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Summary	

Background	

Prostate	 cancer	 (PC)	 is	 one	 of	 the	most	 heritable	 tumours	 as	 57%	 of	 the	

interindividual	 risk	 is	 attributed	 to	 genetic	 factors.	 Germline	 mutations	 in	 DNA	

damage	 and	 repair	 (DDR)	 genes	 have	 been	 found	 in	 up	 to	 11.8%	 of	 men	 with	

metastatic	 castration	 resistant	 prostate	 cancer	 (mCRPC),	 but	 the	 spectrum	 and	

prevalence	of	these	mutations	in	mCRPC	Spanish	patients	has	not	been	established	

yet.	

Methods	

The	germline	DNA	 from	two	cohorts	of	mCRPC	Spanish	patients	 (419	and	

93	from	PROREPAIR-B	and	PRORADIUM)	were	screened	for	mutations	in	107	and	

55	DDR	genes,	respectively.	We	also	analysed	germline	variants	from	the	general	

population	 included	 in	 Exome	 Aggregation	 Consortium	 (ExAC)	 and	 CIBERER	

Spanish	 Variant	 Server	 (CSVS).	 Computational	 tools	 and	 databases	 such	 as	

ANNOVAR,	ClinVar	and	dbNSFP	were	used	to	associate	the	phenotypic	effect	of	the	

identified	 variants,	 followed	by	 their	 classification	by	using	 the	 guidelines	 of	 the	

American	 College	 of	 Medical	 Genetics	 and	 Genomics.	 We	 also	 used	 Pfam	 and	

Interactome3D	databases	to	analyse	the	distribution	of	pathogenic	variants	across	

protein	sequences	and	three-dimensional	structures.	

Results	

A	total	of	72	germline	DDR	(gDDR)	pathogenic	mutations	were	identified	in	

68	mCRPC	patients	(16.2%)	in	PROREPAIR-B,	and	13	pathogenic	mutations	in	14	

mCRPC	patients	(19.4%)	in	the	PRORADIUM	cohorts.	The	most	recurrent	mutated	

gene	 in	 PROREPAIR-B	 and	 PRORADIUM	was	 BRCA2,	 with	 a	 significantly	 higher	

prevalence	in	Spanish	cohorts	than	in	the	general	non-cancer	population	(CSVS	P<	

.001	 and	 ExAC	 P	 <	 .001).	 Structural	 analysis	 in	 some	 of	 the	DDR	 protein-coding	

genes	affected	revels	clustering	of	the	pathogenic	variants	in	hotspots	for	different	

tumour	types.	

Conclusions	

The	incidence	of	germline	mutations	in	genes	related	to	the	DDR	processes	

in	Spanish	mCRPC	patients	 is	higher	than	 in	general	non-cancer	population,	with	

BRCA2	as	the	most	recurrent	mutated	gene.	We	also	suggested	that	BRCA2	could	

be	a	key	factor	for	the	advance	disease.		

Key	words	

Prostate	Cancer	/	DNA	damage	repair	genes	/	Targeted	exome	sequencing	/	

Bioinformatics	/	Functional	annotation	of	variant	
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1. Introduction	

1.1. Landscape	of	clinical	and	pathological	biomarkers	to	
predict	prognosis	in	patients	with	prostate	cancer	

Prostate	cancer	(PC)	is	the	second	most	common	cancer	in	men	worldwide,	

with	over	1	million	newly	diagnosed	cases	every	year.	Nonetheless,	mortality	has	

recently	 decreased	 as	 a	 result	 of	 early	 detection	 initiatives	 and	 screening	

programmes	 (Bray	 et	 al.,	 2018).	 A	 patient’s	 risk	 to	 suffer	 from	 PC	 is	 currently	

assessed	 by	 combining	 three	 biomarkers:	 prostate	 specific	 antigen	 (PSA)	 levels,	

tumour	staging	and	Gleason	score	(Mottet	et	al.,	2017).	However,	these	prognostic	

tools	 have	 some	 limitations	 (i.e.,	 low	 specificity	 of	 PSA,	 intra	 and	 interoperator-

dependency	 of	 histopathological	 reading).	 Although	 the	 majority	 of	 patients	

benefit	 from	 the	 current	 classification	 and	 undergo	 successful	 radical	 treatment	

with	surgery	(prostatectomy),	radiotherapy	or	brachytherapy	(Mottet	et	al.,	2017),	

about	a	quarter	of	patients	(20-25%)	with	localized	disease	relapse	and	progress	

to	lethal	metastatic	castration	resistant	prostate	cancer	(mCRPC)	(Chamberlain	et	

al.,	1997;	Graham	et	al.,	2008;	Han	et	al.,	2001;	Kuban	et	al.,	2005).		

Limited	clinical	options	are	available	to	treat	patients	with	mCRPC	that	are	

characterized	 by	 a	 very	 poor	 clinical	 outcome	 (survival	 at	 5	 years:	 28.5%)	

(Surveillance,	2015).	The	increased	number	of	lethal	cases,	partially	related	to	the	

higher	incidence	of	PC,	leads	to	the	need	of	identify	and	validate	new	biomarkers	

that	 could	 improve	 the	 specificity	 of	 the	 current	 ones,	 and	 at	 the	 same	 time	 to	

distinguish	between	aggressive	and	non-aggressive	PC.	Given	the	variability	of	this	

disease,	 the	 new	 biomarkers	 could	 improve	 the	 prediction	 of	 biochemical	

recurrence	and	metastatic	progression,	and	could	eventually	result	 in	prolonging	

patients’	survival	and	their	quality	of	life.	

1.2. The	role	of	DNA	damage	and	repair	genes	in	mCRPC	

It	has	been	established	that	the	family	history	of	PC	patients	is	a	risk	factor	

for	the	disease,	in	addition	to	age	and	race	(Parker	et	al.,	2015;	Mucci	et	al.,	2016),	

positioning	 the	 PC	 as	 a	 one	 of	 the	 most	 hereditable	 tumour	 types.	 Moreover,	

inherited	 mutations	 associated	 with	 genes	 involved	 in	 DNA	 damage	 and	 repair	

(DDR)	mechanisms	are	highly	 frequent	 in	 some	hormone-driven	cancers	 such	as	

breast,	 ovarian	 and	 also	 PC.	 The	 high	 number	 of	 alterations	 in	 germline	 DDR	

(gDDR)	genes	detected	in	mCRPC	patients	(between	15	and	30%	according	to	the	
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clinical	setting	and	population	background)	compared	with	the	prevalence	of	this	

alterations	 in	 localized	 PC	 (5%)	 or	 in	 the	 general	 population	 (3%)	 suggest	 an	

association	with	aggressiveness	in	PC	(Pritchard	et	al.,	2016).	

DDR	 family	member	BRCA2	often	 appears	 as	 the	most	 recurrent	mutated	

gene	with	a	significantly	higher	prevalence	than	other	DDR	genes	across	different	

mCRPC	cohorts:	6%	in	150	patients	(Robinson	et	al.,	2015),	5.35%	in	692	patients	

(Pritchard	 et	 al.,	 2016),	 3.51%	 in	 313	 patients	 (Na	 et	 al.,	 2017),	 3,60%	 in	 139	

patients	(Mijuskovic	et	al.,	2018),	3,47%	in	202	patients	(Annala	et	al.,	2018),	and	

2.91%	 in	 172	 patients	 (Antonarakis	 et	 al.,	 2018).	 It	 suggests	 that	 BRCA2	 is	 an	

independent	 poor	 prognostic	 factor	 for	 PC	with	 shorter	metastasis-free	 survival	

and	cause-specific	survival	(Castro	et	al.,	2013;	Castro	et	al.,	2015;	Kote-Jarai	et	al.,	

2015;	Pritchard	et	al.,	2016;	Conteduca	et	al.,	2018;	Castro	et	al.,	2019).	In	addition,	

mutation	 carriers	 in	both	 germline	 and	 somatic	 alterations	 in	DDR	genes	have	 a	

significant	 likelihood	 of	 developing	 aggressive/metastatic	 cancer,	 and	 these	

alterations	could	be	biomarkers	 for	some	therapies	 like	chemotherapy	and	PARP	

inhibitors	(Mateo	et	al.,	2015;	Karzai	et	al.,	2018;	Cheng	et	al.,	2016;	Kaufman	et	al.,	

2015).	

1.3. The	 potential	 use	 of	 Next-generation	 sequencing	
technologies	 for	 clinical	 genetic	 screening	 of	 patients	 with	

cancer	

The	 public	 availability	 of	 the	 human	 genome	 sequence	 represents	 a	 very	

important	 impact	 for	 the	 biomedical	 research	 community.	 In	 2003	 the	 human	

genome	project	 (HGP)	 released	about	3.3	billion	of	bases	 from	all	of	 the	20.000-

25.000	 genes	 in	 the	 genome.	 Since	 this	 date,	 the	 increasing	 efficiency	 and	 the	

decreasing	 cost	 of	 Next-generation	 sequencing	 (NGS)	 analyses	 allows	 this	

technology	 to	 be	 rapidly	 introduced	 into	 many	 fields,	 and	 revolutionized	

biomedical	research	and	the	clinical	practice	of	medicine	(Mark	et	al.,	2019).	

Automation	 is	critical	 for	 the	routine	use	of	 the	NGS	technology	 in	clinical	

and	 public	 health	 laboratory	 practices.	 Sequencing	 and	 bioinformatics	

technologies	 are	 rapidly	 evolving,	 so	 the	 integration	 of	 sequencing	 and	 data	

analysis	in	an	efficient	workflow	is	a	challenge	nowadays.	Despite	of	that,	NGS	have	

been	widely	used	in	genomics	research,	in	particular	in	the	field	of	cancer.		

The	most	comprehensive	discovery,	from	the	PanCancer	project,	suggested	

299	driver	genes	across	9,423	tumour	exomes.	In	addition,	the	putative	number	of	

missense	driver	mutations	identified	by	the	PanCancer	project	is	larger	than	3,400	

(Bailey	 et	 al,	 2018).	 Another	 important	 aspect	 emerging	 from	 the	 PanCancer	

project	 is	 that	 oncogenesis	 can	 be	 summarized	 in	 the	 following	 three	 facets:	 1)	

somatic	 driver	 mutations	 and	 germline	 pathogenic	 variants,	 2)	 influence	 of	 the	

tumour	 genome	 and	 epigenome	 on	 transcriptome	 and	 proteome,	 and	 3)	

relationship	 between	 tumour	 and	 the	 microenvironment	 (Ding	 et	 al.,	 2018).	

Findings	 in	 the	 PanCancer	 project	 are	 in	 line	 with	 those	 obtained	 by	 NGS	

techniques	 in	mCRPC	 cohorts	 (Hovelson	 and	Tomlins,	 2016;	 Barata	 et	 al.	 2018).	
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Some	of	the	discoveries	in	different	mCRPC	cohorts	have	been	described	before	in	

section	1.2.	

Taking	 into	account	the	 lack	of	knowledge	or	understanding	to	detect	and	

better	characterize	PC	patients	with	potentially	lethal	form	of	the	mCRPC	disease,	

and	the	potential	use	of	NGS	technologies	in	the	genetic	screening,	we	develop	this	

research	 project	 for	 the	 Master's	 Degree	 in	 Bioinformatics	 and	 Computational	

Biology.	We	carry	out	 the	 investigation	about	 the	genetic	 alterations	 in	germline	

DDR	 (gDDR)	 genes	 in	 two	 mCRPC	 cohorts,	 PROREPAIR-B	 and	 PRORADIUM,	 in	

collaboration	with	more	than	30	Spanish	Hospital	Centres.	In	the	present	work,	we	

will	 focus	 on	 the	 Bioinformatics	 analysis	 and	 the	 interpretation	 of	 NGS	 data	 for	

more	 than	500	patients,	 in	order	 to	discover	new	 information	or	 to	 reach	a	new	

understanding	 in	 mCRPC	 molecular	 mechanisms	 that	 allow	 us	 a	 better	

classification	of	mCRPC	patients.		
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2. Objectives	

This	 research	 project	 aims	 to	 evaluate	 the	 prevalence	 and	 effect	 of	 gDDR	

mutations	 in	 mCRPC	 patients.	 We	 have	 analysed	 two	 prospective	 cohorts	 of	

mCRPC	patients,	PROREPAIR-B	(Castro	et	al.,	2019)	and	PRORADIUM	(an	ongoing	

research),	enrolled	in	more	than	30	different	institutions.	

The	main	objective	 in	this	work	for	the	Master's	Degree	 is	 to	produce	and	

automatize	 a	 bioinformatics	 pipeline	 to	 study	 targeted-sequencing	 data	 with	 a	

custom-designed	panel	of	DDR	genes.	This	pipeline	allows	us:	

1) To	evaluate	the	prevalence	and	effect	of	gDDR	mutations	 in	the	PROREPAIR-B	
and	PRORADIUM	cohorts	of	mCRPC	Spanish	patients.	

2) To	 compare	 the	mutational	 status	 in	 PROREPAIR-B	 and	 PRORADIUM	 cohorts	
with	other	published	studies	in	mCRPC	patients.	

3) To	do	a	comparative	study	of	 the	distribution	of	pathogenic	mutations	 in	DDR	
genes	with	non-cancer	general	population	data	in	ExAC	and	CSVS	datasets.	

4) To	 study	 the	distribution	of	 the	 identified	mutations	 in	 the	protein	 sequences	
and	3D-structures.	

5) To	discover	other	kind	of	DNA	alterations	(i.e.	 copy	number	variations)	 in	 the	
whole	 gene	 sequence	 of	 BRCA1,	 BRCA2,	 ATM,	 PALB2	 and	 MSH2	 from	 the	

PRORADIUM	cohort.	
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3. Material	and	Methods	

3.1. Patients	enrolled	

Patients	with	 histologically	 confirmed	 PC	 and	 unknown	mutational	 status	

were	enrolled	at	the	time	of	metastatic	castration-resistant	diagnosis	and	observed	

until	death.	All	patients	provided	informed	consent	at	study	entry	and	passed	the	

eligibility	 criteria.	 The	 complete	 list	 of	 inclusion	 and	 exclusion	 criteria	 for	 the	

study	is	provided	in	the	appendix	section	of	Castro	et	al.,	2019.	

PROREPAIR-B	cohort	

The	419	patients	enrolled	in	the	project	–from	38	Spanish	Hospital	Centres–	

came	 from	 the	 same	 “at	 risk”	 population,	 characterized	 by	 histological	

confirmation	of	mCRPC	and	unknown	mutational	status.	This	study	did	not	dictate	

any	treatment,	and	all	the	patients	were	treated	at	the	discretion	of	the	physicians	

(Castro	et	al.,	2019).	

PRORADIUM	cohort	

The	93	patients	enrolled	in	the	project	–from	33	Spanish	Hospital	Centres–	

came	from	the	same	“at	risk”	population,	characterized	by	CRPC	and	metastasis	in	

the	 bones,	 but	 not	 to	 other	 parts	 of	 the	 body.	 They	 are	 resistant	 to	 Androgen	

Deprivation	Treatment	(ADT)	or	other	surgical	treatment	that	reduce	testosterone	

levels.	All	these	patients	have	received	the	standard	treatment	Radium223.	

3.2. Experimental	processing	of	the	samples	

The	 experimental	 processing	 of	 the	 samples	 was	 the	 same	 for	 the	 two	

cohorts	 PROREPAIR-B	 and	 PRORADIUM,	 and	 was	 done	 entirely	 by	 the	 Prostate	

Cancer	Clinical	Unit	members	at	CNIO.	All	the	experimental	details	are	provided	in	

Castro	et	al.,	2019.	In	brief,	germline	DNA	was	extracted	from	5-ml	blood	samples	

and	purified.	Library	preparation	was	done	using	a	custom	NimbleGen	SeqCap	XL	

Target	Enrichment	(Roche,	Pleasanton,	CA)	panel.	The	different	steps	that	includes	

DNA	 fragmentation,	 adapter	 ligation	 with	 a	 barcode	 to	 identify	 each	 patient,	

fragments	 selection	 and	 amplification	 using	 a	 primer	 from	 the	 extreme	 of	 the	
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adaptor,	 and	 finally,	 DNA	 purification	 and	 quantification	 are	 summarized	 in	 the	

Figure	1.	

	

Figure	1.	General	overview	of	the	molecular	steps	 involved	in	a	typical	 library	preparation	
protocol	(figure	taken	from	Bohannan	et	al.,	2019)		

3.3. Target	sequencing	

The	 DNA	 libraries	were	 read	 using	 Illumina	 NexSEquation	 500	 (Illumina,	

San	Diego,	CA)	at	IdiPAZ	(INGEM,	Madrid,	Spain)	and	Illumina	HiSeqX	in	Genohub	

Inc.	 (Austin,	 TX,	 USA)	 sequencing	 platforms,	 for	 PROREPAIR-B	 and	 PRORADIUM	

studies,	respectively.	In	chronological	order,	the	PROEPAIR-B	cohort	was	analysed	

first.	The	study	panel	was	composed	of	107	DDR	genes	(coding	regions)	in	order	to	

include	 the	 largest	 possible	 number	 of	 DDR	 genes	 related	 with	 cancer	

predisposition,	 and	 the	 analysis	 showed	 that	 only	 28	 genes	 were	 pathogenic	

mutations	carriers.	After	that,	we	studied	the	PRORADIUM	cohort,	and	we	decided	

to	dispose	of	the	genes	in	which	neither	we	nor	other	groups	had	found	pathogenic	

alterations.	 In	 this	 case	we	studied	a	panel	 compose	of	55	DDR	genes	associated	

with	 cancer	 predisposition	 syndrome	 and	 in	 which	 we	 found	 mutations	 in	 the	

PROREPAIR-B	cohort.		

In	 addition,	 given	 the	 high	 frequency	 of	 the	 alterations	 in	 ATM,	 BRCA1,	

BRCA2,	MSH2	and	PALB2,	 it	was	decided	to	sequence	these	whole	genes	and	not	

only	 the	 coding	 regions,	 in	 order	 to	 analyse	 other	 types	 of	 DNA	 alterations	 (i.e.	

copy	number	variants).	The	complete	list	of	genes	is	shown	in	Table	1.	
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Table	 1.	 Full	 list	 of	 the	 DDR	 genes	 included	 in	 custom	 panels	 and	 screened	 in	 the	
PROREPAIR-B	 (panel	 A)	 and	 PRORADIUM	 (panel	 B)	 cohorts.	 In	 bold	 the	 genes	 that	 were	
subject	to	whole sequencing in PRORADIUM.	

	

3.4. Bioinformatics	 pipeline	 for	 the	 analysis	 and	

prioritization	of	mCRPC-related	variants	

In	 general,	 a	 Bioinformatics	 pipeline	 for	 the	 analysis	 of	 single-nucleotide	

variants	 (SNV)	 and	 copy-number	 variants	 (CNV)	 is	 shown	 in	Figure	2.	 The	 first	
steps	 in	 “Data	 Processing”	 (i.e.,	 evaluate	 the	 reads	 quality,	 alignment	 against	 a	

reference	genome,	remove	duplicate	reads,	sort	and	indexing)	are	well	established	

and	are	common	in	different	types	of	NGS	analyses.	The	remaining	steps	“Variant	

Discovery”,	“Variant	Annotation”,	and	“Variant	Prioritization”	are	more	diverse	in	

the	 use	 of	 a	 particular	 computational	 tool.	 Nevertheless,	 for	 these	 steps	 some	

consensus	 approaches	 or	 guidelines	 exist,	 such	 as	 the	 GATK	workflow	 at	 Broad	

Institute,	as	we	will	discuss	in	the	sections	below.	

Figure	2.	Bioinformatics	pipeline	for	the	analysis	of	single-nucleotide	variants	(SNV)	
and	copy-number	variants	(CNV).		
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3.4.1. Data	Processing	

Quality	control:	

The	 most	 widely	 used	 software	 for	 this	 task	 are	 FastQC	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	 and	 multiQC	

(https://github.com/MultiQC).	 This	 combination	 of	 software	 provides	 us	 with	

different	 metrics	 for	 a	 qualitative	 and	 quantitative	 checking	 of	 the	 sequencing	

process.	 The	 main	 objective	 is	 to	 use	 high-quality	 reads	 to	 get	 accurate	

Bioinformatics	analysis.	

Some	 of	 the	 metrics	 we	 used	 are	 listed	 below.	 For	 more	 details,	 see	

Supplementary	 information	 S1	 to	 S6	 which	 includes	 quality	 metrics	 in	 the	
PRORADIUM	cohort.	

• The	general	quality	of	the	reads,	and	quality	of	each	base	according	

														to	the	phred	quality	score	(green	area	represents	high	quality).		

• The	coverage	per	sample.	

• The	CG	content.	

• The	number	of	bases	not	specified	(content	of	‘N’	in	the	reads).	

• The	adapter	content.	

• Allele	Frequencies	Ratio	

Alignment:	

The	 paired-end	 sequencing	 reads	 in	 the	 fastq	 files	 were	 mapped	 to	 the	

human	genome	reference	sequence	(GRCh37)	using	the	Burrows-Wheeler	aligner	

(BWA-MEM)	v.0.7.15	(http://bio-bwa.sourceforge.net),	which	is	recommended	by	

Illumina	for	mapping	low-divergent	sequences,	 for	high-quality	queries,	and	also,	

it	 is	 faster	 and	 more	 accurate.	 The	 heuristic	 of	 local	 alignment	 is	 based	 on	

generating	initially	seeds	an	alignment	with	supermaximal	exact	matches	(SMEMs)	

by	picking	out	best	partial	alignments	 first	and	prune	out	alignments	considered	

sub-optimal.	Moreover,	BWA	is	the	aligner	recommended	by	the	Genome	Analysis	

Toll	Kit	(GATK)	workflow	(https://software.broadinstitute.org/gatk/)	that	we	will	

use	in	following	steps.	This	step	is	crucial	 for	the	rest	of	the	experiment,	because	

sequencing	 depth	 (or	 coverage)	 is	 directly	 affected	 by	 the	 accuracy	 of	 genome	

alignment	algorithms,	and	also,	is	correlated	with	the	accuracy	of	the	allele	calls.		

Order	reads,	marks	duplicate	and	removal,	indexing:	

The	output	files	in	BAM/SAM	format,	containing	the	alignment	results,	were	

transformed	with	Picard	tools	v.2.1.0	(http://picard.Sourceforget.net).	Sort,	mark	

and	exclusion	of	duplicates,	and	building	indexed	files	were	done	using	the	Picard	

tools	 options	 SortSam,	 MarkDuplicates,	 RemoveDuplicate	 and	 BuildBamIndex,	

respectively.	All	programs	were	executed	with	default	parameters.	
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Coverage:	

In	order	to	get	coverage	metrics	from	the	samples,	we	used	two	different	

tools:	CollectWgsMetrics	(from	Picard	tools)	and	genomeCoverageBed	(from	SAM	

Tools;	https://github.com/samtools/samtools).	CollectAlignmentSummaryMetrics	

(from	Picard	tools)	was	also	used	to	get	alignment	metrics.	

3.4.2. Variant	Discovery	

Single	nucleotide	variants	calling:	

The	 following	 steps	 adhere	 to	 the	 best	 practices	 developed	 by	 the	 GATK	

team	 for	 high-quality	 SNV/INDELS	 calls.	 The	 GATK	 workflow	 implements	 the	

following	functionalities:	

• “IndelRealigner”	 performs	 the	 local	 realignment	 of	 the	 INDELS	 regions	 to	
reduce	the	artefacts	in	the	Single	Nucleotide	Polymorfisms	(SNP)	caller.	

• “BaseRecalibrator”	 allows	 minimizing	 the	 systematic	 errors.	 The	 variant	
detection	 is	 based	 on	 the	 quality	 scores	 assigned	 to	 each	 base	 during	 the	

sequencing	process.	Systematic	errors	could	affect	the	scores,	and	recalibration	

of	values	to	adjust	the	qualities	is	necessary.		

• “HaplotypeCaller”	 allows	 performing	 the	 variant	 calling	 per	 se.	 This	 function	
provides	 one	 VCF	 file	 per	 patient,	 which	 contain	 SNPs	 and	 INDELS	

simultaneously.		

The	VCF	format	is	a	tab	delimited	text	file	that	contains	meta-information	lines,	a	

header	 line,	 and	 then,	 data	 lines	 each	 containing	 information	 about	 the	 variants	

identified	in	the	cohort.		

Copy	number	variants	detection:	

To	detect	CNV	alterations	 in	ATM,	BRCA1,	BRCA2,	MSH2	and	PALB2	whole-gene	

sequenced	 in	 the	 PRORADIUM	 cohort,	 we	 used	 read-depth	 (or	 depth	 of	

sequencing)	 calculations	 and	 also	 background	 read-count	 distributions.	 For	 the	

CNV	analysis	we	used	three	different	tools	to	reach	consensus	results:		

• ExomeDepth	(https://rdrr.io/cran/ExomeDepth/)		

• XHMM	(https://github.com/RRafiee/XHMM)	

• CNVkit	(https://cnvkit.readthedocs.io/en/stable/)	

These	computational	 tools	cover	the	analysis	of	whole-exome	as	well	as	 targeted	

whole-genome	 sequence	 data,	 and	 were	 executed	 with	 the	 default	 parameters	

proposed	by	authors.		
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3.4.3. Variant	Annotation		

Single	nucleotide	variants	(SNV):	

To	 enrich	 the	 preliminary	 annotations	 of	 the	 variants	 obtained	 after	 the	

variant	 calling,	 we	 used	 the	 following	 repositories	 and	 computational	 tools:	

ANNOVAR	 (http://annovar.openbioinformatics.org/en/latest/)	 and	 dbNSFP	

(https://sites.google.com/site/jpopgen/dbNSFP).	 These	 tools	 aggregate	

information	 from	 multiple	 sources,	 and	 provide	 us	 annotations	 with	 three	

different	levels:	gene-based,	region-based	and	filter-based:	

• Gene-based	 annotation:	 Provides	 information	 about	 the	 relationship	 and	
functional	impact	on	the	gene,	identifying	whether	the	alteration	is	affecting	the	

protein-coding	region,	and	the	amino	acid	affected.	

• Region-based	 annotation:	 Provides	 information	 about	 variants	 that	 localize	
within	specific	conserved	regions,	such	as	predicted	transcription	factor	binding	

sites	 or	 ChIP-seq	 peaks,	 transcripts	 overexpressed	 in	 RNA-seq	 experiments,	

among	other	annotations	on	genomic	intervals.		

• Filter-based	annotation:	Provides	 information	about	documented	variants.	For	
example,	 the	 population	 frequency	 reported	 by	 different	 projects	 (i.e.	 1000	

Genome	 Project,	 The	 Exome	 Aggregation	 Consortium	 (ExAC),	 The	 Genome	

Aggregation	 Database	 (gnomAD),	 and	 NHLBI	 GO	 Exome	 Sequencing	 Project	

(ESP)).	Also,	collect	prediction	scores	from	SIFT	(https://sift.bii.a-star.edu.sg/),	

PolyPhen2	 (http://genetics.bwh.harvard.edu/pph2/),	 LRT	

(http://www.genetics.wustl.edu/jflab/lrt_query.html),	 MutationTaster	

(http://www.mutationtaster.org/),	 MutationAssessor	

(http://mutationassessor.org/r3/),	 FATHMM	

(http://fathmm.biocompute.org.uk/),	 REVEL	

(https://sites.google.com/site/revelgenomics/).	

We	 also	 used	 the	 ClinVar	 (https://www.ncbi.nlm.nih.gov/clinvar/)	

database	that	provides	assertions	about	clinical	significance	of	germline	variants,	

information	about	the	submitter,	and	other	complimentary	data.	

Copy	Number	Variants	(CNV):	

In-house	 scripts	 were	 developed	 to	 annotate	 CNV	 calls	 by	 incorporating	

orthogonal	 data	 from	 the	 Genome	 Aggregation	 Database	 (gnomAD;	

https://gnomad.broadinstitute.org/)	 the	 Database	 of	 Genomic	 Variants	 (DGV;	

http://dgv.tcag.ca/dgv/app/home),	 and	 gene	 annotations	 using	 GRCh37	

(http://hgdownload.cse.ucsc.edu/).	 The	 scripts	 were	 written	 in	 R	 language	

(https://www.r-project.org/).	At	the	moment,	we	are	developing	a	set	of	filtering	

criteria	to	build	a	CNV	dataset	of	high	confidence.	This	part	of	the	project	is	under	

development.	
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3.4.4. Variant	Prioritization		

The	 pathogenicity	 of	 germline	 variants	 was	 predicted	 following	 the	 consensus	

criteria	 provided	 by	 the	 guidelines	 of	 The	 American	 College	 of	Medical	 Genetics	

and	 Genomics,	 and	 the	 Association	 for	 Molecular	 Pathology	 (ACMG/AMP)	

(Richards	et	al.,	2015).	The	guidelines	provide	the	basic	goals	and	updated	rules	to	

standardize	and	reduce	annotation	inconsistencies	between	laboratories,	and	also,	

for	 an	 appropriate	 clinical	 interpretation	 of	 genetic	 variants.	 All	 the	 predicted	

deleterious	 variants	were	manually	 curated	 against	 the	 published	 literature	 and	

public	databases,	including	ClinVar.	In	addition,	we	discarded	polymorphisms	with	

a	minor	allele	frequency	of	1%	or	higher	(Brookes	et	al.,	1999)	according	to	1000G	

and	ExAC	databases.	

3.5. General	non-cancer	population	databases	

To	compare	 the	prevalence	of	 the	prioritized	variants	 in	PRORADIUM	and	

PROREPAIR	cohorts	with	their	frequency	in	the	general	non-cancer	population,	we	

used	 two	 different	 databases:	 The	 Exome	 Aggregation	 Consortium	 (ExAC;	

http://exac.broadinstitute.org/)	 non-cancer	 data	 with	 N	 =	 53,105,	 and	 CIBERER	

Spanish	 Variant	 Server	 (CSVS;	 http://csvs.babelomics.org/)	with	 N	 =	 1,551.	 The	

two	general	cohorts	ExAC	and	CSVS	were	annotated,	 filtered	and	reviewed	using	

the	same	criteria	than	in	PROREPAIR-B	and	PRORADIUM	cohorts.		
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4. Results	and	Discussion	

4.1. Prevalence	 and	 effect	 of	 the	 gDDR	 mutations	 in	
PROREPAIR-B	and	PRORADIUM	cohorts		

An	exhaustive	quality	control	of	the	sequenced	samples	was	assessed	by	a	

range	of	markers,	and	those	samples	that	didn´t	pass	the	criteria	were	discarded.	

Some	of	the	markers	studied	were:	the	general	quality	of	the	reads	and	quality	of	

each	base	 according	 to	 the	phred	quality	 score,	 the	 coverage	per	 sample,	 the	CG	

content	and	the	distribution	of	the	allele	frequencies	(Supplementary	S1-S6).	

In	 the	 PROREPAIR-B	 cohort	we	 identified	 68	 carriers	 (16.2%)	 out	 of	 419	

eligible	patients	with	predicted	pathogenic	mutations	 in	28	genes	 (Figure	3	 and	
Supplementary	S7).	 Five	 of	 the	patients	 contain	2	pathogenic	mutations	 in	 two	
different	 genes	 (RAD17	 and	 FANCL	 in	 patient1,	MUTYH	 and	 FANCG	 in	 patient2,	

FANCD2	 and	 ERCC3	 in	 patient3,	 FANCL	 and	 EME2	 in	 patient4,	 DCLRE1C	 and	

MUTYH	 in	 patient5).	 The	 vast	 majority	 of	 the	 deleterious	 variants	 (77%)	 are	

frame-shifts	INDELS	or	stop-gains,	which	alters	the	protein	sequence	as	well	as	the	

3D-structure.	 Besides,	 the	 most	 recurrent	 mutated	 genes	 were	 BRCA2,	 MUTYH,	

ATM	and	BRCA1	that	account	for	39	(54.16%)	out	of	72	mutations.		

In	 the	 PRORADIUM	 cohort	 we	 have	 expanded	 the	 perspective	 of	 the	

Bioinformatics	 study	 by	 analysing	 not	 only	 the	 pathogenic	 mutations,	 but	 also,	

evaluating	 the	 number	 of	 germline	 mutational	 per	 patients.	 We	 identified	 14	

carriers	 (19.4%)	out	 of	 93	 eligible	patients	with	pathogenic	mutations	 (depicted	

with	red	circle	in	Figure	4	and	Supplementary	S8).	One	of	the	patients	contains	2	
pathogenic	mutations	 in	two	different	genes	(BRCA1	and	CHEK2).	Moreover,	 this	

patient	 shows	 the	 highest	 number	 of	 germline	 mutational	 in	 the	 PRORADIUM	

cohort.	 As	 shown	 in	 the	 legend	 of	 Figure	 4	 panel	 C,	 the	 vast	 majority	 of	 the	
carriers	(12	out	of	14)	with	pathogenic	mutation	are	located	in	the	first	quadrant	

on	 the	 heat	 map.	 This	 quadrant	 boxed	 with	 a	 red	 line	 also	 indicates	 the	 most	

recurrent	 mutated	 genes	 and	 patients.	 In	 the	 PRORADIUM	 cohort	 we	 also	

predicted	55.2%	of	the	alterations	as	variants	of	unknown	significance	(VUS).		
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Figure	3.	Distribution	of	 the	pathogenic	and	 likely	pathogenic	mutations	 identified	
in	PROREPAIR-B	cohort.		

As	previously	observed	in	the	PROREPAIR-B	cohort,	the	vast	majority	of	the	

deleterious	 variants	 in	 PRORADIUM	 (Supplementary	 S8)	 (64.28%)	 are	 frame-
shifts	 and	 stop-gains.	 Also,	 the	 most	 recurrent	 mutated	 genes	 with	 pathogenic	

variants	were	BRCA2,	MUTYH	and	ATM	that	account	for	78.57%	of	the	mutations	

(12	out	of	14	mutations).	Moreover,	the	median	number	of	genomic	alterations	per	

patient	 (discarding	patient	with	 two	pathogenic	mutations)	was	3	 (range	1	 to	9)	

(depicted	 in	 horizontal	 discontinuous	 red	 line	 in	 Figure	 4	 panel	 B).	 All	 these	
results	 concur	with	 previously	 published	 data	 by	 Ikeda	 et	 al.	 (2018),	 and	 at	 the	

same	 time	 expands	 the	 current	 knowledge	 about	 the	 contribution	 of	 germline	

variants	to	the	molecular	mechanisms	in	mCRPC	patients	(see	sections	below).			

According	to	the	six	classes	of	base	substitution	in	the	PRORADIUM	cohort	

(Figure	4	panel	D),	we	observed	 three	overrepresented	base	 transitions:	C-to-T	
(28.9%),	 G-to-A	 (21.6%),	 and	A-to-G	 (18.5%).	 From	 the	 literature	we	 know	 that	

enrichment	in	C-to-T	transitions	is	observed	in	the	mutational	signatures	1A/B,	6,	

7,	11,	15,	and	19	described	by	Alexandrov	and	colleagues	(Alexandrov	et	al.,	2013).	

Remarkably,	 mutational	 signatures	 1A	 and	 6	 have	 been	 validated	 for	 PC,	 and	

signature	 6	 is	 associated	 with	 DNA	 MMR	 deficiency.	 On	 the	 opposite	 site,	

transversions,	which	are	not	enriched	in	PRORADIUM,	are	the	most	abundant	class	

in	smoking-associated	cancers	(e.g.,	lung,	liver,	head	and	neck).		
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We	 review	 the	 landscape	 of	 variants	 identify	 in	 PROREPAIR-B	 and	

PRORADIUM	 in	 Pfam	 domains,	 proteins	 3D-structure	 and	 hotspots	 regions	 in	

section	4.4.		

	

Figure	4.	Overview	of	the	mutations	identified	in	PRORADIUM	cohort.	A)	Bar	graph	
representing	 the	 frequency	 of	mutational	 status	 described	 as	 a	 benign,	 pathogenic	
and	variants	of	unknown	significance	(VUS)	B)	Bar	graph	representing	the	frequency	
of	synonymous	(black)	and	non-synonymous	(grey)	genetic	alterations	C)	Heat	map	
showing	 the	 number	 of	 germline	 mutations	 per	 patient	 (ordered	 by	 decreasing	
number	of	mutations,	from	left	to	right)	in	each	gene	(ordered	by	decreasing	number	
of	mutations,	 from	 top	 to	bottom).	Dark	grey	 represents	more	alterations,	 and	 red	
circle	represents	pathogenic	mutations	D)	The	type	of	base	pair	alteration	within	the	
samples	 is	 plotted	 above	 the	 heat	map	 E)	 The	 frequency	 of	 the	 type	 of	 non	 silent	
mutation	is	described	on	the	right	bar	graph.	
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4.2. Comparison	of	the	mutational	status	in	PROREPAIR-
B	and	PRORADIUM	cohorts	with	other	published	studies.	

Since,	mutation	rates	may	differ	significantly	among	groups	of	PC	patients,	

in	 this	 study,	 we	 also	 analysed	 small	 and	 large	 cohorts	 with	 different	 genetic	

backgrounds.	 The	 results	 in	 Table	 2	 indicates	 that	 despite	 a	 different	 genetic	
background	of	the	ethnic	groups,	BRCA2	is	the	most	affected	gene.	In	addition,	the	

number	of	pathogenic	germline	variants	identified	in	BRCA2	are	in	the	same	order	

of	magnitude	 in	the	Spanish	cohorts	PROREPAIR-B	and	PRORADIUM	(3.34%	and	

4.30%,	respectively),	that	those	published	using	different	mCRPC	cohorts.		

Table	2.	Number	of	pathogenic	germline	variants	 identified	 in	ATM,	BRCA1	and	BRCA2	 in	
different	mCRPC	 publish	 cohorts,	 and	 also,	 in	 the	 PROREPAIR-B	 and	 PRORADIUM	 Spanish	
cohorts.		
	
	

	

Based	 on	 these	 results	 compared	 to	 others	 available	 in	 the	 literature,	we	

claimed	in	Castro	et	al.,	2019	that	BRCA2	is	the	most	frequently	altered	DDR	gene	

in	 unselected	 patients	 with	 mCRPC	 and	 germline	 mutations	 in	 BRCA2	 have	 a	

deleterious	impact	on	mCRPC	outcomes.	

4.3. Comparison	of	the	prevalence	of	gDDR	mutations	in	
PROREPAIR-B	 and	 PRORADIUM	 cohorts	 with	 general	 non-

cancer	populations	datasets	ExAC	and	CSVS	

The	 prevalence	 of	 pathogenic	mutations	 identified	 in	 the	mCRPC	 Spanish	

cohorts	PROREPAIR-B	and	PRORADIUM,	and	the	gDDR	mutations	in	general	non-

cancer	population	datasets	ExAC	and	CSVS	is	shown	in	Table	3	and	Table	4.	The	
odds	 ratio	 (OR)	 for	 carrier	 status	 in	 mCRPC	 compared	 with	 non-cancer	

populations	were	 substantially	 increased	 for	 several	 DDR	 genes,	 including	 ATM,	

BRCA1	and	BRCA2.		

		 ATM	 BRCA1	 BRCA2	 total	 N	population	
%BRCA2	
mutated	

Robinson	et	al.,	2015	 8	 4	 9	 21	 150	 6.00	

Pritchard	et	al.,	2016	 11	 6	 37	 54	 692	 5.35	

Na	et	al.,	2017	 6	 2	 11	 19	 313	 3.51	

Mijuskovic	et	al.,	2018	 4	 0	 5	 9	 139	 3.60	

Annala	et	al.,	2018	 1	 0	 7	 8	 202	 3.47	

Antonarakis	et	al.,	2018	 3	 1	 5	 9	 172	 2.91	

PROREPAIR-B	 8	 4	 14	 26	 419	 3.34	

PRORADIUM	 3	 1	 4	 8	 93	 4.30	
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The	 prevalence	 of	 ATM,	 BRCA2	 and	 MUTYH	 mutations	 was	 significantly	

higher	 in	mCRPC	 (PROREPAIR-B	 and	PRORADIUM)	 than	 in	CSVS	 and	ExAC	non-

cancer	 populations.	 Complete	 data	 about	 statistical	 analyses	 are	 described	 in	

Table	3	and	Table	4.	Briefly,	all	P	values	were	two	sided.	The	comparison	of	the	
prevalence	 of	 mutations	 between	 mCRPC	 patients	 and	 the	 general	 non-cancer	

populations	were	 tested	using	 the	χ2,	Fisher’s	exact,	or	Mann-Whitney	U	 test,	 as	
appropriate	 (Altman	et	al.,	1991).	The	SPSS	version	19	 (SPSS,	Chicago,	 IL)	and	R	

version	3.3.3	(https://www.r-project.org/)	programs	were	used	for	the	statistical	

analysis.	

	

	



 

 

Table	 3.	 Prevalence	 of	 deleterious	 germline	 variants	 in	 the	DDR	 genes	 analysed	 in	 PROREPAIR-B	 compared	with	 non-cancer	 populations	 –the	
Exome	Aggregation	Consortium	(ExAC)	and	the	CIBERER	Spanish	Variant	Server	(CSVS)	population	

	  
PROREPAIR	

	
ExAC	

	
CSVS	

	        
  

(n	=	419)	
	
(n	=	53,105)	

	
(n	=	1,551)	

	
PROREPAIR	v	ExAC	

	
PROREPAIR	v	CSVS	

Gene	 		 No.	 %	 		 No.	 %	 		 No.	 %	 		 OR		 (95%	CI)	 P	 		 OR		 (95%	CI)	 P	
ATM	 		 8	 1.91	 		 139	 0.26	 		 3	 0.19	 		 7.4	 (3.6	to	15.2)		 <.001	 		 10	 (2.7	to	38.0)	 <.001	
BRCA1	

	
4	 0.95	

	
97	 0.18	

	
2	 0.13	

	
5.3	 (1.9	to	14.4)		 <.001	

	
7.5	 (1.4	to	40.9)	 0.021	

BRCA2	 		 14	 3.34	 		 159	 0.30	 		 4	 0.26	 		 11.50	 (6.6	to	20.1)		 <.001	 		 13.4	 (4.4	to	40.8)	 <.001	
CDK7	

	
1	 0.24	

	
11	 0.02	

	
1	 0.06	

	
11.50	 (1.5	to	89.6)		 <.001	

	
3.70	 (0.2	to	59.4)	 NS	

CHEK2	 		 2	 0.48	 		 273	 0.51	 		 1	 0.06	 		 0.9	 (0.2	to	3.7)		 NS	 		 7.40	 (0.7	to	82.2)	 NS	
DCLRE1C	

	
1	 0.24	

	
60	 0.11	

	
1	 0.06	

	
2.1	 (0.3	to	15.3)		 NS	

	
3.70	 (0.2	to	59.4)	 NS	

EME2	 		 2	 0.48	 		 89	 0.17	 		 1	 0.06	 		 2.90	 (0.7	to	11.6)		 NS	 		 7.40	 (0.7	to	82.2)	 NS	
ERCC2	

	
1	 0.24	

	
230	 0.43	

	
0	 0.00	

	
0.50	 (0.1	to	3.9)		 NS	

	   
NS	

ERCC3	 		 1	 0.24	 		 102	 0.19	 		 1	 0.06	 		 1.20	 (0.2	to	8.9)		 NS	 		 3.7	 (0.2	to	59.4)	 NS	
ERCC6	

	
1	 0.24	

	
62	 0.12	

	
1	 0.06	

	
2	 (0.3	to	14.8)		 NS	

	
3.7	 (0.2	to	59.4)	 NS	

FANCD2	 		 3	 0.72	 		 77	 0.14	 		 1	 0.06	 		 5.00	 (1.6	to	15.8)		 0.0251	 		 11.3	 (1.0	to	107.7)	 NS	
FANCE	

	
2	 0.48	

	
34	 0.06	

	
0	 0.00	

	
7.5	 (1.8	to	31)		 0.0323	

	   
0.0452	

FANCF	 		 1	 0.24	 		 178	 0.34	 		 0	 0.00	 		 0.7	 (0.1	to	5.1)		 NS	 		 		 		 NS	
FANCG	

	
1	 0.24	

	
25	 0.05	

	
1	 0.06	

	
5.10	 (0.7	to	37.6)		 NS	

	
3.70	 (0.2	to	59.4)	 NS	

FANCL	 		 2	 0.48	 		 15	 0.03	 		 0	 0.00	 		 17.00	 (3.9	to	74.5)		 0.0077	 		 		 		 0.0452	
FANCM	

	
1	 0.24	

	
178	 0.34	

	
1	 0.06	

	
0.7	 (0.1	to	5.7)		 NS	

	   
NS	

GTF2H4	 		 2	 0.48	 		 4	 0.01	 		 0	 0.00	 		 63.7	 (11.6	to	348)		 <.001	 		 		 		 0.0452	
MMS19	

	
1	 0.24	

	
12	 0.02	

	
0	 0.00	

	
10.6	 (1.4	to	81.6)		 <.001	

	   
NS	

MRE11A	 		 2	 0.48	 		 32	 0.06	 		 0	 0.00	 		 8	 (1.9	to	33.3)		 0.0291	 		 		 		 0.0452	
MSH2	

	
1	 0.24	

	
21	 0.04	

	
4	 0.26	

	
6.00	 (1.0	to	45.0)		 NS	

	
0.9	 (0.1	to	8.3)	 NS	

MUTYH	 		 13	 3.10	 		 729	 1.37	 		 14	 0.90	 		 2.3	 (1.3	to	4.0)		 0.0091	 		 3.5	 (1.6	to	7.5)	 0.0016	
PARP3	

	
1	 0.24	

	
195	 0.37	

	
5	 0.32	

	
0.6	 (0.1	to	4.6)		 NS	

	
0.70	 (0.1	to	6.3)	 NS	

PMS1	 		 1	 0.24	 		 71	 0.13	 		 3	 0.19	 		 1.8	 (0.2	to	12.9)		 NS	 		 1.20	 (0.1	to	11.9)	 NS	
RAD17	

	
2	 0.48	

	
17	 0.03	

	
3	 0.19	

	
15	 (3.4	to	65.0)		 0.0096	

	
2.5	 (0.4	to	14.9)	 NS	

RAD54L	 		 1	 0.24	 		 48	 0.09	 		 0	 0.00	 		 2.6	 (0.4	to	19.2)		 NS	 		 		 		 NS	
RPA2	

	
1	 0.24	

	
10	 0.02	

	
1	 0.06	

	
12.70	 (1.6	to	99.5)		 NS	

	
3.70	 (0.2	to	59.4)	 NS	

XPA	 		 1	 0.24	 		 40	 0.08	 		 0	 0.00	 		 3.20	 (0.4	to	23.1)		 NS	 		 		 		 NS	
XPC	 		 1	 0.24	 		 338	 0.64	 		 8	 0.52	 		 0.40	 (0.1	to	2.7)		 NS	 		 0.5	 (0.1	to	3.7)	 NS	
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Table	 4.	 Prevalence	 of	 deleterious	 germline	 variants	 in	 the	 DDR	 genes	 analysed	 in	 PRORADIUM	 compared	 with	 non-cancer	 populations	 –the	
Exome	Aggregation	Consortium	(ExAC)	and	the	CIBERER	Spanish	Variant	Server	(CSVS)	population.	

	  
PRORADIUM	

	
ExAC	

	
CSVS	

	        

  
(n	=	93)	

	
(n	=	53,105)	

	
(n	=	1,551)	

	
PRORADIUM	v	ExAC	

	
PRORADIUM	v	CSVS	

Gene	 		 No.	 %	 		 No.	 %	 		 No.	 %	 		 OR		 (95%	CI)	 P	 		 OR		 (95%	CI)	 P	
ATM	 		 3	 3.23	 		 139	 0.26	 		 3	 0.19	 		 12.70	 (3.97	to	40.61)	 0.002202	 		 17.20	 (3.42	to	86.43)	 0.0033	
BRCA1	 		 1	 1.08	 		 97	 0.18	 		 2	 0.13	 		 5.94	 (0.82	to	43.05)	 NS	 		 8.42	 (0.76	to	93.70)	 NS	
BRCA2	 		 4	 4.30	 		 159	 0.30	 		 4	 0.26	 		 14.97	 (5.43	to	41.25)	 <.001	 		 17.38	 (4.28	to	70.65)	 <.001	

CHEK2	 		 1	 1.08	 		 273	 0.51	 		 1	 0.06	 		 2.10	 (0.29	to	15.15)	 NS	 		 16.85	 (1.05	to	271.52)	 NS	

MUTYH	 		 4	 4.30	 		 729	 1.37	 		 14	 0.90	 		 3.23	 (1.18	to	8.82)	 0.044	 		 4.93	 (1.59	to	15.30)	 0.01772	

XPC	 		 1	 1.08	 		 338	 0.64	 		 8	 0.52	 		 1.70	 (0.24	to	12.21)	 NS	 		 2.10	 (0.26	to	16.94)	 NS	
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4.4. Distribution	 of	 the	 gDDR	 mutations	 in	 the	 protein	
sequence	and	3D-structure	

Distribution	of	pathogenic	gDDR	mutations	across	functional	domains	

The	 distribution	 of	 the	 pathogenic	 variants	 in	 DDR	 protein-coding	 genes	
across	 functional	 domains	 annotated	 in	 the	 Pfam	 database	
(https://pfam.xfam.org/)	 is	 shown	 in	 Figure	 5.	 The	 complete	 list	 of	 pathogenic	
gDDR	 mutations	 in	 PROREPAIR-B	 and	 PRORADIUM	 are	 provided	 in	
Supplementary	S7	and	S8.		

We	 observed	 that	 pathogenic	 gDDR	 mutations	 are	 frequently	 located	
outside	 the	 functional	 protein	 domains.	 Moreover,	 56	 out	 of	 72	 variants	 (77%)	
identified	 in	 PROREPAIR-B	 are	 frameshifts	 and	 stop-gain,	 whereas	 9	 out	 of	 14	
variants	 (64.28%)	 in	 PRORADIUM.	 This	 type	 of	mutations	 truncates	 the	 protein	
sequence	 and	 consequently	 impacts	 their	 three-dimensional	 structure	 and	
function.		

The	accumulation	of	frameshifts	and	stop-gain	mutations	outside	functional	
protein	 domains	 is	 somehow	 expected	 because	 of	 inactivation	 of	 gene	 products.	
We	hypothesize	 that	 this	 type	of	mutations	may	 increase	protein	degradation	of	
DDR	regulators.	
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Figure	5.	Lolliplots	showing	the	distribution	of	the	presumed	pathogenic	mutations	
identified	in	PROREPAIR	(blue),	PRORADIUM	(green),	both	projects	(purple).	
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Figure	5.	(Continued)	
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Distribution	of	pathogenic	gDDR	mutations	across	protein	3D-Structure		

Only	2	of	the	28	affected	proteins-coding	genes	in	the	two	mCRPC	Spanish	
cohorts	 had	 three-dimensional	 (3D)	 structures	 available	 at	 PDB	
(http://www.rcsb.org/).	 Therefore,	 we	 focused	 the	 structural	 analysis	 on	 these	
two	 proteins	 CHEK2	 (PDB	 ID:	 1GXC,	 X-ray	 diffraction	 at	 2.7Å resolution) and	
MUTYH	 (PDB	 ID:	 1X51,	 NMR	 solution).	 After	 mapping	 the	 pathogenic	 gDDR	
mutations	 onto	 3D-structure	 (Figure	 6),	 we	 found	 that	 CHEK2	 variant	 p.R117G	
(PROREPAIR-B)	is	localized	in	the	phosphopeptide	binding	site,	so	it	could	impair	
substrate	 recognition.	 Interestingly,	 two	 other	 variants	 identified	 in	 this	 study,	
p.K197fs	(PROREPAIR-B)	and	p.R180C	(PRORADIUM),	are	clustered	in	the	protein	
regions	 where	 variants	 for	 other	 tumour	 types	 have	 already	 been	 described	 in	
COSMIC.	For	example,	the	variant	p.K197fs	(PROREPAIR-B)	is	in	the	close	vicinity	
of	 p.N196I	 (mouth)	 and	 p.V198L	 (rectum	 and	 breast)	 previously	 observed	 in	
COSMIC,	and		p.R180C	(PRORADIUM)	is	located	in	the	same	region	than	p.R180H	
(in	colon,	bladder	and	PC),	p.R181L	(lung)	and	p.R182S	(in	colon	and	melanoma),	
also	described	in	COSMIC.		

	 A	similar	scenario	was	observed	for	MUTYH,	where	p.L380fs	(PROREPAIR-
B)	is	located	in	the	same	region	than	the	variant	p.G381V	(stomach)	described	in	
COSMIC,	 and	 p.G393D	 (PRORADIUM)	 are	 also	 located	 in	 a	 hotspot	 site	 with	
neighbouring	 variants	 described	 for	 different	 tumour	 type	 in	 COSMIC,	 such	 as	
p.Q388*	(colon),	p.L398P	(bladder),		and	p.W399S	(colon).	

These	 findings	 suggest	 that	 accumulation	 of	 variants	 in	 these	 regions	
impairs	protein-protein	 interaction	 interfaces,	and	also,	 the	biological	 function	of	
the	protein.	The	co-localizing	and	co-clustering	of	somatic	mutations	and	germline	
variants	onto	protein	3D-structure	have	been	applied	 to	 link	 rare	predisposition	
variants	 to	 functional	 consequence	 (Huang	 et	 al.,	 2018).	 Therefore,	 to	 study	 the	
distribution	 of	 the	 remaining	 pathogenic	 variants	 in	 the	 3D-struture	 of	 DDR	
affected	 proteins,	 may	 provide	 key	 insights	 in	 understanding	 pathogenicity	 of	
these	alterations,	and	how	these	alterations	may	have	an	effect	in	protein	stability	
and	function.		
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Figure	 6.	 Localization	 of	 presumed	 pathogenic	 mutations	 in	 the	 3D-structure	 of	
proteins.	A)	Located	the	pathogenic	mutations	detected	in	CHEK2	protein	B)	Located	
the	 pathogenic	 mutations	 detected	 in	 MUTYH	 protein.	 Depicted	 as	 PROREPAIR-B	
(grey),	PRORADIUM	(red),	pathogenic	mutations	documented	in	COSMIC	(yellow)		
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4.5. Exploring	 copy	 number	 alterations	 in	 the	
PRORADIUM	cohort	 for	 the	DDR	genes	BRCA1,	BRCA2,	ATM,	
PALB2	and	MSH2	

As	we	commented	before	in	the	materials	and	methods	section,	this	analysis	
is	under	development.	Currently,	we	are	working	on	how	to	integrate	results	from	
different	computational	tools,	and	also,	we	have	to	distinguish	between	pathogenic	
CNVs	 and	 over-represented	 regions	 or	 polymorphisms.	 For	 now,	 we	 are	
implementing	 46,533	 annotations	 from	 ClinvarCnv,	 based	 on	 GRCh37/hg19	
assembly.	
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5. Conclusions	and	future	plan	

Conclusions	
In	 the	 present	 work	 we	 produced	 and	 automatized	 a	 bioinformatics	

pipeline	to	study	targeted-sequencing	data,	with	a	custom-designed	panel	of	DDR	
genes,	in	more	than	500	mCRPC	Spanish	patients.	The	application	of	the	pipeline	to	
experimental	data	obtained	by	the	Prostate	Cancer	Clinical	Unit	at	CNIO-Carlos	III,	
allows	us	to	conclude	that:	

1) The	most	 recurrent	 mutated	 genes	 with	 pathogenic	 gDDR	 variants	 in	
PROREPAIR-B	and	PRORADIUM	cohorts	were	BRCA2,	MUTYH	and	ATM.	

2) The	number	of	pathogenic	variants	identified	in	BRCA2	in	PROREPAIR-B	
and	 PRORADIUM	 Spanish	 cohorts	 is	 in	 the	 same	 order	 of	 magnitude	
than	in	other	mCRPC	published	cohorts.	

3) The	most	 recurrent	mutated	 gene	 BRCA2	 shows	 a	 significantly	 higher	
prevalence	in	Spanish	cohorts	than	in	the	general	non-cancer	population	
(CSVS	P<	0.001	and	ExAC	P	<	0.001).	

4) The	 gDDR	 pathogenic	 variants	 are	 frequently	 located	 outside	 protein	
domains	but	 in	 some	 cases	 clustering	 in	hotspots	 for	different	 tumour	
types	in	the	protein-coding	genes	studied.	

5) The	CNV	analysis	 is	 time-consuming	and	use	of	different	methods	will	
be	needed	for	a	reliable	prediction.	

Part	of	the	results	obtained	in	this	work	have	been	published	in	Castro	et	al.,	2019	
and	presented	in	the	42nd	ESMO	Congress,	September	8-12,	2017,	Madrid.	

 

Future	plan	
 

The	 work	 presented	 for	 the	 Master's	 Degree	 in	 Bioinformatics	 and	
Computational	Biology	is	part	of	my	PhD	research	project,	which	investigates	the	
role	of	DDR	genes	in	mCRPC	Spanish	cohorts.	Once	the	CNV	analysis	 is	complete,	
we	will	 integrate	SNV	and	CNV	analyses	 in	the	PRORADIUM	cohort.	To	study	the	
DDR	signalling	pathways	affected	by	CNV	and/or	SNV,	in	the	integrative	analysis,	
we	also	planned	 to	study	 the	distribution	of	 the	pathogenic	variants,	not	studied	
here,	 identified	 in	 the	 PROREPAIR-B	 and	 PRORADIUM	 cohorts	 through	 the	 3D-
structure	analysis	of	modelled	proteins	and	protein-protein	complexes.	
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Supplementary	

S1.	The	general	quality	of	the	base			

	

S2.	The	general	quality	of	the	reads		
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S3.	The	CG	content		

	

S4.	Number	of	bases	not	specified	(content	of	“N”	in	the	reads)		

	

S5.	The	adapter	content	
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	S6.	Allele	Frequencies	Ratio	

	

S7.	 List	 of	 Pathogenic/Likely	 Pathogenic	 Mutations	 Identified	 in	 the	
PROREPAIR	Study		

ID	 Gene	 Nucleotide	Change	 Amino	Acid	Change	 Effect	
B20018	 ATM	 c.3381_3384del	 p.A1127fs	 frameshift	deletion	
B07020	 ATM	 c.1442T>G	 p.L481*	 stopgain	
B01019	 ATM	 c.1262C>A	 p.S421*	 stopgain	
B58005	 ATM	 c.1262C>A	 p.S421*	 stopgain	
B13040	 ATM	 c.1262C>A	 p.S421*	 stopgain	
B14001	 ATM	 c.1262C>A	 p.S421*	 stopgain	
B07003	 ATM	 c.1336C>T	 p.Q446*	 stopgain	
B16005	 ATM	 c.6289G>T	 p.E2097*	 stopgain	
B07013	 BRCA1	 c.2017_2023del	 p.673fs	 frameshift	deletion	
B47007	 BRCA1	 c.470_471del	 p.S157fs	 frameshift	deletion	
B13033	 BRCA1	 c.3756_3759del	 p.L1252fs	 frameshift	deletion	
B21052	 BRCA1	 c.A211G	 p.R71G	 nonsynonymous	SNV	
B14014	 BRCA2	 c.6911T>G	 p.L2304*	 stopgain	
B48011	 BRCA2	 c.3264dupT	 p.P1088fs	 frameshift	insertion	
B41010	 BRCA2	 c.3648dupT	 p.G1215fs	 frameshift	insertion	
B46021	 BRCA2	 c.3059_3060del	 p.L1019fs	 frameshift	deletion	
B46013	 BRCA2	 c.9018C>A	 p.Y3006*	 stopgain	
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B42003	 BRCA2	 c.4963delT	 p.C1654fs	 frameshift	deletion	
B41035	 BRCA2	 c.2701delC	 p.L901fs	 frameshift	deletion	
B01009	 BRCA2	 c.5116_5119del	 p.R1704fs	 frameshift	deletion	
B21080	 BRCA2	 c.9018C>A	 p.Y3006*	 stopgain	
B21066	 BRCA2	 c.1326_1329del	 p.S442fs	 frameshift	deletion	
B08001	 BRCA2	 c.4889c>G	 p.Ser1630*	 stopgain	
B13029	 BRCA2	 c.6650_6654del	 p.K2217fs	 frameshift	deletion	
B13024	 BRCA2	 c.5720_5723del	 p.S1907fs	 frameshift	deletion	
B01006	 BRCA2	 c.9026_9030del	 p.Y3009fs	 frameshift	deletion	
B48002	 CDK7	 c.874_875dup	 p.K291fs	 frameshift	insertion	
B01008	 CHEK2	 c.349A>G	 p.R117G	 nonsynonymous	SNV	
B46005	 CHEK2	 c.591delA	 p.K197fs	 frameshift	deletion	
B13019	 DCLRE1C	 c.241C>T	 p.R81*	 stopgain	
B26005	 EME2	 c.886C>T	 p.Q296*	 stopgain	
B41031	 EME2	 c.949_953del	 p.F315fs	 frameshift	deletion	
B07021	 ERCC2	 c.1847G>C	 p.R616P	 nonsynonymous	SNV	
B21009	 ERCC3	 c.335dupA	 p.H112fs	 frameshift	insertion	
B21060	 ERCC6	 c.3474_3477del	 p.E1158fs	 frameshift	deletion	
B21091	 FANCD2	 c.3457G>T	 p.E1153*	 stopgain	
B46023	 FANCD2	 c.3457G>T	 p.E1153*	 stopgain	
B21009	 FANCD2	 c.3496delG	 p.R1165fs	 frameshift	deletion	
B09004	 FANCE	 c.1413_1414dup	 p.V471fs	 frameshift	insertion	
B21023	 FANCE	 c.929dupC	 p.A308fs	 frameshift	insertion	
B13021	 FANCF	 c.1087C>T	 p.Q363*	 stopgain	
B02002	 FANCG	 c.907_908dup	 p.L303fs	 frameshift	insertion	
B26005	 FANCL	 c.1051_1052del	 p.S351fs	 frameshift	deletion	
B16001	 FANCL	 c.1051_1052del	 p.S351fs	 frameshift	deletion	
B46017	 FANCM	 c.1196C>G	 p.S399*	 stopgain	
B36002	 GTF2H4	 c.358_374del	 p.I120fs	 frameshift	deletion	
B46019	 GTF2H4	 c.940C>T	 p.R314*	 stopgain	
B41005	 MMS19	 c.607delA	 p.R203fs	 frameshift	deletion	
B33002	 MRE11A	 c.1516G>T	 p.E506*	 stopgain	
B07011	 MRE11A	 c.1897C>T	 p.R633*	 stopgain	
B21034	 MSH2	 c.1808A>G	 p.D603G	 nonsynonymous	SNV	
B36001	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B29001	 MUTYH	 c.1138delC	 p.L380fs	 frameshift	deletion	
B41027	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B02002	 MUTYH	 c.527A>G	 p.Y176C	 nonsynonymous	SNV	
B13013	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B09003	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B13019	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B14020	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
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B21001	 MUTYH	 c.527A>G	 p.Y176C	 nonsynonymous	SNV	
B21059	 MUTYH	 c.527A>G	 p.Y176C	 nonsynonymous	SNV	
B21045	 MUTYH	 c.1178G>A	 p.G393D										 nonsynonymous	SNV	
B21086	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B01035	 MUTYH	 c.1178G>A	 p.G393D	 nonsynonymous	SNV	
B20005	 PARP3	 c.466C>T	 p.Q156*										 stopgain	
B01012	 PMS1	 c.1690dup	 p.Y563fs	 frameshift	insertion	
B06006	 RAD17	 c.676G>T	 p.E226*	 stopgain	
B16001	 RAD17	 c.676G>T	 p.E226*	 stopgain	
B47006	 RAD54L	 c.1099delG	 p.A367fs	 frameshift	deletion	
B06008	 RPA2	 c.276C>A	 p.Y92*	 stopgain	
B14018	 XPA	 c.682C>T	 p.R228*	 stopgain	
B13020	 XPC	 c.1643_1644del	 p.V548fs	 frameshift	deletion	

	

S8.		List	of	Pathogenic/Likely	Pathogenic	Mutations	Identified	in	the	PRORADIUM	
Study		

ID	 Gene	 Nucleotide	Change	 Amino	Acid	Change	 Effect	
5026	 ATM	 c.802C>T	 p.Gln268*	 stopgain	
1210	 ATM	 c.3890_3891insT	 p.Ala1299fs	 frameshift	insertion	
IT002	 ATM	 c.8317_8318insCTGTC	 p.Pro2775fs	 frameshift	insertion	
5082	 BRCA1	 c.815_824dupAGCCATGTGG	 p.Thr276fs	 frameshift	insertion	
5069	 BRCA2	 c.9235delG	 p.Val3079fs	 frameshift	deletion	
5062	 BRCA2	 c.9025_9029delTATCA	 p.Tyr3009fs	 frameshift	deletion	
5079	 BRCA2	 c.3455T>G	 p.Leu1152*	 stopgain	
5051	 BRCA2	 c.2806_2809delAAAC	 p.Ala938fs	 frameshift	deletion	
5082	 CHEK2	 c.538C>T	 p.Arg180Cys	 nonsynonymous	SNV	
5068	 MUTYH	 c.1106G>A	 p.Gly393Asp	 nonsynonymous	SNV	
5060	 MUTYH	 c.1106G>A	 p.Gly393Asp	 nonsynonymous	SNV	
4019	 MUTYH	 c.1106G>A	 p.Gly393Asp	 nonsynonymous	SNV	
IT018	 MUTYH	 c.1106G>A	 p.Gly393Asp	 nonsynonymous	SNV	
4065	 XPC	 c.1643_1644delTG	 p.Val548fs	 frameshift	deletion	
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