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Abstract

The Standard Model of particle physics can be regarded as a very successful theory, and
over the last decades, its predictions have led to very relevant discoveries in the field.
However, there are both experimental evidence and theoretical problems which makes
us think that the theory is still incomplete in several aspects, including the Higgs sector.
The aim of this work is to test the sensitivity of the process e−e+ → HHHνν̄ to Beyond
the Standard Model triple and quartic autointeractions of the Higgs boson. To do so, we
will use the parametrization given by the Electroweak Chiral Lagrangian, an effective
field theory based on Chiral Perturbation Theory which allows us to quantify possible
deviations from the Standard Model in a model independent way. We will start by
introducing the theoretical framework and motivate why it is the best choice for us. Then,
we will characterize the W−W+ → HHH subprocess and quantify the deviations induced
by anomalous Higgs self-couplings. Next, we will repeat the same analysis for triple
Higgs production in e−e+ colliders. Finally, we will study the sensitivity of a particular
collider to these anomalous couplings. The results regarding the e−e+ → HHHνν̄ process
presented here constitute an original contribution from this work, and the study of the
sensitivity to the triple and quartic self-coupling that we propose is, to our knowledge, a
novel study.
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1 Introduction

The Standard Model of Particle Physics (SM) is a theory which was developed during the
20th century [1–4] and successfully explains many aspects about the nature and interactions
of the fundamental particles that can be observed in high energy experiments. This model
is a quantum field theory built from the (gauge) symmetry group SU(3)C×SU(2)L×U(1)Y,
where SU(3)C describes the strong interactions and SU(2)L×U(1)Y refers to the electroweak
(EW) sector. The mediators of each interaction are the corresponding gauge bosons
associated to each gauge group, while the rest of the particles are organized in three
generations of fermions (which can be quarks or leptons, depending on their color charge)
plus the Higgs boson, being the latter the main interest of this work.

Figure 1.1: Particle content of the Standard Model and the corresponding interactions.

The Higgs boson is the only scalar (spin 0) particle in the SM. It is introduced in the model
a posteriori to generate the masses of the fundamental particles (except for neutrinos)
without breaking gauge invariance via the Brout-Englert-Higgs (BEH) mechanism [5–9].
According to Goldstone Theorem [10], if a quantum field theory has a global continuous
symmetry which is not a symmetry of the vacuum (a symmetry is spontaneously broken),
there has to be a massless boson (scalar or pseudoscalar) associated to each symmetry
which does not leave the vacuum invariant. This is, for example, how pions are generated
in QCD. When we consider the case in which the masses of the quarks are zero (which is
a good approximation for up and down quarks), the Lagrangian is invariant under the
SU(2)L×SU(2)R global symmetry group, usually named the chiral symmetry, but the
vacuum is only invariant under the diagonal SU(2)L+R group. Since dim[SU(2)L×SU(2)R]−
dim[SU(2)L+R] = 3, three Goldstone bosons appear, which are identified as the three
pions (π0 and π±), whose masses are much smaller than the typical hadron masses (& 1

GeV vs. ∼ 100 MeV for pions). The only reason why mπ 6= 0 is simply that the up and
down quarks are not truly massless, and the global symmetry is explicitly broken (it is an
approximate symmetry). This is the reason why pions are called pseudo Goldstone bosons.
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However, when the broken symmetry is a gauge symmetry, the would-be Goldstone bosons
associated to the breaking do not appear in the spectrum, but instead combine with
the massless gauge vector bosons in such a way that they appear as massive particles
in the spectrum that we build from the true vacuum. Based on this principle, the BEH
mechanism introduces a new complex scalar field Φ in the SM, which is a doublet of
SU(2)L charged under the symmetry groups that we need to break (T = 1/2 and Y = 1).
Below a critical temperature (energy), this field acquires a vacuum expectation value
(also called vev or simply v) and the true vacuum is not invariant under SU(2)L×U(1)Y
anymore. The Φ field is a complex doublet, and therefore it has four degrees of freedom.
Three of them are absorbed by the W± and Z gauge bosons, each of them acquiring a
longitudinal degree of freedom and becoming massive, while the remaining one is the
Higgs field H, which parametrizes the oscillations around the vacuum. Since the real
scalar component of the field Φ acquiring a vev is not electrically charged, the symmetry
under the electromagnetic gauge group U(1)EM is preserved and the mediator of the
electromagnetic interactions, the photon, remains massless. After introducing the BEH
mechanism and going to the unitary gauge, the scalar part of the SM Lagrangian, LH ,
reads:

LH =−
∑
f

mf

v
f̄Hf + 2m2

WW
+
µ W

µ
−

(
H

v
+
H2

2v2

)
+m2

ZZµZ
µ

(
H

v
+
H2

2v2

)
− λvH3 − 1

4
λH4, (1.1)

where λ = g2m2
H/8m

2
W = m2

H/2v
2. From this Lagrangian we can obtain the corresponding

Feynman rules, which we will use to define the triple and quartic Higgs self-couplings,
λHHH and λHHHH :

As we can see, the SM predicts the relation λSM
HHH = λSM

HHHH , so the measurement of the
ratio between these two couplings is a direct test of the validity of the BEH mechanism,
and would allow to determine if the assumption of Φ being a doublet is correct, or if
there is physics beyond the Standard Model (BSM) regarding the nature of the Higgs boson.

The BEH mechanism was theoretically developed in the 60s, although the W± and Z
bosons were not discovered until 1983 in the Super Proton-Antiproton Synchrotron
(SppS) [11–14], with masses around 80 and 90 GeV, respectively, in agreement with the
theoretical predictions. The confirmation of the existence of a Higgs boson took a couple
of decades more, but it was finally discovered in 2012 in the Large Hadron Collider (LHC)
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when the ATLAS and CMS collaborations announced the measurement of a scalar, neutral
particle, with a mass around 125 GeV [15,16] compatible with the theory. However, there
are several facts that point that the SM is still incomplete. Some of them come from
experimental evicence, such as the existence of dark matter or the fact that neutrinos are
not massless. Others are theoretical issues regarding fine-tuning problems with some of
the free parameters of the theory, for example, the flavour puzzle, the strong CP problem
or the hierarchy problem, being the last one directly related to the Higgs boson and its mass.

The mass of the Higgs boson is a free parameter of the SM, and therefore can only be
determined experimentally. This was done at the LHC, fixing the Higgs boson mass at
125 GeV. This mass is not protected by any symmetry, which means that no symmetry is
restored when it is set to 0. Therefore, if the SM is taken as a low energy effective field
theory valid up to a cutoff scale Λ1, then the mass of the Higgs boson can receive large
additive corrections proportional to the Λ scale, which are many orders of magnitude
higher than the experimental value. As a consequence, reproducing the 125 GeV measured
mass would require a huge fine-tuning in the bare mass. In order to solve this problem,
two types of theories have been proposed. On the one hand, it may happen that the
Higgs boson is an elementary particle. In that case, the hierarchy problem could be
solved introducing new symmetries that protect the Higgs boson mass, as it is done, for
instance, in supersymmetric theories. On the other hand, the Higgs boson could also be a
composite state, a bound state from a new type of strong interaction. However, which
theory is the correct one remains unclear, and the hierarchy problem is far from closed.

In the lack of a unique UV (high energy) theory, effective field theories (EFTs) have
gained popularity, since they allow to study low energy effects of a new UV theory below
a certain threshold without any specific information about the dynamics above that
threshold. It is assumed that the possible new particles are too massive to propagate at
the energies that are probed, so they can be integrated out from the theory. Nevertheless,
they do not completely disappear, since their low energy effects can be measured as
deviations from the SM. Furthermore, the new physics in EFTs is usually summarized
by a collection of effective operators, built with the SM fields and ordered by their
increasing dimension, which can be different from 4. The requirement on these effective
operators is based just on the needed symmetries, including the SM gauge symmetry,
SU(3)C×SU(2)L×U(1)Y. The information on the new UV physics BSM is encoded then
in the particular values of the coefficients in front of these effective operators. One of the
simplest examples of an EFT is Fermi’s theory of beta decay [17], which is a theory for
weak interactions previous to the discovery of the W boson. In this formulation, processes
mediated by a W boson are collapsed to an interaction point proportional to the Fermi

1It is expected that the SM is not valid at arbitrarily large energies. Λ can be, for example, the Planck
scale, ΛPlanck ∼ 1019 GeV, or the GUT scale, ΛGUT ∼ 1016 GeV.
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coupling constant, GF =
√

2g2/8m2
W , which contains the effect of the intermediate W

boson that is integrated out at low energies. Here, we will use a similar technique to
study possible deviations in the scalar sector of the SM, and in particular, in the Higgs
boson self-couplings, based on the Electroweak Chiral Lagrangian (EChL, also called
Higgs Effective Field Theory or HEFT). In this EFT approach the electroweak chiral
symmetry of the scalar sector of the SM is realized non-linearly (like the chiral symmetry
in QCD) and the Higgs particle is introduced as a singlet. This is in contrast to other
EFTs like the SMEFT where the Higgs particle is introduced inside the Φ doublet and the
EW chiral symmetry is realized linearly. The feature that H is a singlet within the EChL
approach allows us to consider the two BSM Higgs self-couplings, λHHH and λHHHH , as
a priori uncorrelated, reason why the EChL is the proper EFT for our purpose in this work.

But the measurement of these couplings is not an easy task, because the processes that
depend on these quantities involve multiple Higgs production. In the current LHC with
proton-proton collisions at a center of mass energy of 13 TeV, the production cross section
of two or more Higgs bosons is in the picobarn (pb) scale or below [18], and the luminosity
is not high enough to produce good statistics. Nevertheless, the trilinear self-coupling
has been constrained by the ATLAS Collaboration [19] to −2.3 < λHHH/λ

SM
HHH < 10.3

at the 95% CL, being λSM
HHH the value in the SM, under the assumption that the new

physics affects only the λ parameter. The quartic self-coupling by the moment remains
unaccessible. A more precise determination of the trilinear self-coupling via double Higgs
production is one of the aims of several future projects, such as the High Luminosity
LHC (HL-LHC) and its high energy upgrade (HE-LHC) [20], the International Linear
Collider (ILC) [21] and the Compact Linear Collider (CLIC) [22], and much research on
this topic has already been done. The study of triple Higgs production as a way to test
new couplings of the Higgs boson to SM particles has already been proposed for future
proton-proton colliders at very high energies above 14 TeV such as, for example, the Future
Circular Collider (FCC) [23,24]. In this work we will focus on the two electron-positron
colliders in the list: the ILC and CLIC. They will operate in several stages with different
values of the center of mass energy and different integrated luminosities, as it can be seen
in the following table:
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Collider
√
s (GeV) Lint (ab−1)

ILC 250 2
350 0.2
500 4
1000 8

CLIC 380 1
1500 2.5
3000 5

Table 1.1: Expected center of mass energies and integrated luminosities in the different
stages of both the ILC and CLIC. The beams are assumed to be unpolarized, although
modifications in the polarization can lead to an enhancement of a particular signal.

While the low energy stages are optimized to measure the Yukawa couplings to other
particles, the high energy stages are designed for a more precise measurement of the
trilinear self-coupling, λHHH through double Higgs production. Throughout this work we
will argue that under certain conditions it could also be possible for this type of collider
to study triple Higgs production, which can provide additional information about the
trilinear self-coupling λHHH and, in some cases, even the quartic self-coupling λHHHH . To
study the sensitivity to these couplings in such colliders, we will focus on WW scattering
(WWS), the dominant production mechanism for double and triple Higgs at high energies.
This process, apart from exhibiting the highest cross section, is also interesting because
any deviation from the SM in the self-couplings leads to an increase in the production
rate, something that does not happen in other important production mechanisms, such as
associated production with a Z boson. Furthermore, it is a purely electroweak tree-level
process (the dominant production mechanism in a proton-proton collider is gluon fusion,
which involves quark loops and the top Yukawa coupling) and has a clean experimental
signal, with missing transverse momentum and two(three) Higgs bosons, which will
mainly decay to bottom quarks and produce four(six) b-jets. Since in an e−e+ collider the
initial particles (electrons and positrons) are fundamental, these type of signals should
be easier to filter than in a proton-proton collider, where the hadronic character of the
protons leads to huge QCD backgrounds. In summary, we will study multiple Higgs
production via WWS at future e−e+ colliders to see if it would be possible to measure
BSM deviations of the Higgs self-couplings also via triple Higgs production, which, unlike
double Higgs production, could also provide information about the quartic self-coupling.

This work is organized as follows: in Section 2 we will introduce the EChL and its
phenomenological implications. In Section 3 we will analyze the W−W+ → HHH

subprocess in detail, both in the SM and beyond, and see how sensitive it is to variations
of the Higgs boson self-couplings. In Section 4, the corresponding results for e−e+ collisions
will be presented, together with an estimation of the number of events that (if possible)
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could be detected in a real collider in the most favorable case. The conclusions are
summarized in Section 5. The contents of Sections 4 and 5 show the original research
work of this master’s thesis. All the computations, plots, results and conclusions on the
sensitivity to the BSM Higgs self-couplings are original contributions of this work. In
particular, the study of the sensitivity to the quartic self-coupling presented here is, to
our knowledge, a novel study.

2 BSM Higgs self-couplings in the EFT approach

As we mentioned in the previous section, the BEH mechanism allows to generate the
masses of the fundamental particles without breaking gauge invariance, and the resulting
predictions have led to very important discoveries in the field. However, the true nature of
the Higgs boson is still unclear, reason why it is interesting to study the symmetry breaking
using an effective theory. When writing an EFT for the EW symmetry breaking sector
(SBS), different parametrizations of the fields can be used depending on the underlying
physics that we are interested in. As we will see, all of them are based on the global
SU(2)L×SU(2)R symmetry of the SBS and the EW SU(2)L×U(1)Y gauge symmetry of
the SM, but the choice between one or another may seem more natural, for example,
depending on whether the underlying physics is weakly- or strongly-coupled. In this
section we will try to motivate why the EChL is a good option for our study.

2.1 The Electroweak Chiral Lagrangian

Chiral Lagrangians were first employed in Quantum Chromodynamics (QCD) [25],
taking their name from the global SU(2)L×SU(2)R symmetry (the chiral symmetry) that
explains the existence of three very light mesons (the pions) as pseudo Goldstone bosons
which appear when the symmetry is spontaneously broken. The QCD Chiral Lagrangian
is an EFT for QCD which describes pion dynamics below the GeV scale, integrating out
the rest of heavier particles and ignoring their composite nature. Electroweak Chiral
Lagrangians, first developed in the 80s [26–30], follow the same idea, applied to the
Goldstone bosons (GB) that arise from EWSSB and mix with the W± and Z gauge
bosons. Using the EChL we can study the GB dynamics and how they couple to the
Higgs boson.

To see how we can build the EChL, let’s start by examining the SBS of the SM in more
detail. As we explained in the previous section, the BEH mechanism allows to generate
the masses of the EW gauge bosons by introducing a complex scalar doublet Φ, which is
defined as:
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Φ =

(
φ+

φ0

)
. (2.1)

Since the components take complex values, the field has four degrees of freedom. The
dynamics of this field are described by the following Lagrangian (for the purpose of this
work we will ignore the interactions with fermions):

LSBS = (DµΦ)†(DµΦ) + µ2(Φ†Φ)− λ(Φ†Φ)2 ≡ (DµΦ)†(DµΦ)− V (Φ), (2.2)

where DµΦ refers to the covariant derivative:

DµΦ =

(
∂µ −

ig

2
~Wµ · ~τ −

ig′

2
Bµ

)
Φ. (2.3)

Here ~Wµ = (W 1
µ ,W

2
µ ,W

3
µ) and Bµ are the three gauge boson mediators associated to

the SU(L)L group and the mediator associated to the U(1)Y group, respectively. The
respective gauge couplings are g = e/ sin θw, g′ = e/ cos θw (being θw the weak mixing
angle) and ~τ = (τ 1, τ 2, τ 3) are the Pauli matrices.

Figure 2.1: Qualitative representation of the potential V (Φ) in the symmetric phase
(left) and in the broken phase (right).

The Lagrangian in equation 2.2 is SU(2)L×U(1)Y gauge invariant, but the vacuum can
respect the symmetry or not, depending on the value of µ2. As it is shown in figure 2.1,
when µ2 < 0 the potential has a single minimum, which corresponds to 〈0|Φ|0〉 = 0; in
this case, the symmetry is not spontaneously broken. However, when µ2 > 0 the field
acquires a vacuum expectation value v and the true minimum becomes degenerate around
a circumference of fixed radius in the complex plane:

|〈0|Φ|0〉| = 1√
2

(
0

v

)
, (2.4)

where v =
√
µ2/λ. The choice of one of these vacua is what causes the breaking of the
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SU(2)L×U(1)Y symmetry to U(1)EM. To see how this mechanism generates masses for
the gauge bosons, we can choose one vacuum (for example, 〈0|Φ|0〉 = |〈0|Φ|0〉|) and then
study the (small) oscillations of the field around it. To do so, we parametrize the Φ field
in polar coordinates, where H refers to the radial direction and ~ξ = (ξ1, ξ2, ξ3) to the
angular direction:

Φ =
1√
2

(
0

v +H

)
exp

(
i~ξ · ~τ
v

)
. (2.5)

The ~ξ fields are the so-called would-be Goldstone bosons, and there is one for each broken
generator of the symmetry. These fields are not physical, but they can be removed
performing a gauge transformation (going to the unitary gauge):

Φ→ U(ξ)Φ =
1√
2

(
0

v +H

)
. (2.6)

The ~Wµ and Bµ fields that appear in the derivative term of LSBS are the EW eigenstates
and transform as:

1

2
~Wµ · ~τ →

1

2
~W ′
µ · ~τ = U(ξ)

(
1

2
~Wµ · ~τ

)
U−1(ξ)− i

g

[
∂µU(ξ)

]
U−1(ξ),

Bµ → B′µ = Bµ, (2.7)

and allow us to define the mass eigenstates W±
µ , Zµ and Aµ:

W±
µ =

1√
2

(W ′
µ

1 ∓ iW ′
µ

2
),

Zµ = cos θwW
′
µ

3 − sin θwB
′
µ,

Aµ = sin θwW
′
µ

3
+ cos θwB

′
µ. (2.8)

After applying all these changes to 2.2, the derivative part yields the kinetic term for the
H field and mass terms for the W± and Z bosons (the Aµ field, which corresponds to the
photon, remains massless):

(DµΦ)†(DµΦ) =
1

2
(∂µH)(∂µH) +m2

WW
+
µ W

µ
− +

1

2
m2
ZZµZ

µ + ... (2.9)

where:

mW =
gv

2
, mZ =

√
g2 + g′2v

2
, (2.10)

while the potential term contains the mass term and the self-interactions of the Higgs
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boson:

−V (Φ) = µ2(Φ†Φ)− λ(Φ†Φ)2 = −1

2
m2
HH

2 − λvH3 − 1

4
λH4, (2.11)

where mH =
√

2µ2.

The value of the vacuum expectation value v can be obtained from the connection of the
SM EW Lagrangian with the preceding Fermi effective theory, which establishes a relation
between the Fermi constant GF and v:

GF =
1√
2v2

→ v ' 246 GeV. (2.12)

Apart from being responsible for the generation of the EW boson masses (and indirectly,
fermion masses), the fact that the Higgs field H is embedded in a doublet also induces
correlations between the different couplings. These correlations are responsible for the
cancellation of the divergent behaviour of longitudinal boson scattering at high energies
and unitarity restoring, and fix the self-couplings of three and four H to be related via v, as
it can be seen in equation 2.11. Nevertheless, we can relax these conditions if our purpose
is to study the SM from an effective approach because, on the one hand, preserving
unitarity at all energies is not a necessary condition for an EFT to be valid, since the
theory itself may not be valid at all energy scales. In this case unitarity violation would
give an upper bound at which the EFT breaks and new UV physics is required. On the
other hand, the Higgs self-couplings are poorly constrained by the experiment due to the
low cross sections of the processes that allow to study them, so it is not discarded that they
(and in particular, their ratio) can differ from the SM prediction in a significant amount.
In summary, we are now interested in an EFT that does not necessarily preserve unitarity
at all scales but allows us to vary the Higgs self-couplings independently and see how these
variations modify the corresponding cross sections. To this purpose we introduce the EChL.

Let’s start by rewriting the SBS Lagrangian of the SM in terms of a new matrix M ,
defined as:

M ≡ (Φ̃Φ) =

(
φ∗0 φ+

−φ− φ0

)
where Φ̃ = iτ 2Φ∗ =

(
φ∗0

−φ−

)
. (2.13)

Then:

LSBS =
1

2
Tr
[
(DµM)†(DµM)

]
− V (M)

V (M) = −1

4
λ

(
Tr(M †M) +

µ2

λ

)2

, (2.14)
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with the covariant derivative now defined as:

DµM = ∂µM +
ig

2
( ~Wµ · ~τ)M − ig′

2
BµMτ 3, (2.15)

to mach the one in 2.3. Introducing the matrix M makes the SU(2)L×SU(2)R symmetry
(the EW chiral symmetry) of the SBS explicit, since we can now easily see that the
Lagrangian is invariant under global transformations of the type:

M → LMR†,

where L ∈ SU(2)L and R ∈ SU(2)R. When Φ acquires a vacuum expectation value this
symmetry is spontaneously broken to SU(2)L+R. The situation is very similar to QCD,
with the difference that in this case the SU(2)L group and (only) the U(1)Y subgroup of
SU(2)R are gauged, leading to different physical consequences when the symmetry breaks.
Electroweak Chiral Lagrangians are based on this EW chiral symmetry and its breaking
to SU(2)L+R, but using a non-linear representation, which means that the three Goldstone
bosons ξ1, ξ2, ξ3 transform non-linearly under the global SU(2)L× SU(2)R. The Higgs
boson is in this case introduced as a singlet under the EW chiral symmetry, independent
from the Goldstone bosons, which are all included in an exponential representation. For
our purposes it is enough to use the leading order EChL [31,32], which reads:

LEChL =
v2

4

[
1 + 2a

(
H

v

)
+ b

(
H

v

)2

+ ...

]
Tr
[
DµU

†DµU
]

+
1

2
(∂µH)(∂µH)

− 1

2
m2
HH

2 − κ3λvH
3 − κ4

1

4
λH4 + ... (2.16)

where U is the 2× 2 matrix that contains the Goldstone bosons:

U ≡ exp

(
i~ξ · ~τ
v

)
, (2.17)

and H is a singlet under SU(2)L× U(1)Y, so it enters the EChL via polynomical functions.
As in any other EFT whose low energy limit is the SM, the information of the new UV
physics which is assumed to be integrated out is encoded in the values of the effective
Lagrangian parameters. In equation 2.16 these are a, b, κ3 and κ4 (although additional
parameters can be introduced).

In this Lagrangian, the parameters a and b control the so-called anomalous couplings of
the Higgs boson to W and Z bosons as follows:
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The SM couplings are recovered when a = b = 1. Both parameters have been constrained
by one or more methods. For example, the ATLAS Collaboration has set the following
bounds on each of them using single and double Higgs production:

a ∈ [0.97, 1.13] [33] b ∈ [−0.76, 2.90] [34] (2.18)

On the other hand, the parameters κ4 and κ3 control the triple and quartic Higgs self
couplings, that is:

Again, the SM couplings correspond to κ3 = κ4 = 1. Although the value of κ3 can also be
extracted from double Higgs production at the LHC, the sensitivity is lower, which leads
to the bound that we already mentioned, much less restrictive than the ones for a and b:

κ3 ∈ [−2.3, 10.3] [19] (2.19)

Here we would like to emphasize that currently there are no bounds for κ4.

It is important to note that all these bounds are not completely general; they can depend on
the underlying theory that it is assumed to interpret the results. For example, constraints
on κ3 can be less restrictive if we allow deviations in the top Yukawa coupling, which
is also involved in the analysis that yields the limits that we have just shown. In this
work we will only consider deviations in the κ3 and κ4 parameters, and will assume that
any other coupling takes its SM value. In particular, we will explore anomalous Higgs
self-couplings by varying κ3 and κ4 in the range:

κ3 ∈ [−10, 10] κ4 ∈ [−10, 10]. (2.20)

With this choice we will be safe from unitarity violation (as we will check later), but
stronger deviations could be allowed too.
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2.2 Linear vs. non-linear parametrizations

The EChL is a non-linear EFT since the Goldstone bosons are introduced in exponential
form and transform non-linearly under the symmetry group. But as we said before, it is not
the only possible representation. In fact, observables are independent of the representation
that we choose. One very common representation apart from the non-linear description
is the linear one. The Standard Model Effective Field Theory (SMEFT) [35, 36] is an
example of a linear model which introduces higher dimensional operators built from the
SM fields that respect the SU(3)C×SU(2)L×U(1)Y gauge symmetry. In this representation
the Goldstone bosons are defined within a scalar doublet, along with the Higgs boson,
as it is done in the SM. The deviations in this model come from new particles whose
masses are of the same order as the cutoff scale Λ, which are assumed to be out of the
experimental reach. Following this prescription, the SMEFT lagrangian is defined in its
most generic form2 as:

LSMEFT = LSM + L(5) + L(6) + L(7) + L(8) + ... (2.21)

where LSM is the SM lagrangian and:

L(d) =

nd∑
i=1

C
(d)
i

Λd−4
Q

(d)
i (2.22)

contains the dimension d operators Q(d)
i that respect the required symmetries, multiplied

by the corresponding Wilson coefficients C(d)
i . They are suppressed by d− 4 powers of

the cutoff scale.

The main difference between this type of EFTs and the EChL lies on the dimensional
counting used to sort the different terms. In the case of a linear theory, the sorting is
done according to the canonical dimension of the operators. Higher order operators have
a higher dimension, which is compensated by an inverse power of the cutoff scale so all
the terms have dimension four. In the case of the chiral lagrangian, the operator U which
contains the Goldstone fields is adimensional, so a different prescription is used for the
expansion, the chiral dimensional counting [37, 38], which means that a term Ld with
“chiral dimension” d will contribute to O(pd) in the corresponding power momentum
expansion.

If we are working with a linear theory, the Higgs boson is embedded in a complex doublet
Φ. This means that a) to study triple and quartic interactions of the field we need to go

2Odd-dimension operators are usually neglected since they violate lepton number conservation (d = 5) or
B − L invariance (d ≥ 7), which are constrained to be extremely small.
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at least3 to terms of O[(Φ†Φ)2], but terms of higher order can also contain dependences
in h3 or h4 and b) due to the doublet nature of Φ, the two couplings corresponding to
h3 and h4 will then appear correlated. Because the EChL contains all the information
about the h3 and h4 interactions in a polynomical expansion, the two lowest order terms
already contain all the physics relating the couplings that we want to study, and they are
completely independent from each other. This is mainly the reason why we choose to
parametrize the BSM Higgs self-couplings using the EChL.

2.3 Some comments on unitarity

Throughout this section we have repeatedly mentioned that unitarity should not be
violated in order to use a given theory to interpret the experimental results, but what
exactly is unitarity? When we talk about unitarity, we are actually referring to the
unitarity of the S matrix, which is the operator that relates the initial and the final state
of the system. When the particles involved in the process do not interact at all, the S
matrix is simply the unity; in general, it takes the form:

S = 1 + iT. (2.23)

This expression has two parts, since even in an interacting theory there is the possibility
that the particles do interact (T matrix) or miss one another and do not interact at all
(identity matrix).

The requirement for this matrix to be unitary means nothing else than imposing that
the probability of a process to happen does not exceed the unity. This constrain can be
translated to a condition over the transition amplitude, T

S†S = SS† = 1 → (T − T †) = iT †T → 2Im(T ) = |T |2, (2.24)

In a 2→ 2 process, this condition can be written in terms of partial waves. The method
consists on expanding the scattering amplitudes in a new basis and apply the constraints
coming from T . For instance, if we have a process 1, 2→ 3, 4 the amplitude for a fixed
initial and final polarization state can we written as:

Mλ1λ2λ3λ4(s, cos θ) = 16πK
∑
J

(2J + 1)DJ
λλ′(cos θ)aJλ1λ2λ3λ4(s), (2.25)

where DJ
λλ′ are the Wigner functions, λ = λ1 − λ2 and λ′ = λ3 − λ4 and K takes the

value 1 or 2 depending on whether the final state particles are distinguishable or not.

3Terms of O(Φ3) should not appear due to the requirement of hermiticity of the Lagrangian.
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aJλ1λ2λ3λ4(s) is the amplitude of the J-th partial wave, which can be calculated as:

aJλ1λ2λ3λ4(s) =
1

32πK

∫ 1

−1

d cos θ DJ
λλ′(cos θ)Mλ1λ2λ3λ4(s, cos θ) (2.26)

If we now write the condition in 2.24 in terms of these partial wave amplitudes, we obtain
the following equation:

Im[aJλ1λ2λ3λ4(s)] = Γ(s,mi)|aJλ1λ2λ3λ4(s)|
2. (2.27)

where Γ(s,mi) accounts for the factor coming from phase space integration, and is
approximately one when s� m2

i , i.e. at very high energies. In that case equation 2.27
yields the simpler condition:

|aJλ1λ2λ3λ4(s)| ≤ 1, (2.28)

which must be fulfilled in order to preserve unitarity.

This is a useful method to study unitarity limits in processes such as double Higgs
production. The main goal of this work is to provide novel results for HHH production;
however, we will also show predictions for HH production, which can also be found in
the literature, but we find interesting to reproduce here for an illustrative comparison
with the HHH case. In particular, we will rely on previous works [39] regarding the
WW → HH subprocess and its unitarity constraints coming from deviations in the triple
Higgs self-coupling.

If we now want to study the unitarity bounds for a 2→ n process, we can not use the
same expansion directly, since our amplitude depends on a higher number of variables.
Following references [40, 41], one way of introducing the partial wave amplitudes is to
insert a complete set of intermediate states into its left-hand side, separating the elastic
and the inelastic part:

2Im[Tel(2→ 2)] =

∫
Π2

|Tel(2→ 2)|2 +
∑
n

∫
Πn

|Tinel(2→ n)|2.

Here Πn refers to the n-body phase space. In this case, the following bound for σinel(2→ n)

is obtained after introducing the partial wave expansion for Tel(2→ 2):

σinel(2→ n) ≤ 4π

s
(2.29)

This is the constraint that we will impose in the next section to check the unitarity of
our predictions for σ(W−W+ → HHH). We anticipate here that all our predictions for
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BSM physics coming from deviations in κ3 and κ4 are fully unitary for all the energies
considered in this work.

3 Sensitivity to BSM Higgs self-couplings in W−W+→

HHH

As we will show in the following section, the WWS production mechanism is our preferred
process to study deviations in the Higgs self-couplings at high energies because it exhibits
the higher cross section and the most pronounced enhancement in a BSM scenario. In
an e−e+ collider, this process can be seen as the interaction of two W bosons which are
radiated by the electron and the positron, producing an electron neutrino and an electron
antineutrino plus the result of the interaction of the two W ’s. Therefore we can make a
distinction between the process, which we will define as all the possible interactions that
starting at the initial state e−e+ produce the final state that we are looking for, and the
subprocess, which in this case will refer to the interaction between the two W bosons that
are radiated by the electron and the positron when they interact via WWS.

Figure 3.1: Multiple Higgs production via WWS.

For that reason, we will dedicate this section to characterize the W−W+ → HHH

subprocess within the SM and beyond, and compare the results with the better
known W−W+ → HH. Since the number of diagrams is considerably larger
than in the two Higgs case, the generation of diagrams and their corresponding
amplitudes will be done using FeynArts-3.10 [42] and FormCalc-9.6 [43], while the
phase space integration will be performed numerically using the VEGAS algorithm [44]
implemented in Python. The obtained results have been checked using MadGraph 5 [45].

The diagrams used in the calculation of the cross section of the subprocess are shown in
Appendix I, while the resulting analytic amplitude can be seen in Appendix II. In both
this and the next section we will implicitly apply a set of changes of variables to perform
the integration using VEGAS; the procedure is similar in both cases, and it is explained
in detail in Appendix III.
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3.1 The SM prediction

To compute the cross section for W−W+ → HHH we can use the following equation for
the differential cross section of a 2→ 3 process:

dσ(1, 2→ 3, 4, 5) =
|M|2

4
√

(p1 · p2)2 −m2
1m

2
2

dΠ3(p1 + p2), (3.1)

with 1, 2 = W and 3, 4, 5 = H. In this formula, |M|2 is the squared amplitude of the
process averaged over initial states and summed over final states, and dΠ3 the 3-body
Lorentz invariant phase space (LIPS). To simplify the computation, we will calculate
the cross section in the center of mass (CM) frame, defining the CM energy squared
ŝ = (p1 + p2)2 = (E1 + E2)2 and taking ~p1 + ~p2 = 0. Under this condition, the LIPS can
be written as:

dΠ3(
√
ŝ, 0) =

1

32(2π)4ŝ

∫
dm2

34 dm
2
45 d cos θ3 dφ35, (3.2)

where m2
ij ≡ (pi + pj)

2, θ3 is the polar angle of particle 3 with respect to the z axis and
φ35 is the azhimutal angle of particle 5 with respect to particle 3. The integration limits
for each variable are:

m2
34 ∈ [(2mH)2, (

√
ŝ−mH)2], m2

45 ∈ [m2
45,min(m2

34),m2
45,max(m2

34)],

cos θ3 ∈ [−1, 1], φ35 ∈ [0, 2π], (3.3)

with:

m2
45,min(m2

34) = (E∗4 + E∗5)2 −
(√

E∗24 −m2
H +

√
E∗25 −m2

H

)2

,

m2
45,max(m2

34) = (E∗4 + E∗5)2 −
(√

E∗24 −m2
H −

√
E∗25 −m2

H

)2

. (3.4)

E∗4 and E∗5 are the energies of particles 4 and 5 in the rest frame of m2
34 (~p3 + ~p4 = 0) and

can be written in terms of m2
34 as:

E∗4 =
m34

2
, E∗5 =

1

2m34

(ŝ−m2
34 −m2

H). (3.5)
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Figure 3.2: There exists a correlation between the values of m2
34 and m2

45, as it can be
seen in the so-called Dalitz plot. The shape of the integration region depends on the CM
energy,

√
ŝ, and the mass of the final state particles 3, 4 and 5, which is mH in our case.

After performing all the substitutions in 3.1, the result is:

σ̂(W−W+ → HHH) =
1

3!

1

2
√
ŝ2 − 4ŝm2

W

1

32(2π)4ŝ

∫
dm2

34 dm
2
45 d cos θ3 dφ35 |M|2,

(3.6)

where the factor of 1/3! is added due to the three identical particles in the final state.

This is the total (unpolarized) cross section, but it is also possible to compute the polarized
cross section for a particular configuration of the initial W bosons. Assuming that they
are both on-shell, each of them has three possible polarization states: longitudinal (L),
transverse left (TL) and transverse right (TR). According to this, we define three possible
initial states for the WW pair, LL (both longitudinal), LT+TL (one transverse and one
longitudinal) and TT (both transverse). For each case we have a different factor in the
average over initial states, being 1/9 for the unpolarized cross section, 1 for LL, 1/2 for
LT+TL and 1/4 for TT. Plotting the results we can see (figures 3.3 and 3.4) how the
LL configuration is clearly dominant in both double and triple Higgs production. One
of the most interesting features is the fact that σLL is flat with

√
ŝ in HH production,

but it increases with
√
ŝ in HHH production, so the latter is more sensitive to potential

unitarity violation from BSM physics at high energies. While comparing the two cases,
HH and HHH production, we also notice in figures 3.3 and 3.4 that the relative size of
LT+TL is interchanged with respect to TT, being the TT contribution in HHH clearly
well below the others.
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Figure 3.3: Polarized and total cross sections of the subprocess W−W+ → HH (left)
and W−W+ → HHH (right) as a function of the CM energy

√
ŝ. The LL configuration

is dominant in both cases, being this effect more significant in triple Higgs production.

Figure 3.4: Figure 3.3 extended up to
√
ŝ = 14 TeV.

3.2 Deviations induced by BSM self-couplings

To study the deviations caused by BSM Higgs self-couplings, we define the new vertices
in terms of κ3 and κ4 as:

where κ3 ≡ λHHH/λ
SM
HHH and κ4 ≡ λHHHH/λ

SM
HHHH are the parameters that we introduced

in the EChL. Remember that within the SM (κ3 = κ4 = 1) these two couplings are
correlated by λSM

HHH = λSM
HHHH . In contrast, in BSM scenarios, we will generally find
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κ3 6= 1 and/or κ4 6= 1 and this correlation could be lost.

This redefinition can be easily implemented in FeynArts-3.10, allowing us to compute
the new cross sections in the same manner as we have done for the SM. The results of
these calculations are shown in figures 3.5 to 3.7, in which we show the behaviour of the
cross section with energy for different values of κ3 and κ4, and figures 3.8 to 3.10, in
which we compute the cross section at fixed energies to observe the variation with κ3 and
κ4, independently. Note that since double Higgs production does not involve the quartic
coupling (at least at tree level), the value of κ4 is not relevant for the predictions.

Figure 3.5: Total cross section of the W−W+ → HH subprocess as a function of the
CM energy

√
ŝ for different values of the parameter κ3, with κ4 fixed to 1, compared to

the SM prediction (dashed line).

Figure 3.6: Total cross section of the W−W+ → HHH subprocess as a function of the
CM energy

√
ŝ for different values of the parameter κ3, with κ4 fixed to 1, compared to

the SM prediction (dashed line).
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Figure 3.7: Total cross section of the W−W+ → HHH subprocess as a function of the
CM energy

√
ŝ for different values of the parameter κ4, with κ3 fixed to 1, compared to

the SM prediction (dashed line).

Figure 3.8: Total cross section of the W−W+ → HH subprocess as a function of κ3

(with κ4 fixed to 1) for different values of the CM energy
√
ŝ.
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Figure 3.9: Total cross section of the W−W+ → HHH subprocess as a function of κ3

(with κ4 fixed to 1) for different values of the CM energy
√
ŝ.

Figure 3.10: Total cross section of the W−W+ → HHH subprocess as a function of κ4

(with κ3 fixed to 1) for different values of the CM energy
√
ŝ.

We can extract some first conclusions by looking at these plots. Starting from figure 3.5,
we observe that modifying κ3 in the interval [-10,10] with κ4 fixed to 1 leads to a notable
enhancement in the total cross section with respect to the SM prediction, here represented
by the dashed line (κ3 = 1). The maximum deviation occurs slightly above the threshold
energy 2mH , and it is larger for negative values of κ3. In the most extreme case, κ3 = −10,
the BSM prediction can deviate up to two orders of magnitude with respect to the SM value.

Figure 3.6 shows that the consequences of modifying κ3 at κ4 fixed to 1 are similar in the
case of triple Higgs production, but now the maximum is produced slightly above the
new threshold energy, 3mH . The deviations with respect to the SM are larger again for
negative values of κ3, and can reach a difference of five orders of magnitude with respect
to the SM. Varying the value of κ4 with κ3 fixed to 1 (figure 3.7) does not modify the
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shape of the cross section significantly, but can increase its value by one or even two
orders of magnitude in the most extreme cases. The dependence on the sign of κ4, in
contrast with the previous plots, is very mild.

Coming back to W−W+ → HH, figure 3.8 shows the variation of the cross section
with κ3 at a fixed CM energy. Here we see that there is a minimum in the region
κ3 ∈ [2, 5] that moves to the right in this interval, being closer to 2 at

√
ŝ = 380

GeV and closer to 5 at
√
ŝ = 3000 GeV. Deviations from the SM can go up to

two orders of magnitude in the most extreme case, that is, for κ3 = −10 at the
lowest energy. The sensitivity to variations of the κ3 parameter decreases with
increasing energy; note that outside the region of the minimum, the cross sections are
inverted, being higher at lower energies. This is the peak that we see in figure 3.5
near the threshold for BSM values of the self-couplings that does not appear in the SM case.

When reproducing this same plot for W−W+ → HHH as a function of κ3 (figure 3.9) we
find a very different picture. First of all, the peak is displaced in energy, so the maximum
is reached around

√
ŝ = 500 GeV. This is why the cross section at

√
ŝ = 380 GeV is

always small, in comparison to what we have seen in the HH case. Second, the shape of
the curve, specially at low energies, exhibits two minima instead of one. One of them is
near the SM value κ3 = 1, and the other one appears at positive κ3 and is displaced to
higher values of this parameter as energy grows. The maximum deviations with respect
to the SM are large in any case, varying from two orders of magnitude at

√
ŝ = 3000 GeV

to even seven orders of magnitude at
√
ŝ = 380 GeV. This cross section is significantly

more sensitive to variations in the κ3 parameter than σ(W−W+ → HH), mainly at low
energies, having the disadvantage that it is much lower in general.

Finally, figure 3.10 shows the dependence with the κ4 parameter, which only exhibits one
minimum per curve. In this case, the maximum deviations from the SM vary from one
order of magnitude at

√
ŝ = 3000 GeV to three orders of magnitude at

√
ŝ = 380 GeV.

Since triple Higgs production depends on both the κ3 and κ4 parameters, it is also
interesting to check what happens if we vary the two of them at the same time. In
figure 3.11 we represent the W−W+ → HHH cross section at three fixed energies (

√
ŝ =

500, 1000 and 3000 GeV) in the (κ3, κ4) plane. The additional information that we
can extract looking at these plots is that variations in the cross section are strongly
dominated by deviations along the κ3 direction, and the higher values are reached when
κ3 approaches −10. The dependence with κ4 is softer, and the maximum cross section
can be reached either at negative or positive values of κ4; for example, in the negative κ3

region (approximately) the cross section tends to be higher around κ4 = 10, while in the
positive κ3 region the trend can be the same or the opposite depending on the energy.
Note that at high energies the combined effect of modifying both parameters at the same
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time can lead to an increase of the cross section, specially if they have opposite signs. We
also notice that the lowest values (darker region) are arranged in a diagonal direction
which is not the κ3 = κ4 direction, which means that modifying the Higgs self couplings
without altering the ratio between them, that is, λHHH/λHHHH = λSM

HHH/λ
SM
HHHH = 1,

can also produce an enhancement in the cross section. The size of this darker region is
related to the depth of the minimum, and is smaller for lower energies. Note that the SM
value is contained in this region, which is why we do not expect to measure this process
if the self-couplings are close to the SM. In any case, what we are studying here is the
subprocess, which can not be seen in a real experiment, so to complete our analysis, in
the next section we will calculate the full process to understand how sensitive we are to
deviations in these parameters.

Figure 3.11: Contour levels for the total cross section of theW−W+ → HHH subprocess
represented in the (κ3, κ4) plane for different values of the CM energy

√
ŝ.

Regarding unitarity, we can confirm that the W−W+ → HHH subprocess does not
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violate unitarity for any value of the BSM self-couplings that we have studied so far, in
the range of energies that we are interested in. In the worst-case scenario (

√
ŝ = 3000

GeV), preservation of unitarity requires that:

σ̂(W−W+ → HHH) . 540 pb, (3.7)

which is not reached even in the most extreme cases in figure 3.11. This result could be
expected from the beginning, taking into account that the Higgs boson self-couplings are
not responsible for very strong cancellations in the SM amplitudes, as it is the case of the
vector boson couplings. In fact, the SM Higgs boson couples to vector bosons in such a
way that it perfectly cancels the divergent contributions coming from longitudinal vector
boson scattering, which grow as the energy squared and violate unitarity in the TeV scale.
An example of the consequences of modifying these parameters can be found in [24].

4 Testing the BSM Higgs self-couplings via triple Higgs

production at e−e+ colliders

Characterizing the W−W+ → HHH subprocess is an interesting way of studying
deviations from the SM and putting limits on the value of the Higgs self-couplings from
BSM physics. However, the information obtained from this study is not complete. To be
able to make phenomenological predictions it is necessary to remember that in a real
collider we do not have W bosons in the initial state, but only protons or electrons. As we
already mentioned before, in this work we will focus on the case of an e−e+ linear collider,
such as the ILC or CLIC, for several reasons. To begin with, due to the fundamental
character of the colliding particles (in contrast with the hadronic nature of protons) the
initial state is well defined; in the case of proton-proton collisions the energy of the
partons that collide is a priori unknown and a significant amount of the initial energy of
the protons is wasted due to the effect of the Parton Distribution Functions (PDFs) of the
proton. In addition, QCD backgrounds in e−e+ colliders are less dominant, allowing us to
study Higgs decay channels such as H → bb̄ with less difficulties. Moreover, although the
study of multiple Higgs production in very high energy proton-proton colliders has been
considered in the literature, it has not been practically explored in linear colliders due
to its low SM cross section. Therefore, the conclusions about the Higgs self-couplings
obtained from this work perfectly complement what has already been studied by other
authors. In particular, the joint study of the two BSM couplings, λHHH and λHHHH in
e−e+ colliders presented here is, to our knowledge, the first one in the literature.
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4.1 WWS in e−e+ colliders

Before starting our analysis, it is interesting to study the behaviour of the most important
multiple Higgs production mechanisms in e−e+ colliders at different energies. There
are several possible production mechanisms that can yield multiple Higgs bosons in
the final state, but due to the low statistics it is convenient to use those that exhibit a
higher cross section. This is the reason why in this work we will focus our attention in
multiple Higgs production with neutrinos in the final state, e−e+ → HH(H)νν̄. In order
to better understand this process we have generated a set of plots using MadGraph 5,
which describe the behaviour of the e−e+ → HH(H)νν̄ process as well as its different
contributions.

Figure 4.1 shows that the dominant contribution to σ(e−e+ → HH(H)νν̄) at low
energies comes from associated production of two (three) H’s with a Z boson, also
denoted as ZHH(H). The cross section for this particular production mechanism can be
computed as the cross section of the process e−e+ → ZHH(H) times the branching ratio
BR(Z → invisible) = 20%. The corresponding curve shows how it becomes subdominant
as the energy increases, meaning that ZHH(H) is not the main production mechanism
for HH(H)νν̄ in the TeV scale.

If we now move to figure 4.2, we see that the enhancement in σ(e−e+ → HH(H)νν̄)

at high energies actually comes from σ(e−e+ → HH(H)νeν̄e), that is, processes with
electron neutrinos in the final state. The contribution from σ(e−e+ → HH(H)νµν̄µ) is
also represented, and it is seen that it decreases as we go to higher energies4.

In figure 4.3 we can see that the origin of the enhancement in σ(e−e+ → HH(H)νν̄),
and in particular in σ(e−e+ → HH(H)νeν̄e), are the WW scattering (WWS) diagrams
because the probability for an electron to radiate a W boson increases when this electron
is more energetic, together with the behaviour of the WWS subprocess with energy,
already seen in the previous section. Note that diagrams contributing to σ(e−e+ →
HH(H)νeν̄e) at the lowest order can be of two types, WWS or ZHH(H), so if we
compute σ(e−e+ → HH(H)νµν̄µ) the WWS diagrams vanish. The surviving diagrams
are what we define as the ZHH(H) contribution to σ(e−e+ → HH(H)νeν̄e), since
BR(Z → νeν̄e) = BR(Z → νµν̄µ), where BR refers to the branching ratio of the Z boson.
Then, the contribution to σ(e−e+ → HH(H)νeν̄e) coming from WWS can be isolated
using the following “theoretical observable”:

σWWS = σ(e−e+ → HH(H)νeν̄e)− σ(e−e+ → HH(H)νµν̄µ), (4.1)

4The cross section for the process e−e+ → HH(H)ντ ν̄τ is in principle the same as σ(e−e+ → HH(H)νµν̄µ),
but it is not represented for simplicity.
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which is what we plot in figure 4.3. It is also important to notice that ZZ scattering
(ZZS) contributes to the final state HH(H)e−e+, which has a much lower production cross
section (the probability of producing two or three Higgs bosons via ZZS is approximately
ten times lower), and therefore will be neglected in this work.

Figure 4.1: Predictions for σ(e−e+ → HHνν̄) (left) and σ(e−e+ → HHHνν̄) (right) in
the SM as a function of the CM energy

√
s. The corresponding cross sections coming from

just the Z mediated subprocesses, σ(e−e+ → ZHH → HHνν̄) and σ(e−e+ → ZHHH →
HHHνν̄) are also shown for comparison.

Figure 4.2: Predictions for σ(e−e+ → HHνeν̄e) and σ(e−e+ → HHνµν̄µ) (left) and
σ(e−e+ → HHHνeν̄e) and σ(e−e+ → HHHνµν̄µ) (right) in the SM as a function of
the CM energy

√
s. The cross sections for e−e+ → HHνν̄ and e−e+ → HHHνν̄ from

previous figure are also shown for comparison.
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Figure 4.3: Double (left) and triple (right) Higgs production cross section in e−e+

collisions with neutrinos in the final state and the corresponding contributions coming
from HH(H)νeν̄e and WWS.

Although the previous figures show separate contributions to σ(e−e+ → HH(H)νν̄), one
must realize that in the experiment it is only possible to measure σ(e−e+ → HH(H)νν̄),
since there is no way to distinguish among the different neutrino flavours, and even
if we could, the result of separating the WWS diagrams from σ(e−e+ → HH(H)νeν̄e)

would not be gauge invariant. The reason why we do this subtraction is to show in a
gauge invariant way that WWS it is the largest contribution at high energies and, as
a consequence, the predictions for σ(e−e+ → HH(H)νν̄) will approximately follow its
behaviour, and more generally, the behaviour of σ(e−e+ → HH(H)νeν̄e).

Comparing triple with double Higgs production in figures 4.1, 4.2 and 4.3, we find that
they are roughly similar in shape, being the WWS enhancement in triple Higgs production
displaced to higher energies, since one extra particle is produced. This causes that
ZHHH is more relevant compared to HHHνν̄ than ZHH compared to HHνν̄, specially
at energies below 2000 GeV. It is also important to note that the SM cross sections for
triple Higgs production in the TeV energy scale are typically three orders of magnitude
below than those of double Higgs production, which is why it is not expected to measure
SM-like HHH production in future linear colliders. For this reason, we will focus our
attention in BSM scenarios.

4.2 The effective W approximation

Due to the nature of the WWS process, it can be useful in some cases to factorize the
calculation of the cross section into the emission of the W bosons and their subsequent
scattering. This method is called the effective W approximation (EWA) [46], which is a
generalization of the effective photon approximation. It consists on treating the vector
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bosons that are radiated from the electrons as if they were partons in a proton, with their
corresponding distribution functions. This approximation simplifies the calculation of the
cross section significantly, and offers a more analytical and intuitive approach. In this
section we will briefly introduce the EWA, review its validity in double Higgs production
and see if it can be used in triple Higgs production.

According to the EWA,W (or Z) bosons radiated from a fermion can be treated as partons
inside a proton. This allows to define distribution functions for these bosons equivalent to
the PDFs of quarks and gluons inside the proton (figure 4.4). The corresponding analytical
expressions for these distributions are [46]:
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where L refers to a longitudinally polarized W boson and T to a transversely polarized W
boson, CV = −CA = g/(2

√
2) and E is the energy of the initial fermions, which can also be

written as
√
s/2 (note that the expressions vary if we have Z bosons instead). The bosons

are assumed to be radiated collinearly and then scatter on-shell, so the computation of
the total cross section can be factored as:
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σ(s) =

∫
dx1

∫
dx2

∑
i,j

fi(x1)fj(x2) σ̂ij(ŝ). (4.3)

Here, σ(s) = σ(e−e+ → HH(H)νeν̄e) is the total cross section of the process of interest at
a CM energy of

√
s and σ̂ij(ŝ) = σ̂(WiWj → HH(H)) is the cross section of the subprocess

at a CM energy of
√
ŝ. Note that even if the two W bosons do not have the same energy

and opposite momentum (CM frame), the condition that they are collinear to the initial
fermions allows us to use the same cross section that we computed in the previous chapter,
due to the invariance of the cross section under boosts along the z direction. x1 and
x2 are the momentum fractions carried by each W boson and define the CM energy of
the subprocess as

√
ŝ =
√
x1x2s. The subindices i, j refer to the polarization of the W

bosons (L or T). They are necessary because the probability of radiating an W boson
depends on whether it is longitudinally or transversely polarized, and consequently, each
polarized cross section is convoluted with the corresponding combination of distribution
functions fi(x). Note that this formula assumes that WWS is the dominant contribution
to σ(e−e+ → HH(H)νeν̄e), which makes it valid only at high energies. To compute
this cross section we write σ̂ij(ŝ) in terms of the polarized amplitudes Mij, which we
generate using FeynArts-3.10 and FormCalc-9.6, and then perform the integration
using VEGAS and a private Python code:
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∑
i,j

fi(x1)fj(x2)|Mij|2. (4.4)

Figure 4.4: Probability for an electron of energy 0.5 TeV (left) and 1.5 TeV (right) to
radiate a W boson (longitudinal/L or transverse/T) with momentum fraction x, taken
from equation 4.2. Except for very low x, in both cases the probability is higher for a
transverse W . The comparison shows how the probability increases with the electron
energy.
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To see if the EWA is suitable for describing triple Higgs production, we first calculate the
total cross section of the process e−e+ → HHHνeν̄e at different values of the CM energy
(figure 4.5), as well as the corresponding polarized cross sections (figure 4.6). The same
plots have also been produced in the case of double Higgs production for comparison.

Figure 4.5: EWA compared to HH(H)νeν̄e and its WWS contribution in double Higgs
(left) and triple Higgs (right) production.

Figure 4.6: Polarized contributions to σ(e−e+ → HHνeν̄e) (left) and σ(e−e+ →
HHHνeν̄e) (right) using the EWA.

Starting from figure 4.5, the EWA is compared with the e−e+ → HH(H)νeν̄e cross section
obtained from MadGraph 5 and its WWS contribution, calculated using equation
4.1. What we see is that at high energies the EWA predicts the HH production cross
section with good accuracy, while it differs about a factor of two for the HHH case. The
energies that we are considering in this work seem to be too low for the EWA to be a
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good approximation of triple Higgs production.

Moving now to figure 4.6, we observe that the dominant contribution comes from
longitudinally polarized W bosons in both cases. The main differences are that the gap
between LL and TT is larger for HHH production and that the relative size of the TT
and LT+TL polarizations is interchanged with respect to the HH case. For HHH, the
TT contribution is subdominant by up to two orders of magnitude with respect to the LL
one. This difference is smaller in the HH case. Note how all contributions grow with
energy in contrast with what we saw for the corresponding subprocesses in the previous
section due to the folding with the W distribution functions.

Another condition for the EWA to be a useful approximation is that it can reproduce the
differential cross section distributions. As an example, figure 4.7 shows the differential
cross section with respect to the invariant mass of the final state Higgs bosons, MHH and
MHHH respectively, which is equivalent to

√
ŝ due to 4-momentum conservation. The

results are again positive for double Higgs production, but do not adjust so well in the
case of having three Higgs bosons.

Figure 4.7: Differential cross section at
√
s = 3000 GeV with respect to the invariant

mass of the Higgs bosons for two (left) and three (right) H’s.

From this brief analysis we conclude that the EWA is an interesting alternative to compute
our results in the double Higgs case, but it is not accurate enough to study triple Higgs
production in the range of energies available at the e−e+ colliders under consideration.
From now on, we will not use the EWA anymore, and our results on total and differential
cross sections will be extracted from the full Monte Carlo simulation (MadGraph 5).

4.3 SM prediction and BSM deviations from anomalous self-

couplings

We will perform our analysis in this section using the same strategy as we did in section 3,
this time for the whole process e−e+ → HH(H)νeν̄e. The behaviour of the cross section
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with energy at different values of κ3 and κ4 is shown in figures 4.8 to 4.10. In figures 4.11
to 4.13, the dependence on κ3 and κ4 at fixed energies is represented.

Figure 4.8: Total cross section of e−e+ → HHνeν̄e as a function of the CM energy
√
s

for different values of the parameter κ3, with κ4 fixed to 1, compared to the SM prediction
(dashed line).

Figure 4.9: Total cross section of e−e+ → HHHνeν̄e as a function of the CM energy
√
s

for different values of the parameter κ3, with κ4 fixed to 1, compared to the SM prediction
(dashed line).



4 Testing the BSM Higgs self-couplings via triple Higgs production... 33

Figure 4.10: Total cross section of e−e+ → HHHνeν̄e as a function of the CM energy√
s for different values of the parameter κ4, with κ3 fixed to 1, compared to the SM

prediction (dashed line).

Figure 4.11: Total cross section of e−e+ → HHνeν̄e as a function of κ3 (with κ4 fixed
to 1) for different values of the CM energy

√
s.
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Figure 4.12: Total cross section of e−e+ → HHHνeν̄e as a function of κ3 (with κ4 fixed
to 1) for different values of the CM energy

√
s.

Figure 4.13: Total cross section of e−e+ → HHHνeν̄e as a function of κ4 (with κ3 fixed
to 1) for different values of the CM energy

√
s.

Let’s begin by looking at HH production in figure 4.8. In these plots we can see how,
in general, deviating from κ3 = 1 causes an enhancement of the cross section that is
approximately constant with energy. The strongest deviation occurs when κ3 = −10, and
it differs from the SM prediction by two orders of magnitude. Another thing that can be
seen in HH production and will be more significant in HHH is that the bump near the
threshold corresponding to associated Z production disappears when we deviate from the
SM.
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By comparing to HHH in figure 4.9, we observe something that we had already
noticed in previous section: triple Higgs production is very sensitive to variations in
the κ3 parameter, reaching deviations of even five orders of magnitude with respect
to the SM prediction in the most extreme case (κ3 = −10). Similarly to the HH
case, the distance with respect to the SM prediction is approximately constant
with energy, and again the peak coming from associated Z production vanishes as
we separate from κ3 = 1, showing again that the deviations are clearly dominated by WWS.

Figure 4.10 is the equivalent to figure 4.9, this time fixing κ3 to 1 and varying the κ4

parameter. The profile of the deviations is very similar, but softer, being the maximum
deviation (κ4 = −10) around two orders of magnitude above the SM prediction. As we
noted previously, deviations coming from ZHHH due to κ4 6= 1 are much smaller than
the ones coming from WWS.

We can now look at the dependence with the κ3 and κ4 parameters at a fixed CM energy.
Starting with figure 3.8, the main difference that we see when comparing with the results
for the subprocess from the previous section is that in this case the highest cross section
is always achieved at the highest energy. All cross sections (this is also true for HHH
production) increase with energy and have no peaks at lower energies independently of
the value of κ3 or κ4. The second observation is that there is not a large difference in
the sensitivity to κ3 depending on the energy, which is what we meant in the previous
paragraphs when saying that the deviations were constant with energy. All the curves
experiment a variation between one and two orders of magnitude with respect to the SM in
the most extreme case (κ3 = −10). All the curves have one minimum, which moves in the
region κ3 ∈ [0, 2], being closer to zero at lower energies and closer to two at higher energies.

In figure 3.9 we have the same plot for HHH production, which exhibits an interesting
behaviour, since the two minima that we observed in the equivalent curves for
W−W+ → HHH subprocess at low values of

√
ŝ are also manifest in the process. We see

two clear minima at
√
s = 380 GeV, one of them around κ3 = 1 and the other between

κ3 = 2 and κ3 = 3. We also observe and a deformation in the
√
s = 1000, 1500 and 3000

GeV curves, in the region κ3 ∈ [2, 6], apart from the minimum around κ3 = 1. This
deformation does not appear (at least so clearly) in the curve

√
s = 500 GeV, which only

has one minimum around κ3 = 1. In addition to this, we also notice again how the size of
the deviations is comparable for all the energies that we have studied, although much
larger than in the HH case.

Finally, figure 3.10 shows the dependence of σ(e−e+ → HHHνeν̄e) with κ4 at fixed
energies. As we already commented, the deviations are softer in this case. In contrast
with the previous plot, in this one the curves exhibit only one minimum, which is around
κ4 = 1. The only curve in which this is not true is the one corresponding to

√
s = 500
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GeV. The cross section at this energy is with difference the least sensible to variations in
the κ4 parameter.

Now that we have seen the consequences of varying each of the parameters separately,
we can plot the combined effect of varying both at the same time. For reasons that we
will motivate later, we will restrict ourselves to study the case of

√
s = 3000 GeV. The

results are shown in figure 4.14, and are consistent with the observations made in the
previous plots: the deviations in the cross section are much stronger in the κ3 direction.
In addition, sensitivity to κ4 decreases as κ3 distances from one. If we look back to figure
3.11, we notice that, qualitatively, the variations in the cross section of the process at
√
s = 3000 GeV behave similarly to those of the W−W+ → HHH subprocess in the

region around
√
ŝ = 1000 GeV. This suggests that the effective energy for WWS in e−e+

collisions at
√
s = 3000 GeV is

√
ŝ ∼ 1000 GeV.

Figure 4.14: Contour levels for the total cross section of the e−e+ → HHHνeν̄e process
represented in the (κ3, κ4) plane at a CM energy of 3000 GeV. The points have been
generated using MadGraph 5.

Now that we have characterized both the subprocess and the process for triple Higgs
production, we are one step closer to be able to make a prediction, but there is still one
ingredient remaining: the collider. In the last part of this section we will consider different
possibilities and motivate why our choice of

√
s = 3000 GeV is the optimal to obtain (if

possible) a signal of HHH production.

4.4 Sensitivity to BSM Higgs self-couplings at
√
s = 3000 GeV

We will focus our forthcoming analysis in the two future linear colliders that are currently
on the table, the ILC and CLIC. As we already mentioned in the introduction, they are
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both e−e+ colliders, and will operate at energies between a few hundredths of GeV and
up to 3000 GeV. Each of these energy stages serves a different purpose, being the higher
energy configurations the ones oriented to measure the SM triple Higgs self-coupling via
SM HH production, and in principle, none of them is expected to yield a measurable
rate regarding SM HHH production. To illustrate this, tables 4.1 to 4.4 show the cross
sections (within the SM) for HH and HHH production accompanied by neutrinos (νν̄)
and electron neutrinos (νeν̄e) and the corresponding number of events for the given
integrated luminosity. Note that in both double and triple Higgs production, as we
anticipated earlier in this section, σ(e−e+ → HH(H)νeν̄e) is the dominant contribution
within σ(e−e+ → HH(H)νν̄) at high energies.

Collider
√
s (GeV) Lint (ab−1) σ(e−e+ → HHνν̄) (pb) Number of events

ILC 250 2 0 0
350 0.2 (8.62± 0.02)× 10−7 < 1
500 4 (3.438± 0.009)× 10−5 137.5± 0.4
1000 8 (9.75± 0.03)× 10−5 780± 2

CLIC 380 1 (8.47± 0.02)× 10−6 8.47± 0.02
1500 2.5 (2.416± 0.004)× 10−4 604± 1
3000 5 (8.24± 0.02)× 10−4 4120± 10

Table 4.1: SM cross section and number of events for the process e−e+ → HHνν̄ in the
different stages of the ILC and CLIC.

Collider
√
s (GeV) Lint (ab−1) σ(e−e+ → HHνeν̄e) (pb) Number of events

ILC 250 2 0 0
350 0.2 (2.882± 0.008)× 10−7 < 1
500 4 (1.332± 0.003)× 10−5 53.3± 0.1
1000 8 (8.25± 0.02)× 10−5 660± 2

CLIC 380 1 (2.875± 0.008)× 10−6 2.875± 0.008
1500 2.5 (2.290± 0.004)× 10−4 573± 1
3000 5 (8.15± 0.02)× 10−4 4080± 10

Table 4.2: SM cross section and number of events for the process e−e+ → HHνeν̄e in
the different stages of the ILC and CLIC.



38 4 Testing the BSM Higgs self-couplings via triple Higgs production...

Collider
√
s (GeV) Lint (ab−1) σ(e−e+ → HHHνν̄) (pb) Number of events

ILC 250 2 0 0
350 0.2 0 0
500 4 (6.95± 0.02)× 10−10 < 1
1000 8 (8.67± 0.02)× 10−8 < 1

CLIC 380 1 (5.229± 0.009)× 10−21 < 1
1500 2.5 (9.9± 0.2)× 10−8 < 1
3000 5 (3.340± 0.005)× 10−7 1.670± 0.003

Table 4.3: SM cross section and number of events for the process e−e+ → HHHνν̄ in
the different stages of the ILC and CLIC.

Collider
√
s (GeV) Lint (ab−1) σ(e−e+ → HHHνeν̄e) (pb) Number of events

ILC 250 2 0 0
350 0.2 0 0
500 4 (2.292± 0.007)× 10−10 < 1
1000 8 (3.141± 0.006)× 10−8 < 1

CLIC 380 1 (9.62± 0.02)× 10−22 < 1
1500 2.5 (5.145± 0.009)× 10−8 < 1
3000 5 (3.136± 0.007)× 10−7 1.568± 0.004

Table 4.4: SM cross section and number of events for the process e−e+ → HHHνeν̄e in
the different stages of the ILC and CLIC.

Looking at these tables we understand why the direct measurement of triple Higgs
production within the SM is not even suggested. In contrast, we will have a sufficiently
large number of events to study SM double Higgs production, specially in the last stage of
both colliders. However, since triple Higgs production is about three orders of magnitude
less probable, it is not expected to produce more than one event in the best of the
situations (CLIC at

√
s = 3000 GeV), which of course is not enough to perform any study.

Given that these colliders are sensitive to double Higgs production (even if it is SM-like)
and therefore this issue has already been studied in detail in the literature, we will now
focus our attention in the main topic of this work, which is to study the sensitivity of
these experiments to BSM triple Higgs production. We will perform our analysis in the
most favourable scenario, which is the last stage of CLIC, at a CM energy of 3000 GeV
with an integrated luminosity of 5 ab−1. The reason why we choose this configuration is
that, as we have seen in our previous calculations, the channel with neutrinos in the final
state is the most sensitive to variations of the Higgs self-couplings, and its production
cross section grows with energy.
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In order to obtain a signal of a particular process, we first need to generate a high enough
number of events. Figure 4.15 shows how deviating from κSM

3 = 1 and κSM
4 = 1 can

produce a very significant increase in the number of events even if we stay within the
most restricting limits given by the experiment, κ3 ∈ [−2.3, 10.3] at a 95% CL (there are
no constraints on κ4).

Figure 4.15: Contour levels for the number of e−e+ → HHHνeν̄e events expected at
the last stage of CLIC represented in the (κ3, κ4) plane.

Now that we have argued that the enhancement in the cross section due to BSM Higgs
self-couplings can boost the number of events from one (in the SM) to tens, hundreds or
even thousands in the most extreme cases, we can start to think about how this could be
detected in the collider. Due to the characteristics of the experiment and of the particles
involved, there are several things that will reduce the number of observed events, and
must be considered:

• The detector does not cover the whole solid angle, since some space must be left
free to place the beam pipe. This means that there will be a number of particles
that escape undetected at high values of the pseudorapidity5. According to figure
4.16, |η|max = 2.72 in the particular case of CLIC.

• The Higgs boson is not a stable particle. As a consequence, it is not detected
directly, but through its decay products. Therefore, the strategy used to select the

5Pseudorapidity (also denoted as η) is a very commonly used spatial coordinate and represents the angle
with respect to the beam line, which is usually taken as the z axis. It is related to the polar angle θ by
the expression η = − log[tan(θ/2)].
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events depends on the decay channel that we are considering; even if we have a high
number of HHH events, if the branching ratio of the final state that we are looking
for is too low, we will run out of statistics. This is why in this work we will opt
for using the HHH → bb̄bb̄bb̄ decay channel, with a branching ratio of 0.583 ∼ 0.2,
which is the highest of all6.

• Regarding the decay channel that we have chosen for our analysis, we also need to
take into account the b-jet identification efficiency. Briefly explained, jets coming
from b quarks that hadronize can be distiguished from jets coming from gluons or
light quarks because they exhibit what is called a secondary vertex. This happens
because hadrons containing bottom quarks can travel some distance before decaying
to lighter particles that radiate and form the jet itself. We have some control over
the b-jet identification efficiency, which has to be balanced with the number of
missidentifications that we are willing to accept. This idea is shown in figure 4.17.
In this work we will adopt the same value as [48] and take the b-tagging efficiency
as 80%. This corresponds to a missidentification efficiency of the 10% for c-jets and
the 1% for light flavour jets.

• Finally, it is necessary to characterize the signal to isolate it from the background,
which consists on all the processes that can yield a similar final state. Due to the
properties of our signal, we will assume that the number of background events that
survive after applying all the cuts is negligible. A detailed analysis taking all the
backgrounds into account is beyond the scope of this work.

Figure 4.16: Illustration of selected angles in the vertex region of the CLIC detector,
taken from [47]. The horizontal axis corresponds to the beam line.

6It is worth mentioning that other decay channels may be preferred if the number of events allows it due
to lower backgrounds or higher precision in the measurement of the final state particles.
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Figure 4.17: b-jet identification efficiency, displayed in the horizontal axis, and the
corresponding missidentification efficiencies for c-jets and light flavour jets, displayed in
the vertical axis. Image taken from [47].

In conclusion, the number of expected events is not N = σLint, but:

Nevents = N × BR× ε×A, (4.5)

where BR is the branching ratio of a particular decay channel, ε is the efficiency
(here we will only consider the b-tag efficiency) and A refers to the fraction of events
that pass the kinematical cuts (including those referring to the geometry of the
detector). A detailed analysis of ε and A and all the backgrounds involved would require
an independent study and is beyond the scope of this work. However, we can still
make an estimation of at least the order of magnitude of Nevents based on what we do know.

Throughout this section we have calculated the cross section of the process of interest,
we have chosen a collider with a particular energy and integrated luminosity and we
have selected a decay channel for which we know the associated branching ratios and
efficiencies. So, what remains is to produce the distributions of the number of events
with respect to different kinematic variables in order to narrow down the signal. To do
so, we will generate a set of samples for different values of κ3 and κ4 and extrapolate
the conclusions to the rest of the (κ3, κ4) plane. All the events will be generated using
MadGraph 5 and analyzed using ROOT 6 [49]. Since the hadronization of the b-quarks
in the final state is a very expensive task, we will use a resolution criterion instead.
Following the reasoning in [48], we will consider an energy resolution ∆E/E = 5% and
assume that two quarks with ∆R < 0.47 can not be resolved individually. This condition

7The quantity ∆R is called angular separation, and can be calculated as ∆R =
√

(∆η)2 + (∆φ)2.
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will be applied recursively until we converge to a final list of quarks that we will identify
as the (b-)jets.

The following plots show the distributions with respect to several kinematic variables for
different values of (κ3, κ4). For simplicity we have only plotted deviations of the individual
parameters, with the other one set to 1. All histograms are normalized to unity in order
to compare their shape.

Figure 4.18: Distribution of events with the invariant mass of the three Higgs bosons,
that is, of the six b-jets.
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Figure 4.19: Distribution of events with the missing transverse energy8.

Figure 4.20: Distribution of events with the number of b-jets. Note that the number of
b-jets is not necessarily six due to the resolution criterion.

8In the experiment, ~E/T is the negative of the vector sum of the transverse momenta of all final state
particles reconstructed in the detector, and corresponds to the transverse momentum of all the undetected
particles. In our simulation it is computed directly from the transverse momentum of the neutrinos.
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Figure 4.21: Distribution of events with the angular separation between b-jets.

Figure 4.22: Distribution of events with the transverse momentum of the b-jets.
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Figure 4.23: Distribution of events with the pseudorapidity of the b-jets.

We will not comment each plot one by one, but instead describe some general features.
The first thing that we note is that the invariant mass of the HHH, which is equivalent
to
√
ŝ, is consistent with the observation that we made when comparing figure 4.14 with

the corresponding plots for the W−W+ → HHH subprocess. In the SM case we see a
peak centered around MHHH = 1000 GeV, while for different values of the self-couplings
this same peak can be displaced to lower energies, and changes shape. From the E/T and
pbT plots, we also see that both the neutrinos and the b-jets tend to be produced with
higher transverse momentum components in BSM scenarios, which is consistent with
a smaller value of the pseudorapidity (pseudorapidity of the neutrinos is not showed
because it can not be measured in the experiment). As a final remark, we also notice that
the number of b-jets decreases as we deviate from the SM. What this means is that the b
quarks are produced with smaller relative angles, something that is represented by the
variable ∆Rbb, which is displaced to lower values in the BSM cases.

But as we previously said, the detector does not cover the whole solid angle, but only
the region |η| < 2.72. If we restrict to the part of the event that happens within that
region, the distributions may (and do) change. Figures 4.18 to 4.23 show a set of variables
computed using only the b-jets that fall within the detector. Depending of how optimistic
we are, the results can be interpreted in two ways: on the one hand, around 40% of the
times at least one b-jet is lost, which means that if we want to identify the six of them
we will be rejecting almost half of the events; on the other hand, the BSM distributions
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produce b-jets with low pseudorapidity. This implies that in the cases where the cross
section can be high enough to perform a measurement, less particles are lost through
the beam pipe. The shape of the transverse momentum distributions is not significantly
affected by this cut.

Figure 4.24: Distribution of events with the invariant mass of the three Higgs bosons
after applying the cut |η| < 2.72
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Figure 4.25: Distribution of events with the number of b-jets after applying the cut
|η| < 2.72

Figure 4.26: Distribution of events with the transverse momentum of the b-jets after
applying the cut |η| < 2.72
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Figure 4.27: Distribution of events with the pseudorapidity of the b-jets after applying
the cut |η| < 2.72

Now that we know the shape of a set of relevant distributions, we will impose some
additional cuts based on [48] but slightly modified, including a requirement that the event
reaches a minimum value of the missing transverse energy:

Njet ≥ 6,

pjet
T ≥ 20 GeV,

Nb-jet ≥ 5,

E/T ≥ 20 GeV. (4.6)

First of all, we require our events to have six jets. Note that in our simulations we know
that the jets are coming from b-quarks, but in an experiment this is unknown a priori. We
also impose that these jets have a minimum transverse momentum of 20 GeV, since very
low pT jets can be difficult to detect. Next, we want at least five jets to be identified as
b-jets. The reason why we do not require 6 tagged b-jets lies on the efficiency. Assuming
that all jets are equal, i.e., that they are not sorted or classified in any way, the probability
of identifying five out of the six as b-jets is:

ε5 = 6× 0.85 × 0.2 + 0.86 = 0.66, (4.7)



4 Testing the BSM Higgs self-couplings via triple Higgs production... 49

while if we tag the six of them:

ε6 = 0.86 = 0.26, (4.8)

so allowing five tagged jets is way more efficient. It is important to note that since all
b-jets come from on-shell Higgs bosons, the three pairs should reconstruct the Higgs
invariant mass. Although the resolution will not be very good since we are treating with
jets, this could be an additional cut to reject backgrounds. The last condition in the list
is to have missing transverse energy to ensure that we are looking at events which contain
neutrinos in the final state. The value of A after applying all these cuts is approximately
between 0.44 and 0.51, although it drops to 0.34 at κ3 = κ4 = 1. To compute the number
of observed events we will use the following values:

Nevents = N × 0.583 × (6× 0.85 × 0.2 + 0.86)× 0.48,

where A is given by an average and takes the same value in all cases. The results can be
seen in figure 4.28.

Figure 4.28: Contour lines for the number of e−e+ → bb̄bb̄bb̄ νeν̄e expected events
(white dashed line) after applying all the cuts, represented in the (κ3, κ4) plane. The
corresponding e−e+ → HHHνeν̄e cross section is also shown for comparison. The right
plot shows a closer view in the κ3 axis.

If we set a minimum value for the number of observed events such as Nobs = 10, we find
that we are sensitive to a significant fraction of the (κ3, κ4) plane. Even if we exclude the
region κ3 ∈ [−2.3, 10.3], there are still many values of κ3 and κ4 that would produce a
visible signal if we assume that the background is negligible. This is represented in figure
4.29.
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Figure 4.29: Accessible region in the (κ3, κ4) plane of BSM scenarios to triple Higgs
production via e−e+ → HHHνν̄ at

√
s = 3000 GeV and Lint = 5 ab−1. The red arrows

mark the limits of the present bound from ATLAS [19] for κ3, given in eq. 2.19.

5 Conclusions

The Standard Model of particle physics can be regarded as a very successful theory;
over the last decades, its predictions have led to very relevant discoveries in the field,
culminating with the measurement of a scalar compatible with the SM Higgs boson in
2012 at the LHC. However, there are both experimental evidence and theoretical problems
which are not covered in the SM and make us think that the theory is still incomplete.

Throughout this work we have focused our attention in the Electroweak Symmetry
Breaking Sector of the SM, and in particular, in the Brout-Englert-Higgs mechanism,
which postulates how the spontaneous breaking of the SU(2)L×U(1)Y gauge symmetry by
a scalar doublet Φ generates the masses of the W± and Z bosons, and allows to define
gauge invariant mass terms for the fermions (except for neutrinos). The Higgs boson
appears in the SM thanks to this mechanism, but although it solves several disagreements
between the theory and the experiment, such as the non-vanishing particle masses or
unitarity violation of longitudinal vector boson scattering, it also raises some questions.
For example, why is there only one scalar fundamental particle in the SM? Why is it
embedded in a doublet? Why is its mass so small?

There is not a unique answer to these questions; through the years, many UV theories
have been proposed to explain the origin of the BEH mechanism in a more satisfactory
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way. Some of them introduce new symmetries that are broken at the scales that we can
probe, while others consider the possibility that the Higgs boson is a composite state.
What is clear is that it is not efficient to test them individually, reason why effective field
theories are a powerful tool; since they allow to parametrize deviations from the SM in a
very generic way, they can be used to examine several models at once.

The Electroweak Chiral Lagrangian is an example of an EFT inspired in the QCD Chiral
Lagrangian; as we have seen, the Goldstone bosons are introduced in this Lagrangian in a
non-linear representation, while the Higgs boson is a singlet described by a polynomical
function. This formulation allows us to introduce independent BSM Higgs self-couplings,
in contrast to the theories in which the Higgs boson is embedded in a doublet. Moreover,
since the EChL is not linked to any particular high energy completion, the deviations
parametrized in this way can then be interpreted in terms of different UV theories.

Using this effective theory we have studied BSM deviations coming from the Higgs
self-couplings in theW−W+ → HHH subprocess. The results obtained show that its cross
section is much more sensitive to variations in the triple self-coupling (κ3 6= κSM

3 = 1) than
σ(W−W+ → HH) without violating unitarity within the region that we are exploring.
Since the quartic coupling is also involved in the calculation of σ(W−W+ → HHH),
this cross section is in addition sensitive to deviations in κ4, which is a very significant
difference with respect to double Higgs production. Again, the range of values of κ4 that
we have considered do not lead to unitarity violation in the energy interval that we have
considered, that is, up to 3000 GeV.

In order to study the whole process, that is, multiple Higgs production coming from
e−e+ collisions, we have focused on HH and HHH production with neutrinos in the
final state, that is, σ(e−e+ → HHνν̄) and σ(e−e+ → HHHνν̄), and in particular
σ(e−e+ → HHνeν̄e) and σ(e−e+ → HHHνeν̄e), which constitute, respectively, the
dominant HH and HHH production mechanisms at high energies. The study of the
subprocesses is relevant here because these cross sections have an important contribution
coming from WWS diagrams, which becomes more significant as we increase the CM
energy,

√
s.

In this work we have considered two approaches; first, we have used the effective W
approximation, a factorization which assumes that the W bosons are radiated from the
electrons following a distribution function and then scatter on-shell. The plots generated
using this approximation show that the accuracy in triple Higgs production is worse
than in double Higgs production, and therefore it should not be used to obtain precise
numerical results. The estimate of the e−e+ → HHHνeν̄e cross section provided by this
approximation differs by about a factor of two with respect to the exact result. This is
in contrast to the HHνeν̄e case, where we have checked that the EWA provides a very
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accurate result. However, it is still useful to understand how WWS takes place, and how
longitudinal WW scattering is the dominant contribution to the cross section. The other
method that we have used to produce the results is Monte Carlo simulation of the full
process. In this case we have seen that σ(e−e+ → HHHνν̄) is much more sensitive to κ3

than σ(e−e+ → HHνν̄) as we expected from the results obtained for the subprocess. The
sensitivity to κ4 in σ(e−e+ → HHHνeν̄e) is smaller compared to κ3, but still significant
in certain regions of the (κ3, κ4) plane. Notice that κ4 does not enter in the calculation
of the e−e+ → HHνeν̄e cross section, and therefore triple Higgs production is the only
channel sensitive to κ4.

To obtain a more realistic representation of what should be expected from triple Higgs
production in the experiment, in the last part of this work we have chosen a collider
(CLIC at

√
s = 3000 GeV and Lint) and a decay channel (HHH → bb̄bb̄bb̄) and we have

implemented a set of kinematical cuts to reduce possible backgrounds, which we have
assumed to be very low due to the characteristic signature of the signal. The results show
that a considerable fraction of the (κ3, κ4) plane will be accessible at CLIC, with 10
or more expected events in the detector. In the case that the Higgs self-couplings are
sufficiently far from the SM, triple Higgs production could nicely complement the study
of κ3 via double Higgs production, and also provide new information about κ4.

In summary, we have introduced the EChL to be able to study the BSM physics using
an effective theory, and to define the parameters that characterize the deviations in the
triple and quartic Higgs boson self-couplings . We have analyzed the W−W+ → HHH

subprocess, both within the SM and beyond, and compared it with W−W+ → HH. Then,
we have tested the validity of the effective W approximation for triple Higgs production
(in addition to double Higs production) in an e−e+ collider, and finally we have used
Monte Carlo simulation to evaluate the deviations in HHHνν̄ production induced by BSM
Higgs self-couplings and give an approximate result for the region of the (κ3, κ4) plane in
which CLIC would be sensitive to those deviations. The results are promising, since they
suggest that triple Higgs production via HHHνν̄ could be accessible at CLIC, offering
the possibility of studying (or constraining) the triple and quartic Higgs self-couplings at
the same time.
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fu

I Diagrams contributing to W−W+→HHH

The following diagrams have been generated using FeynArts-3.10 in the unitary gauge.
These are the diagrams used to compute σ(W−W+ → HHH), using FormCalc-9.6 to
perform the analytical calculation of the corresponding amplitude (see next appendix),
and VEGAS to integrate over the phase space. The red and blue dots represent the triple
and quartic Higgs self-interactions, respectively.
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II Analytic expression for the W−W+→HHH amplitude

The following amplitude for the subprocess W−W+ → HHH has been generated using
FeynArts-3.10 and FormCalc-9.6.

M(W−W+ → HHH) =

Here SW (SW2) is the sine of the weak angle (squared), Alfa is the fine-structure constant
and EL is the electron charge magnitude. The masses (squared) of the Higgs and W

bosons are represented as MH (MH2) and MW (MW2). The rest of the definitions are shown
in table II.1. We will refer to the 4-momentum vectors of the W− and W+ bosons as
k1 and k2, respectively, and we will denote their corresponding polarization vectors as ε1
and ε2. The 4-momentum vectors of the three Higgs bosons are denoted as k3, k4 and k5,
respectively.
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Den[a,b] 1/(a-b)
Pair1 ε1 · ε2
Pair2 ε1 · k2

Pair3 ε1 · k5

Pair4 ε2 · k5

Pair5 ε2 · k1

Pair6 ε1 · k3

Pair7 ε2 · k3

Pair8 ε2 · k4

Pair9 ε1 · k4

S (k1 + k2)2 = ŝ

S34 (k3 + k4)2

T (k1 − k3)2

T14 (k1 − k4)2

T24 (k2 − k4)2

U (k2 − k3)2

Abb1 Pair2− Pair3
Abb2 −Pair4 + Pair5
Abb3 (Pair2− Pair3)Pair4 + Pair6(Pair5− Pair7)

Abb4 Pair4 Pair6(−3MH2− MW2 + S34 + 2T + T14)

Abb5 Pair5− Pair7
Abb6 Pair6 Pair8(−MH2 + T + T24)

Abb7 Pair6(Pair5− Pair7) + Pair8(Pair2− Pair9)

Abb8 (Pair2− Pair3)Pair4 + (Pair5− Pair8)Pair9
Abb9 Pair5− Pair8
Abb10 Pair4 Pair9(−3MH2− MW2 + S34 + T + 2T14)

Abb11 (Pair2− Pair6)Pair7 + (Pair5− Pair8)Pair9
Abb12 Pair7 Pair9(−MH2 + T14 + U)

Abb13 Pair3(−Pair4 + Pair5) + Pair8(Pair2− Pair9)

Abb14 Pair3 Pair8(−3MH2− MW2 + S34 + 2T24 + U)

Abb15 Pair2− Pair9
Abb16 Pair3 Pair7(−3MH2− MW2 + S34 + T24 + 2U)

Abb17 Pair2− Pair6
Abb18 Pair3(−Pair4 + Pair5) + (Pair2− Pair6)Pair7
Sub1 Abb4/MW2− 2(Abb3 + MW2 Pair1)

Sub2 Abb10/MW2− 2(Abb8 + MW2 Pair1)

Sub3 Abb6/MW2− 2(Abb7 + MW2 Pair1)

Sub4 Abb12/MW2− 2(Abb11 + MW2 Pair1)

Sub5 Abb14/MW2− 2(Abb13 + MW2 Pair1)

Sub6 Abb16/MW2− 2(Abb18 + MW2 Pair1)

Table II.1: Parameters, abbreviations and subexpressions generated by FormCalc-9.6.
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III Variable redefinition for VEGAS numerical integration

Monte Carlo integration is a method for numerical integration that allows to compute
definite integrals using (pseudo)random numbers and is particularly useful when we need
to integrate over multiple variables, as it is our case. This is done in Python using the
VEGAS module. In order to optimize the performance of the code, we define all of our
variables from 0 to 1, so that they are independent and cover the same interval. This
is done in both the cross section of the subprocess and the EWA, but since the first is
contained within the second, we will use the EWA σ(e−e+ → HH(H)νeν̄e) cross section
from section 4 (equation 4.4) to illustrate the changes of variables that we need to do.

The expression that we need to compute in this case is:

σ(s) =

∫
dx1

∫
dx2

1

3!

1

2
√
ŝ2 − 4ŝm2

W

1

32(2π)4ŝ∫
dm2

34

∫
dm2

45

∫
d cos θ3

∫
dφ35

∑
i,j

fi(x1)fj(x2)|Mij|2, (III.1)

so we start by introducing two new variables, τ and η

τ ≡ x1x2 from
ŝmin

s
to

ŝmax

s
,

η ≡ 1

2
log

x1

x2

from log
√
τ to − log

√
τ . (III.2)

To guarantee that the three Higgs bosons are produced on-shell, ŝmin = (3mH)2, while
ŝmax = s. The condition that the W bosons are also on-shell (required when computing
the cross section of the subprocess and also a condition of the EWA) is implicit in the
distribution functions, which go to zero when their energy is below mW . This is the same
as imposing that:

fi(x) = 0 when x <
2mW√
s
, (III.3)

since each initial fermion carries an energy E =
√
s/2. The jacobian determinant of this

change of variables is equal to 1, so the new integral reads:

σ(s) =

∫
dτ

∫
dη

1

3!

1

2
√

(τs)2 − 4τsm2
W

1

32(2π)4τs∫
dm2

34

∫
dm2

45

∫
d cos θ3

∫
dφ35

∑
i,j

fi[x1(τ, η)]fj[x2(τ, η)] |Mij|2, (III.4)

where x1(τ, η) =
√
τeη and x2(τ, η) =

√
τe−η. This transformation does not make the

integration limits independent, but allow us to define the variables that we are going to
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use in the final calculation. As we said before, we normalize them such that they all vary
from 0 to 1:

ω0 ≡
τ − τmin

τmax − τmin
, τ = (τmax − τmin)ω0 + τmin,

ω1 ≡
1

2

(
1− η

log
√
τ

)
, η = (1− 2ω1) log

√
τ ,

ω2 ≡
log(m2

34/m
2
34,min)

log(m2
34,max/m

2
34,min)

, m2
34 = m2

34,min exp

(
ω2 log

m2
34,max

m2
34,min

)
,

ω3 ≡
log(m2

45/m
2
45,min)

log(m2
45,max/m

2
45,min)

, m2
45 = m2

45,min exp

(
ω3 log

m2
45,max

m2
45,min

)
,

ω4 ≡
1

2
(1 + cos θ3), cos θ3 = 2ω4 − 1,

ω5 ≡
φ35

2π
, φ35 = 2πω5. (III.5)

The jacobian determinant is not trivial in this case, but it can be easily calculated:

J(~ω) = 4π

∣∣∣∣(1− τmin) 2 log
√
τ m2

34 log
m2

34,max

m2
34,min

m2
45 log

m2
45,max

m2
45,min

∣∣∣∣ . (III.6)

The dependence on ~ω = (ω0, ω1, ω2, ω3, ω4, ω5) is given by III.5. After substituting the old
variables by ~ω, the resulting integral is:

σ(s) =

∫ 1

0

dω0

∫ 1

0

dω1

∫ 1

0

dω2

∫ 1

0

dω3

∫ 1

0

dω4

∫ 1

0

dω5

1

3!

1

2
√

(τ(ω0)s)2 − 4τ(ω0)sm2
W

1

32(2π)4τ(ω0)s
J(~ω)

∑
i,j

fi
(
x1[τ(ω0), η(ω0, ω1)]

)
fj
(
x2[τ(ω0), η(ω0, ω1)]

)
|Mij|2, (III.7)

which can be integrated numerically.
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IV Diagrams contributing to e−e+→HHH νeν̄e

The following diagrams have been generated using MadGraph 5 in the unitary gauge.
These are the diagrams used to compute σ(e−e+ → HHHνeν̄e) using Monte Carlo
simulation. The red and blue dots represent the triple and quartic Higgs self-interactions,
respectively. Diagrams 1 to 25 are Z-mediated, while diagrams 26 to 50 correspond to
WWS.
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