	n	+	+	Resistencia a (Biolog	g) ^b :				
						рН б	+	n	n	n	n
Hexano	-	n	n	n	n	pH 5	-	n	n	+	n
Pentadecano	+	n	n	n	n	1% NaCl	+	n	n	n	n
Heptadecano	+	n	n	n	n	4% NaCl	-	n	n	n	n
Tetracosano	+	n	n	n	n	8% NaCl	-	n	n	n	n
1-butanol	+	n	n	n	n						
2-butanol	-	n	n	n	n						
Metanol	-	n	n	n	n						

Tabla 6. Caracterización funcional (I) de *Rhodococcus* sp. WAY2 (1) comparado con las cepas tipo *R. marinonascens* DSM 43752 (2), *R. jostii* IFO 16295 (3), *R. wratislavensis* N805 (4) y *R. opacus* DSM 43205 (5), respectivamente.

^a Datos obtenidos mediante crecimiento de WAY2 en placas de PCA a distintas temperaturas o MM+PAS suplementado con distintos compuestos como única fuente de carbono y energía. (+) crecimiento, (-) no crecimiento, (c) cambio de color, (n) no descrito.

^b La sensibilidad a diferentes valores de pH y % de salinidad en las placas GEN III de Biolog fue comparada mediante DO₆₀₀ por triplicado con el control positivo. (+) absorbancia no estadísticamente significativa a un p-valor > 0.05, (-) absorbancia significativamente menor que el control positivo a un p-valor < 0.05.

Datos estadísticos obtenidos mediante ANOVA bidireccional con el test de Dunnett de comparación múltiple. Datos de las cepas 2-5 obtenidos de estudios previos (Helmke & Weyland, 1984; Klatte *et al.*, 1994, Goodfellow *et al.*, 2002; Takeuchi *et al.*, 2002).

Por otro lado, WAY2 es capaz de utilizar como fuente de carbono y energía la mayoría de los hidratos de carbono incluidos en la placa de Biolog (Tabla 7), destacando un mayor crecimiento en glucosa, fructosa, turanosa y ácido N-acetil-neuroamínico, entre otros (p-valor < 0,001 comparado con el control positivo). También se observó crecimiento en las hexosas fosfato y todos los polialcoholes incluidos. Respecto a los aminoácidos empleados, se detectó crecimiento en los ácidos D- y L- aspártico, L-glutámico y L-piroglutámico y en glicil-L-prolina y L-arginina, pero no creció en D- y L-serina, L-alanina y L-histidina. Todos los ácidos carboxílicos, ésteres y ácidos grasos incluidos en la placa de Biolog son utilizados como fuente de carbono y energía por WAY2, exceptuando el ácido D-málico, ácido fórmico y ácido p-hidroxi-fenilacético. Otros sustratos en los que se observó crecimiento son: gelatina, pectina, ácido D-glucónico, ácido D-glucurónico, ácido quínico y ácido D-sacárido. De los antibióticos y agentes bacteriostáticos incluidos en la placa de Biolog, WAY2 resiste a aztreonam, ácido nalidíxico y ácido fusídico. Otros compuestos a los que WAY2 tampoco es sensible son: lactato de sodio al 1%, violeta de tetrazolio, cloruro de litio y telurito de potasio.

Tabla 7. Caracterización funcional (II) de *Rhodococcus* sp. WAY2 (1) comparado con las cepas tipo *R. marinonascens* DSM 43752 (2), *R. jostii* IFO 16295 (3), *R. wratislavensis* N805 (4) y *R. opacus* DSM 43205 (5), respectivamente.

Utilización de (Biolog) ^b : 1% Sodium Lactate + - n - D-Sorbitol ++ - + + Fusidic Acid ++ n n n n D-Sorbitol ++ - + + + Fusidic Acid ++ n n n n n D-Sorbitol ++ - +	Característica	1	2	3	4	5	Característica	1	2	3	4	5
1% Sodium Lactate + - - n - D-Sorbitol ++ - + <th< th=""><th>Resistencia a (Biolog)^a:</th><th></th><th></th><th></th><th></th><th></th><th>Utilización de (Biolog)^b:</th><th></th><th></th><th></th><th></th><th></th></th<>	Resistencia a (Biolog) ^a :						Utilización de (Biolog) ^b :					
Fusidic Acid $++$ n n n n n n n D-Mannitol $+$ $ +$ $+$ <	1% Sodium Lactate	+	-	-	n	-	D-Sorbitol	++	-	-	+	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fusidic Acid	++	n	n	n	n	D-Mannitol	+	-	+	+	+
Troleanomycin - n n n myo-Inositol +<	D-Serine	-	n	n	n	n	D-Arabitol	+	-	n	-	+
Rifamycin SV - - n + n Glycerol ++ - - + + Minocycline - n n n n D-Glucose-6PO ₄ ++ n n n n n Lincomycin - n n n n D-Fructose-6PO ₄ ++ n n n n Guanidine HCl - n n n n D-Serine - n n n n Niaproof 4 - n n n n D-Serine - n n n Vancomycin - - n n n Glycyl-L-Proline + - - + n Tetrazolium Blue - n n n n L-Alanine + n n n n Nalidixic Acid + n n n n n L-Arginine + n n n Natitiwin Chloride + n <td>Troleanomycin</td> <td>-</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>myo-Inositol</td> <td>+</td> <td>+</td> <td>-</td> <td>+</td> <td>+</td>	Troleanomycin	-	n	n	n	n	myo-Inositol	+	+	-	+	+
Minocycline - n n n n n n D-Glucose-6PO ₄ + n	Rifamycin SV	-	-	n	+	n	Glycerol	++	-	-	+	+
Linconycin - n n n n n n n D-Fructose-6PO ₄ ++ n n - - Guanidine HCl - n n n n n n D-Aspartic Acid ++ n <td>Minocycline</td> <td>-</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>D-Glucose-6PO₄</td> <td>+</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td>	Minocycline	-	n	n	n	n	D-Glucose-6PO ₄	+	n	n	n	n
Guandine HCl - n n n n n n n D-Aspartic Acid ++ n <th< td=""><td>Lincomycin</td><td>-</td><td>n</td><td>n</td><td>n</td><td>n</td><td>D-Fructose-6PO₄</td><td>++</td><td>n</td><td>n</td><td>-</td><td>-</td></th<>	Lincomycin	-	n	n	n	n	D-Fructose-6PO ₄	++	n	n	-	-
Niaproof 4-nnnnnD-Serine-nnnnVancomycinn+nGelatin++nnnTetrazolium Violet++nnnnnGlycyl-L-Proline++nnTetrazolium Blue-nnnnnL-Alanine-+n+nnNalidixic Acid+nnnnnL-Alanine-+nnnnnLithium Chloride+nnnnnnL-Aspartic Acid++nn+nnPotassium Tellurite+-nnnnnL-Glutamic Acid++nnnnnSodium Butyrate-nnnnnL-Serine+nnDextrin+nnnnnnL-Serine+nnnnD-Maltosennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn <td>Guanidine HCl</td> <td>-</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>D-Aspartic Acid</td> <td>++</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td>	Guanidine HCl	-	n	n	n	n	D-Aspartic Acid	++	n	n	n	n
Var. \cdot \cdot n $+$ n Gelatin $++$ $ n$ n n Tetrazolium Violet $++$ n <	Niaproof 4	-	n	n	n	n	D-Serine	-	n	n	n	n
Tetrazolium Violet $++$ nnnnnGlycyl-L-Proline $+$ $ +$ n h Tetrazolium Blue $-$ nnnnnL-Alanine $ +$ n $+$ n h nNalidixic Acid $+$ nnnnnnL-Arginine $+$ nnnnnLithium Chloride $+$ nnnnnnL-Aspartic Acid $++$ nn $ -$ Potassium Tellurite $+$ $-$ nnnnL-Glutamic Acid $++$ nnn $ -$ Aztreonam $+$ nnn <td< td=""><td>Vancomycin</td><td>-</td><td>-</td><td>n</td><td>+</td><td>n</td><td>Gelatin</td><td>++</td><td>-</td><td>-</td><td>n</td><td>n</td></td<>	Vancomycin	-	-	n	+	n	Gelatin	++	-	-	n	n
Tetrazolium Blue-nnnnnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhnn <td>Tetrazolium Violet</td> <td>++</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>Glycyl-L-Proline</td> <td>+</td> <td>-</td> <td>-</td> <td>+</td> <td>n</td>	Tetrazolium Violet	++	n	n	n	n	Glycyl-L-Proline	+	-	-	+	n
Nalidixic Acid+nn	Tetrazolium Blue	-	n	n	n	n	L-Alanine	-	+	n	+	n
Lithium Chloride+nn <td>Nalidixic Acid</td> <td>+</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>L-Arginine</td> <td>+</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td>	Nalidixic Acid	+	n	n	n	n	L-Arginine	+	n	n	n	n
Potassium Tellurite+-nnn	Lithium Chloride	+	n	n	n	n	L-Aspartic Acid	++	n	n	+	n
Aztreonam+nnnnnnl-Histidine-nnnnnSodium Butyrate-nnnnnL-Pyroglutamic Acid++nnnnnSodium Bromate-nnnnnL-Serine+nnnnUtilización de (Biolog) ^b :Pectin+nnn	Potassium Tellurite	+	-	n	n	n	L-Glutamic Acid	++	n	n	-	-
Sodium Butyrate-nn <td>Aztreonam</td> <td>+</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td> <td>L-Histidine</td> <td>-</td> <td>n</td> <td>n</td> <td>n</td> <td>n</td>	Aztreonam	+	n	n	n	n	L-Histidine	-	n	n	n	n
Sodium Bromate-nnnnnL-Serine+nnn <th< td=""><td>Sodium Butyrate</td><td>-</td><td>n</td><td>n</td><td>n</td><td>n</td><td>L-Pyroglutamic Acid</td><td>++</td><td>n</td><td>n</td><td>n</td><td>n</td></th<>	Sodium Butyrate	-	n	n	n	n	L-Pyroglutamic Acid	++	n	n	n	n
Utilización de (Biolog)*:Pectin+nnnnnDextrin+nn1D-Maltose+++D-Gluconic Acid-nnnnnD-Trehalose+++D-Gluconic Acid++nnnnn	Sodium Bromate	-	n	n	n	n	L-Serine	-	-	-	+	n
Utilización de (Biolog) ^b :N-Galacturonic Acin-nnDextrin+nn L -Galactonic Acid Lactone-nnnnD-Maltose+++D-Gluconic Acid++nnnnnD-Trehalose+++D-Glucuronic Acid++nnnn							Pectin	+	n	n	n	n
Dextrin+nnL-Galactonic Acid Lactone-nnnD-Maltose+++D-Gluconic Acid++nnnnD-Trehalose+++D-Glucuronic Acid++nnnn	Utilización de (Biolog) ^b :						N-Galacturonic Acin	-	n	-	-	n
Dextrin+nnnnnnD-Maltose+++D-Gluconic Acid++nnnnD-Trehalose+++D-Glucuronic Acid++nnnn							L-Galactonic Acid					
D-Maltose++D-Gluconic Acid++nnnnD-Trehalose+++D-Glucuronic Acid++nnnn	Dextrin	+	n	n	-	-	Lactone	-	n	n	n	n
D-Trehalose + + D-Glucuronic Acid ++ n n n n	D-Maltose	-	-	+	+	+	D-Gluconic Acid	++	n	n	n	n
	D-Trehalose	-	-	-	+	+	D-Glucuronic Acid	++	n	n	n	n
D-Cellobiose + - n Glucuronamide - n n n n	D-Cellobiose	+	-	n	-	-	Glucuronamide	-	n	n	n	n
Gentiobiose - n n n - Mucic Acid - n n n n	Gentiobiose	-	n	n	n	-	Mucic Acid	-	n	n	n	n
Sucrose + + Quinic Acid ++ n + + n	Sucrose	-	-	-	+	+	Quinic Acid	++	n	+	+	n
D-Turanose ++ - n + + D-Saccharic Acid ++ n n n n	D-Turanose	++	-	n	+	+	D-Saccharic Acid	++	n	n	n	n
Stachyose + n n n n p-Hydroxy-Phenylacetic Acid - n n n n	Stachyose	+	n	n	n	n	p-Hydroxy-Phenylacetic Acid	-	n	n	n	n
D-Raffinose n + + Methyl Pyruvate + n n n n	D-Raffinose	-	-	n	+	+	Methyl Pyruvate	+	n	n	n	n
α-D-Lacticse + - n - + D-Lactic Acid Methyl Ester ++ n n n n	α-D-Lactose	+	-	n	-	+	D-Lactic Acid Methyl Ester	++	n	n	n	n
D-Melibiose + - n + + L-Lactic Acid ++ n n n n	D-Melibiose	+	-	n	+	+	L-Lactic Acid	++	n	n	n	n
β-Methyl-DGlucoside - n n n n Citric Acid + - n + +	β-Methyl-DGlucoside	-	n	n	n	n	Citric Acid	+	-	n	+	+
D-Salicin - n n + - α -Keto-Glutaric Acid ++ n n n n	D-Salicin	-	n	n	+	-	α-Keto-Glutaric Acid	++	n	n	n	n
N-Acetyl-DGlucosamine - n + + + D-Malic Acid - n n n n	N-Acetyl-DGlucosamine	-	n	+	+	+	D-Malic Acid	-	n	n	n	n
N-Acetyl-B-DMannosamine + n n n n L-Malic Acid ++ n n	N-Acetyl-β-DMannosamine	+	n	n	n	n	L-Malic Acid	++	n	n	-	-
N-Acetyl-DGalactosamine + n n n n Bromo-Succinic Acid ++ n n n n	N-Acetyl-DGalactosamine	+	n	n	n	n	Bromo-Succinic Acid	++	n	n	n	n
N-Acetvl Neuraminic Acid ++ n n n n Tween 40 ++ n n n n	N-Acetyl Neuraminic Acid	++	n	n	n	n	Tween 40	++	n	n	n	n
α -D-Glucose ++ + + n + γ -Amino-Butryric Acid + n n + +	α-D-Glucose	++	+	+	n	+	v-Amino-Butrvric Acid	+	n	n	+	+
D-Mannose + + n + + α -Hydroxy-Butyric Acid ++ n n - n	D-Mannose	+	+	n	+	+	α-Hvdroxy-Butvric Acid	++	n	n	-	n
D-Fructose ++ n n n + B-Hydroxy-D.Lbutyric Acid ++ n n n n	D-Fructose	++	n	n	n	+	β-Hydroxy-D,Lbutyric Acid	++	n	n	n	n
D-Galactose $ +$ α -Keto-Butyric $++$ n n n n	D-Galactose	_	-	-	-	+	α-Keto-Butvric	++	n	n	n	n
3-Methyl Glucose - n n n n Acetoacetic Acid +++ n n n n	3-Methyl Glucose	-	n	n	n	n	Acetoacetic Acid	++	n	n	n	n
D-Fucose $+$ n n n Propionic Acid $+$ n n n -	D-Fucose	+	n	n	n	n	Propionic Acid	+	n	n	n	-
L-Fucose + n n n Acetic Acid ++ + n + +	L-Fucose	+	n	n	n	n	Acetic Acid	++	+	n	+	+
L-Rhamose + - Formic Acid - n n n	L-Rhamnose	_	-	-	+	-	Formic Acid	-	n	n	n	n
Inosine + n n n n	Inosine	+	n	n	n	n			-	-	-	-

^a La sensibilidad a diferentes antibióticos o agentes bacteriostáticos en las placas GEN III de Biolog fue comparada mediante DO_{600} por triplicado con el control positivo. (++) mayor absorbancia con p-valor < 0,05, (+) absorbancia no estadísticamente significativa a un p-valor > 0.05, (-) absorbancia significativamente menor que el control positivo a un p-valor < 0.05, (n) no descrito.

^b La utilización de distintos sustratos en las placas GEN III de Biolog fue comparado mediante DO₆₀₀ por triplicado con el control negativo. (++) mayor absorbancia con un p-valor < 0.001, (+) mayor absorbancia con un p-valor < 0.05, (-) absorbancia no estadísticamente significativa (p-valor > 0.05), (n) no descrito.

Datos estadísticos obtenidos mediante ANOVA bidireccional con el test de Dunnett de comparación múltiple. Datos de las cepas 2-5 obtenidos de estudios previos (Helmke & Weylan, 1984; Klatte *et al.*, 1994, Goodfellow *et al.*, 2002; Takeuchi *et al.*, 2002).

Metabolismo central

El cromosoma de WAY2 codifica íntegramente las rutas típicas en bacterias del metabolismo central de carbohidratos, incluyendo glicólisis mediante las rutas EMP (Embden–Meyerhof–Parnas) y ED (Entner-Doudoroff), la ruta de las pentosas fosfato, gluconeogénesis, el ciclo de los ácidos tricarboxílicos (TCA), la ruta del glioxilato y la degradación y síntesis de glucógeno. Además, los genes implicados en la β-oxidación de ácidos grasos también se encuentran presentes en el cromosoma de WAY2. Algunas copias de los genes implicados en estas rutas también están presentes en los plásmidos pRWAY01 y pRWAY02. Los genes que codifican las enzimas de las rutas mencionadas están especificados en la Tabla 8 (ver Anexo 11 con información extendida).

Rutas centrales de degradación de compuestos aromáticos

El genoma de WAY2 codifica varias rutas completas del metabolismo central de degradación de compuestos aromáticos. La ruta del β -ketoadipato (rotura en *orto* o intradiol del protocatecuato y catecol), codificada por los genes *pcaGHBC* (protocatecuato) y *catABC* (catecol) respectivamente, se encuentran presentes en el cromosoma de WAY2, aunque existen varias copias de *catABC* y *pcaD* (común a protocatecuato y catecol) y el plásmido pRWAY02 también presenta una copia de *pcaD*. Los genes que codifican las enzimas esta ruta están especificados en la Tabla 8 (ver Anexo 11 con información extendida). Por otro lado, la ruta de degradación de 2-hidroxipentadienoato a acetyl-CoA, está codificada por los genes *bphEFG*, de los cuales hay varias copias tanto en el cromosoma como en los plásmidos pRWAY01 y pRWAY02 (Tabla 8). La degradación por rotura en *meta* (extradiol) de catecol a 2-hidroxipentadienoato está codificada por *catE*, presente en pRWAY01 y pRWAY02, y por el gen de la 2-hidroximuconato semialdehído hidrolasa (HMSH), presente en pRWAY02 (Tabla 8).

Asimismo, el genoma de WAY2 contiene genes implicados en las rutas de degradación de otros compuestos aromáticos del metabolismo central. La degradación de gentisato a fumarato y piruvato está codificada por los genes *nagI*, del cual hay dos copias en el cromosoma, una en pRWAY01 y otra en pRWAY02, y *nagL*, del cual hay una copia en el cromosoma. La degradación de homogentisato a acetato y fumarato está codificada por los genes *fahA* y *hmgA*, presentes en el cromosoma. Finalmente, la degradación de homoprotocatecuato por rotura en *meta* (extradiol) está codificada por del gen *hpcE*, presentes en el cromosoma (Tabla 8).

Ruta	Replicón	Genes
Metabolismo central de carbohidratos		
Metabolismo del glucógeno	Cromosoma	pgm, galU, glgA glgB1-2, glgC
Gluconeogénesis	Cromosoma	glpX, pck, eno, fba, gap1-2, gpmA, pgk ppgK, tpiA, pgi1-2
Glicólisis ED	Cromosoma	eda, edd, zwf1-4, pgl
	pRWAY01	pgl
Glicólisis EMP	Cromosoma	pfkA, pyk, eno, fba, gap1-2, gpmA, pgk ppgK, tpiA, pgi1-2
Pentosas fosfato	Cromosoma	pgl, pgi1-2, gnd1-4, rpe, rpiB, tal, tkt1-3
	pRWAY01	pgl, gnd, tal, tkt
Glioxilato	Cromosoma	aceA, glcB, mclA, citA1-2, gltA1-2, mdh1-2
TCA	Cromosoma	acnA, fumB, glgP, icd1-2, korAB, lpd1-5, mqo, sdhA1-5, sdhB, sucCD, citA1-2, gltA1-2, mdh1-2
β-oxidación de ácidos grasos		
β-oxidación	Cromosoma	acx, fadA1-29, fadB1-71, fadD1-7, fadE1-84, fadN1-10
	pRWAY01	fadA1-6, fadB1-11, fadE1-9
	pRWAY02	fadA1-3, fadE1-2
Rutas centrales de degradación de compuestos	aromáticos	
β-ketoadipato	Cromosoma	catA1-5, catB1-2, catC, pcaD1-4
(Rotura intradiol del catecol)	pRWAY02	pcaD
β-ketoadipato	Cromosoma	pcaB, pcaC, pcaG, pcaH, pcaD1-4
(Rotura intradiol del protocatecuato)	pRWAY02	pcaD
Rotura extradiol del catecol	Cromosoma	xylH1-2
	pRWAY01	catE, HMSH ^a
	pRWAY02	catE
Degradación del 2-hidroxipentadienoato	Cromosoma	bphE1-3, bphF1-3, bphG1-3
	pRWAY01	bphE1-3, bphF1-3, bphG1-2
	pRWAY02	bphE1-2, bphF1-2, bphG1-3
Degradación del gentisato	Cromosoma	nagI1-2, nagL
	pRWAY01	nagI
	pRWAY02	nagI
Degradación del homogentisato	Cromosoma	fahA, hmgA
Rotura extradiol del homoprotocatecuato	Cromosoma	hpcE1-2

Tabla 8. Genes implicados en el metabolismo central en Rhodococcus sp. WAY2.

^aHMSH: 2-hidroximuconato semialdehído hidrolasa.

Metabolismo periférico

Rutas periféricas de degradación de compuestos aromáticos

El genoma de WAY2 contiene varias rutas periféricas completas putativamente implicadas en la degradación de múltiples compuestos aromáticos. Por un lado, el clúster de genes bph, implicado principalmente en la degradación de bifenilo a benzoato y 2hydroxipentadienoato, se encuentra presente en el plásmido pRWAY01 (bphA1aA2aA3A4BCD1), aunque otras copias de algunos de estos genes (bphA1bA2b y bphD2) también están presentes en este plásmido (Tabla 9 y Anexo 12). Por otro lado, el clúster de genes etb, implicado en la degradación de etilbenceno y bifenilo, entre otros compuestos, está presente en el plásmido pRWAY02 (etbA1aA2aA3A4BDST), aunque adicionalmente copias de algunos estos genes (etbA1bA2b) están también presentes en este plásmido en forma de clúster (Tabla 9 y Anexo 12). Finalmente, el plásmido pRWAY02 también contiene una copia del clúster de genes nah (nahA1A2BC), implicado principalmente en la degradación de naftaleno a salicilato (Tabla 9 y Anexo 12).

Adicionalmente, distintas copias de genes que putativamente podrían tener una implicación en la degradación de estos y otros compuestos se encuentran distribuidos en el cromosoma, como *nahD*, *bphC1-2* y *bphD1-3* (Tabla 9 y Anexo 12).

Por otro lado, el clúster de genes *tmoABCDEF*, que codifica para las distintas subunidades de la enzima tolueno 4-monooxigenasa, implicada en la conversión de tolueno a *p*-cresol, se encuentra también en el plásmido pRWAY01 de WAY2, aunque los genes que codifican para la degradación de *p*-cresol (*pchCXFA*) no se han encontrado en ninguno de los replicones de WAY2 (Tabla 9 y Anexo 12).

Finalmente, el cromosoma de WAY2 también presenta todos los genes implicados en la degradación de salicilato a catecol (tres copias de *nahG*), la degradación de benzoato a protocatecuato (una copia de *pobA*) y la degradación de benzoato a catecol (una copia de *benABCD*) (Tabla 9, Anexo 12).

Ruta	Replicón	Genes
Degradación benceno	Cromosoma	dmpP
Degradación de benzoato	Cromosoma	benABCD, fadM1, fadM2, pobA
Degradación de bifenilo y etilbenceno	Cromosoma	bphC1, bphC2D1, bphD2-3
	pRWAY01	bphA1aA2aA3A4BCD1, bphA1bA2b, bphD2
	pRWAY02	bphCD1, bphD2, etbA1aA2aA4BST, etbA1bA2bA3D
Degradación de naftaleno	Cromosoma	nahD
	pRWAY02	nahA1A2BC
Degradación de salicilato	Cromosoma	nahG1-3
Degradación de tolueno	pRWAY01	tmoABCDEF

 Tabla 9. Genes de Rhodococcus sp. WAY2 implicados en el metabolismo periférico de compuestos

Filogenia de BphA1, NahA1 y EtbA1

Para analizar la relación filogenética de las dioxigenasas hidroxilantes de anillos de las rutas descritas anteriormente (BphA1a, BphA1b, EtbA1a, EtbA1b y NahA1), las secuencias de aminoácidos de la subunidad α de estas enzimas presentes en WAY2 se compararon con 12 dioxigenasas bien caracterizadas de otras especies, donde se ha descrito previamente su implicación en la degradación de compuestos aromáticos. Mediante el análisis filogenético basado en ML y el dendrograma resultante (Figura 5), se observan cuatro clústeres claramente diferenciados, todos ellos con un valor de bootstrap de 100. Uno de estos clústeres agrupa las EtbA1a y EtbA1b de WAY2 junto con las EtbA1a y EtbA1b de R. jostii RHA1 y las AkbA1a y AkbA1b de Rhodococcus sp. DK17, presentando una identidad de secuencia del 99,78%. Por otro lado, la BphA1a de WAY2 se agrupa junto con las BphA1 de R. erytropholis TA431, Rhodococcus sp. R04 (R04) y *Rhodococcus* sp. HA99, siendo virtualmente idéntica a la BphA1 de R04 (100% identidad de secuencia). Sin embargo, la BphA1b de WAY2 se encuentra en un clúster distinto, agrupada con NahA1 de WAY2, R. opacus SAO101 y Rhodococcus sp. NCBI 12038, donde la identidad de secuencia entre la BphA1b y NahA1 de WAY2 es del 99,36%. Por último, el clúster de BphA1 de especies bien caracterizadas por su potencial degradador de PCBs (BphA1 de R. jostii RHA1, Paraburkholderia xenovorans LB400 y Pseudomonas pseudoalcaligenes KF707) no contiene ninguna de las Bph/Etb/Nah de WAY2.

Figura 5. Árbol filogenético sin raíz basado en ML de las secuencias de aminoácidos de las dioxigenasas BphA1, EtbA1, NahA1 y AkbA1 de WAY2 (rojo), *P. xenovorans* LB400, *P. pseudoalcaligenes* KF707, *R. jostii* RHA1, *Rhodococcus* sp. DK17, *R. erythropolis* TA431, *Rhodococcus* sp. HA99, *Rhodococcus* sp. R04, *R. opacus* SAO101 y *Rhodococcus* sp. NCIMB 12038. Los valores de bootstrap están indicados encima de los nodos.

Degradación de alcanos

El cromosoma de WAY2 contiene diferentes copias de genes implicados en la degradación de alcanos. El gen *alkB*, que codifica una alcano 1-monooxigenasa, está presente una única vez, mientras que el gen *ladA*, que codifica una alcano monooxigenasa de cadena larga, está presente en tres copias en el cromosoma (Tabla 10, Anexo 12).

Por otro lado, el genoma de WAY2 contiene, además, cuatro copias del clúster de genes que codifican las diferentes subunidades que componen la enzima metano monooxigenasa, implicada en la degradación de metano y otros alcanos de bajo número de carbonos. Tres de estos clústeres corresponden a la monooxigenasa que actúa sobre el metano en disolución, de los cuales uno se sitúa en el cromosoma (*mmoXYBC*) y los otros dos en el plásmido pRWAY02 (*mmoX1Y1B1C1* y *mmoX2Y2B2C2Z*). El clúster restante corresponde a la monooxigenasa que actúa sobre el metano particulado, presente en el replicón pRWAY02 (*pmoABC*) (Tabla 10, Anexo 12).

Tabla 10. Genes implicados en la degradación de alcanos en Rhodococcus sp. WAY2.

Ruta	Replicón	Genes
Degradación de <i>n</i> -alcanos C>20	Cromosoma	ladA1-3
Degradación de <i>n</i> -alcanos C ₅₋₁₂	Cromosoma	alkB
Utilización de metano	Cromosoma	mmoXYBC
	pRWAY02	mmoX1Y1B1C1, mmoX2Y2B2C2Z, pmoABC

DISCUSIÓN

El genoma de *Rhodococcus sp.* WAY2 contiene 8,4 Mpb organizadas en un cromosoma circular, tres plásmidos lineales y un plásmido circular pequeño (Tabla 5). El tamaño del genoma de WAY2 está dentro del rango de las cepas de *Rhodococcus* cuyos genomas han sido secuenciados por completo hasta la fecha (3-10 Mpb) (Anexo 3). La presencia de genomas multipartitos, con varios elementos extracromosómicos de topología lineal, circular o combinaciones de ambas ocurre habitualmente en este género. Por ejemplo *R. opacus* B4 presenta un cromosoma y dos plásmidos lineales y tres plásmidos circulares (Na *et al.*, 2005a; Na *et al.*, 2005b) y *R. erythropolis* PR4 presenta un cromosoma y dos plásmidos circulares estando dentro de los valores del género (61-71%) (Anexo 3).

Los tres replicones lineales de WAY2 (pRWAY01, pRWAY02 y pRWAY03) disponen de regiones teloméricas típicas de actinobacterias, caracterizadas por tener motivos centrales GCTXCGC flangueados por TIRs y cuyas secuencias están altamente conservadas entre sí y que presentan alta homología de secuencia frente a las regiones teloméricas bien caracterizadas de otros replicones lineales de Rhodococcus (Shimizu et al., 2001; König et al., 2004; Warren et al., 2004; McLeod et al., 2006) (Anexos 6 y 7). Aunque las regiones teloméricas de los plásmidos pRWAY01 y pRWAY02 son homólogas entre sí, el extremo derecho de pRWAY03 es distinto, presentando TIRs con distinta secuencia. Esta disparidad entre las secuencias teloméricas dentro de un mismo replicón no es inusual en Rhodococcus, ocurriendo también en los plásmidos pRHL2 de R. jostii RHA1 y pROB01 de R. opacus B4. Estas diferencias sugieren que pRWAY03 podría tener un origen diferente al del resto de replicones lineales de WAY2, en el que han podido participar diferentes eventos de recombinación y linealización, como ya ha sido propuesto (McLeod et al., 2006). Los replicones lineales de WAY2, además, contienen varias proteínas putativas asociadas a telómeros (Tap) y homólogos lejanos de proteínas terminales (Tpg) presentes en otras actinobacterias (Anexo 7). Por ejemplo, estas proteínas comparten entre 33 y 37% de identidad de secuencia con las Tap/Tpg bien caracterizadas en el plásmido lineal pAL1 de Artrobacter (Kolkenbrock et al., 2010). Esta baja conservación de las secuencias Tpg ha sido descrita previamente en el género Streptomyces (Huang et al., 1998; Zhang et al., 2006).

Los resultados obtenidos mediante el análisis filogenético del 16S rRNA de todas las cepas tipo del género *Rhodococcus* (Figura 3), así como el análisis filogenómico basado en GBDP (Figura 3), están en concordancia con filogenias previamente publicadas del género (Takeuchi *et al.*, 2002; Creason *et al.*, 2014; Anastasi *et al.*, 2016; Sangal *et al.*, 2019). A pesar de que *Rhodococcus* sp. WAY2 se sitúa próximo a las cepas tipo *R. marinonascens* NBRC 14363^T, *R. jostii* NBRC 16295^T, *R. wratislaviensis* NBRC 100605^T y *R. opacus* DSM 43205^T (Figuras 2 y 3), las comparaciones mediante dDDH de WAY2 frente a estas cepas tipo secuenciadas permite concluir que WAY2 es una nueva especie, dado que ninguna de las comparaciones entre los genomas más próximos supera el 70% de dDDH (valor de corte para asignación en misma especie).

Por otro lado, la capacidad de WAY2 de usar distintos sustratos como fuente de carbono, analizada mediante microplacas de Biolog, muestra una clara distinción comparada con estas cepas tipo cercanas previamente publicadas (Tabla 7). Mientras que WAY2 es capaz de crecer con D-celobiosa, D-turanosa, α-D-Lactosa, D-melibiosa, Dsorbitol, D-manitol, D-arabitol, glicerol, gelatina, glicil-L-prolina, ácido cítrico y ácido benzoico, R. marinonascens NBRC 14363^T no es capaz de crecer en ninguno de estos sustratos (Helmke & Weyland, 1984), mientras que R. wratislaviensis NBRC 100605^T solo puede usar D-turanosa, D-melibiosa, D-sorbitol, D-manitol, glicerol, glicil-Lprolina, ácido cítrico y ácido benzoico (Goodfellow et al., 2002). Rhodococcus sp. WAY2 también puede utilizar dextrina, D-fructosa-6PO4, ácido L-glutámico y ácido L-málico, donde no son capaces de crecer ni R. wratislaviensis NBRC 100605^T (Goodfellow et al., 2002) ni R. opacus DSM 43205^T (Klatte et al., 1994). Sin embargo, WAY2 no crece en N-acetil-D-glucosamina, que sí que puede ser utilizado por R. jostii NBRC 16295^T (Takeuchi et al., 2002), R. wratislaviensis NBRC 100605^T (Goodfellow et al., 2002) y R. opacus DSM 43205^T (Klatte et al., 1994), ni en L-alanina, donde sí pueden crecer R. marinonascens NBRC 14363^T (Helmke & Weyland, 1984) y R. wratislaviensis NBRC 100605^T (Goodfellow *et al.*, 2002). Además, aunque la temperatura óptima de crecimiento de WAY2 esté entre 20-28°C, esta cepa es capaz de crecer con temperaturas inferiores (hasta 5°C) y con temperaturas superiores (hasta 37°C) (Tabla 6). Este amplio rango de temperatura a la cual puede crecer no resulta extraño teniendo en cuenta que se han aislado cepas de Rhodococcus de ambientes que abarcan temperaturas extremadamente variables, desde desiertos (Radwan et al., 1995) hasta glaciares (Bej et al., 2000; Whyte et al., 2002; Ruberto et al., 2005), incluyendo también suelos de zonas templadas (Margesin et al., 2003; Andreoni et al., 2004). Sin embargo, R. marinonascens NBRC 14363^T no crece con temperaturas superiores a 20°C (Helmke & Weyland, 1984).

Estos resultados demuestran que WAY2 no solo está filogenéticamente distante de otras cepas tipo del género previamente descritas, sino que además difiere fenotípicamente de ellas, siento congruente con la adscripción de WAY2 a una nueva especie.

El genoma de WAY2 contiene 8.236 genes (88,23% del tamaño del genoma), de los cuales 8.154 son codificantes de proteínas (Tabla 5), estas cifras son similares a las de otros genomas de *Rhodococcus* que tienen un tamaño similar al de WAY2 (Anexo 3). El cromosoma de WAY2 contiene los genes implicados en la replicación y partición del cromosoma (Anexo 9) y está enriquecido en los COGs de transcripción (COG K) y traducción (COG J) frente al resto de replicones (Figura 4 y Anexo 10). Además, el cromosoma de WAY2 contiene cuatro operones de rRNA (16S, 23S y 5S rRNAs) y 59 genes que codifican para todas las proteínas ribosomales (COG J), excepto el gen de la proteína S21 (Anexo 8), tal y como ocurre en otros *Rhodococcus* como *R. jostii* RHA1 (McLeod *et al.*, 2006), junto con los genes para los tRNAs correspondientes a los 20 aminoácidos proteinogénicos. Todos los replicones tienen una copia de *parB* (Anexo 9), lo cual sugiere que el resto de plásmidos dependen de la maquinaria genética de partición y segregación presente en el cromosoma y pRWAY01 para poder escindir las copias

resultantes tras su replicación. Sorprendentemente, el COG L (replicación, recombinación y reparación del DNA) está sobrerrepresentado en los plásmidos pRWAY01, pRWAY02 y pRWAY03 frente al cromosoma, debido a las numerosas transposasas, integrasas y recombinasas que están anotadas en sus secuencias. El cromosoma también está enriquecido en los COGs relacionados con el metabolismo y transporte de aminoácidos, nucleótidos, carbohidratos, coenzimas y lípidos (COGs EFGHI) frente al resto de replicones (Figura 4 y Anexo 10). Concretamente, el cromosoma codifica íntegramente las rutas típicas en bacterias del metabolismo central de carbohidratos (glicólisis ED y EMP, ruta de las pentosas fosfato, ruta del glioxilato, metabolismo del glucógeno y ciclo de los ácidos tricarboxílicos) y de la β-oxidación de ácidos grasos (Tabla 8 y Anexo 11). Estos resultados ponen de manifiesto que las funciones celulares centrales residen completamente en el cromosoma, mientras que el contenido funcional de los plásmidos está sesgado hacia funciones periféricas. Esta distribución funcional entre el cromosoma principal y otros elementos extracromosómicos es habitual en genomas multipartitos, tal y como ocurre en R. jostii RHA1 (McLeod et al., 2006) y R. erythropolis PR4 (Sekine et al., 2006).

El primer atisbo del potencial biodegradador de *Rhodococcus* sp. WAY2 se manifestó en el trabajo de Garrido-Sanz *et al.* (2018), en el cual se aisló y caracterizó un consorcio bacteriano capaz de crecer con bifenilo como única fuente de carbono y energía. Todas las bifenil dioxigenasas anotadas en el metagenoma del consorcio fueron asignadas al género *Rhodococcus*, lo que llevó a los autores a aislar la cepa WAY2. Partiendo de este antecedente, en el presente trabajo se ha caracterizado el potencial degradador de esta cepa a través de la secuenciación y anotación de su genoma completo y de su caracterización funcional.

Rhodococcus sp. WAY2 contiene 5 dioxigenasas hidroxilantes, BphA1a, BphA1b, NahA1, EtbA1a y EtbA1b, que podrían estar implicadas en la degradación de distintos compuestos aromáticos. Estas dioxigenasas hidroxilantes se clasifican filogenéticamente en tres grupos (Figura 5). La BphA1a de WAY2 es virtualmente idéntica a BphA1 atípicas, identificadas en varias cepas de Rhodococcus y cuya actividad en la degradación de bifenilo, PCBs y dibenzofurano se ha descrito en Rhodococcus sp. R04, Rhodococcus sp. HA99 y R. erythropolis TA431 (Yang et al., 2004; Taguchi et al., 2007). Por otro lado, las EtbA1a y EtbA1b de WAY2 se agrupan con las EtbA1a y EtbA1b de R. jostii RHA1 y con las AkbA1 y AkbA2 de Rhodococcus sp. DK17 (Figura 5). Además de degradar bifenilo, se ha visto que estas enzimas están implicadas en la degradación de xileno, PCBs, naftaleno y etilbenceno (Kim et al., 2004; Iwasaki et al., 2006; Iwasaki et al., 2007; Kim et al., 2007; Patrauchan et al., 2008). Finalmente, las BphA1b y NahA1 de WAY2 se agrupan con las NahA1 de R. opacus SAO101 y Rhodococcus sp. NCIMB 12038, cuya actividad degradadora de bifenilo, dibenzo-pdioxina, naftaleno, dibenzofurano y fenantreno ha sido descrita anteriormente (Kimura et al., 2006). Ninguna de las 5 dioxigenasas hidroxilantes de WAY2 se agrupa con las BphA1s típicas descritas en P. xenovorans LB400, R. jostii RHA1 y P. pseudoalcaligenes KF707 por su papel en la degradación de PCBs (Figura 5) (Furukawa et al., 2004; Iwasaki et al., 2006; Iwasaki et al., 2007; Patrauchan et al., 2008).

Además de las dioxigenasas hidroxilantes previamente mencionadas, el genoma de WAY2 codifica la ruta de degradación de bifenilo a benzoato y 2-hidroxipentadienoato por los genes típicos bphA1A2A3A4BCD, además de por los genes etbA1A2A3A4BDST y nahA1A2BC, que también se ha demostrado que participan en la degradación del bifenilo (Resnick et al., 1996). La presencia de estos tres clústeres de genes en WAY2 (Tabla 9 y Anexo 12), concuerda con los resultados de la caracterización funcional de la cepa, explicando su capacidad para crecer con bifenilo como única fuente de carbono y energía. WAY2 también posee los genes para la transformación de benzoato a catecol (*benABCD*) y protocatecuato (pobA), para la transformación de catecol y protocatecuato a succinil-CoA y acetil-CoA (catABC, y pcaGHBCD, respectivamente), para la transformación de catecol a 2-hidroxipentadienoato (catE y el gen de HMSH) y para la conversión de 2hidroxipentadienoato a piruvato y acetaldehído (bphEFG) (Tablas 8 y 9 y Anexos 11 y 12). Por otro lado, también están presentes en el genoma los genes para la degradación de naftaleno a salicilato (*nahA1A2BC*) y de salicilato a catecol (*nahG*) (Tabla 9 y Anexo 12). La presencia de todos estos genes explica la capacidad observada en los resultados de la caracterización funcional de WAY2 de aprovechar tanto bifenilo como ácido benzoico y naftaleno para su crecimiento. Otras cepas de Rhodococcus para las que se ha descrito la utilización de alguno de estos sustratos son R. opacus DSM 43205^T (Goswami et al., 2017), R. jostii RHA1 (Iwasaki et al., 2006; Iwasaki et al., 2007; Patrauchan et al., 2008), R. erythropolis TA431 (Taguchi et al., 2007), Rhodococcus sp. HA99 (Taguchi et al., 2007) y R. opacus R7 (Di Gennaro et al., 2001), entre otras.

El genoma de WAY2 también presenta los genes *etbA1A2A3A4BDST*, cuya implicación en la degradación de etilbenceno, fenantreno y dibenzofurano ha sido descrita (Resnick *et al.*, 1996), y los genes *tmoABCDEF*, implicados en la degradación de tolueno (Tabla 9 y Anexo 11). Sin embargo, WAY2 no es capaz de crecer con etilbenceno, fenantreno, dibenzofurano ni tolueno como única fuente de carbono, aunque sí que se observa un cambio de color en el medio respecto al control negativo (Tabla 6). Este cambio de color hacia un tono amarillo, es típico de los compuestos resultantes la rotura en *meta* de diferentes compuestos aromáticos (Selifonov *et al.*, 1991; Foght and Westlake, 1988; Furukawa *et al.*, 2004), lo que indica que los sistemas enzimáticos mencionados podrían estar implicados en la oxidación parcial de estos sustratos. La incapacidad de WAY2 de crecer con estos sustratos como única fuente de carbono y energía podría deberse a que las rutas para su degradación solo ocurren parcialmente, acumulándose los metabolitos intermediarios causantes del cambio de color en el medio.

La degradación de alcanos es iniciada por monooxigenasas que dan lugar a la formación de alcoholes primarios o secundarios, que son finalmente canalizados hacia la β -oxidación (Kotani *et al.*, 2003; Van Beilen *et al.*, 2003; Feng *et al.*, 2007; Throne-Holst *et al.*, 2007). Respecto a los alcanos probados como única fuente de carbono y energía, se observó crecimiento de WAY2 con pentadecano (C₁₅H₃₂), heptadecano (C₁₇H₃₆) y tetracosano (C₂₄H₅₀), pero no con hexano (C₆H₂₄) (Tabla 6). El cromosoma de WAY2 contiene una copia del gen *alkB*, que codifica una alcano 1-monooxigenasa, y tres copias del gen *ladA*, que codifica una alcano monooxigenasa de cadena larga (Tabla 10, Anexo 12). AlkB fue descubierta por primera vez en *Pseudomonas putida* GPo1 (Baptist *et al.*,

1963; Van Beilen *et al.*, 1994a; Van Beilen *et al.*, 2001) y fue caracterizada por actuar en alcanos de entre 5 y 12 átomos de carbono (Van Beilen *et al.*, 1994b), pero trabajos posteriores han señalado que sistemas AlkB homólogos al de *P. putida* GPo1 presentes en otros microorganismos no degradan C₅₋₁₂-alcanos, sino alcanos de cadena más larga (Smits *et al.*, 2002). Esto podría explicar que WAY2 no pueda utilizar hexano como fuente de carbono para crecer. Por otro lado, LadA, aislada por primera vez de *Geobacillus thermodenitrificans* NG80-2, se caracteriza por la conversión de alcanos de cadena larga (C₁₅₋₃₆) a sus correspondientes alcoholes primarios (Li *et al.*, 2008), lo cual concuerda con el crecimiento observado de WAY2 con pentadecano, heptadecano y tetracosano. Otros *Rhodococcus* en los que se ha descrito la degradación de alcanos son *R. ruber* SP2B (Amouric *et al.*, 2010), *R. erythropolis* PR4 (Sekine *et al.*, 2006) y *R. opacus* B4 (Sameshina *et al.*, 2008), entre otros.

Por otro lado, alcanos de bajo número de carbonos (hasta 5), pueden ser degradados mediante la enzima metano monooxigenasa, la cual se ha visto implicada en la degradación de metano, butano y pentano en otros organismos (Chan *et al.*, 2004). *Rhodococcus* sp. WAY2 posee cuatro sistemas de metano monooxigenasas, tres para el metano soluble (genes *mmoXYBC*) y uno para el metano particulado (genes *pmoABC*) (Tabla 10, Anexo 12). *Rhodococcus* sp. WAY2 es capaz de utilizar 1-butanol suplementado en forma de gas como única fuente de carbono y energía, pero no es capaz de utilizar 2-butanol ni metanol (Tabla 6). Esto sugiere que, de ser funcional alguno de los sistemas de metano monooxigenasas presentes en WAY2, el alcohol primario generado puede ser usado posteriormente como fuente de carbono. La utilización de alcoholes por parte de otros *Rhodococcus* para crecer ha sido descrita previamente (Carvalho *et al.*, 2005). No obstante, es necesaria la realización de otros estudios para caracterizar la implicación de estos sistemas de metano monooxigenasas en WAY2.

CONCLUSIONES

Los resultados de este trabajo permiten concluir que:

- 1. *Rhodococcus* sp. WAY2 presenta la capacidad de degradar múltiples compuestos orgánicos tanto aromáticos (bifenilo, naftaleno y ácido benzoico) como alifáticos (pentadecano, heptadecano y tetracosano).
- La degradación de estos compuestos se explica por la presencia de genes que codifican para rutas periféricas de degradación de estos compuestos, así como de múltiples rutas centrales que permiten su catabolismo en intermediarios del TCA y βoxidación.
- 3. El análisis filogenético y filogenómico, incluyendo todas las cepas tipo disponibles del género, junto con el análisis funcional mediante placas de Biolog, permite concluir que WAY2 es una nueva especie.

Futuros análisis podrían contribuir a aumentar el conocimiento sobre las características degradadoras de esta cepa y reafirmar su potencial utilidad para ser incluida en estrategias de biorremediación.
REFERENCIAS

- Andreoni, V.; Cavalca, L.; Rao, M. A.; Nocerino, G.; Bernasconi, S.; Dell'Amico, E.; Colombo, M.; Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. *Chemosphere*, 57 (5): 401-412. doi: https://doi.org/10.1016/j.chemosphere.2004.06.013
- Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Disponible online en: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Alonso-Gutiérrez, J.; Figueras, A.; Albaigés, J.; Jiménez, N.; Viñas, M.; Solanas, A. M.; Novoa, B. (2009). Bacterial Communities from Shoreline Environments (Costa da Morte, Northwestern Spain) Affected by the Prestige Oil Spill. *Applied and Environmental Microbiology*, 75 (11): 3407-3418. doi: http://dx.doi.org/10.1128/AEM.01776-08
- Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. (1990) Basic local alignment search tool. *Journal of Molecular Biology*, 215 (3): 403-410. doi: http://dx.doi.org/10.1016/S0022-2836(05)80360-2
- Álvarez, H. M. (2010). Central Metabolism of Species of the Genus *Rhodococcus*. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus*. *Microbiology Monographs*, 16: 91-108, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-642-12937-7_4
- Álvarez, H. M.; Silva, R. A. (2013). Metabolic Diversity and Flexibility for Hydrocarbon Biodegradation by *Rhodococcus*. En: Amoroso, M. J.; Benimeli, C. S.; Cuozzo, S. A. (eds.), *Actinobacteria. Application in Bioremedation and Production of Industrial Enzymes*, 242-273, CRC Press, Taylor & Francis Group, Boca Raton, U. S. A. ISBN: 978-1-4665-7873-9.
- Amouric, A.; Quéméneur, M.; Grossi, V.; Liebgott, P. P.; Auria, R.; Casalot, L. (2010). Identification of different alkane hydroxylase systems in *Rhodococcus ruber* strain SP2B, an hexane-degrading actinomycete. *Journal of applied microbiology*, 108 (6): 1903-1916. doi: http://dx.doi.org/10.1111/j.1365-2672.2009.04592.x
- Anastasi, E.; MacArthur, I.; Scortti, M.; Alvarez, S.; Giguere, S.; Vázquez-Boland, J. A. (2016). Pangenome and phylogenomic analysis of the pathogenic actinobacterium *Rhodococcus* equi. Genome biology and evolution, 8 (10): 3140-3148. doi: https://doi.org/10.1093/gbe/evw222
- Atlas, R. M. (ed.). (2004). Handbook of Microbiological media (Fourth Edition), pág. 1402, CRC Press, Taylor & Francis Group, Boca Raton, U. S. A. ISBN: 978-1-4398-0408-7.
- Aziz, R. K.; Bartels, D.; Best, A. A.; DeJongh, M.; Disz, T.; Edwards, R. A.; Formsma, K.; Gerdes, S.; Glass, E. M.; Kubal, M.; Meyer, F.; Olsen, G. J.; Olson, R.; Osterman, A. L.; Overbeek, R. A.; McNeil, L. K.; Paarmann, D.; Paczian, T.; Parrello, B.; Pusch, G. D.; Reich, C.; Stevens, R.; Vassieva, O.; Vonstein, V.; Wilke, A.; Zagnitko, O.(2008). The RAST server: rapid annotations using subsystems technology. *BMC Genomics*, 9: 75. doi: http://dx.doi.org/10.1186/1471-2164-9-75
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A. A.; Dvorkin, M.; Kulikov, A. S.; Lesin, V. M.; Nikolenko, S. I.; Pham, S.; Prjibelski, A. D.; Pyshkin, A. V.; Sirotkin, A. V.; Vyahhi, N.; Tesler, G.; Alekseyev, M. A.; Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of Computational Biology*, 19 (5): 455–477. doi: http://dx.doi.org/10.1089/cmb.2012.0021
- Bao, K.; Cohen, S. N. (2003). Recruitment of terminal protein to the ends of *Streptomyces* linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. *Genes & Development*, 17: 774-785. doi: http://dx.doi.org/10.1101/gad.1060303
- Baptist, J. N.; Gholson, R. K.; Coon, M. J. (1963). Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation. *Biochimica et biophysica acta*, 69: 40-47. doi: https://doi.org/10.1016/0006-3002(63)91223-X
- Bej, A. K.; Saul, D.; Aislabie, J. (2000). Cold-tolerant alkane-degrading *Rhodococcus* species from Antarctica. *Polar Biology*, 23 (2): 100-105. doi: https://doi.org/10.1007/s003000050014

- Bertani, G. (1951). Studies on lysogenesis I. The mode of phage liberation by lysogenic *Escherichia coli. Journal of bacteriology*, 62 (3): 293–300.
- Bolger, A. M.; Lohse, M.; Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinformatics*, 30 (15): 2114-2120. doi: https://doi.org/10.1093/bioinformatics/btu170
- Brazil, G. M.; Kenefick, L.; Callanan, M.; Haro, A.; De Lorenzo, V.; Dowling, D. N.; O'gara, F. (1995). Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of *bph* gene expression in the rhizosphere. *Applied and Environmental Microbiology*, 61 (5): 1946-1952.
- Brühlmann, F.; Chen, W. (1998). Tuning Biphenyl Dioxygenase for Extended Substrate Specificity. *Biotechnology and bioengineering*, 63 (5): 544-551. doi: https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<544::AID-BIT4>3.0.CO;2-6
- de Carvalho, C. C.; ds Fonseca, M. M. R. (2005). Degradation of hydrocarbons and alcohols at different temperatures and salinities by *Rhodococcus erythropolis* DCL14. *FEMS microbiology ecology*, 51 (3): 389-399. doi: https://doi.org/10.1016/j.femsec.2004.09.010
- Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution*, 17 (4): 540–552. doi: https://doi.org/10.1093/oxfordjournals.molbev.a026334
- Cavalca, L.; Colombo, M.; Larcher, S.; Gigliotti, C.; Collina, E.; Andreoni, V. (2002) Survival and naphthalene-degrading activity of *Rhodococcus* sp. strain 1BN in soil microcosms. *Journal of Applied Microbiology*, 92 (6): 1058–1065. doi: https://doi.org/10.1046/j.1365-2672.2002.01640.x
- Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J. (2004). Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. *Biochemistry*, 43 (15): 4421-4430. doi: https://doi.org/10.1021/bi0497603
- Chang, P. C.; Cohen, S. N. (1994). Bidirectional replication from an internal origin in a linear streptomyces plasmid. *Science*, 265 (5174): 952-954. doi: https://doi.org/10.1126/science.8052852
- Cornelis, K.; Ritsema, T.; Nijsse, J.; Holsters, M.; Goethals, K.; Jaziri, M. (2001). The plant pathogen *Rhodococcus fascians* colonizes the exterior and interior of the aerial parts of plants. *Molecular plant-microbe interactions*, 14 (5): 599-608. doi: http://dx.doi.org/10.1094/MPMI.2001.14.5.599
- Creason, A. L.; Davis, E. W.; Putnam, M. L.; Vandeputte, O. M.; Chang, J. H. (2014). Use of whole genome sequences to develop a molecular phylogenetic framework for *Rhodococcus fascians* and the *Rhodococcus* genus. *Frontiers in plant science*, 5: 406. doi: https://doi.org/10.3389/fpls.2014.00406
- Cros, M.-J.; De Monte, A.; Mariette, J.; Bardou, P.; Grenier-Boley, B.; Gautheret, D.; Touzet, H.; Gaspin, C. (2011). RNAspace.org: An integrated environment for the prediction, annotation, and analysis of ncRNA. *RNA*, 17 (11): 1947–1956. doi: http://dx.doi.org/10.1261/rna.2844911
- Di Gennaro, P.; Rescalli, E.; Galli, E.; Sello, G.; Bestetti, G. (2001). Characterization of *Rhodococcus opacus* R7, a strain able to degrade naphthalene and *o*-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. *Research in microbiology*, 152 (7): 641-651. doi: https://doi.org/10.1016/S0923-2508(01)01243-8
- Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. *Journal of the American Statistical Association*, 50 (272): 1096-1121. doi: http://dx.doi.org/10.1080/01621459.1955.10501294
- Ensley, B. D.; Gibson, D. T. (1983). Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. *Journal of Bacteriology*, 155 (2): 505-511.
- Fahy, A.; McGenity, T. J.; Timmis, K. N.; Ball, A. S. (2006). Heterogeneous aerobic benzenedegrading communities in oxygen-depleted groundwaters. *FEMS microbiology ecology*, 58 (2): 260-270. doi: https://doi.org/10.1111/j.1574-6941.2006.00162.x

- Fava, F.; Bertin, L.; Fedi, S.; Zannoni, D. (2002). Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. *Biotechnology and Bioengineering*, 81 (4): 381-390. doi: https://doi.org/10.1002/bit.10579
- Fazlurrahman; Batra, M.; Pandey, J., Suri, C. R.; Jain, R. K. (2009). Isolation and characterization of an atrazine-degrading *Rhodococcus* sp. strain MB-P1 from contaminated soil. *Letters in Applied Microbiology*, 49 (6): 721-729. doi: https://doi.org/10.1111/j.1472-765X.2009.02724.x
- Feng, L.; Wang, W.; Cheng, J.; Ren, Y.; Zhao, G.; Gao, C.; Tang, Y.; Liu, X.; Han, W.; Peng, X.; Liu, R.; Wang, L. (2007). Genome and proteome of long-chain alkane degrading *Geobacillus thermodenitrificans* NG80-2 isolated from a deep-subsurface oil reservoir. *Proceedings of the National Academy of Sciences*, 104 (13): 5602-5607. doi: https://doi.org/10.1073/pnas.0609650104
- Ferraro, D. J.; Okerlund, A.; Brown, E.; Ramaswamy, S. (2017). One enzyme, many reactions: structural basis for the various reactions catalyzed by naphthalene 1,2-dioxygenase. *International Union of Crystallography Journal*, 4 (5): 648-656. doi: https://doi.org/10.1107/S2052252517008223
- Foght, J. M.; Westlake, D. W. S. (1988). Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a *Pseudomonas* species. *Canadian journal of microbiology*, 34 (10): 1135-1141. doi: https://doi.org/10.1139/m88-200
- Furukawa, K.; Suenaga, H.; Goto, M. (2004). Biphenyl Dioxygenases: Functional Versatilities and Directed Evolution. *Journal of Bacteriology*, 186 (16): 5189-5196. doi: https://doi.org/10.1128/JB.186.16.5189-5196.2004
- Gardner, P. P.; Daub, J.; Tate, J. G.; Nawrocki, E. P.; Kolbe, D. L.; Lindgreen, S.; Wilkinson, A. C.; Finn, R. D.; Griffiths-Jones, S.; Eddy, S. R.; Bateman, A. (2009). Rfam: updates to the RNA families database. *Nucleic Acids Research*, 37: D136–D140. doi: http://dx.doi.org/10.1093/nar/gkn766
- Garrido-Sanz, D.; Manzano, J.; Martín, M.; Redondo-Nieto, M.; Rivilla, R. (2018). Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations. *Frontiers in Microbiology*, 9: Article 232. doi: http://dx.doi.org/10.3389/fmicb.2018.00232
- Garrido-Sanz, D.; Redondo-Nieto, M.; Guirado, M.; Pindado Jiménez, O.; Millán, R.; Martin, M.; Rivilla, R. (2019). Metagenomic Insights into the Bacterial Functions of a Diesel-Degrading Consortium for the Rhizoremediation of Diesel-Polluted Soil. *Genes*, 10 (6): 456. doi: https://doi.org/10.3390/genes10060456
- Gibson, D. T.; Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. *Current Opinion in Biotechnology*, 11 (3): 236-243. doi: https://doi.org/10.1016/S0958-1669(00)00090-2
- Gomes, H. I.; Dias-Ferreira, C.; Ribeiro, A. B. (2013). Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. *Science of the Total Environment*, 445: 237-260. doi: https://doi.org/10.1016/j.scitotenv.2012.11.098
- Goodfellow, M.; Chun, J.; Stackebrandt, E.; Kroppenstedt, R. M. (2002). Transfer of *Tsukamurella wratislaviensis* Goodfellow et a. 1995 to the genus *Rhodococcus* as *Rhodococcus wratislaviensis* comb. nov. *International Journal of Systematic and Evolutionary Microbiology*, 52: 749-755. doi: https://doi.org/10.1099/00207713-52-3-749
- Goswami, L.; Kumar, R. V.; Manikandan, N. A.; Pakshirajan, K.; Pugazhenthi, G. (2017). Simultaneous polycyclic aromatic hydrocarbon degradation and lipid accumulation by *Rhodococcus opacus* for potential biodiesel production. *Journal of Water Process Engineering*, 17: 1-10. doi: https://doi.org/10.1016/j.jwpe.2017.02.009
- Gu, X.; Fu, Y.-X.; Li, W.-H. (1995). Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. *Molecular Biology and Evolution*, 12 (4): 546– 557. doi: https://doi.org/10.1093/oxfordjournals.molbev.a040235

- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. *Bioinformatics*, 29 (8): 1072–1075. doi: http://dx.doi.org/10.1093/bioinformatics/btt086
- Gürtler, V.; Seviour, R. J. (2010). Systematics of Members of the Genus *Rhodococcus* (Zopf 1891) Emend Goodfellow *et al.* 1998. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus*. *Microbiology Monographs*, 16: 1-28, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-642-12937-7_1
- Helmke, E.; Weyland, H. (1984). *Rhodococcus marinonascens* sp. nov., an Actinomycete from the Sea. *International Journal of Systematic and Evolutionary Microbiology*, 34 (2): 127-138. doi: http://dx.doi.org/10.1099/00207713-34-2-127
- Hernández, M. A.; Mohn, W. W.; Martínez, E.; Rost, E.; Alvarez, A. F.; Alvarez, H. M. (2008). Biosynthesis of storage compounds by *Rhodococcus jostii* RHA1 and global identification of genes involved in their metabolism. *BMC genomics*, 9 (1): 600. doi: https://doi.org/10.1186/1471-2164-9-600
- Hernandez-Raquet, G.; Budzinski, H.; Caumette, P.; Dabert, P.; Le Menach, K.; Muyzer, G.; Duran, R. (2006). Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). *FEMS microbiology ecology*, 58 (3): 550-562. doi: https://doi.org/10.1111/j.1574-6941.2006.00187.x
- Hong, S. H.; Hae, L. P.; Ko, U.-R.; Jae, J. Y.; Cho, K.-S. (2007.) Bioremediation of oilcontaminated soil using an oil-degrading rhizobacterium *Rhodococcus* sp. 412 and *Zea mays. Korean Journal of Microbiology and Biotechnology*, 35: 150–157.
- Huang, C. H.; Lin, Y. S.; Yang, Y. L.; Huang, S. W.; Chen, C. W. (1998). The telomeres of *Streptomyces* chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. *Molecular microbiology*, 28 (5): 905-916. doi: https://doi.org/10.1046/j.1365-2958.1998.00856.x
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M. C.; Rattei, T.; Mende, D. R.; Sunagawa, S.; Kuhn, M.; Jensen, L. J.; Von Mering, C.; Bork, P. (2017). eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Research*, 44: D286-D293. doi: http://dx.doi.org/10.1093/nar/gkv1248
- Ivshina, I. B.; Oborin, A. A.; Nesternko, O. A.; Kasumova, S. A. (1981). Bacteria of the *Rhodococcus* Genus From the Ground Water of Oil-Bearing Deposits in the Perm Region Near the Urals. *Mikrobiologiya.*, 50 (4): 709-717.
- Iwata, S.; Saynovits, M.; Link, T. A.; Michel, H. (1996). Structure of a water soluble fragment of the 'Rieske'iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 Å resolution. *Structure*, 4 (5): 567-579. doi: https://doi.org/10.1016/S0969-2126(96)00062-7
- Iwasaki, T.; Miyauchi, K.; Masai, E.; Fukuda, M. (2006). Multiple-Subunit Genes of the Aromatic-Ring-Hydroxylating Dioxygenase Play an Active Role in Biphenyl and Polychlorinated Biphenyl Degradation in *Rhodococcus* sp. Strain RHA1. *Applied and Environmental Microbiology*, 72 (8): 5396-5402. doi: http://dx.doi.org/10.1128/AEM.00298-06
- Iwasaki, T.; Takeda, H., Miyauchi, K., Yamada, T.; Masai, E.; Fukuda, M. (2007). Characterization of Two Biphenyl Dioxygenases for Biphenyl/PCB Degradation in A PCB Degrader, *Rhodococcus* sp. Strain RHA1. *Bioscience, Biotechnology, and Biochemistry*, 71 (4): 993-1002. doi: https://doi.org/10.1271/bbb.60663
- Ji, Y.; Mao, G.; Wang, Y.; Bartlam, M. (2013). Structural insights into diversity and *n*-alkane biodegradation mechanisms of alkane hydroxylases. *Frontiers in microbiology*, 4: 58. doi: https://doi.org/10.3389/fmicb.2013.00058
- Kalkus, J.; Menne, R.; Reh, M.; Schlegel, H. G. (1998). The terminal structures of linear plasmids from *Rhodococcus opacus*. *Microbiology*, 144: 1271-1279. doi: https://doi.org/10.1099/00221287-144-5-1271
- Kim, D.; Chae, J.-C.; Zylstra, G. J.; Kim, Y.-S.; Kim, S.-K.; Nam, M. H.; Kim, Y. M.; Kim, E. (2004). Identification of a Novel Dioxygenase Involved in Metabolism of o-Xylene, Toluene, and Ethylbenzene by *Rhodococcus* sp. Strain DK17. *Applied and Environmental*

Microbiology, 70 (12): 7086-7092. doi: https://doi.org/10.1128/AEM.70.12.7086-7092.2004

- Kim, J. D; Lee, C. G. (2007). Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. *Biotechnology and Bioprocess Engineering*, 12 (4): 410-416. doi: https://doi.org/10.1007/BF02931064
- Kim, D.; Lee, J. S.; Choi, K. Y.; Kim, Y.-S.; Choi, J. N.; Kim, S.-K.; Chae, J.-C.; Zylstra, G. J.; Lee, C. H.; Kim, E. (2007). Effect of functional groups on the regioselectivity of a novel o-xylene dioxygenase from *Rhodococcus* sp. strain DK17. *Enzyme and Microbial Technology*, 41 (3): 221–225. doi: https://doi.org/10.1016/j.enzmictec.2007.01.021
- Kimura, N.; Kitagawa, W.; Mori, T.; Nakashima, N.; Tamura, T.; Kamagata, Y. (2006). Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from *Rhodococcus opacus* strain SAO101. *Applied Microbiology and Biotechnology*, 73 (2): 474–484. doi: https://doi.org/10.1007/s00253-006-0481-8
- Klatte, S.; Kroppenstedt, R. M.; Rainey, F. A. (1994). *Rhodococcus opacus* sp.nov., An Unusual Nutritionally Versatile Rhodococcus-species. *Systematic and Applied Microbiology*, 17 (3): 355-360. doi: https://doi.org/10.1016/S0723-2020(11)80051-2
- Kolkenbrock, S.; Naumann, B.; Hippler, M.; Fetzner, S. (2010). A novel replicative enzyme encoded by the linear *Arthrobacter* plasmid pAL1. *Journal of bacteriology*, 192 (19): 4935-4943. doi: https://doi.org/10.1128/JB.00614-10
- König, C.; Eulberg, D.; Gröning, J.; Lakner, S.; Seibert, V.; Kaschabek, S. R.; Schlömann, M. (2004). A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of *Rhodococcus opacus* 1CP. *Microbiology*, 150: 3075-3087. doi: http://dx.doi.org/10.1099/mic.0.27217-0
- Koren, S.; Walenz, B. P.; Berlin, K.; Miller, J. R.; Bergman, N. H.; Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research*, 27: 722-736. doi: http://dx.doi.org/10.1101/gr.215087.116
- Koronelli, T. V.; Il'inskiĭ, V. V.; Ianushka, V. A; Krasnikova, T. I. (1987). Hydrocarbon-oxidizing microflora from the water of the Baltic sea and Kurshsky bay polluted after a fuel oil spill. *Mikrobiologiia*, 56: 472-478.
- Kotani, T.; Yamamoto, T.; Yurimoto, H.; Sakai, Y.; Kato, N. (2003). Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by *Gordonia* sp. strain TY-5. *Journal of bacteriology*, 185 (24): 7120-7128. doi: http://dx.doi.org/10.1128/JB.185.24.7120-7128.2003
- Kumar, S.; Stecher, G.; Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution*, 33 (7): 1870–1874. doi: https://doi.org/10.1093/molbev/msw054
- Kuyukina, M. S.; Ivshina, I. B. (2010). Application of *Rhodococcus* in Bioremedation of Contaminated Environments. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus*. Microbiology Monographs, 16: 1-28, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-642-12937-7_9
- Larkin, M. J.; Kulakov, L. A.; Allen, C. C. R. (2010). Genomes and Plasmids in *Rhodococcus*. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus*. *Microbiology Monographs*, 16: 73-90, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-642-12937-7_3
- Le, S. Q.; Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix. *Molecular Biology and Evolution*, 25 (7): 1307–1320. doi: https://doi.org/10.1093/molbev/msn067
- Li, Y.; Kawamura, Y.; Fujiwara, N.; Naka, T.; Liu, H.; Huang, X.; Kobayashi, K.; Ezaki, T. (2004). Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. International Journal of Systematic and Evolutionary Microbiology, 54: 827-835. doi: http://dx.doi.org/10.1099/ijs.0.02828-0
- Li, L.; Liu, X.; Yang, W.; Xu, F.; Wang, W.; Feng, L.; Bartlam, M.; Wang, L.; Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. *Journal of molecular biology*, 376 (2): 453-465. doi: https://doi.org/10.1016/j.jmb.2007.11.069

- Mallick, S., Chakraborty, J.; Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. *Critical Reviews in Microbiology*, 37 (1): 64-90. doi: https://doi.org/10.3109/1040841X.2010.512268
- Marcos, M. S.; Lozada, M.; Dionisi, H. M. (2009). Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic marine sediments. *Letters in applied microbiology*, 49 (5): 602-608. doi: https://doi.org/10.1111/j.1472-765X.2009.02711.x
- Margesin, R.; Labbe, D.; Schinner, F.; Greer, C. W.; Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. *Applied and Environmental Microbiology*, 69 (6): 3085-3092. doi: https://doi.org/10.1128/AEM.69.6.3085-3092.2003
- Mason, J. R.; Cammack, R. (1992). The electron-transport proteins of hydroxylating bacterial dioxygenases. *Annual review of microbiology*, 46 (1): 277-305.
- McLeod, M. P.; Warren, R. L.; Hsiao, W. W.; Araki, N.; Myhre, M.; Fernandes, C.; Miyazawa, D.; Wong, W.; Lillquist, A. L.; Wang, D.; Dosanjh, M.; Hara, H.; Petrescu, A.; Morin, R. D.; Yang, G.; Stott, J. M.; Schein, J. E.; Shin, H.; Smailus, D.; Siddiqui, A. S.; Marra, M. A.; Jones, S. J.; Holt, R.; Brinkman, F. S.; Miyauchi, K.; Fukuda, M.; Davies, J. E.; Mohn, W. W.; Eltis, L. D. (2006). The complete genome of *Rhodococcus* sp. RHA1 provides insights into a catabolic powerhouse. Proceedings of the National Academy of Sciences United States America, 103 (42): of the of 15582-15587. doi: https://doi.org/10.1073/pnas.0607048103
- Meier-Kolthoff, J. P.; Auch, A. F.; Klenk, H. P.; Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics*, 14: 60. doi: http://dx.doi.org/10.1186/1471-2105-14-60
- Mergaert, J.; Verhelst, A. N.; Cnockaert, M. C.; Tan, T. L.; Swings, J. (2001). Characterization of Facultative Oligotrophic Bacteria from Polar Seas by Analysis of their Fatty Acids and 16S rDNA Sequences. *Systematic and applied microbiology*, 24 (1): 98-107. doi: https://doi.org/10.1078/0723-2020-00012
- Meyer, F.; Overbeek, R.; Rodriguez, A. (2009). FIGfams: yet another set of protein families. *Nucleic Acids Research*, 37 (20): 6643-6654. doi: http://dx.doi.org/10.1093/nar/gkp698
- Na, K.-S.; Kuroda, A.; Takiguchi, N.; Ikeda, T.; Ohtake, H.; Kato, J. (2005a). Isolation and Characterization of Benzene-Tolerant *Rhodococcus opacus* Strains. *Journal of Bioscience and Bioengineering*, 99 (4): 378-382. doi: https://doi.org/10.1263/jbb.99.378
- Na, K.-S.; Nagayasu, K..; Kuroda, A.; Takiguchi, N.; Ikeda, T.; Ohtake, H.; Kato, J. (2005b). Development of a Genetic Transformation System for Benzene-Tolerant *Rhodococcus* opacus Strains. Journal of Bioscience and Bioengineering, 99 (4): 408-414. doi: https://doi.org/10.1263/jbb.99.408
- Parte, A. C. (2018). LPSN List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. *International Journal of Systematic and Evolutionary Microbiology*, 68: 1825-1829. doi: http://dx.doi.org/10.1099/ijsem.0.002786
- Patrauchan, M. A.; Florizone, C.; Eapen, S.; Gómez-Gil, L.; Sethuraman, B.; Fukuda, M.; Davies, J.; Mohn, W. W.; Eltis, L. D. (2008). Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in *Rhodococcus jostii* RHA1. *Journal of Bacteriology*, 190 (1): 37-47. doi: https://doi.org/10.1128/JB.01122-07
- Pattengale, N. D.; Alipour, M.; Bininda-Emonds, O. R.; Moret, B. M.; Stamatakis, A. (2010) How many bootstrap replicates are necessary? *Journal of Computational Biology*, 17: 337– 354. doi: https://doi.org/10.1089/cmb.2009.0179
- Peressutti, S. R.; Álvarez, H. M.; Pucci, O. H. (2003). Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. *International Biodeterioration & Biodegradation*, 52 (1): 21-30. doi: https://doi.org/10.1016/S0964-8305(02)00102-6
- Prescott, J. F. (1991). *Rhodococcus equi*: an Animal and Human Pathogen. *Clinical Microbiology Reviews*, 4 (1): 20-34. doi: https://doi.org/10.1128/CMR.4.1.20

- Radwan, S. S.; Sorkhoh, N. A.; Fardoun, F.; Al-Hasan, R. H. (1995). Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. *Applied Microbiology and Biotechnology*, 44 (1-2): 265-270. doi: https://doi.org/10.1007/BF00164513
- Resnick, S. M.; Lee, K.; Gibson, D. T. (1996). Diverse reactions catalyzed by naphthalene dioxygenase from *Pseudomonas* sp. strain NCIB 9816. *Journal of Industrial Microbiology & Biotechnology*, 17 (5-6): 438-457. https://doi.org/10.1007/BF01574775
- Ringelberg, D. B.; Talley, J. W.; Perkins, E. J.; Tucker, S. G.; Luthy, R. G.; Bouwer, E. J.; Fredrickson, H. L. (2001). Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. *Applied and Environmental Microbiology*, 67 (4): 1542-1550. doi: https://doi.org/10.1128/AEM.67.4.1542-1550.2001
- Rodríguez, J.; Pavía, P.; Montilla, M.; Puerta C. J. (2011). Identifying triatomine symbiont *Rhodococcus rhodnii* as intestinal bacteria from *Rhodnius ecuadoriensis* (Hemiptera: Reduviidae) laboratory insects. *International Journal of Tropical Insect Science*, 31 (1–2): 34–37. doi: http://dx.doi.org/10.1017/S1742758411000014
- Ruberto, L. A.; Vazquez, S.; Lobalbo, A.; Mac Cormack, W. P. (2005). Psychrotolerant hydrocarbon-degrading *Rhodococcus* strains isolated from polluted Antarctic soils. *Antarctic Science*, 17 (1): 47-56. doi: https://doi.org/10.1017/S0954102005002415
- Ryu, H. W.; Joo, Y. H.; An, Y. J.; Cho, K. S. (2006). Isolation and characterization of psychrotrophic and halotolerant *Rhodococcus* sp. YHLT-2. *Journal of microbiology and biotechnology*, 16 (4): 605-612.
- Sameshima, Y.; Honda, K.; Kato, J.; Omasa, T.; Ohtake, H. (2008). Expression of *Rhodococcus* opacus alkB genes in anhydrous organic solvents. Journal of bioscience and bioengineering, 106 (2): 199-203. doi: https://doi.org/10.1263/jbb.106.199
- Sangal, V.; Goodfellow, M.; Jones, A. J.; Seviour, R. J.; Suteliffe, I. C. (2019). Refined Systematics of the Genus *Rhodococcus* Based on Whole Genome Analyses. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus. Microbiology Monographs*, 16: 1-21, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-030-11461-9_1
- Sekine, M.; Tanikawa, S.; Omata, S.; Saito, M.; Fujisawa, T.; Tsukatani, N.; Tajima, T.; Sekigawa, T; Kosugi, H.; Matsuo, Y.; Nishiko, R.; Imamura, K.; Ito, M.; Narita, H.; Tago, S.; Fujita, N.; Harayama, S. (2006). Sequence analysis of three plasmids harboured in *Rhodococcus erythropolis* strain PR4. *Environmental Microbiology*, 8 (2): 334-346. doi: https://doi.org/10.1111/j.1462-2920.2005.00899.x
- Selifonov, S. A.; Slepen'kin, A. V.; Adanin, V. M.; Nefedova, M.; Starovoĭtov, I. I. (1991). Oxidation of dibenzofuran by *Pseudomonas* strains harboring plasmids of naphthalene degradation. *Mikrobiologiia*, 60 (6): 67-71.
- Shen, J.; Zhang, J.; Zuo, Y.; Wang, L.; Sun, X.; Li, J.; Han, W.; He, R. (2009). Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. *Journal of Hazardous Materials*, 163: 1199-1206. doi: http://dx.doi.org/10.1016/j.jhazmat.2008.07.086
- Shimizu, S.; Kobayashi, H.; Masai, E.; Fukuda, M. (2001). Characterization of the 450-kb Linear Plasmid in a Polychlorinated Biphenyl Degrader, *Rhodococcus* sp. Strain RHA1. *Applied* and Environmental Microbiology, 67 (5): 2021-2028. doi: https://doi.org/10.1128/AEM.67.5.2021-2028.2001
- Sievers, F.; Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. *Methods in Molecular Biology*, 1079: 105–116. doi: https://doi.org/10.1007/978-1-62703-646-7_6
- Smits, T. H.; Balada, S. B.; Witholt, B.; Van Beilen, J. B. (2002). Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. *Journal of bacteriology*, 184 (6): 1733-1742. doi: https://doi.org/10.1128/JB.184.6.1733-1742.2002
- Stamatakis, A.; Hoover, P.; Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology*, 57: 758–77. doi: http://dx.doi.org/10.1080/10635150802429642

- Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 30 (9): 1312–1313. doi: https://doi.org/10.1093/bioinformatics/btu033
- Taguchi, K.; Motoyama, M.; Iida, T.; Kudo, T. (2007). Polychlorinated Biphenyl/Biphenyl Degrading Gene Clusters in *Rhodococcus* sp. K37, HA99, and TA431 Are Different from Well-Known *bph* Gene Clusters of *Rhodococci. Bioscience, Biotechnology, and Biochemistry*, 71 (5): 1136-1144. doi: https://doi.org/10.1271/bbb.60551
- Takeuchi, M.; Hatano, K.; Sedlácek, I.; Pácová, Z. (2002). *Rhodococcus jostii* sp. nov., isolated from a medieval grave. *International Journal of Systematic and Evolutionary Microbiology*, 52: 749-755. doi: https://doi.org/10.1099/00207713-52-2-409
- Taki, H.; Syutsubo, K.; Mattison, R. G.; Harayama, S. (2004) Biodegradation of *o*-xylene in soil using bioaugmentation technology. *Proceedings of the second international conference* on remediation of contaminated sediments (Venice, Italy): 279–283.
- Taki, H.; Syutsubo, K.; Mattison, R. G.; Harayama, S. (2007) Identification and characterization of *o*-xylene-degrading *Rhodococcus* spp. which were dominant species in the remediation of *o*-xylene-contaminated soils. *Biodegradation* 18 (1): 17–26. doi: https://doi.org/10.1007/s10532-005-9030-x
- Talavera, G.; Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Systematic biology*, 56 (4): 564-577. doi: https://doi.org/10.1080/10635150701472164
- Tavaré, S. (1986) Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. *Lectures on Mathematics in the Life Sciences*, 17: 57–86.
- Throne-Holst, M.; Wentzel, A.; Ellingsen, T. E.; Kotlar, H. K.; Zotchev, S. B. (2007). Identification of novel genes involved in long-chain *n*-alkane degradation by *Acinetobacter* sp. strain DSM 17874. *Applied and Environmental Microbiology*, 73 (10): 3327-3332. doi: https://doi.org/10.1128/AEM.00064-07
- Vaillancourt, F. H.; Bolin, J. T.; Eltis, L. D. (2006). The ins and outs of ring-cleaving dioxygenases. *Critical Reviews in Biochemistry and Molecular Biology*, 41 (4): 241-267. doi: https://doi.org/10.1080/10409230600817422
- Van Beilen, J. B.; Wubbolts, M. G.; Witholt, B. (1994a). Genetics of alkane oxidation by *Pseudomonas oleovorans. Biodegradation*, 5 (3-4): 161-174. doi: https://doi.org/10.1007/BF00696457
- Van Beilen, J. B.; Kingma, J.; Witholt, B. (1994). Substrate specificity of the alkane hydroxylase system of *Pseudomonas oleovorans* GPo1. *Enzyme and microbial technology*, 16 (10): 904-911. doi: https://doi.org/10.1016/0141-0229(94)90066-3
- Van Beilen, J. B.; Panke, S.; Lucchini, S.; Franchini, A. G.; Röthlisberger, M.; Witholt, B. (2001). Analysis of *Pseudomonas putida* alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the *alk* genes. *Microbiology*, 147 (6): 1621-1630. doi: https://doi.org/10.1099/00221287-147-6-1621
- Van Beilen, J. B.; Li, Z.; Duetz, W. A.; Smits, T. H. M.; Witholt, B. (2003). Diversity of alkane hydroxylase systems in the environment. *Oil & gas science and technology*, 58 (4): 427-440. doi: https://doi.org/10.2516/ogst:2003026
- Warren, R.; Hsiao, W. W.; Kudo, H.; Myhre, M.; Dosanjh, M.; Petrescu, A.; Kobayashi, H.; Shimizu, S.; Miyauchi, K.; Masai, E.; Yang, G.; Stott, J. M.; Schein, J. E.; Shin, H.; Khattra, J.; Smailus, D.; Butterfield, Y. S.; Siddiqui, A.; Holt, R.; Marra, M. A.; Jones, S. J.; Mohn, W. W.; Brinkman, F. S.; Fukuda, M.; Davies, J.; Eltis, L. D. (2004). Functional Characterization of a Catabolic Plasmid from Polychlorinated- Biphenyl-Degrading *Rhodococcus* sp. Strain RHA1. *Journal of Bacteriology*, 186 (22): 7783-7795. doi: https://doi.org/10.1128/JB.186.22.7783-7795.2004
- Warton, B.; Matthiessen, J. N.; Roper, M. M. (2001). The soil organisms responsible for the enhanced biodegradation of metham sodium. *Biology and Fertility of Soils*, 34 (4): 264-269. doi: https://doi.org/10.1007/s003740100410
- Whyte, L. G.; Hawari, J.; Zhou, E.; Bourbonnière, L.; Inniss, W. E.; Greer, C. W. (1998). Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a

Psychrotrophic *Rhodococcus* sp. *Applied and Environmental Microbiology*, 64 (7): 2578-2584.

- Whyte, L. G.; Schultz, A.; Van Beilen, J. B.; Luz, A. P.; Pellizari, V.; Labbé, D.; Greer, C. W. (2002). Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarboncontaminated and pristine soils. *FEMS Microbiology Ecology*, 41 (2): 141-150. doi: https://doi.org/10.1111/j.1574-6941.2002.tb00975.x
- Yam, K. C.; Van der Geize, R.; Eltis, L. D. (2010). Catabolism of Aromatic Compounds and Steroids by *Rhodococcus*. En: Álvarez, H. M. (ed.), *Biology of Rhodococcus*. *Microbiology Monographs*, 16: 133-169, Springer-Verlag, Berlin Heidelberg, Germany. doi: http://dx.doi.org/10.1007/978-3-642-12937-7_3
- Yang, X.; Sun, Y.; Qian, S. (2004). Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (*Rhodococcus* sp. R04). *Journal of Industrial Microbiology* and Biotechnology, 31 (9): 415–420. https://doi.org/10.1007/s10295-004-0162-5
- Yang, C.-C.; Tseng, S.-M.; Chen, C. W. (2015). Telomere-associated proteins add deoxynucleotides to terminal proteins during replication of the telomeres of linear chromosomes and plasmids in *Streptomyces. Nucleic Acids Research*, 43 (13): 6373-6383. doi: https://doi.org/10.1093/nar/gkv302
- Yassin, A. F. (2005). *Rhodococcus triatomae* sp. nov., isolated from a blood-sucking bug. *International Journal of Systematic and Evolutionary Microbiology*, 55: 1575–1579. doi: http://dx.doi.org/10.1099/ijs.0.63571-0
- Zhang, R.; Yang, Y.; Fang, P.; Jiang, C.; Xu, L.; Zhu, Y.; Shen, M.; Xia, H.; Zhao, J.; Chen, T.; Qin, Z. (2006). Diversity of telomere palindromic sequences and replication genes among *Streptomyces* linear plasmids. *Applied and Environmental Microbiology*, 72 (9): 5728-5733. doi: http://dx.doi.org/10.1128/AEM.00707-06

ANEXOS

Anexo 1. Comandos usados en los softwares bioinformáticos utilizados en este trabajo.

```
a) Filtrado y procesado de las lecturas de Illumina con Trimmomatic
   java -jar trimmomatic-0.35.jar PE -phred33
      forward reads.fastq reverse reads.fastq\
      forward paired.fastq forward unpaired.fastq\
     reverse paired.fastq reverse unpaired.fastq\
      ILLUMINACLIP: TruSeq3-PE.fa:2:30:10\
     LEADING:3\
     TRAILING:3\
     SLIDINGWINDOW:4:15\
     MINLEN:70
b) Ensamblaje de las lecturas de PacBio con Canu
   canu -p output_name -d output directory genomeSize=8.4m\
      -pacbio-raw reads pacbio.fastq\
      stopOnLowCoverage=2
     correctedErrorRate=0.105\
      2> CANU assembly.log
c) Ensamblaje de las lecturas de Illumina y contigs de PacBio con SPAdes
   spades.py -o output_directory --careful\
      --pe1-1 forward paired.fastq\
     --pel-2 reverse paired.fastq\
     --pel-s forward unpaired.fastq\
     --pel-s reverse unpaired.fastq\
     --pacbio reads pacbio.fastq\
      --trusted-contigs contigs pachio canu.fasta\
      -t 4 -m 8 -k 21,33,55,77,99,127
d) Control de calidad de los ensamblajes con QUAST
  python quast.py -o output directory\
      contigs pachio canu.fasta contigs spades.fasta
e) Clasificación funcional de las proteínas anotadas en COGs con eggNOG
   emapper.py -d bactNOG38 -o output directory -i
  RAST annotation.faa
f) Creación de base de datos para BLAST+
  makeblastdb -in nt -moltype nucl
  makeblastdb -in nr -moltype prots
g) BLAST+
  blastn -query RAST annotation.fna -db nt\
      -out output blast cds.tab -outfmt '7 std qcovs salltitles'
  blastp -query RAST annotation.faa -db nr\
      -out output blast prots.tab -outfmt 'std gcovs salltitles'
h) Análisis filogenético del gen rRNA 16S: eliminación de las posiciones pobremente
   alineadas con Gblocks
   Gblocks alignment.fasta -t=d -b0=2 -b5=a -e=.txt
  Análisis filogenético del gen rRNA 16S: construcción del árbol con RAxML
i)
   raxmlHPC-PTHREADS -x 1000 -p 1000 -# autoMRE -m GTRGAMMA\
      -s alignment gblocks.fasta -n output name -f a -T 3
```

j) Comparación de BphA1, NahA1 y EtbA1: construcción del árbol con RAxML raxmlHPC-PTHREADS -x 1000 -p 1000 -# autoMRE -m PROTGAMMALGF\ -s alignment.fasta -n output name -f a -T 3

Nombre de la cepa	Nº NCBI	Nombre de la cepa	Nº NCBI
N. brasiliensis $DSM43758^{T}$	AF430038.1	<i>R. roseus</i> ATCC271 ^{T}	X81921.1
<i>R. maris</i> DSM43672 ^{T}	X79290.1	<i>R. rhodochrous</i> DSM43241 ^T	X79288.1
R. auranticus ATCC25938 ^T	AF283282.1	<i>R. gordoniae</i> W4937 ^T	AY233201.1
<i>R. kyotonensis</i> $DS472^{T}$	AB269261.1	<i>R. biphenylivorans</i> TG9 ^T	KJ546454.1
<i>R. sovatensis</i> $H004^{T}$	KU189221.1	R. pyridinovorans PDB9 ^T	AF173005.1
<i>R. yunnanensis</i> YIM70056 ^T	AY602219.2	<i>R. aichiensis</i> DSM43978 ^T	X80633.1
<i>R. fascians</i> DSM20669 ^{T}	X79186.1	<i>R. chubuensis</i> DSM44019 ^{T}	X80627.1
<i>R. luteus</i> DSM43673 ^T	X79187.1	<i>R. sputi</i> DSM43896 ^T	X80634.1
<i>R. cerastii</i> $C5^{T}$	FR714842.1	<i>R. terrae</i> DSM43249 ^{T}	X79286.1
<i>R. cercidiphylli</i> YIM65003 ^T	EU325542.1	<i>R. bronchialis</i> DSM43247 ^{T}	CP001802.1
R. jostii NBRC16295 ^T	AB046357.1	<i>R. corallinus</i> JCM3199 ^T	AY995558.1
<i>R. percolatus</i> MBS1 ^T	X92114.1	<i>R. rubripertinctus</i> DSM43197 ^T	X80632.1
<i>R. globerulus</i> DSM4954 ^T	X80619.1	<i>R. chlorophenolicum</i> DSM43826 ^T	X79292.1
<i>R. erythropolis</i> DSM43066 ^T	X79289.1	<i>R. aerolatus</i> PAMC27367 ^T	KM044053.1
<i>R. qingshengii</i> djl-6 ^T	DQ090961.1	<i>R. agglutinans</i> CFHS0262V ^T	KP232908.1
<i>R. jialingiae</i> djl-6- 2^{T}	DQ185597.2	$R. soli DSD51W^{T}$	KJ939314.1
<i>R. baikonurensis</i> GTC1041 ^T	AB071951.1	<i>R. equi</i> DSM20307 ^{T}	X80614.1
<i>R. degradans</i> CCM4446 ^T	JQ776649.2	R. hoagii ATCC7005 ^T	X82052.1
R. kunmingensis YIM45607 ^T	DQ997045.1	<i>R. antrifimi</i> D7-21 ^T	LN867321.1
<i>R. tukisamuensis</i> Mb8 ^T	AB067734.1	<i>R. defluvii</i> $Ca11^{T}$	KC788572.1
<i>R. maanshanensis</i> $M712^{T}$	AF416566.1	<i>R. humicola</i> UC33 ^T	KT301939.1
R. marinonascens $DSM43752^{T}$	X80617.1	<i>R. olei</i> Ktm-20 ^T	MF405107.1
<i>R. nanhaiensis</i> SCSIO10187 ^T	JN582175.1	<i>R. pedocola</i> $UC12^{T}$	KT301938.1
<i>R. koreensis</i> DNP505 ^{T}	AF124342.1	<i>R. canchipurensis</i> MBRL353 ^T	JN164649.1
<i>R. imtechensis</i> RKJ300 ^T	AY525785.2	<i>R. gannanensis</i> $M1^{T}$	NR152643.1
<i>R. opacus</i> DSM43205 ^{T}	X80630.1	<i>R. enclensis</i> NIO-1009 ^T	HQ858009.1
<i>R. wratislaviensis</i> NCIMB13082 ^T	Z37138.1	<i>R. rhodnii</i> DSM43336 ^T	X80621.1
<i>R. electrodiphilus</i> JC435 ^T	LT630357.3	<i>R. triatomae</i> IMMIBRIV-085 ^T	AJ854055.1
<i>R. aetherovorans</i> $10bc312^{T}$	AF447391.1	<i>R. kroppenstedtii</i> K07-23 ^T	AY726605.1
<i>R. ruber</i> DSM43338 ^T	X80625.1	<i>R. corynebacterioides</i> $DSM20151^{T}$	AF430066.1
R. phenolicus $G2P^{T}$	AY533293.1	<i>R. trifolii</i> T8 ^T	FR714843.1
<i>R. coprophilus</i> DSM43347 ^T	X80626.1	WAY2 16S copia 1	721.940723.459ª
$R. zopfii DSM44108^{T}$	AF191343.1	WAY2 16S copia 2	731.952733.471ª
<i>R. lactis</i> $DW151B^{T}$	KP342300.1	WAY2 16S copia 3	2.377.9702.379.489ª
<i>R. artemisiae</i> $YIM65754^{T}$	GU367155.1	WAY2 16S copia 4	2.929.9642.931.483ª

Anexo 2. Números de acceso del NCBI de las secuencias del 16S rRNA de las cepas tipo de *Rhodococcus* utilizadas.

^T: cepa tipo; ^a: coordenadas de las secuencias de las copias de 16S rRNA de WAY2.

Nombre	NCBI ID	Scaff.	Mb	GC%	Genes	Prot.
R. agglutinans CCTCC AB2014297 ^T	GCA_004011865.1	22	5.43	69.3	4.994	4.862
R. biphenylivorans TG9 ^T	GCA_003288095.1	1	5.03	68.0	4.700	4.373
<i>R. defluvii</i> Cal1 ^T	GCA_000738775.1	267	5.13	68.7	4.850	4.535
<i>R. kunmingensis</i> DSM 45001^{T}	GCA_001646865.1	330	5.62	66.2	3.760	4.885
<i>R. marinonascens</i> NBRC 14363 ^T	GCA_001894885.1	156	4.92	64.4	3.280	4.269
<i>R. sputi</i> NBRC 100414^{T}	GCA_000248055.2	158	4.95	65.4	4.642	4.592
<i>R. yunnanensis</i> NBRC 103083 ^T	GCA_001895005.1	68	6.37	63.9	5.847	5.650
<i>R. bronchialis</i> DSM 43247^{T}	GCA_000024785.1	-	5.29	67.1	4.934	4.601
<i>R. chlorophenolicum</i> DSM 43826^{T}	GCA_001044235.1	72	7.38	68.4	7.164	6.729
<i>R. coprophilus</i> NBRC 100603^{T}	GCA_001895045.1	30	4.55	66.9	4.206	4.079
<i>R. corynebacterioides</i> DSM 20151^{T}	GCA_001646675.1	180	3.90	70.2	3.651	3.445
R. enclensis NIO-1009 ^{T}	GCA_900094765.1	76	7.48	62.3	7.098	6.826
<i>R. hoagii</i> DSM 20295 ^T	GCA_001646645.1	279	4.97	68.8	4.757	4.427
<i>R. equi</i> DSM 20307 ^T	GCA_002094305.1	37	5.20	68.8	4.850	4.735
<i>R. erythropolis</i> NBRC 15567^{T}	GCA_001552595.1	67	6.59	62.4	6.147	5.981
<i>R. fascians</i> NBRC 12155 ^T	GCA_001894785.1	36	5.77	64.4	5.422	5.284
<i>R. globerulus</i> NBRC 14531^{T}	GCA_001894805.1	30	6.74	61.7	6.231	6.054
<i>R. gordoniae</i> DSM 44689 ^T	GCA_001646655.1	114	4.82	67.9	4.460	4.238
<i>R. imtechensis</i> RKJ300 ^T	GCA_000260815.1	178	8.23	67.2	7.962	7.245
R. qingshengii JCM 15477 ^T	GCA_001646745.1	131	7.26	62.4	6.820	6.574
R. jostii NBRC 16295 ^T	GCA_001894825.1	286	9.73	66.9	8.983	8.358
<i>R. koreensis</i> DSM 44498^{T}	GCA_900105905.1	9	10.31	67.4	9.491	8.902
<i>R. kroppenstedtii</i> DSM 44908^{T}	GCA_900111805.1	30	4.08	70.1	3.789	3.652
<i>R. kyotonensis</i> JCM 23211 ^T	GCA_900188125.1	50	6.31	64.2	5.860	5.698
R. maanshanensis DSM 44675^{T}	GCA_900109405.1	61	5.67	69.2	5.143	4.972
<i>R. maris</i> DSM 43672^{T}	GCA_001630765.1	57	3.51	70.9	3.302	3.098
<i>R. opacus</i> DSM 43205^{T}	GCA_001646735.1	382	8.53	67.3	8.198	7.418
R. phenolicus DSM 44812^{T}	GCA_001646785.1	232	6.28	68.4	5.916	5.600
<i>R. pyridinivorans</i> DSM 44555^{T}	GCA_900105195.1	3	5.26	67.8	4.864	4.604
<i>R. rhodnii</i> NBRC 100604^{T}	GCA_001894925.1	70	4.46	69.7	4.265	4.080
<i>R. rhodochrous</i> DSM 43241^{T}	GCA_001646825.1	105	5.18	68.2	4.790	4.585
<i>R. ruber</i> DSM 43338^{T}	GCA_001646835.1	164	5.30	70.7	4.930	4.677
<i>R. rubripertincta</i> NBRC 101908 ^T	GCA_000327325.1	134	5.20	67.4	4.792	4.571
<i>R. terrae</i> NRRL B-16283 ^{T}	GCA_003183825.1	-	5.71	67.8	5.109	4.951
<i>R. triatomae</i> DSM 44892 ^T	GCA_900099725.1	38	4.73	68.7	4.430	4.297
<i>R. tukisamuensis</i> NBRC 100609^{T}	GCA_001894985.1	66	5.49	69.9	4.970	4.779
<i>R. wratislaviensis</i> NBRC 100605^{T}	GCA_000583735.1	151	10.40	66.8	9.514	8.883
<i>R. zopfii</i> NBRC 100606 ^T	GCA_001895025.1	146	6.30	68.2	5.848	5.575
Nocardia brasiliensis NCTC11294 ^T	GCA_900454265.1	9	8.92	68.2	8.099	7.849

Anexo 3. Características generales de los genomas de cepas tipo de *Rhodococcus* utilizados en el análisis filogenómico.

NCBI ID: n° de acceso al NCBI; Scaff.: n° de scaffolds; Mb: megapares de bases; %GC: contenido en G+C; Prot.: n° de proteínas; ^T: cepa tipo.

Microorganismo	Proteína	Nº NCBI	Referencia
P. xenovorans LB400	BphA1	ABE37059.1	Furukawa et al. (2004)
P. pseudoalcaligenes KF707	BphA1	BAU73321.1	Furukawa et al. (2004)
R. jostii RHA1	BphA1	Q53122.1	Iwasaki <i>et al.</i> (2006)
			Iwasaki et al. (2007)
			Patrauchan et al. (2008)
WAY2 (pRWAY02)	EtbA1a	156.099 157.481 ^a	-
WAY2 (pRWAY02)	EtbA1b	167.930 169.312 ^a	-
R. jostii RHA1	EtbA1a	BAC92712.1	Iwasaki <i>et al.</i> (2006)
			Iwasaki et al. (2007)
			Patrauchan et al. (2008)
R. jostii RHA1	EtbA1b	BAC92718.1	Iwasaki et al. (2006)
			Iwasaki <i>et al.</i> (2007)
			Patrauchan et al. (2008)
Rhodococcus sp. DK17	AkbA1a	AAR90139.2	Kim et al. (2004)
			Kim et al. (2007)
Rhodococcus sp. DK17	AkbA1b	AAR90131.2	Kim et al. (2004)
			Kim et al. (2007)
R. erythropolis TA431	BphA1	BAF48503.1	Taguchi et al. (2007)
Rhodococcus sp. HA99	BphA1	BAF48520.1	Taguchi et al. (2007)
Rhodococcus sp. R04	BphA1	ABD65916.1	Yang et al. (2004)
WAY2 (pRWAY01)	BphA1a	509.217 507.868 ^a	-
WAY2 (pRWAY01)	BphA1b	60.245 58.839ª	-
WAY2 (pRWAY02)	NahA1	216.173 217.579ª	-
R. opacus SAO101	NahA1	BAD02377.1	Kimura et al. (2006)
Rhodococcus sp. NCIMB 12038	NahA1	AAD28100.1	Kimura et al. (2006)

Anexo 4. BphA1, NahA1 y EtbA1 usadas en el análisis filogenético de las dioxigenasas hidroxilantes de *Rhodococcus* sp. WAY2.

^a: coordenadas en el genoma de *Rhodococcus* sp. WAY2.

Anexo 5. Control de calidad de las lecturas de Illumina con FastQC.

(A) Lecturas *forward* sin procesar. (B) Lecturas *reverse* sin procesar. (C) Lecturas *forward* procesadas emparejadas. (D) Lecturas *reverse* procesadas emparejadas. (E) lecturas *forward* procesadas no emparejadas. (F) Lecturas *reverse* procesadas no emparejadas.

Α

Anexo 6. Análisis de las secuencias nucleotídicas de los telómeros de los plásmidos lineales de *Rhodococcus* sp. WAY2 e identificación de repeticiones terminales invertidas (TIRs).

DIT 1	
pRHLI_right	CCGCGCGCCTGCTCCGCGCGCTGCTCCGCGCGCAC
pRWAY02_left	CCGCGGCGCTGCTCCCGGC GCTCCGC GC
pRWAY01_right	CCGCGGCGCTGCTCCCGGCGCCGCCGCCGCCGCCGCCCGC
pRWAY01 left	CCGCGGCGCTGCTCCCGG TGCTCCCGG
pRHL3 left	CCGCGGCGCTG <mark>CC</mark> CCCGGCGCGCGCGCGCGCGCGCGCGCGCCGCGC
pROB01 right	CGCGGCGCTGCTCCCGGCGCGCGCGCGCGCGCGCG
pROB02 right	CGCGGCGCTGCTCCCGG TGCTCCCGG
DRWAY03 left	
ppuil loft	
pRIIDI_IEIC	
pricri_ieit	
B4_Chr_right	
pRHL2_right	CCGCGGCGCTGCCCGACGCTCCGCGC
pR1CP1_right	CCGCGCGCTGCTTCCGGCGCGCGCTGCTTCCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG
pROB02_left	CGCGGCGCTGCTCCCGGC GCTCCCG GC
pRHL3_right	CCGCGGCGCTGCTCCCGGCGCGCGCGCGCGCGCGC
B4_chr_left	CGCGGCGCTG <mark>CTCCCGGCGCGCGCGCGCGCGCGCGCGCG</mark>
pRWAY02 right	TGACTGGAGTTCAGACGTGTGCTCTTCGGGATCCGCGGCGCTGCTCCCGGCGCCCCGC
chr RHAl right	CCGCGGCGCTGCTCCCGGCGCGCGCGCGCGCGCGC
chr RHA1 left	CCGCGGCGCTGCTCCCGGCGCGCGCGCGCGCGCGC
	******* * * * *******
pRHL1 right.	
pRWAY02 left	CGGGAGAC-GGAGCGAGTCGCTTCCC-CGCCAGGGAGCCGC-TGCGCGCCCGCAG
pRWAY01 right	
pRWAY01 loft	
pRUATOI_IEIC	
prnis_ieic	
probol_right	
pROBUZ_right	
pRWAY03_left	CGGGAGGC-GGGGCGAG'IC GCTTCGC 'I'CCCACGCCAGGGAGCC GC-TGCGC GGC'I'CGCAG
pRHL1_left	CGGGAGACGGGGGGGGGGGGGGGGCGAGTCGCCTCCC-CGCCAGGGAGCCGC-TGCGCGCGCCTCTCAG
pR1CP1_left	CGGGAGAC-GGGGCGAGTC GCTTCGC TCCC-CGCCAGGGAGCC GC-TGCGC GGCTCGCAG
B4_chr_right	CGGGAGAC-GGGGCGAGTCGCTCGCTCCC-CGCCAGGGAGCCGC-TGCGCGGCTCGCAG
pRHL2_right	CGGGAGAC-GGGGCGAGTCGCCCGCTCCC-CGCCAGGGAGCCGC-TACGCGGCTCGCAG
pR1CP1 right	CGGGAGAC-GGAGCGAGTCGCTCGCCCCGCCAGGGAGCCGC-TGCGCGCGCGCAG
pROB02 left	CGGGAGAC-GGGGCGAGTCGCTCCCCCGCCAGGGAGCCGC-TGCGCGCGCGCGG
pRHL3 right	CGGGAGAC-GGGGCGAGTC <mark>GCTCCGC</mark> TCCC-CGCCAGG <mark>GAGCCGC-TGCGCGGCTCGCAG</mark>
B4 chr left	CGGGAGAC-GGGGCGAGTC GCTGCGC TCCC-CGCCAGGGAGCC GC-TGCGC GGCTCGCAG
pRWAY02 right	CGGGAGAC-GGGGCGAGTC GCTGCGC TCCC-CGCCAGGGAGCC GC-TGCGC GGCTCGCAG
chr BHAl right	
chr RHAl left	
chi_idhii_ieic	
pRHL1 right	TGGGTCCATTTCCGTTGCCGTCGATCGAGTCGCTCCCTCTGGG-TTTCCGAGATTA
pRWAY02 left	
pRWAY01 right	
pRWAIOI_IIGHC	
prwaioi_ieic	
prnis_ieic	
probol_right	
pROBU2_right	TGGGTCAATTCCCGTTGCCGTCGATCGAGTCGCTCCTCTGAG-TTTCCGAAATTA
pRWAY03_left	TGGGTCCATTCCCGTTGCCGTCGATCGAGTCGCTCTCTCT
pRHL1_left	TGGGTCCATTCCCGTTGCCGTCGATCGAGTC GCTTCGC TCCTCTGAG-TTTCCCGAGATTA
pR1CP1_left	TGGGTTGATTCCCGTTGCCGTCGATCGAGTCGCTCGCCTCCTGAG-ATTCCGAGATTA
B4_chr_right	TGGGTCGATTCCCGTTGCCGTCGATCGAGTCGCTCGCCTCCTCGAG-TTTCCGAGATTG
pRHL2_right	TGGGTCGATTCCCGTTGCCGTCGATCGAGTCGCTCGCCTCTGAG-TTTTCGAGATTA
pR1CP1 right	TGGGTCCATTCCCGTTGCCGTCGATCGAGTCGCTCGCCTCTGAG-TTTCCGAAATTA
pROB02 left	TGGGTCCATTCCCGTTGCCGACGATCGAGTCGCTCGCTCCTGAG-TTTCCGAGATTA
pRHL3 right	TGGGTCCATTCCCGTTGCCGTCGATCGAGTCGCTCCCCCGAG-TTTCCCGAGATTA
B4 chr left	TGGGTCCACTCCCGTTGCCGACGATCGAGTCGCTCGCTCTCTGAG-TTTCCCGAGATTA
pRWAY02 right	TGGGTCCATTCCCGTTGCCGTCGATCGAGTCGCTCGCTCCTGAA-TTTCCGAGATTA
chr RHAl right	TGGGTCGATTCCCGTTGCCGTCGATCGAGTCGCTCCCTCC
chr BHA1 left	
Cut_101011_1C1 C	** * * ******** **********************

(A) Comparación de los telómeros de los plásmidos lineales de *Rhodococcus* sp. WAY2 (excepto el extremo derecho de pRWAY03) con replicones lineales de otros *Rhodococcus*: cromosoma y plásmidos pRHL1, pRHL2 y pRHL3 de *R. jostii* RHA1, cromosoma y plásmidos pROB01 y pROB02 de *R. opacus* B4 y plásmido pR1CP1 de *R. opacus* 1CP. Los nucleótidos conservados están indicados con asteriscos. Las repeticiones invertidas están señaladas en gris y el motivo central GCTXCGC en negrita. Los nucleótidos no conservados en las repeticiones invertidas y en el motivo central están indicados en rojo.

В		
	pRWAY03 right	CCGTCGGGGAGGGTACCCCGGGG GCTGCGC CCGGGGGCAAGCCGC
	pRHL2_left	CCGTC-GGGAGGGTA-CCCGG GCTGCGC CCGGGG <mark>CCTGAACCGACTGGGCGGCAAGCCGC</mark>
	pROB01_left	GTCGGGGGGGGGTACCCCGGG GCTGCGC CCGGGGGCCACCGGCGGCAAGCCGC
		*** ******** **************************
	pRWAY03 right	CCAATAACGGAATTCACCC-ACGCGCTGCGCCCCGGGTCACGGGTTAGCTTGCGGTATAA
	pRHL2 left	CCAATAACGGAATTCACCCAACGCGCGCGCGCGGGTCACGGGTTAGCTTGCTGCATAA
	pROB01 left	CCAATAACGGAATTCACCC-ACGCGCGCGCGCGCGGGTCACGGGTTAGCTTGTTGCATAA

	pRWAY03 right	CGGAATCTGGAACAAGCAAAATGATCACTTCGGAAGTGTTCATTACCAACGGGATTGGCG
	pRHL2 left	CGGAATCCGGAAAAAGCAAAATGATCACTTCGGAAGTGTTCATTACCAACGGAATTGGCC
	pROB01 left	CGGAATCCGGAGAAAACAAAATGATCACTTCGGAAGTCTTCATTACCAACGGGATTGGCC
	P10201_1010	****** *** ** ** **********************

(**B**) Comparación del extremo derecho del plásmido lineal pRWAY03 de *Rhodococcus* sp. WAY2 con las secuencias teloméricas homólogas del extremo izquierdo del plásmido pRHL2 de *R. jostii* RHA1 y del extremo izquierdo del plásmido pROB01 de *R. opacus* B4. Los nucleótidos conservados están indicados con asteriscos. Las repeticiones invertidas están señaladas en gris y el motivo central GCTXCGC en negrita. Los nucleótidos no conservados en las repeticiones invertidas y en el motivo central están indicados en rojo.

Anexo 7. Proteínas asociadas a telómeros (genes *tap*) y proteínas terminales (*tpg*) en el genoma de *Rhodococcus* sp. WAY2.

						Homolog	gía <i>tpg</i>	
Replicón	Coord	enadas	Н.	Gen	Función predicha	Ref.	%QC	%Id.
	104127	103330	-	tpg	Hypothetical protein	WP_003953098.1 (pSCL4)	18	47,06
	106121	104127	-	tap	Telomere-associated protein	-	-	-
pRWAY01	571006	570209	-	tpg	Hypothetical protein	WP_003953098.1 (pSCL4)	18	47,06
	572964	571006	-	tap	Telomere-associated protein	-	-	-
	734553	733756	-	tpg	Hypothetical protein	WP_003953098.1 (pSCL4)	18	47,06
	736526	734553	-	tap	Telomere-associated protein	-	-	-
DWAV02	105788	107872	+	tap	Telomere-associated protein	-	-	-
	107872	108669	+	tpg	Hypothetical protein	WP_003953098.1 (pSCL4)	18	47,06
	239262	238465	-	tpg	Hypothetical protein	WP_003953098.1 (pSCL4)	18	47,06
DWAV02	241118	239262	-	tap	Telomere-associated protein	-	-	-
prwA103	342324	347702	+	tap	Telomere-associated protein	-	-	-
	347699	348433	+	tpg	Hypothetical protein	WP_003942446.1 (pREL1)	100	80,25

H.: hebra; Ref.: nº de referencia; %QC: porcentaje query cover; %Id.: porcentaje identidad.

Replicón	Coord	enadas	Hebra	Gen	Proteína	Función
Cromosoma	721940	723459	+	16S rRNA	-	Subunidad 16S rRNA
Cromosoma	723795	726930	+	23S rRNA	-	Subunidad 23S rRNA
Cromosoma	727095	727215	+	5S rRNA	-	Subunidad 5S rRNA
Cromosoma	731952	733471	+	16S rRNA	-	Subunidad 16S rRNA
Cromosoma	733805	736936	+	23S rRNA	-	Subunidad 23S rRNA
Cromosoma	737090	737210	+	5S rRNA	-	Subunidad 5S rRNA
Cromosoma	2377970	2379489	+	16S rRNA	-	Subunidad 16S rRNA
Cromosoma	2379825	2382960	+	23S rRNA	-	Subunidad 23S rRNA
Cromosoma	2383114	2383234	+	5S rRNA	-	Subunidad 5S rRNA
Cromosoma	2929964	2931483	+	16S rRNA	-	Subunidad 16S rRNA
Cromosoma	2931819	2934954	+	23S rRNA	-	Subunidad 23S rRNA
Cromosoma	2935107	2935227	+	5S rRNA	-	Subunidad 5S rRNA
Cromosoma	1797555	1798271	+	rplA	L1	Proteína ribosomal 50S
Cromosoma	5757810	5758646	+	rplB	L2	Proteína ribosomal 50S
Cromosoma	5756126	5756782	+	rplC	L3	Proteína ribosomal 50S
Cromosoma	5756779	5757468	+	rplD	L4	Proteína ribosomal 50S
Cromosoma	5761972	5762538	+	rplE	L5	Proteína ribosomal 50S
Cromosoma	5763295	5763834	+	rplF	L6	Proteína ribosomal 50S
Cromosoma	1799337	1799726	+	rplL	L7/L12	Proteína ribosomal 50S
Cromosoma	3655163	3655618	+	rplI	L9	Proteína ribosomal 50S
Cromosoma	1798701	1799258	+	rplJ	L10	Proteína ribosomal 50S
Cromosoma	1796992	1797426	+	rplK	L11	Proteína ribosomal 50S
Cromosoma	5792280	5792723	+	rplM	L13	Proteína ribosomal 50S
Cromosoma	5761285	5761653	+	rplN	L14	Proteína ribosomal 50S
Cromosoma	5765113	5765556	+	rplO	L15	Proteína ribosomal 50S
Cromosoma	5760152	5760568	+	rplP	L16	Proteína ribosomal 50S
Cromosoma	5772346	5772921	+	rplQ	L17	Proteína ribosomal 50S
Cromosoma	5763836	5764243	+	rplR	L18	Proteína ribosomal 50S
Cromosoma	6171274	6171615	+	rplS	L19	Proteína ribosomal 50S
Cromosoma	2907916	2908305	+	rplT	L20	Proteína ribosomal 50S
Cromosoma	2523861	2524172	+	rplU	L21	Proteína ribosomal 50S
Cromosoma	5758938	5759342	+	rplV	L22	Proteína ribosomal 50S
Cromosoma	5757465	5757770	+	rplW	L23	Proteína ribosomal 50S
Cromosoma	5761653	5761970	+	rplX	L24	Proteína ribosomal 50S
Cromosoma	5275581	5274967	-	rplY	L25	Proteína ribosomal 50S
Cromosoma	2524282	2524479	+	rpmA	L27	Proteína ribosomal 50S
Cromosoma	5201715	5201473	-	rpmB	L28	Proteína ribosomal 50S
Cromosoma	5760568	5760804	+	rpmC	L29	Proteína ribosomal 50S
Cromosoma	5764931	5765110	+	rpmD	L30	Proteína ribosomal 50S
Cromosoma	5203078	5203332	+	rpmE2	L31 tipo B	Proteína ribosomal 50S
Cromosoma	2362720	2362962	+	rpmE	L31	Proteína ribosomal 50S
Cromosoma	5203394	5203567	+	rpmF	L32	Proteína ribosomal 50S
Cromosoma	6149124	6149237	+	rpmF	L32	Proteína ribosomal 50S
Cromosoma	1794071	1794238	+	rpmG	L33	Proteína ribosomal 50S

Anexo 8. Operones rRNA y genes codificantes de proteínas ribosomales.

Cromosoma	5201473	5201309	-	rpmG	L33	Proteína ribosomal 50S
Cromosoma	6621327	6621184	-	rpmH	L34	Proteína ribosomal 50S
Cromosoma	2907657	2907851	+	rpmI	L35	Proteína ribosomal 50S
Cromosoma	5769373	5769486	+	rpmJ	L36	Proteína ribosomal 50S
Cromosoma	2890126	2891613	+	rpsA	S1	Proteína ribosomal 30S
Cromosoma	6183560	6184408	+	rpsB	S2	Proteína ribosomal 30S
Cromosoma	5759342	5760148	+	rpsC	S 3	Proteína ribosomal 30S
Cromosoma	5770532	5771137	+	rpsD	S4	Proteína ribosomal 30S
Cromosoma	5764275	5764931	+	rpsE	S5	Proteína ribosomal 30S
Cromosoma	3653990	3654277	+	rpsF	S 6	Proteína ribosomal 30S
Cromosoma	1856786	1857256	+	rpsG	S 7	Proteína ribosomal 30S
Cromosoma	5762858	5763280	+	rpsH	S 8	Proteína ribosomal 30S
Cromosoma	5792720	5793256	+	rpsI	S9	Proteína ribosomal 30S
Cromosoma	5755800	5756105	+	rpsJ	S10	Proteína ribosomal 30S
Cromosoma	5770096	5770509	+	rpsK	S11	Proteína ribosomal 30S
Cromosoma	1856412	1856786	+	rpsL	S12	Proteína ribosomal 30S
Cromosoma	5769764	5770096	+	rpsM	S13	Proteína ribosomal 30S
Cromosoma	5762543	5762728	+	rpsN	S14	Proteína ribosomal 30S
Cromosoma	5201297	5200992	-	rpsN	S14	Proteína ribosomal 30S
Cromosoma	6248056	6248325	+	rpsO	S15	Proteína ribosomal 30S
Cromosoma	6165774	6166235	+	rpsP	S16	Proteína ribosomal 30S
Cromosoma	5760801	5761082	+	rpsQ	S17	Proteína ribosomal 30S
Cromosoma	3654918	3655145	+	rpsR	S18	Proteína ribosomal 30S
Cromosoma	5200982	5200728	-	rpsR	S18	Proteína ribosomal 30S
Cromosoma	5758660	5758941	+	rpsS	S19	Proteína ribosomal 30S
Cromosoma	2553338	2553078	-	rpsT	S20	Proteína ribosomal 30S

Replicón	Coordena	das	Н.	Gen	Función
Cromosoma	1	1587	+	dnaA	Chromosomal replication initiator protein DnaA
Cromosoma	2247	3431	+	dnaN	DNA polymerase III beta subunit (EC 2.7.7.7)
Cromosoma	9531	11573	+	gyrB	DNA gyrase subunit B (EC 5.99.1.3)
Cromosoma	17206	19728	+	gyrA	DNA gyrase subunit A (EC 5.99.1.3)
Cromosoma	595751	598042	+	dnaX	DNA polymerase III subunits gamma and tau (EC 2.7.7.7)
Cromosoma	716139	719063	+	topA	DNA topoisomerase I (EC 5.99.1.2)
Cromosoma	719116	720330	+	holB	DNA polymerase III delta prime subunit (EC 2.7.7.7)
Cromosoma	1515614	1517887	+	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
Cromosoma	2240967	2239456	-	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
Cromosoma	2452962	2453426	+	ssb	Single-strand DNA binding protein
Cromosoma	2552031	2553008	+	holA	DNA polymerase III delta subunit (EC 2.7.7.7)
Cromosoma	2602811	2604742	+	dnaG	DNA primase (EC 2.7.7)
Cromosoma	2737654	2735894	-	dnaQ	DNA polymerase III epsilon subunit (EC 2.7.7.7)
Cromosoma	2799978	2803514	+	dnaE	DNA polymerase III alpha subunit (EC 2.7.7.7)
Cromosoma	2878623	2881286	+	polA	DNA polymerase I (EC 2.7.7.7)
Cromosoma	2947050	2947949	+	parA	Chromosome (plasmid) partitioning protein ParA
Cromosoma	3286248	3285391	-	lig	ATP-dependent DNA ligase (EC:6.5.1.1)
Cromosoma	3654343	3654864	+	ssb	Single-stranded DNA-binding protein
Cromosoma	3656174	3658378	+	dnaB	Replicative DNA helicase (EC 3.6.1)
Cromosoma	4200046	4198502	-	polA	DNA polymerase I (EC 2.7.7.7)
Cromosoma	4343739	4344257	+	rnhA	Ribonuclease HI (EC 3.1.26.4)
Cromosoma	4508290	4509321	+	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
Cromosoma	4509321	4510349	+	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
Cromosoma	4603317	4602346	-	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
Cromosoma	4751853	4752611	+	parA	Chromosome (plasmid) partitioning protein ParA
Cromosoma	5573028	5572162	-	parB	Chromosome (plasmid) partitioning protein ParB
Cromosoma	5846010	5849264	+	dnaE	DNA polymerase III alpha subunit (EC 2.7.7.7)
Cromosoma	5976007	5976804	+	parA	Chromosome (plasmid) partitioning protein ParA
Cromosoma	6092687	6094777	+	lig	DNA ligase (EC 6.5.1.2)
Cromosoma	6615188	6614127	-	parB	Chromosome (plasmid) partitioning protein ParB
Cromosoma	6616198	6615185	-	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY01	382849	383562	+	parA	Plasmid partitioning protein ParA
pRWAY01	383562	384428	+	parB	Chromosome (plasmid) partitioning protein ParB
pRWAY01	392128	391340	-	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY01	446841	445951	-	parB	Chromosome (plasmid) partitioning protein ParB
pRWAY01	470162	468558	-	parB	Chromosome (plasmid) partitioning protein ParB
pRWAY01	748191	749804	+	parB	Plasmid partitioning protein ParB
pRWAY01	749919	750776	+	parA	Plasmid partitioning protein ParA
pRWAY01	753030	752137	-	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY01	853175	854569	+	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY01	873702	874130	+	lig	ATP-dependent DNA ligase (EC 6.5.1.1)
pRWAY02	53804	52311	-	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY02	86990	87772	+	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY03	339700	340668	+	parA	Chromosome (plasmid) partitioning protein ParA
pRWAY04	1367	2272	+	repA	Replication protein
pRWAY04	2269	2553	+	repB	Replication protein
pRWAY04	5889	5116	-	parA	Chromosome (plasmid) partitioning protein ParA

Anexo 9. Genes presentes en *Rhodococcus* sp. WAY2 implicados en la replicación y partición de los replicones.

		% d	le genes en cada	a categoría de (COG por replic	cón
Supercategoría COG	COG	Cromosoma	pRWAY01	pRWAY02	pRWAY03	pRWAY04
	Α	0.02	0.00	0.00	0.00	0.00
Almacenamiento v	В	0.02	0.00	0.00	0.00	0.00
procesado de la	J	2.67	0.00	0.00	0.25	0.00
información	K	8.39	5.72	3.40	4.20	0.00
	L	3.03	7.20	20.79	5.19	5.00
	D	0.46	0.65	0.95	0.49	5.00
	Μ	2.18	0.83	0.76	3.46	0.00
	Ν	0.02	0.00	0.00	0.00	0.00
Procesos celulares	0	1.95	0.83	1.13	2.47	0.00
	Т	2.30	1.11	3.21	2.22	0.00
	U	0.33	0.09	0.00	0.74	5.00
	V	0.97	0.00	0.76	0.99	0.00
	C	6.93	4.06	6.24	1.73	0.00
	E F	1.37	0.85	0.76	0.25	0.00
	G	3.97	2 21	0.00	1.23	0.00
Metabolismo	н	2.67	0.65	0.00	1.23	0.00
	Ι	6.96	5.54	2.65	0.25	5.00
	Р	4.69	3.69	2.46	6.67	0.00
	Q	4.05	3.97	5.10	1.48	0.00
Función desconocida	S	41.14	62.45	50.85	66.91	80.00

Anexo 10. Distribución de COGs en los cinco replicones de WAY2.

COGs de almacenamiento y procesado de la información genética: procesado de RNA (A), estructura y dinámica de la cromatina (B), traducción y estructura de los ribosomas (J), transcripción (K), replicación, recombinación y reparación de DNA (L). COGs de procesos celulares: división celular y partición de cromosoma (D), síntesis de envueltas celulares (M), movilidad celular y secreción (N), modificación post-traduccional (O), mecanismos de transducción de señales (T), transporte intracelular (U), mecanismos de defensa (V), estructuras externas (W). COGs de metabolismo: producción y conversión de energía (C), transporte y metabolismo de aminoácidos (E), transporte y metabolismo de nucleótidos (F), transporte y metabolismo de carbohidratos (G), metabolismo de coenzimas (H), metabolismo de lípidos (I), transporte y metabolismo de iones inorgánicos (P), metabolismo secundario (Q). Genes que codifican proteínas con función desconocida: S.

Rp.	Coorde	enadas	H.	Gen	Función	Ruta
Metal	bolismo centi	ral de carbo	hidrat	tos		
Cr.	6039652	6041283	+	pgm	Phosphoglucomutase (EC	Degradación de glucógeno
Cr.	5214900	5215832	+	galU	UTP-glucose-1-phosphate	Síntesis de glucógeno
Cr.	5552416	5551247	-	glgA	Predicted glycogen synthase, ADP-glucose transglucosylase	Síntesis de glucógeno
Cr.	2400678	2398480	-	glgB1	1,4-alpha-glucan (glycogen) branching enzyme, GH-13-type (EC 2.4.1.18)	Síntesis de glucógeno
Cr.	6084499	6082949	-	glgB2	Glycogen branching enzyme, GH-57-type (EC 2.4.1.18)	Síntesis de glucógeno
Cr.	5552557	5553753	+	glgC	Glucose-1-phosphate adenylyltransferase (EC 2.7.7.27)	Síntesis de glucógeno
Cr.	5389671	5388631	-	glpX	Fructose-1,6-bisphosphatase, GlpX type (EC 3.1.3.11)	Gluconeogénesis
Cr.	4553850	4555679	+	pck	Phosphoenolpyruvate carboxykinase [GTP] (EC 4.1.1.32)	Gluconeogénesis
Cr.	4161265	4161891	+	eda	4-hydroxy-2-oxoglutarate aldolase (EC 4.1.3.16)	Glicólisis ED
Cr.	4159399	4161252	+	edd	Phosphogluconate dehydratase (EC 4.2.1.12)	Glicólisis ED
Cr.	3467019	3468557	+	zwf1	Glucose-6-phosphate 1- dehvdrogenase (EC 1.1.1.49)	Glicólisis ED
Cr.	5223741	5222395	-	zwf2	Glucose-6-phosphate 1- dehydrogenase (EC 1.1.1.49)	Glicólisis ED
Cr.	6488580	6490118	+	zwf3	Glucose-6-phosphate 1- dehvdrogenase (EC 1.1.1.49)	Glicólisis ED
Cr.	4157906	4159402	+	zwf4	Glucose-6-phosphate 1- dehvdrogenase (EC 1.1.1.49)	Glicólisis ED
Cr.	3469462	3470205	+	pgl	6-phosphogluconolactonase (EC 3.1.1.31)	Glicólisis ED, Pentosas fosfato
p01.	276334	275534	-	pgl	6-phosphogluconolactonase (EC 3.1.1.31)	Glicólisis ED, Pentosas fosfato
Cr.	6102346	6103377	+	pfkA	6-phosphofructokinase (EC 2.7.1.11)	Glicólisis EMP
Cr.	2865568	2866986	+	pyk	Pyruvate kinase (EC 2.7.1.40)	Glicólisis EMP
Cr.	5345257	5346543	+	eno	Enolase (EC 4.2.1.11)	Glicólisis EMP, Gluconeogénesis
Cr.	5083954	5084988	+	fba	Fructose-bisphosphate aldolase class II (EC 4.1.2.13)	Glicólisis EMP, Gluconeogénesis
Cr.	3476836	3475817	-	gap1	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1 2 1 12)	Glicólisis EMP, Gluconeogénesis
Cr.	3658654	3660114	+	gap2	NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13)	Glicólisis EMP, Gluconeogénesis
Cr.	1728074	1728829	+	gpmA	Phosphoglycerate mutase (EC 5.4.2.1)	Glicólisis EMP, Gluconeogénesis
Cr.	3475745	3474588	-	pgk	Phosphoglycerate kinase (EC	Glicólisis EMP,
Cr.	6343896	6343144	-	ppgk	Polyphosphate glucokinase (EC	Glicólisis EMP,
Cr.	3474588	3473803	-	tpiA	Triosephosphate isomerase (EC	Glicólisis EMP,
Cr.	5115499	5114198	-	pgil	Glucose-6-phosphate isomerase (FC 5 3 1 9)	Glicólisis EMP, Pentosas
Cr.	227909	229564	+	pgi2	Glucose-6-phosphate isomerase (EC 5.3.1.9)	Glicólisis EMP, Pentosas
Cr.	1679295	1680584	+	aceA	Isocitrate lyase (EC 4.1.3.1)	Glioxilato

Anexo 11. Genes implicados en el metabolismo central en WAY2.

Cr.	2971327	2969144	-	glcB	Malate synthase G (EC 2.3.3.9)	Glioxilato
Cr.	4672765	4671899	-	mclA	Malyl-CoA lyase (EC 4.1.3.24)	Glioxilato
Cr.	3495	4406	+	gnd1	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentosas fosfato
Cr.	226045	226911	+	gnd2	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentosas fosfato
Cr.	3355733	3357181	+	gnd3	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentosas fosfato
Cr.	6488387	6487479	-	gnd4	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentosas fosfato
p01.	291430	292347	+	gnd	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentosas fosfato
Cr.	3486888	3486205	-	rpe	Ribulose-phosphate 3- epimerase (EC 5.1.3.1)	Pentosas fosfato
Cr.	2473583	2474056	+	rpiB	Ribose 5-phosphate isomerase B (EC 5.3.1.6)	Pentosas fosfato
Cr.	3465885	3467009	+	tal	Transaldolase (EC 2.2.1.2)	Pentosas fosfato
p01.	296705	297859	+	tal	Transaldolase (EC 2.2.1.2)	Pentosas fosfato
Cr.	3463767	3465875	+	tkt l	Transketolase (EC 2.2.1.1)	Pentosas fosfato
p01.	294587	296695	+	tkt	Transketolase (EC 2.2.1.1)	Pentosas fosfato
Cr.	257207	258199	+	tkt2	Transketolase, C-terminal section (EC 2.2.1.1)	Pentosas fosfato
Cr.	256318	257205	+	tkt3	Transketolase, N-terminal section (EC 2.2.1.1)	Pentosas fosfato
Cr.	3439278	3442082	+	acnA	Aconitate hydratase (EC 4.2.1.3)	TCA
Cr.	5495768	5494071	-	fumB	Fumarate hydratase class I, aerobic (EC 4.2.1.2)	TCA
Cr.	2402921	2405512	+	glgP	Glycogen phosphorylase (EC 2.4.1.1)	TCA
Cr.	1484368	1486602	+	icd1	Isocitrate dehydrogenase	TCA
Cr.	5857767	5858990	+	icd2	Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)	TCA
Cr.	4136328	4138262	+	korA	2-oxoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)	TCA
Cr.	4138259	4139332	+	korB	2-oxoglutarate oxidoreductase, beta subunit (EC 1 2 7 3)	TCA
Cr.	1660395	1661798	+	lpd1	Dihydrolipoamide dehydrogenase (FC 1 8 1 4)	TCA
Cr.	2026644	2025241	-	lpd2	Dihydrolipoamide dehydrogenase (EC 1 8 1 4)	TCA
Cr.	5885786	5887189	+	lpd3	Dihydrolipoamide dehydrogenase (FC 1.8.1.4)	TCA
Cr.	3670350	3668971	-	lpd4	Dihydrolipoamide dehydrogenase of branched- chain alpha-keto acid	TCA
Cr.	3743185	3741776	-	lpd5	dehydrogenase (EC 1.8.1.4) Dihydrolipoamide dehydrogenase of pyruvate dehydrogenase complex (EC 1.8.1.4)	TCA
Cr.	6208259	6209806	+	mqo	Malate: quinone oxidoreductase (EC 1.1.5.4)	TCA
Cr.	5278566	5277094	-	sdhA1	Fumarate reductase/succinate dehydrogenase, flavoprotein subunit	TCA

DPTO. DE BIOLOGÍA | FACULTAD DE CIENCIAS | UAM

Cr.	2248651	2250273	+	sdhA2	Succinate dehydrogenase flavoprotein subunit (EC	TCA
Cr.	2824678	2826609	+	sdhA3	Succinate dehydrogenase flavoprotein subunit (EC	TCA
Cr.	1194054	1195820	+	sdhA4	1.3.99.1) Succinate dehydrogenase/fumarate	TCA
Cr.	4814835	4813111	-	sdhA5	reductase, flavoprotein subunit Succinate dehydrogenase/fumarate	TCA
Cr.	2826611	2827360	+	sdhB	reductase, flavoprotein subunit Succinate dehydrogenase iron- sulfur protein (EC 1 3 99 1)	TCA
Cr.	5124137	5125306	+	sucC	Succinyl-CoA ligase [ADP- forming] beta chain (EC	TCA
Cr.	5125323	5126225	+	sucD	6.2.1.5) Succinyl-CoA ligase [ADP- forming] alpha chain (EC	TCA
p01.	707924	709246	+	citA1	Citrate synthase (EC 2.3.3.1)	TCA, Glioxilato
p01.	766467	765322	-	citA2	Citrate synthase (EC 2.3.3.1)	TCA, Glioxilato
Cr.	1458004	1456874	-	gltA1	Citrate synthase (EC 2.3.3.1)	TCA, Glioxilato
Cr.	1461733	1462974	+	gltA2	Citrate synthase (EC 2.3.3.1)	TCA, Glioxilato
Cr.	4840775	4841710	+	mdh1	Malate dehydrogenase (EC	TCA, Glioxilato
Cr.	2149115	2150170	+	mdh2	1.1.1.37) Malate dehydrogenase (EC 1.1.1.37)	TCA, Glioxilato
R ovid	lagión				· · · · · · · · · · · · · · · · · · ·	
Cr.	1751879	1749999	-	acx	Acyl-coenzyme A oxidase 3,	β-oxidación
Cr.	183004	184167	+	fadA1	peroxisomal (EC 1.3.3.6) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)3-ketoacyl-CoA	β-oxidación
Cr.	331398	332591	+	fadA2	thiolase (EC 2.3.1.16) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	603355	604569	+	fadA3	3-ketoacyl-CoA thiolase [isoleucine degradation] (EC	β-oxidación
Cr.	920511	921659	+	fadA4	3-ketoacyl-CoA thiolase (EC	β-oxidación
Cr.	1031064	1029901	-	fadA5	2.3.1.16) Probable acetyl-CoA acetyltransferase FadA5 (EC	β-oxidación
Cr.	1107722	1108861	+	fadA6	2.3.1.9) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	1127499	1128644	+	fadA7	3-ketoacyl-CoA thiolase (EC	β-oxidación
Cr.	1211914	1213062	+	fadA8	2.3.1.16) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	1340403	1341620	+	fadA9	3-ketoacyl-CoA thiolase (EC	β-oxidación
Cr.	1370895	1372112	+	fadA10	2.3.1.10) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	2036222	2037421	+	fadA11	3-ketoacyl-CoA thiolase (EC	β-oxidación
Cr.	2047844	2049061	+	fadA12	2.3.1.10) 3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	2052897	2054078	+	fadA13	3-ketoacyl-CoA thiolase (EC	β-oxidación
Cr						
01.	2394262	2395527	+	fadA14	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación

Cr.	3381267	3380140	-	fadA16	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	3621192	3622406	+	fadA17	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	3953694	3954929	+	fadA18	Acetyl-CoA acetyltransferase (EC 2.3.1.9)	β-oxidación
Cr.	4061756	4063015	+	fadA19	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	4238230	4239363	+	fadA20	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	4244019	4245234	+	fadA21	Acetyl-CoA acetyltransferase (EC 2.3.1.9)	β-oxidación
Cr.	4452922	4451729	-	fadA22	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	4580184	4581530	+	fadA23	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	4688118	4689248	+	fadA24	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	5092662	5091493	-	fadA25	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	5291045	5289861	-	fadA26	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	5362086	5360869	-	fadA27	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	5690109	5691311	+	fadA28	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	6374989	6373781	-	fadA29	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	556355	557527	+	fadA1	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	610582	609365	-	fadA2	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	642878	641739	-	fadA3	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	673577	672381	-	fadA4	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	780202	779024	-	fadA5	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p01.	926547	927758	+	fadA6	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p02.	182627	181434	-	fadA1	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p02.	393598	392452	-	fadA2	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
p02.	395944	397281	+	fadA3	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	β-oxidación
Cr.	103065	102217	-	fadB1	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	103873	103121	-	fadB2	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	134814	134041	-	fadB3	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	214606	213830	-	fadB4	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	232556	231747	-	fadB5	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	327950	327165	-	fadB6	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	329086	329886	+	fadB7	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	494914	494105	-	fadB8	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	604598	606736	+	fadB9	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	641255	640233	-	fadB10	enoyl-CoA hydratase	β-oxidación
Cr.	643577	644368	+	fadB11	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación

Cr.	757482	758312	+	fadB12	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	881543	880677	-	fadB13	Enoyl-CoA hydratase	β-oxidación
Cr.	916170	915298	-	fadB14	enoyl-CoA hydratase	β-oxidación
Cr.	1007248	1006472	-	fadB15	Probable enoyl-CoA hydratase EchA20 (EC 4.2.1.17)	β-oxidación
Cr.	1040430	1039588	-	fadB16	Enoyl-CoA hydratase (EC 4 2 1 17)	β-oxidación
Cr.	1101259	1102026	+	fadB17	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1102033	1102815	+	fadB18	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1114832	1115614	+	fadB19	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1126658	1127506	+	fadB20	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1132826	1132059	-	fadB21	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1185422	1186156	+	fadB22	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1186153	1186950	+	fadB23	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	1210711	1211499	+	fadB24	Enoyl-CoA hydratase (EC 4 2 1 17)	β-oxidación
Cr.	1330300	1331115	+	fadB25	Enoyl-CoA hydratase (EC 4 2 1 17)	β-oxidación
Cr.	1352315	1351407	-	fadB26	Enoyl-CoA hydratase (EC 4 2 1 17)	β-oxidación
Cr.	1356017	1356151	+	fadB27	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	1499315	1500052	+	fadB28	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	1843957	1843157	-	fadB29	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	2316794	2317570	+	fadB30	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	2651700	2652470	+	fadB31	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3166093	3165299	-	fadB32	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3166963	3166097	-	fadB33	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3191055	3190213	-	fadB34	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3331849	3332532	+	fadB35	putative enoyl-CoA hydratase/isomerase family	β-oxidación
-					protein	
Cr.	3559761	3560525	+	fadB36	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3577814	3576846	-	fadB37	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3584583	3584924	+	fadB38	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	3707957	3707211	-	fadB39	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4006525	4007181	+	fadB40	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4052432	4051536	-	fadB41	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4055161	4055952	+	fadB42	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4058281	4059081	+	fadB43	Enoyl-CoA hydratase (EC	β-oxidación
Cr.	4065157	4066002	+	fadB44	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación

Cr.	4068516	4067524	-	fadB45	Enoyl-[acyl-carrier-protein] reductase [FMN] (EC 1.3.1.9)	β-oxidación
Cr.	4069312	4068554	-	fadB46	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4071316	4070594	-	fadB47	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4090028	4092409	+	fadB48	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4223702	4224484	+	fadB49	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4247793	4247011	-	fadB50	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4248572	4247811	-	fadB51	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4285161	4286447	+	fadB52	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4292997	4293812	+	fadB53	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4328212	4329054	+	fadB54	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4606554	4607624	+	fadB55	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4612674	4611895	-	fadB56	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4686439	4687224	+	fadB57	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4690333	4691124	+	fadB58	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	4697910	4697158	-	fadB59	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5291903	5291094	-	fadB60	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5292720	5291995	-	fadB61	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5318686	5317901	-	fadB62	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5321009	5320134	-	fadB63	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5604662	5605486	+	fadB64	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5741180	5741971	+	fadB65	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	5881054	5881752	+	fadB66	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	6076178	6076957	+	fadB67	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	6138322	6137522	-	fadB68	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	6373780	6371672	-	fadB69	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	6470743	6471717	+	fadB70	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	6484350	6483382	-	fadB71	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	116309	117193	+	fadB1	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	545247	544459	-	fadB2	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	550311	551099	+	fadB3	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	596365	595601	-	fadB4	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	680282	679440	-	fadB5	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	684077	683265	-	fadB6	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación

DPTO. DE BIOLOGÍA | FACULTAD DE CIENCIAS | UAM

p01.	790337	789564	-	fadB7	Enoyl-CoA hydratase (EC	β-oxidación
p01.	793335	792601	-	fadB8	Enoyl-CoA hydratase (EC	β-oxidación
p01.	927776	929926	+	fadB9	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
p01.	947321	946542	-	fadB10	Enoyl-CoA hydratase (EC	β-oxidación
p01.	969996	969190	-	fadB11	Enoyl-CoA hydratase (EC 4.2.1.17)	β-oxidación
Cr.	1040510	1042186	+	fadD1	Long-chain fatty-acid-CoA ligase (EC 6.2.1.3), Mycobacterial subgroup	β-oxidación
Cr.	1044931	1043360	-	fadD2	FadD19 Long-chain fatty-acid-CoA ligase (EC 6.2.1.3), Mycobacterial subgroup FadD17	β-oxidación
Cr.	2345967	2347568	+	fadD3	Long-chain-fatty-acidCoA	β-oxidación
Cr.	3187954	3186338	-	fadD4	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	β-oxidación
Cr.	4077949	4076303	-	fadD5	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	β-oxidación
Cr.	4103342	4104895	+	fadD6	Long-chain-fatty-acidCoA	β-oxidación
Cr.	4240175	4241818	+	fadD7	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	β-oxidación
Cr.	104478	104365	-	fadE1	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	132876	131713	-	fadE2	probable acyl-CoA dehydrogenase	β-oxidación
Cr.	134038	132869	-	fadE3	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	184199	186382	+	fadE4	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	202429	203574	+	fadE5	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	217813	216650	-	fadE6	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	β-oxidación
Cr.	251317	252480	+	fadE7	Acyl-CoA dehydrogenase, type 2. C-terminal domain	β-oxidación
Cr.	260642	261808	+	fadE8	Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC	β-oxidación
Cr.	335080	336231	+	fadE9	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	500744	499575	-	fadE10	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	642889	641252	-	fadE11	Acyl-CoA dehydrogenase (EC	β-oxidación
Cr.	821632	823794	+	fadE12	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	823877	824917	+	fadE13	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	824902	826053	+	fadE14	Probable acyl-CoA dehydrogenase FadE (EC 1.3.99)	β-oxidación
Cr.	913176	912118	-	fadE15	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	914141	913173	-	fadE16	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	915298	914138	-	fadE17	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	917766	918986	+	fadE18	putative acyl-CoA dehydrogenase	β-oxidación

Cr.	1046049	1044928	-	fadE19	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1047267	1046059	-	fadE20	Acyl-CoA dehydrogenase (EC 1.3.8.1), Mycobacterial	β-oxidación
Cr.	1099277	1100182	+	fadE21	subgroup FadE26 FIG00823074: hypothetical protein	β-oxidación
Cr.	1100169	1101257	+	fadE22	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1112664	1113662	+	fadE23	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1113646	1114821	+	fadE24	Acyl-CoA dehydrogenase (EC 1.3.99)	β-oxidación
Cr.	1117843	1117049	-	fadE25	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1118943	1117846	-	fadE26	Acyl-CoA dehydrogenase (EC 1.3.99)	β-oxidación
Cr.	1123456	1124640	+	fadE27	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1128658	1129806	+	fadE28	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1135137	1133836	-	fadE29	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1209450	1210589	+	fadE30	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1213072	1214277	+	fadE31	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1215254	1216456	+	fadE32	Acyl-CoA dehydrogenase (EC 1.3.8.7)	β-oxidación
Cr.	1331093	1332352	+	fadE33	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
Cr.	1350980	1349835	-	fadE34	Butyryl-CoA dehydrogenase	β-oxidación
Cr.	1375784	1375939	+	fadE35	(EC 1.3.99.2) Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1852221	1853411	+	fadE36	(EC 1.3.99.2) Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	1868150	1869277	+	fadE37	Acyl-CoA dehydrogenase	β-oxidación
Cr.	1903219	1904961	+	fadE38	Acyl-CoA dehydrogenase (EC	β-oxidación
Cr.	2034972	2036204	+	fadE39	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	2054090	2055238	+	fadE40	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	2313608	2314759	+	fadE41	Branched-chain acyl-CoA dehydrogenase (FC 1 3 99 12)	β-oxidación
Cr.	2341745	2342935	+	fadE42	putative acyl-CoA dehydrogenase	β-oxidación
Cr.	2342932	2344032	+	fadE43	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	2839029	2840972	+	fadE44	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	3189024	3187951	-	fadE45	probable acyl-CoA debydrogenase	β-oxidación
Cr.	3190211	3189027	-	fadE46	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	3678260	3677034	-	fadE47	Acyl-CoA dehydrogenase; probable dibenzothiophene	β-oxidación
Cr.	3713192	3712050	-	fadE48	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	3867347	3868498	+	fadE49	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación

DPTO. DE BIOLOGÍA | FACULTAD DE CIENCIAS | UAM

Cr.	4010092	4008881	-	fadE50	Acyl-CoA dehydrogenase; probable dibenzothiophene	β-oxidación
Cr.	4011406	4010183	-	fadE51	desulfurization enzyme Acyl-CoA dehydrogenase; probable dibenzothiophene	β-oxidación
Cr.	4012683	4011403	-	fadE52	desulfurization enzyme Acyl-CoA dehydrogenase family protein	β-oxidación
Cr.	4040068	4041204	+	fadE53	Butyryl-CoA dehydrogenase	β-oxidación
Cr.	4045206	4044058	-	fadE54	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4046368	4045310	-	fadE55	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	β-oxidación
Cr.	4047405	4046365	-	fadE56	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4055055	4053814	-	fadE57	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4056965	4058152	+	fadE58	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4087431	4088747	+	fadE59	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4099183	4100529	+	fadE60	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4180871	4182016	+	fadE61	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4184512	4185747	+	fadE62	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
Cr.	4190043	4191254	+	fadE63	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	4191251	4192276	+	fadE64	Def (13.1972) POSSIBLE ACYL-coa DEHYDROGENASE FADE	β-oxidación
Cr.	4235387	4234230	-	fadE65	(EC 13.99.7) Butyryl-CoA dehydrogenase (EC 13.99.2)	β-oxidación
Cr.	4236597	4235404	-	fadE66	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	4243067	4241877	-	fadE67	Butyryl-CoA dehydrogenase (EC 1.3.8.1)	β-oxidación
Cr.	4283665	4282514	-	fadE68	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4354022	4351809	-	fadE69	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
Cr.	4390385	4389225	-	fadE70	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4454174	4452987	-	fadE71	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4525431	4526666	+	fadE72	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4613766	4612738	-	fadE73	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
Cr.	4614917	4613766	-	fadE74	Butyryl-CoA dehydrogenase	β-oxidación
Cr.	4681530	4680505	-	fadE75	(EC 1.3.99.2) Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	4682752	4681538	-	fadE76	Butyryl-CoA dehydrogenase (EC 1 3 99 2)	β-oxidación
Cr.	4684401	4685561	+	fadE77	Butyryl-CoA dehydrogenase (EC 1 3 99 2)	β-oxidación
Cr.	5322024	5323745	+	fadE78	Acyl-CoA dehydrogenase (EC	β-oxidación
Cr.	5492921	5491527	-	fadE79	Acyl-CoA dehydrogenase	β-oxidación

Cr.	5736932	5735760	-	fadE80	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
Cr.	6029631	6028426	-	fadE81	Probable acyl-CoA dehydrogenase (EC 1 3 99 3)	β-oxidación
Cr.	6031073	6029661	-	fadE82	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
Cr.	6227976	6229703	+	fadE83	Acyl-CoA dehydrogenase (EC	β-oxidación
Cr.	6301322	6302464	+	fadE84	Butyryl-CoA dehydrogenase (FC 1 3 99 2)	β-oxidación
p01.	111985	110840	-	fadE1	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	555192	556358	+	fadE2	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	562660	564411	+	fadE3	Acyl-CoA dehydrogenase, short-chain specific (EC 1 3 99 2)	β-oxidación
p01.	576410	575262	-	fadE4	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	612487	611465	-	fadE5	POSSIBLE ACYL-CoA DEHYDROGENASE FADE (EC 1.3.99)	β-oxidación
p01.	613695	612484	-	fadE6	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	782126	780960	-	fadE7	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	806996	805830	-	fadE8	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
p01.	953203	954495	+	fadE9	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
p02.	154775	155296	+	fadE1	Acyl-CoA dehydrogenase, short-chain specific (EC	β-oxidación
p02.	183880	182693	-	fadE2	Butyryl-CoA dehydrogenase (EC 1.3.99.2)	β-oxidación
Cr.	332634	333395	+	fadN1	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	399565	398741	-	fadN2	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	1106236	1105472	-	fadN3	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	1580034	1580876	+	fadN4	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	1680711	1681607	+	fadN5	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	2037476	2038243	+	fadN6	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	4072974	4072195	-	fadN7	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	4239395	4240159	+	fadN8	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	4389134	4388301	-	fadN9	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Cr.	4689368	4690132	+	fadN10	3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	β-oxidación
Rutas	centrales de	degradació	n de (compuestos	s aromáticos	
Cr.	3129855	3130751	+	catA1	Catechol 1,2-dioxygenase 1	β-ketoadipato (Ro
Cr	3714910	3713966	_	catA2	(EC 1.13.11.1) Probable catechol 1 2-	intradiol del cateco
<u></u>	5717710	5,15,00		000012	- 1000010 cutocil01 1,2	p-retoaulpato (RU

otura ol) catA2 3714910 3713966 Probable catechol 1,2β-ketoadipato (Rotura dioxygenase intradiol del catecol) 3956643 3955795 Probable catechol 1,2catA3 β-ketoadipato (Rotura dioxygenase intradiol del catecol) 4152721 Catechol 1,2-dioxygenase (EC 4153209 $^+$ catA4 β-ketoadipato (Rotura 1.13.11.1) intradiol del catecol)

Cr.

Cr.

DPTO. DE BIOLOGÍA | FACULTAD DE CIENCIAS | UAM

Cr.	4154203	4155045	+	catA5	Catechol 1,2-dioxygenase (EC 1.13.11.1)	β-ketoadipato (Rotura intradiol del catecol)
Cr.	1925185	1926309	+	catB1	Muconate cycloisomerase (EC 5C5.1.1)	β-ketoadipato (Rotura intradiol del catecol)
Cr.	4155075	4156196	+	catB2	Muconate cycloisomerase (EC 5.5.1.1)	β-ketoadipato (Rotura intradiol del catecol)
Cr.	4156212	4156493	+	catC	Muconolactone isomerase (EC 5.3.3.4)	β-ketoadipato (Rotura intradiol del catecol)
Cr.	345521	346303	+	pcaD1	Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24)	β-ketoadipato (Rotura intradiol del catecol y protocatecuato)
Cr.	3589424	3590290	+	pcaD2	Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24)	β-ketoadipato (Rotura intradiol del catecol y protocatecuato)
Cr.	3693989	3694861	+	pcaD3	Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24)	β-ketoadipato (Rotura intradiol del catecol y protocatecuato)
Cr.	6450972	6450100	-	pcaD4	Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24)	β-ketoadipato (Rotura intradiol del catecol y protocatecuato)
p02.	404091	404918	+	pcaD	Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24)	β-ketoadipato (Rotura intradiol del catecol y protocatecuato)
Cr.	2499862	2498516	-	pcaB	3-carboxy-cis,cis-muconate cycloisomerase (EC 5.5.1.2)	β -ketoadipato (Rotura intradiol del protocatecuato)
Cr.	2498519	2497326	-	pcaC	4-carboxymuconolactone decarboxylase (EC 4.1.1.44)	β -ketoadipato (Rotura intradiol del protocatecuato)
Cr.	2500526	2499885	-	pcaG	Protocatechuate 3,4-	β-ketoadipato (Rotura
					dioxygenase alpha chain (EC 1.13.11.3)	intradiol del protocatecuato)
Cr.	2501245	2500526	-	рсаН	Protocatechuate 3,4- dioxygenase beta chain (EC 1.13.11.3)	β-ketoadipato (Rotura intradiol del protocatecuato)
p01.	74049	74930	+	catE	Catechol 2,3-dioxygenase (EC 1.13.11.2)	Rotura extradiol del catecol
p02.	198132	197251	-	catE	Catechol 2,3-dioxygenase (EC 1.13.11.2)	Rotura extradiol del catecol
Cr.	118874	119749	+		2-hydroxymuconic semialdehyde hydrolase (EC 3.7.1.9)	Rotura extradiol del catecol
Cr.	2849617	2849796	+	xylH1	Possible 4-oxalocrotonate tautomerase (EC 5.3.2.6)	Rotura extradiol del catecol
Cr.	5295268	5295705	+	xylH2	Possible 4-oxalocrotonate tautomerase (EC 5.3.2.6)	Rotura extradiol del catecol
Cr.	121449	122234	+	bphE1	2-keto-4-pentenoate hydratase $(EC 4.2, 1.80)$	Degradación 2- hidroxipentadienoato
Cr.	881759	882544	+	bphE2	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase (EC 4.2.1.80)	Degradación 2- hidroxipentadienoato
Cr.	3892276	3891557	-	bphE3	2-keto-4-pentenoate hydratase	Degradación 2-
p01.	42998	43816	+	bphE1	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase	hidroxipentadienoato Degradación 2-
p01.	501068	500877	-	bphE2	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase	hidroxipentadienoato Degradación 2-
p01.	503862	503449	-	bphE3	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase	Degradación 2-
p02.	160020	160823	+	bphE1	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase	hidroxipentadienoato Degradación 2-
p02.	191841	192785	+	bphE2	(EC 4.2.1.80) 2-keto-4-pentenoate hydratase	Degradación 2-
Cr.	123186	124244	+	bphF1	(EC 4.2.1.80) 4-hydroxy-2-oxovalerate	hidroxipentadienoato Degradación 2-
Cr.	883464	884492	+	bphF2	aldolase (EC 4.1.3.39) 4-hydroxy-2-oxovalerate	Degradación 2-
Cr.	3890592	3889582	-	bphF3	adolase (EC 4.1.3.39) 4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)	Degradación 2- hidroxipentadienoato

aldolase (EC 4.1.3.39) hidroxipentadienoato p01. 66000 65809 - $bphF2$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p01. 66562 66059 - $bphF3$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 160835 161605 + $bphF1$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 194787 + $bphF2$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 194787 + $bphF2$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato Cr. 122246 123148 + $bphG1$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, Degradación 2- hidroxipentadienoato	
p01.66000 65809 - $bphF2$ 4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop01. 66562 66059 - $bphF3$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 160835 161605 + $bphF1$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)Degradación 2- hidroxipentadienoatop12. 123148 + $bphG1$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatop13. 3890589 - $bphG3$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatop2. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradació	
p01. 66562 66059 - $bphF3$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 160835 161605 + $bphF1$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 194787 + $bphF2$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 122246 123148 + $bphG1$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 882556 883458 + $bphG2$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato	
p01. 66562 66059 $ bphF3$ 4 -hydroxy-2-oxovalerateDegradacion 2- hidroxipentadienoatop02. 160835 161605 $+$ $bphF1$ 4 -hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatop02. 193768 194787 $+$ $bphF2$ 4 -hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatop02. 193768 194787 $+$ $bphF2$ 4 -hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatop02. 193768 194787 $+$ $bphF2$ 4 -hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatocr. 122246 123148 $+$ $bphG1$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatocr. 882556 883458 $+$ $bphG2$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatocr. 3891560 3890589 $ bphG3$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatocr. 3891560 3890589 $ bphG3$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
p02. 160835 $161605 + bphF1$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 $194787 + bphF2$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato p02. 193768 $194787 + bphF2$ 4 -hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato Cr. 122246 $123148 + bphG1$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato	
p02.160835161805+ $bphF1$ 4-hydroxy-2-oxovalerateDegradacion 2- hidroxipentadienoatop02.193768194787+ $bphF2$ 4-hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatop02.193768194787+ $bphF2$ 4-hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatoCr.122246123148+ $bphG1$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.882556883458+ $bphG2$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589- $bphG3$ Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
p02. 193768 194787 + $bphF2$ 4-hydroxy-2-oxovalerate Degradación 2- aldolase (EC 4.1.3.39) hidroxipentadienoato Cr. 122246 123148 + $bphG1$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato Cr. 3891560 3890589 - $bphG3$ Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato	
p02.193768194787+bph724-hydroxy-2-oxovalerateDegradación 2- hidroxipentadienoatoCr.122246123148+bphG1Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.882556883458+bphG2Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
Cr.122246123148+bphG1Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.882556883458+bphG2Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
Cr.122240123148+bphG1Acctandenyad denydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.882556883458+bphG2Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
Cr.882556883458+bphG2Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
Cr.38915603890589-bphG2Acetaldenyde denydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoatoCr.38915603890589-bphG3Acetaldehyde dehydrogenase, acetylating (EC 1.2.1.10)Degradación 2- hidroxipentadienoato	
Cr. 3891560 3890589 - <i>bphG3</i> Acetaldehyde dehydrogenase, Degradación 2- acetylating (EC 1.2.1.10) hidroxipentadienoato	
acetylating (EC 1.2.1.10) hidroxipentadienoato	
p(1) = 43822 = 44805 + bphGI = Acetaldehyde dehydrogenase = Degradación 2-	
acetylating (EC.1.2.1.10) hidroxinentadienoato	
p01. 66900 66571 - <i>bphG2</i> Acetaldehvde dehvdrogenase. Degradación 2-	
acetylating (EC 1.2.1.10) hidroxipentadienoato	
p02. 192791 193771 + <i>bphG1</i> Acetaldehyde dehydrogenase, Degradación 2-	
acetylating (EC 1.2.1.10) hidroxipentadienoato	
p02. 205797 206045 + <i>bphG2</i> Acetaldehyde dehydrogenase, Degradación 2-	
acetylating (EC 1.2.1.10) hidroxipentadienoato	
p02. 206093 206407 + <i>bphG3</i> Acetaldehyde dehydrogenase, Degradación 2-	
acetylating (EC 1.2.1.10) hidroxipentadienoato	
Cr. 4623722 4622622 - <i>nagI1</i> Gentisate 1,2-dioxygenase (EC Degradación gentisato	
1.13.11.4)	
Cr. 4661780 4660668 - <i>nagI2</i> Gentisate 1,2-dioxygenase (EC Degradación gentisato	
p01. 73562 74041 + nagl Gentisate 1,2-dioxygenase (EC Degradación gentisato	
I.13.11.4)	
p02. 198019 198140 - <i>nagi</i> Genusate 1,2-dioxygenase (EC Degradación genusato $1.12, 11.4$)	
I.I.D.II.4) Cr. 6560852 6560202 #aaI Malaylpyrgyata isomarasa (EC Dagradación gantisata	
C1. $0509052 = 0509202 = 00000000000000000000000000000000$	
Cr 4221096 4222286 + fabA Fumarylacetoacetase (FC Degradación homogentis:	to
$\frac{3712}{3}$	10
Cr. 4219043 4220242 + $hmgA$ Homogentisate 1.2-dioxygenase Degradación homogentisa	to
(EC 1.13.11.5)	
Cr. 247448 246558 - <i>hpcE1</i> Putative HpcE protein (5- Rotura extradiol del	
oxopent-3-ene-1,2,5- homoprotocatecuato	
tricarboxylate decarboxylase:	
EC 4.1.1.68)	
Cr. 6119484 6120215 + <i>hpcE2</i> 5-carboxymethyl-2-oxo-hex-3- Rotura extradiol del	
ene-1,7-dioate decarboxylase homoprotocatecuato	
(EC 4.1.1.68)	

Rp.: replicón; Cr.: cromosoma; p01.: pRWAY01.; p02.: pRWAY02; H.: hebra.

Rp.	Coord	enadas	H.	Gen	Función	Ruta
Utiliz	ación de alc	anos				
Cr.	357092	358192	+	ladA1	Alkanesulfonate monooxygenase (EC	Degradación C ₂₀ n-
Cr.	358189	359343	+	ladA2	1.14.14.5) Alkanesulfonate monooxygenase (EC	alcanos Degradación C ₂₀ n-
Cr.	4017878	4019047	+	ladA3	Alkanesulfonate monooxygenase (EC	Degradación C ₂₀ <i>n</i> -
Cr.	5945530	5946753	+	alkB	1.14.14.5) Alkane-1 monooxygenase (EC 1.14.15.3)	alcanos Degradación C ₅₋₁₂
Cr.	942988	944622	+	mmoX	Methane monooxygenase component A	Utilización de
Cr.	944707	945750	+	mmoC	Methane monooxygenase component C (EC 1.14.13.25)	Utilización de metano
Cr.	945801	946907	+	mmoY	Methane monooxygenase component A	Utilización de
Cr.	946904	947245	+	mmoB	Methane monooxygenase regulatory protein B (EC 1.14.13.25)	Utilización de metano
p02.	238905	240443	+	mmoX1	Methane monooxygenase component A alpha chain (FC 1 14 13 25)	Utilización de metano
p02.	240443	241534	+	mmoY1	Methane monooxygenase component A beta chain (EC 1.14.13.25)	Utilización de metano
p02.	241531	241848	+	mmoB1	Methane monooxygenase regulatory	Utilización de
p02.	241860	242891	+	mmoC1	Methane monooxygenase component C (FC 1 14 13 25)	Utilización de metano
p02.	274460	276040	+	mmoX2	Methane monooxygenase component A	Utilización de
p02.	276239	277456	+	mmoY2	Methane monooxygenase component A	Utilización de
p02.	277859	277996	+	mmoB2	Methane monooxygenase regulatory protein B (EC 1.14.13.25)	Utilización de
p02.	278372	279394	+	mmoC2	Methane monooxygenase component C (EC 1 14 13 25)	Utilización de
p02.	279463	279981	+	mmoZ	Methane monooxygenase component A gamma chain (EC 1 14 13 25)	Utilización de metano
p02.	318630	317356	-	ртоВ	Particulate methane monooxygenase B- subunit (EC 1 14 13 25)	Utilización de
p02.	319492	318641	-	pmoA	Particulate methane monooxygenase A- subunit (EC 1.14.13.25)	Utilización de
p02.	320498	319620	-	pmoC	Particulate methane monooxygenase C- subunit (EC 1.14.13.25)	Utilización de metano
Rutas	periféricas	de degrada	ación	de compue	stos aromáticos	
Cr.	4145815	4144730	-	dmpP	2-polyprenylphenol hydroxylase	Benceno
Cr.	4144636	4143254	-	benA	Benzoate 1,2-dioxygenase alpha	Benzoato
Cr.	4143239	4142730	-	benB	Benzoate 1,2-dioxygenase beta subunit (FC 1 14 12 10)	Benzoato
Cr.	4142692	4141532	-	benC	Benzoate 1,2-dioxygenase ferredoxin reductase component (FC 1 14 12 10)	Benzoato
Cr.	4141535	4140741	-	benD	1,2-dihydroxycyclohexa-3,5-diene-1- carboxylate dehydrogenase (EC	Benzoato
Cr.	383009	382542	-	fadM1	1.3.1.25) Putative 4-hydroxybenzoyl-CoA thioesterase	Benzoato
Cr.	2297129	2296647	-	fadM2	Putative 4-hydroxybenzoyl-CoA	Benzoato
Cr.	3941568	3942749	+	pobA	P-hydroxybenzoate hydroxylase (EC 1.14.13.2)	Benzoato
p01.	509217	507868	-	bphA1a	Biphenyl dioxygenase alpha subunit (EC 1.14.12.18)	Bifenilo
p01.	60245	58839	-	bphA1b	Biphenyl dioxygenase alpha subunit (EC 1.14.12.18)	Bifenilo

Anexo 12. Genes implicados en el metabolismo periférico en WAY2.
MÁSTER EN MICROBIOLOGÍA | TRABAJO DE FIN DE MÁSTER

p01.	507833	507297	-	bphA2a	Biphenyl dioxygenase beta subunit (EC	Bifenilo
p01.	58835	58317	-	bphA2b	Biphenyl dioxygenase beta subunit (EC	Bifenilo
p01.	506547	506209	-	bphA3	Biphenyl dioxygenase ferredoxin subunit (EC 1 14 12 18)	Bifenilo
p01.	506124	504889	-	bphA4	Biphenyl dioxygenase ferredoxin reductase component (EC 1 14 12 18)	Bifenilo
p01.	511414	510599	-	bphB	2,3-dihydroxy-2,3-dihydro- phenylpropionate dehydrogenase (EC	Bifenilo
Cr.	248085	247513	-	bphC1	Biphenyl-2,3-diol 1,2-dioxygenase 2 (EC 1.13.11.39)	Bifenilo
Cr.	890244	891149	+	bphC2	2,3-dihydroxybiphenyl 1,2-dioxygenase	Bifenilo
p01.	510569	509682	-	bphC	2,3-dihydroxybiphenyl 1,2-dioxygenase (EC 1.13.11.39)	Bifenilo
p02.	158072	158989	+	bphC	2,3-dihydroxybiphenyl 1,2-dioxygenase (EC 1.13.11.39)	Bifenilo
Cr.	889369	890247	+	bphD1	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
Cr.	3689114	3688263	-	bphD2	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
Cr.	4441825	4442709	+	bphD3	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
p01.	70437	71297	+	bphD1	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
p01.	504851	503994	-	bphD2	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
p02.	159112	159969	+	bphD1	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
p02.	201744	200884	-	bphD2	2-hydroxy-6-oxo-6-phenylhexa-2,4- dienoate hydrolase (EC 3.7.1)	Bifenilo
p02.	156099	157481	+	etbA1a	Ethylbenzene dioxygenase subunit alpha	Bifenilo, Etilbenceno
p02.	167930	169312	+	etbA1b	Ethylbenzene dioxygenase subunit	Bifenilo, Etilbenceno
p02.	157504	158052	+	etbA2a	Ethylbenzene dioxygenase subunit beta	Bifenilo, Etilbenceno
p02.	169335	169883	+	etbA2b	Ethylbenzene dioxygenase subunit beta	Bifenilo, Etilbenceno
p02.	170149	170033	-	etbA3	Ethylbenzene dioxygenase ferredoxin subunit	Bifenilo, Etilbenceno
p02.	148755	150029	+	etbA4	Ethylbenzene dioxygenase ferredoxin	Bifenilo, Etilbenceno
p02.	150062	150874	+	etbB	cis-dihydroethylcatechol	Bifenilo,
	150404	151050		15	dehydrogenase (1.3.1.66)	Etilbenceno
p02.	170426	1/1250	+	etbD	2-hydroxy-6-oxo-octa-2,4-dienoate	Bifenilo, Etilbenceno
p02.	139073	143857	+	etbS	Sensor histidine kinase	Etilbenceno
p02.	143854	144483	+	etbT	Response regulator, two-component	Etilbenceno
p02.	216173	217579	+	nahA1	Naphthalene 1,2-dioxygenase alpha	Naftaleno
p02.	217583	218101	+	nahA2	Naphthalene 1,2-dioxygenase beta	Naftaleno
p02.	218393	219208	+	nahB	cis-1,2-dihydro-1,2- dihydroxynaphthalene/dibenzothiophen e dihydrodiol dehydrogenase (EC 1.3,1,29)	Naftaleno
p02.	219430	220416	+	nahC	1,2-dihydroxynaphthalene dioxygenase [EC 1.13.11.56]	Naftaleno
Cr.	789155	789823	+	nahD	2-hydroxychromene-2-carboxylate isomerase (EC 5.99.1.4)	Naftaleno
p01.	62720	62031	-	nahR1	Transcriptional regulator	Naftaleno
p02.	213253	212993	-	nahR1	Transcriptional regulator	Naftaleno

DPTO. DE BIOLOGÍA | FACULTAD DE CIENCIAS | UAM

p01.	62034	61363	-	nahR2	Transcriptional regulator	Naftaleno
p02.	213725	214417	+	nahR2	Transcriptional regulator	Naftaleno
Cr.	350014	351144	+	nahG1	Salicylate hydroxylase (EC 1.14.13.1)	Salicilato
Cr.	1392280	1393893	+	nahG2	Salicylate hydroxylase (EC 1.14.13.1)	Salicilato
Cr.	3895509	3896936	+	nahG3	Salicylate hydroxylase (EC 1.14.13.1)	Salicilato
p01.	19655	18141	-	tmoA	Toluene-4-monooxygenase, subunit TmoA (1.14.13)	Tolueno
p01.	18124	17879	-	tmoB	Toluene-4-monooxygenase, subunit TmoB (1.14.13)	Tolueno
p01.	17882	17514	-	tmoC	Toluene-4-monooxygenase, subunit TmoC (1.14.13)	Tolueno
p01.	17495	17199	-	tmoD	Toluene-4-monooxygenase, subunit TmoD (1 14 13 -)	Tolueno
p01.	17197	16160	-	tmoE	Toluene-4-monooxygenase, subunit TmoE (1.14.13)	Tolueno
p01.	15833	15171	-	tmoF	Toluene-4-monooxygenase, subunit TmoF (1.14.13)	Tolueno

Rp.: replicón; Cr.: cromosoma; p01.: pRWAY01.; p02.: pRWAY02; H.: hebra