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Abstract—The aim of this work is to implement a new
automatic procedure to the previous developed algorithm
being able to generate a new automatic noise reduction
method. This method emerged from a new point of view
of Bayesian statistics that allows us to evaluate the possible
smoothed models of the data via Bayesian inference, obtain-
ing a model that is statistically compatible with them. The
new implementation evaluates the probabilities of the smooth
models produced to elaborate the estimation of the noisy
data. Throughout this work, we will explain in detail the
mathematical development that underpins the methodology
of the algorithm together with the new automation process,
and the two variations that arose from this new approach,
FABADA’s single and Bayesian model generations. Then we
will evaluate the implementation of the new algorithm, in
terms of the mean square error. To assess its performance
we will compare the quality of the recovers from a battery
of real astronomical spectra and images with different
standards and novel methods. The source code needed to
reproduce all the results presented in this report along
the implementation of the method is publicly available at
https://github.com/PabloMSan/FABADA.

Index Terms—noise reduction, Bayes’ inference, peak sig-
nal to noise ratio.

I. INTRODUCTION

THE acquisition of any kind of experimental data is
afected by several sources of statistical error, which

ultimately translate into a random noise component in
the signal to be recorded. There are different types of
noise depending on their physical origin, both related
to electronic (thermal noise, fluctuations) and mechanical
(defective lenses, antennas, etc.) measuring devices. In
astronomy, for example, errors can be produced in the
acquisition of the images due to defects in the optics
of the telescopes and also in the reading process of the
detector (typically a CCD) in charge of transforming the
light captured by the telescope into an electrical signal.
The noise introduced can sometimes be noticeable enough
to bury our signal, and that is why different algorithms
have been developed to reduce its impact and try to recover
the information in the most reliable way possible.

Smoothing, where measurements are weighted at nearby
spatial or temporal points (using different schemes to
assign weights), is one of the most popular techniques
to mitigate the effects of random noise (e.g., Cleveland,
1979; Savitzky and Golay, 1964). Nowadays there is a
large number of smoothing algorithms, based on many
different techniques, such as central moving average, data
grouping/segmentation (e.g., Dabov et al., 2007), fitting
smooth functions, different types of statistical analysis,
partial differential equations, wavelenght transformation
filters, linear and nonlinear filtering, and for the later
epochs artificial neural networks (see Jing et al., 2019).

Generally, all these methods rely on some explicit or
implicit assumptions about the true (noise-free) signal in
order to separate it properly from the random noise. An
usual assumption is that the signal being retrieved varies
gradually along the dimensions on which the process is
carried out and that the data must fit a smooth function
(see Katkovnik et al., 2006). Generally, this distribution is
sought that fits the experimental data and the deviation
of the measurements from the proposed model being
evaluated using one of the methods mentioned above.
Many techniques analyze the probability that the data cor-
respond to a random Gaussian realization of the model that
attempts to describe the underlying signal (e.g., El Helou
and Susstrunk, 2020), but few or none do so from a strictly
Bayesian point.

In the work of last year Bachelor’s final thesis we
used Bayesian statistical inference to evaluate and combine
different models being able to elaborate, through statistical
analysis, a smoothing that better fits the data, obtaining
a new method of noise reduction. This new Bayesian
technique have been remodel to incorporate an automat-
ically selection criteria, which is based in the statistical
properties of the models produced converting this new
technique in a non-parametric method.

For this purpose, several algorithms have been devel-
oped, implemented in Python language, and their ability
to recover the underlying signal from an experimental
data set with its corresponding errors has been evaluated
and compared with different standard methods. Although
the ultimate motivation of the study is directed to the
application in the field of astronomy, the algorithm has
been focused in an absolutely general way, and it is
possible to generate a smoothed model for any type of
data.

II. FABADA
For the development of this new algorithm, we assume

that the real image has been contaminated with Gaussian
distributed white noise. This lets us generate a likelihood
function to evaluate the models produced. With the first
set of a constant prior probability, we iterative evaluate
different smooth versions of the posterior probabilities
until a certain condition is reached. Then, this new method
can be separated into two different steps. The first one, the
iterative models, conceived in the previous work, generates
several smooth versions of the data and evaluates them
with Bayes inference. And the model selection, which is
the new implementation developed in this work, evaluates
the evidence produced in the previous step imposing an
evidence-based criterion to stop the smoothing process and
generate the estimation of the real data.

https://github.com/PabloMSan/FABADA


MASTER THESIS, M.SC. THEORETICAL PHYSICS, UAM 2

A. Iterative models
FABADA appears as a new technique for noise re-

duction either for one dimensional data sets, such as
astronomical spectra and for two dimensional images
which can be used as a previous step to the analysis of
such data. Focusing on the mechanism that makes this
algorithm work, FABADA, as his name indicates, is a
fully automatic algorithm which it only takes as inputs
the data set and his error associated, ~I = { ~D, ~E}, which
can have one or two dimensions. In order to simplify, the
method will be explained in one dimensional since the two
dimensional is analogous. Therefore our data set with his
associated errors has a length ND, i.e.,

~D = {Dd}d=1,..,ND
~E = {Ed}d=1,..,ND (1)

where Dd is the d-th value of the data set and Ed his
associated error, which can be any type of information.
FABADA is a general purpose algorithm, which

means that you can introduce any kind of data to it, with
the same aim of achieving a smoothed version of the data
set. Due to this property we will not have any previous
knowledge about these data. In other words, our prior
probability distribution will be homogeneous in the range
of all possible values, i.e. p( ~D) = 1 using the annotation
describe in the table I. If ~M = {Md} is the model
we want to create, which will be a well fitted smoothed
version of the data, then we have that the prior probability
distribution should be p(Md) = 1 (all values are equally
possible) for all every data d. As we will see later, we are
interested in the prior probability of our model being a
probability of its own, and the one we have just selected
is not, since the integral over the whole real line diverges.
Therefore, it is necessary to limit the range of possible
values for Md to a finite range. As we do not have any
prior information about the data we are going to smooth,
we adopt that

p(Md) =
1

max( ~D + 3 ~E)�min( ~D � 3 ~E)
⌘ p0 (2)

which, despite not being strictly Bayesian (since you
access information from the data to select the prior), allows
us to have our own prior probability of the model, com-
mensurate with any range of values (and units) provided
by the user.

Assuming that the measurement errors are Gaussian, the
likelihood function L for our model is given by

p( ~D| ~M, ~E) = L( ~D| ~M, ~E) =
NDY

d=1

e
� (Dd�Md)2

2·E2
d

p
2⇡ · Ed

. (3)

In this first iteration, where the prior probability distribu-
tion for ~M is uniform, the Bayes’ theorem indicates that
the posterior distribution is

P( ~M | ~D, ~E) =
p( ~M) · L( ~D| ~M, ~E)

E =

=
NDY

d=1

e
� (Dd�Md)2

2·E2
d

p
2⇡ · Ed

(4)

is, as expected, a Gaussian centered on the data set itself
(i.e. the expected value of Md is µd ⌘ hMdi = Dd)

with variances Vd = E2
d determined by the corresponding

errors. In this case, the overall evidence E =
R
p( ~M) ·

L( ~D) d ~M of our model is simply E ' pND
0 .

Furthermore, we want to see if a smoothed version of
this first model would be statistically consistent with the
data. To check this, we apply the central moving average

MM(µd) =
µd�1 + µd + µd+1

3
(5)

as a local smoothing filter. The MM averages the value of
the neighbour points, helping us to build a new smoothing
model from the previous one. In other words, we are
going to use the information from the adjacent points
to update our knowledge about the correct value of Md.
In principle, by updating our prior distribution, we are
changing our knowledge about the data and we would
have to rebuild the input data set in order to update the
posterior distribution. Once again, we are forsaking the
strict Bayesian philosophy (the prior distribution should
be, as its name indicates, totally independent from the
data) for the sake of a practical result, and this is precisely
where the magic of this algorithm lay; we are not going
to change the data, but the models, repeating the process
a number Ni of iterations until a better fit is achieved. On
section II-B we will discussed the different criteria used to
automatically select the number of iterations Ni to achieve
the best fit. For now, lets supposed that we already know
the value of Ni. In this way, the inputs of our algorithm
are ~I = { ~D, ~E}, and the set of models is extended to

~M = {M i
d}

i=0,...,Ni

d=1,...,ND

~µ = {µi
d}

i=0,...,Ni

d=1,...,ND

~V = {V i
d}

i=0,...,Ni

d=1,...,ND

(6)

to include the iterations i = 1, ..., Ni. Taking into account
the mise en place i = 0, the dimensionality of the problem
(total number of values for each variable) amounts to
Nd ⇥ (Ni + 1). Once we have established the basis of
the Bayesian inference that we are going to apply, we
can let the algorithm iterate on the data and calculate the
successive models, its expected values and its variances.
For each iteration i > 0, the prior probability distribution

pi(M
i
d) =

e
�

(MM(µi�1
d

)�Mi
d)2

2·V i�1
d

q
2⇡ · V i�1

d

(7)

is updated as a Gaussian centered on the smoothed
values of the expected value of the previous iteration, using
the variance as a measure of our uncertainty. For the case
of the next iteration i = 1 we will have a prior centered
on a first smoothing of the data (since µ0

d = Dd) and we
expect that M i

d will vary in an environment of the order
of

p
V 0
d = Ed around that value. Through Bayesian infer-

ence we will be able to compute the posterior probability
distribution of our smoothed model by applying the Bayes’
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Symbol Definition

DIMENSIONS d Length of the data set {1, 2, .., ND}
i Iteration number {1, 2, , .., Ni}

INPUTS ~I = { ~D, ~E} Set of inputs of the algorithm
~D = {Dd} Data set to smooth
~E = {Ed} Errors associated to the data set

MODELS ~M = {M i
d} Set of all possible models computed with shape (ND, Ni).

~µ = {µi
d} Expectation value of each element of the models

~V = {V i
d} Associate variance of the expectation value

L( ~D| ~M, ~E) Likelihood of the model

E( ~M) Evidence of the model

PRIORS p( ~M) Prior probability distribution of all possible values of the model

MM Central moving mean

POSTERIORS P( ~M | ~D, ~E) Posterior probability distribution of all possible values of the model
~k = {kid} Scale factor arised from the product of two Gaussians

OUTPUT ~S = {Sd} Smoothed data set

TABLE I: List of all symbols used to describe the FABADA algorithm in section II-A.

Theorem

Pi(M
i
d|Dd, Ed) =

1

E i
d

· e
�

(MM(µi�1
d

)�Mi
d)2

2·V i�1
d

q
2⇡ · V i�1

d

· e
� (Dd�Mi

d)2

2·E2
d

p
2⇡ · Ed

=
1

E i
d

· kid ·
e
� (µi

d�Mi
d)2

2V i
d

p
2⇡V i

d
(8)

leading to a product of two Gaussian (our prior and
the plausibility of the data), which remains in another
Gaussian (the later P) centered on

µi
d = V i

d ·
"
MM(µi�1

d )

V i�1
d

+
Dd

E2
d

#
(9)

with variance

1

V i
d

=
1

E2
d

+
1

V i�1
d

. (10)

The constant

kid =
e
�

[MM(µi�1
d

)�Dd]2

2(E2
d
+V i�1

d )
q
2⇡ ·

�
E2

d + V i�1
d

� (11)

associated with the product of two Gaussian (the mathe-
matical development can be found, for example, in Bromi-

ley (2003)) corresponds to the evidence of the i model for
the d data

E i
d =

Z 1

�1
pi(M

i
d) · Li dM

i
d =

=

Z 1

�1
kid ·

e
� (µi

d�Mi
d)2

2V i
d

p
2⇡V i

d

dM i
d = kid

(12)

so that the posterior probability distribution is correctly
normalized. In the figure 1 we have a random example
to represent the mathematical process we have just ex-
plained. The probability distributions are shown on one
side (right) next to the expected value of one of these
distributions (left). It can be seen that the product of
two Gaussians is still a Gaussian as in (8), and that the
expected value of the subsequent distribution for the new
smoothed model (µi

d) is more conservative (closer to µi�1
d )

than the expected value obtained previously by means
of MM(µi�1

d ). As the number of iterations increases,
the model becomes gradually smoother and the variance
V i
d decreases monotonously, as can be deduced from the

equation (10).
As long as the model remains relatively close to the

data (within an environment of the order of
p

E2
d + V i

d ),
the evidence in its favour will be high, but if it departs
significantly, the exponential term that appears in the con-
stant kid will indicate that we have reached the maximum
smoothing that is statistically compatible with the data.
If we look at figure 1, we can see that the Gaussian
in the posterior is much lower than the two previous
ones, because they are both relatively separate. From the
physical point of view, this means that our prior idea of
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Fig. 1: Graphical representation of an iteration of the algorithm for a random data set. On the left, the data set to be
smoothed is shown µi�1

d (with d = 1, 2, 3) together with the smoothed values MM(µi�1
d ), and the expected value of

the probability distribution after applying Bayes’ Theorem µi
d. On the right, the prior and posterior distributions set to

the model’s Likelihood.

the value that Md should adopt is relatively far (several
sigma) from the measured data Dd. This disagreement is
mathematically expressed by the scale factor kid, which
plays no role in calculating the expected values ~µ and their
variances ~V , but is critical in calculating the evidence of
each model.

B. Model selection
The last step of FABADA will be to automatically

decide a stopping condition (i.e, the total number of
iterations Ni) and then combine the different models
produced at each iteration in order to produce the final
result to be returned on output. We have considered two
different approaches: selecting the model with maximal
evidence and the Bayesian combination of all the models
up to Ni. Although we evaluate individual evidences for
every data point, both criteria are based on the mean value

hE ii = 1

ND
·
NDX

d=0

e
�

[MM(µi�1
d

)�Dd]2

2(E2
d
+V i�1

d )
q
2⇡ ·

�
E2

d + V i�1
d

� (13)

over the model computed at iteration i.

1) Single Model (SM): In this approach, the number
of iterations Ni is set to the maximum average evidence,
and the algorithm will stop as soon as dhEii

di = 0. Since
the evidence provides a measure of the probability of
obtaining the measurements Dd, the model MNi

d with
the maximum evidence is the most likely to represent the
smooth distribution ~S = {Sd} from which the noisy data
Dd were measured. Therefore, one may select its posterior
probability distribution

P(Sd) = P(MNi
d |Dd, Ed) (14)

with expected value

µ
~S
d = µNi

d (15)

as the most likely description of the input data set.

2) Bayesian Model (BM): In this case, the results of the
different iterations will be weighted according to Bayes’
theorem. To do this we must choose a prior probability
for each of the models M i

d. Using the same criterion
as in equation 2, we say that pi = 1

Ni+1 , so that all
of them are equiprobable, the probability distribution is
proper (sum normalized to unity), and one can apply the
same reasoning as in equation 4, this time for a discrete
distribution, where the mean evidence hE ii represents the
likelihood of each model. Thus, the posterior probability
of the i-th model would be given by the expression

Pi
d =

E i
dPNi

i=0 E i
d

(16)

while, for the value of the final smooth model Sd at point
d, each and every model would have to be combined, using
this probability as a weight:

P(Sd) =
NiX

i=0

Pi
d · P(M i

d) (17)

whose expected value is none other than

µ
~S
d =

NiX

i=0

Pi
d · µi

d. (18)

In other words, our final model ~S would be a weighted
sum of all the previous models, weighed by their respective
evidence.
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It is important to note that these values are calculated
for each data element d separately, so not all models have
the same weight at all points. This allows for adaptation
to the structure of the data, as some regions may admit a
greater degree of smoothing than others. If any region has
been smoothed more or less, the evidence will give more
weight to the models that better describe it, achieving the
objective of the algorithm to develop a smooth model,
compatible with the error bars, that adapts to the structure
of the data.

In principle, one should take into account an arbitrarily
large number of iterations Ni, but this is of course not
feasible in practice. Instead, we will try to sum over
a representative range of models, within the vicinity of
the most probable one, assuming that they will dominate
the total result. The iteration process won’t stop at the
maximum of the average evidence (equation 13), but will
continue until it reaches an inflection point, d2hEii

di2 = 0,
which acts as a proxy for the end of the evidence peak
and the transition towards an asymptotic regime where the
evidence will slowly decline. After this point, the models
change very little, and they produce similar probabilities,
slightly smaller than the previous ones, and they add little
useful information. Therefore, the algorithm will now stop
at the iteration Ni in which the inflection point has been
reached and combine the ND ⇥ (Ni + 1) expected values
µi
d according to equation 18.

III. SYNTHETIC TESTS

In order to assess the performance of the algorithm, we
develop a battery of synthetic tests based on real astro-
nomical data. More precisely, we will apply FABADA to
a set of astronomical spectra and images, where different
levels of Gaussian random noise have been added, and
compare the quality of the reconstructed signal (in terms
of the mean square error) as well as the execution time
with other methods available in the literature.

A. Other Algorithms
Over the last decades, lots of effort have been placed

into the development of different applications to help in
the analysis of digital images in different fields. Noise
reduction is one of the basic problems in this context,
and we have attempted to provide a fair comparison of
our algorithm with other methods that are representative
of the current state of the art. In this section we briefly
describe the main principles and free parameters, if any,
of all the techniques that we have considered. A brief
summary is provided in Table II.

1) Median filter: One of the classical non-linear digital
filtering techniques, it is still often used to remove noise
from an image or signal. The main idea of the median filter
is to run through the data, replacing each point with the
median of neighboring entries. The number of neighbors
used in the median is called the ”window”, which slides,
entry by entry, over the entire signal. So for our data set
Dd the median filter is computed as

SMdn
d = Median(Dd, w) (19)

Method Parameters 1D 2D

Median Window size (w) X X

SGF Window (w) and order (o) X X

LOWESS Fraction window X -

LPFF Radius (R0) X X

Photoshop c� Intensity (i) and detail (det) - X

BM3D —– - X

FABADA —– X X

TABLE II: List of all noise reduction methods used to compared
with FABADA. It is shown the initials that we will used
to reference the different methods explained. SGF, LOWESS,
LPFF, BM3D stands for Savitzky-Golay filter, locally weighted
scatterplot smoothing, low-pass frequency filter, and the block-
matching and 3D filtering method respectively. Along the initials
we show their parameters and their space implementations (one
or two dimensions).

where Sd is the smoothed result, and Median represents
the median of the data set inside the window of size w.
For each data point Dd, the region used to computed the
median contains, for one dimensional data, (w � 1)/2
neighbors on each side, whereas for two dimensions it
corresponds to a square of size w centered in Dd. This
implies that this method has one parameter, which is the
size of the window w.

2) Savitzki-Golay filter: As first noted by Savitzky and
Golay (1964), a smoothed version of the data may be
obtained by fitting successive sub-sets of adjacent points
with a low-degree polynomial using the method of least
squares. When the data are equally spaced, the solution of
the least squares (i.e., the coefficients of the polynomials)
is analytical and independent of the data to be smoothed.
Thus,

SSG
d = SGF (Dd, w, o) =

w�1
2X

i= 1�w
2

Co
i (w, o) ·Dd+i (20)

for w�1
2  d  ND� w�1

2 , where the two free parameters
of the method are the window length w of the data region,
i.e., the number of data points to be fitted, and the order
o of the polynomial. Co

i are the w � o Savitzky-Golay
coefficients, and SSG

d is the smoothed result of the filter
at position d.

3) LOWESS: A popular variant of the Savitzky
and Golay method is the locally weighted scatterplot
smoothing (LOWESS), where the regions to be fitted
are not evenly spaced and the least squares procedure
takes into account weighted values of the data, according
to their distance from the point to be evaluated. This
scheme involves computing the coefficients of the
fitted polynomial each time, producing a less efficient
algorithm. For the purpose of comparing with FABADA,
we have used the implementation explained in Cleveland
(1979), which uses a linear fit and can only be used for
one dimensional data. This implementation has only one
parameter, which is the fraction of data points used to
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Fig. 2: On the left is shown the spectra of one of the image sample used in this work. This spectra is computed as the
module of the fast Fourier Transform of the image. In the middle, one example of the shape of the Gaussian Low-Pass
filter with radius 30 pixels used in the Low-Pass Frequency Filter. On the right, the filtered result of the spectra.

accomplish the linear regression at each point.

4) Low-Pass Frequency Filter (LPFF): Another classi-
cal technique of noise reduction consists in filtering the
high frequency components of the data. The fast Fourier
Transform (FFT) is the most computational efficient way
to convert the data Dd to the frequency domain D(w)d.
Once we have the spectrum of the image, defined as the
amplitude of the FFT of the data (see figure 2), we can
apply a low pass Gaussian filter to discard the highest
modes:

LP (D(w)d, R0) = e�r(D(w)d)
2/2R2

0 (21)

where r(D(w)d) is the distance from the center to the
data D(w)d in the spectrum image, and R0 is the radius
of the filter. We can construct the smoothed data SLPFF

d
by computing the inverse fast Fourier Transform (iFFT)
of the filtered spectrum, which yields

SLPFF
d = LPFF (Dd, R0) =

= iFFT (LP (D(w)d, R0) ⇤ FFT (Dd))
(22)

where LPFF stands for Low-Pass frequency filter. In
figure 2 there is an example of how this process in done,
showing the spectra of one image (left), the low-pass
filter (middle), and the filtered spectrum (right). This is
again a one parametric method in which only we have to
select the radius of the low pass filter.

5) Photoshop c�: In addition to classical methods,
we have also considered the noise reduction filter
implemented in the Adobe Photoshop c� raster graphics
editor software (Knoll and Knoll, 1990-2017). Although
neither the mathematical foundations nor the source
code of this method are publicly available, we consider
it representative of current industrial standards, and it
has been used to gauge the commercial potential of our
algorithm. The intensity i of the noise reduction applied
(an integer number that controls the aggressiveness
of the smoothing) is one of the two parameters of
this filter. Furthermore, one can choose the number of

features preserved in the process by changing the detail
conservation parameter det. Another feature of this filter
would be the capacity to focus the details of the smoothed
image, but it has not been activated because FABADA
does not include any such procedure yet. As this is an
image editor, we have only been able to use it in two
dimensions.

6) BM3D: Finally, we also included the Block-
Matching and 3D filtering (Dabov et al., 2007) algorithm,
which arguably represents the state of the art in the
research field of image analysis (Zhang et al., 2017). A
detailed account of this method, where image denoising is
implemented as two-step process, can be found in Dabov
et al. (2007).

For the first step, the noisy image is divided into equal-
size square blocks. For each of these blocks, a three-
dimensional group is formed with blocks of other regions
that are consistent with being similar to the reference
one (see figure 3), and the process is then repeated for
each block in the image. When these 3D groups are
formed via block-matching, they attenuate the noise by
hard-thresholding of the coefficients of a 3D transform,
which they called ”Collaborative hard-thresholding”. By
preforming the inverse 3D transform, BM3D produces an
estimation of the denoised image for each block of the
inverted group. Thanks to this group filtering via the hard-
threshold, they are able to form more than one estimator
for the different blocks of the image, and these overlapping
estimations are combined in a weighted average for each
block.

With the basic estimate formed in step one, they are able
to produce more accurate groups of similar blocks and then
apply a 3D transform the groups formed in both steps.
With the 3D transform of both groups, they are able to
perform Wiener filtering on the noisy one using the energy
spectrum of the basic estimate as to the true (pilot) energy
spectrum. The inverse transformation produces again the
estimates of the blocks to their original positions. By
weighted average, they generate the final smoothed result



MASTER THESIS, M.SC. THEORETICAL PHYSICS, UAM 7

Fig. 3: On the left, there is an illustration of grouping blocks from the BM3D method explained from noisy natural
images corrupted by white Gaussian noise with a standard deviation of 15 counts and zero mean. Each fragment shows
a reference block marked with ”R” and a few of the blocks matched to it. On the right there is the flowchart of the
BM3D image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block
(marked with ”R”). Both of the figures are taken from Dabov et al. (2007).

of the image. This second process is also shown in the
flowchart of the figure 3.

B. Data Sample
All the methods explained in the previous section are

applied to a set of test data in one and two dimensions
(astrophysical spectra and monochromatic images, respec-
tively) with different levels of Gaussian random noise.

An important aspect in the recovery of spectra is the
conservation of their features, such as the Balmer break or
emission and absorption lines, after noise reduction. For
this purpose, we have considered three different spectra
(represented in Figure 4) that show these characteristics
in different degrees. The first spectrum (left) is a Kurucz
stellar atmosphere model with an effective temperature
Teff = 11500K, metallicity Z = 0.1 and surface gravity
log g = 5.0, typical of an O/B type star, with a prominent
Balmer break and some strong absorption lines. The
spectrum of a supernova remnant, plotted on the middle
panel, is a composite of 5 different observations from the
Faint Object Spectrograph (FOS) instrument of the Hubble
Space Telescope (HST). This high-resolution spectrum
(0.9 Å/pixel) is characterized by very prominent emission
lines, useful for inferring different physical properties of
these objects. The last spectrum (right) is taken from
observations of the interacting galaxy pair Arp 256, and it
contains a combination of emission and absorption lines
with a stellar continuum. The Kurucz model and the Arp
256 spectra have been extracted from the ASTROLIB
PYSYNPHOT (Lim, 2015) Python package that simulates
photometric data and spectra as they are observed with
the Hubble Space Telescope (HST). The aim of using
these different spectra is to obtain a good representation of
the possible features that can appear in one-dimensional
astrophysical data and see how the different algorithms
perform in digging up spectral features out of a noisy
signal.

On the other hand, for astronomical images, we would
also like to cover all the possible ranges in this field,
including planets, stars, diffuse nebulae, and galaxies,
either alone or in potentially blended groups. We have
thus considered a variety of images, formed from the

eight different targets displayed in Figure 5, intended to
sample almost all possible combinations of these objects.
Saturn is arguably the target whose features (e.g. sharp
edges) are more similar to the ordinary test images (e.g
natural landscapes, human subjects) that are often used
in the context of digital image processing. In addition,
our sample includes two examples of nebulae (Crab and
Bubble) dominated by the gaseous component, two with
a more significant contribution of the stellar population
(Eagle and Ghost nebulae), and a globular cluster full of
stars with different brightness. There is also an image
with a galaxy pair (NGC 4302 & 4298) in which we
can see two different orientations of the galaxies, as well
as a galaxy cluster with a wide variety of morphologies
and apparent sizes. All of these images have been taken
from the Hubble Space Telescope gallery and have been
compressed to 8-bit images, with a maximal dynamical
range of 0 � 255 counts and 512 ⇥ 512 pixels size to
lighten up the computational load. For simplicity, we have
also normalized the astronomical spectra to 255 in order
to have the same dynamical range and represent the noise
in terms of this value for both dimensions.

C. Test Statistics
We applied different levels of Gaussian random noise ⌘

with constant variance �2 to the real data Rd:

Dd = Rd + ⌘d ; Ed = � (23)

where ⌘d = N (0,�), the subscript 1  d  ND

denotes independent measurements (spectrum wavelengths
or image pixels), and we assume that statistical errors
are correctly characterized in the input data. Once Dd

is computed, an softened estimation Sd of the real data
Rd is carried out using the different algorithms explained
above and different noise levels, from � = 5 counts to
� = 95 counts out of the 255 maximal value that sets the
dynamical range of our data (i.e. of the order of ⇡ 2�40%
relative errors).

Afterwards, we evaluate the quality of the reconstruction
in terms of the Peak Signal to Noise Ratio (PSNR) of the
estimators Sd, following common practice in the signal
processing literature. By definition, the PSNR (usually



MASTER THESIS, M.SC. THEORETICAL PHYSICS, UAM 8

Fig. 4: All the spectra sample used to compare the performance of the algorithms explain along the one proposed in this
work, FABADA. The left spectrum is a Kurucz model with an effective temperature of Teff = 11500K, metallicity
z = 0.1 and a surface gravity of log g = 5.0. The middle one is from the supernova remnant N132D in the Large
Magellanic Cloud. An the left one is from a pair of interacting galaxies (Arp 256) in the constellation of Cetus. The
first and last spectra were generated with the ASTROLIB PYSYNPHOT (Lim, 2015) Python package and the middle
one is a composition of five observations of the Faint Object Spectrograph (FOS) instrument of the Hubble Space
Telescope (HST).

Fig. 5: Battery of images used for the comparison procedure. From left to right, up to bottom the objects shown in
this figure are the Bubble nebula (NGC 7635), a galaxy cluster (Abell S1063), the Crab nebula (M1), the Eagle nebula
(M16), a spiral galaxy pair (NGC 4302 & 4298), the Ghost nebulae (IC 63), Saturn and a globular star cluster (NGC
1466). All these images are taken from the Hubble Space Telescope gallery and have been pre-procesed for the purpose
of time efficiency. In the left bottom corner is shown the name used to reference the image in this work.

expressed in decibels, dB) is related to the Mean Square
Error (MSE)

MSE(~S) =
1

ND

NDX

d=1

(Sd �Rd)
2 (24)

as
PSNR(~S) = 10 · log10

✓
2552

MSE

◆
, (25)

where 255 is the maximal possible value in our data. In
principle, a more faithful recovery of the real data should
yield smaller values of the MSE and higher values of
the PSNR. It is very important to note here that, as can

be readily seen in table II, only BM3D and FABADA
are completely parameter-free. In all other cases, the
parameters of each algorithm have been optimized to
to minimize the MSE (maximize the PSNR) of each
particular realisation of the input data. This implies that
their results are the best possible and should be regarded
as an upper limit to the performance of these algorithms,
since this kind of optimisation is only possible when the
correct solution is known.

Another metric that we have considered is the CPU time
used to generate the estimation of the real data. This time
corresponds to the final execution time for the given noise
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level in the Python implementation of the algorithms, once
the optimal parameters have been found, but it does not
include the time invested in the exploration of the relevant
parameter space, wich is considerably larger. All runs have
been carried out on a single processor with a 2.40 GHz
Intel i9-9980HK CPU along with 16Gb DDR4 2400 MHz
RAM memory.

IV. RESULTS

In this section, we present and discuss the experimental
results obtained by our algorithm. First of all, we investi-
gate the merits and drawbacks of the two model selection
prescriptions described in section II-B: the Single Model
SM(EMAX) that maximizes the average evidence, and
the Bayesian Model BM(EIP ) that combines all iterative
models, weighted by their average evidence, until this
quantity reaches an inflection point. Then we evaluate
the quality of signal recovery and compare it with the
results of other algorithms in terms of the Mean Square
Error (MSE) / Peak Signal-to-Noise Ratio (PSNR). As
we optimize the free parameters of other methods, we
also consider the number of iterations that minimizes the
MSE in each case, SM(MSEmin) and BM(MSEmin).
Finally, we also assess the performance of the different
algorithms in terms of CPU time efficiency.

A. Model Selection

Figure 6 shows a comparison between the average
evidence of our models for each iteration of the recovery
process of the bubble image with the MSE obtained
with the two variants of the algorithm, SM(EMAX) and
BM(EIP ). Different panels illustrate four different levels
of noise (� = 5, 25, 50, 95) with the MSE normalized by
the noise level. Vertical lines indicate the iterations where
the maximum and the inflection point of the average evi-
dence are achieved, along with the minimum normalized
MSE for both model selection variants.

This figure provides a visual example of the differences
between the two automatic stopping criteria implemented
in FABADA, based on the average evidence hE ii, and the
optimal solutions in terms of MSE. The interpretation of
the overall shape of these curves is fairly straightforward.
As the number of iterations increases, the quality of
the reconstruction initially improves (higher evidence and
lower MSE), but at some point smoothing starts to blur
the structures present in the image an the quality of the
solution drops.

The ideal correlation of these two parameters would
be that they reached the maximum and the minimum at
the same time, but as expected, life is more complicated.
For low noise levels, the SM might even overestimate
the optimal number of iterations, whereas the BM will
stop relatively close to its optimum. The difference in
MSE is not very high in either case. However, as the
level of noise increases, both prescriptions tend to severely
underestimate the optimal degree of smoothing, yielding a
much more significant difference in terms of the MSE of
the reconstructed signal. We also see that the SM(EMAX)
model always achieves its optimal solution slightly faster

than BM(EIP ) for any noise level, with comparable or
better MSE except at the lowest noise level � = 5 counts.

These trends are verified by all our test cases, as
summarized in figure 7, where the results in one dimension
(spectra) are plotted on the top panels, whereas the anal-
yses of astronomical images are displayed in the bottom
row. The left column compares the iteration number where
our models SM(EMAX) and BM(EIP ) have stopped with
the iteration where the optimal MSE is achieved (a one-
to-one relation is illustrated by a dotted line), whereas
relative differences in iteration number and model MSE
are shown in the middle column. In these panels, symbol
colors indicate the noise value (�) of the input data. The
right column plots the normalized MSE achieved by each
model selection prescription as a function of the noise
value.

As one may expect, fewer iterations are needed to find
the optimal solution for smaller values of the noise. While
our two stopping criteria correctly capture this trend,
they only coincide with the optimum MSE when it is
reached near ⇠ 10 iterations. Below that number (i.e. high
signal-to-noise ratio), the data are smoothed too much,
whereas the opposite happens as the noise increases. Even
if the selected models diverge from the optimal solution,
there seems to be a correlation, somewhat stronger in
two-dimensional images than in one-dimensional spectra,
that can be roughly approximated by a pure power law
whose slope would be steeper for the single model se-
lection SM(EMAX) than the Bayesian model BM(EIP ).
Although one could try to fit this correlation and find
an empirical recipe to estimate the optimal number of
iterations, we are not sure that minimizing the MSE is
the best strategy to keep all the information in the data
(see the discussion below).

In any case, it is seen both for the spectra data and
for the images that the Bayesian model requires more
iterations to achieve convergence, under any selection
criterion. This will always be true, since the Bayesian
prescription keeps memory of all previous estimates, and
therefore it has a larger ‘inertia’ with respect to the
original input data. While this is clearly a disadvantage
regarding the total execution time of the algorithm, it helps
it to adapt better to the structure of the data, providing
more smoothing where appropriate while keeping relevant
features, if present.

In terms of MSE (middle column), an excessive smooth-
ing (typical at high SNR) is roughly as bad (up to the order
of a few) as an underestimation of the optimal stopping
condition, which can be as large as an order of magnitude.
In practice, though, the problem is encountered more often
at high noise levels, as evidenced by both the central and
rightmost panels. It is only for a few instances that the
SM(EMAX) severely oversmooths the data. In general,
BM(EIP ) tends to perform better than SM(Emax) when
the signal-to-noise ratio is high, achieving slightly lower
values of the MSE. The situation reverses at high levels
of random noise, where the single models performs a
more aggressive smoothing. In any case, both prescriptions
could achieve significantly lower values of the MSE by
carrying out a much larger number of iterations, at the
expense of potentially missing informative features in the
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Fig. 6: Representation of the average evidence (13) for the models computed in the recovery process of the bubble image as a
function of the the number of iterations done by the implementation of FABADA for four different noise levels. From left to right,
top to bottom the noise levels are � = 5, 25, 50, 95 counts respectively. The iteration where the maximum of the average evidence
is reached is shown with a red dashed-dotted line while the inflection point is pointed out with a red dotted line. The normalized,
by the level of noise, Mean Square Error MSE (24) achieved by the two different criteria, the single selection model SM(EMAX)
(green dashed-dotted line) and the Bayesian combination model BM(EIP ) (green solid line) is also represented. The minimum
of MSE for these two models are shown by the dash-dotted vertical line and the dotted line, respectively. Both of the axis are in
logarithmic scale.

Fig. 7: Normalized Mean Square Error (MSE) and number of iteration produce by both of the models explained, the single
model SM(EMAX) (green circles) and the Bayesian model BM(EIP ) (blue squares) for the recover of all the data sample, 1D
astronomical spectra (top) and 2D astronomical images (bottom). In the left figure is shown the iteration at which the models have
stopped against the iteration where the minimum MSE is achieved. On the middle is represented the difference in normalized MSE
between the models and the optimal solution with the difference in iteration. The color code for these figure shows the noise level
of the input of the image in counts. In the right, is shown the normalize MSE for the models (filled symbols) and the optimal
solutions (unfilled symbols) for different noise levels. All of the axis are shown in logarithmic scale.

data.

Table III lists the MSE values achieved by each criterion
for every test problem and noise level. The BM(EIP ) only

supersedes SM(EMAX) in 46 out of the 209 examples (i.e.
22%). However, when the number of iterations is set to
optimize the MSE (not shown), this fraction increases to
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� / PSNR bubble crab eagle galaxies ghost cluster saturn stars Kurucz Model Arp256 SN132D

5 / 34,15 36,19 / 38,60 32,02 / 35,24 32,02 / 35,78 32,41 / 36,73 29,77 / 34,88 31,01 / 36,12 31,75 / 37,04 27,02 / 30,42 34,41 / 37,26 35,12 / 37,66 38,42 / 39,48

10 / 28,13 34,61 / 35,39 30,62 / 31,95 30,63 / 32,96 31,54 / 33,48 28,79 / 32,21 29,81 / 33,02 30,94 / 32,93 25,84 / 28,27 32,33 / 32,99 32,69 / 33,71 34,61 / 34,36

15 / 24,61 33,40 / 33,35 29,29 / 30,04 29,63 / 31,03 30,64 / 31,46 27,93 / 30,35 28,81 / 30,98 29,63 / 30,51 24,98 / 26,73 30,59 / 30,47 31,03 / 31,12 31,96 / 31,47

20 / 22,12 32,32 / 31,63 28,46 / 28,66 28,94 / 29,57 29,87 / 29,92 26,99 / 28,91 27,93 / 29,24 28,55 / 28,80 24,32 / 25,59 28,77 / 28,45 28,81 / 28,51 29,85 / 29,23

25 / 20,17 31,32 / 30,25 27,75 / 27,57 28,29 / 28,39 29,12 / 28,81 26,53 / 27,72 27,22 / 27,96 27,58 / 27,54 23,79 / 24,66 27,86 / 27,11 27,91 / 27,33 27,99 / 27,28

30 / 18,59 30,35 / 29,06 27,14 / 26,72 27,69 / 27,36 28,45 / 27,75 25,98 / 26,68 26,54 / 26,92 26,89 / 26,55 23,35 / 23,89 26,43 / 25,71 25,97 / 25,38 26,41 / 25,68

35 / 17,25 29,58 / 27,84 26,52 / 25,90 27,17 / 26,43 27,76 / 26,86 25,46 / 25,80 26,04 / 25,91 26,26 / 25,71 22,97 / 23,30 24,78 / 24,12 25,02 / 24,39 25,17 / 24,41

40 / 16,08 28,78 / 26,97 26,02 / 25,17 26,53 / 25,65 27,23 / 25,94 25,04 / 25,01 25,49 / 25,15 25,61 / 24,91 22,63 / 22,77 23,76 / 23,08 24,18 / 23,38 24,07 / 23,30

45 / 15,06 28,15 / 26,05 25,57 / 24,41 26,09 / 25,01 26,64 / 25,26 24,60 / 24,26 25,01 / 24,39 25,06 / 24,20 22,35 / 22,23 23,65 / 22,87 22,95 / 22,06 23,05 / 22,22

50 / 14,16 27,40 / 25,24 25,04 / 23,91 25,55 / 24,29 26,16 / 24,64 24,20 / 23,56 24,49 / 23,75 24,61 / 23,51 22,05 / 21,77 22,05 / 21,30 21,46 / 20,78 22,33 / 21,54

55 / 13,32 26,78 / 24,58 24,66 / 23,26 25,18 / 23,66 25,56 / 23,96 23,76 / 22,86 24,11 / 23,06 24,14 / 22,94 21,74 / 21,33 21,77 / 20,97 21,06 / 20,23 21,33 / 20,53

60 / 12,57 26,00 / 23,91 24,24 / 22,76 24,67 / 23,03 25,02 / 23,24 23,33 / 22,41 23,65 / 22,56 23,68 / 22,42 21,53 / 20,94 20,02 / 19,43 20,28 / 19,55 20,55 / 19,62

65 / 11,87 25,42 / 23,18 23,72 / 22,18 24,18 / 22,42 24,76 / 22,77 23,06 / 21,93 23,19 / 21,98 23,26 / 21,84 21,27 / 20,54 20,01 / 19,24 19,92 / 19,01 19,93 / 19,16

70 / 11,22 24,83 / 22,58 23,48 / 21,63 23,71 / 21,96 24,21 / 22,00 22,66 / 21,45 22,92 / 21,44 22,93 / 21,46 21,05 / 20,20 19,27 / 18,49 19,92 / 18,90 19,14 / 18,32

75 / 10,62 24,45 / 22,16 23,05 / 21,29 23,30 / 21,31 23,81 / 21,62 22,29 / 20,85 22,49 / 21,03 22,59 / 20,92 20,79 / 19,73 18,42 / 17,66 18,38 / 17,55 18,57 / 17,80

80 / 10,06 24,04 / 21,25 22,62 / 20,77 22,84 / 21,05 23,27 / 21,10 21,89 / 20,40 22,10 / 20,53 22,16 / 20,45 20,49 / 19,43 19,22 / 18,18 18,48 / 17,51 18,17 / 17,39

85 / 09,54 23,59 / 20,93 22,45 / 20,28 22,46 / 20,44 22,93 / 20,61 21,67 / 20,08 21,82 / 20,07 21,76 / 20,05 20,25 / 19,06 17,34 / 16,46 17,86 / 16,97 17,87 / 17,05

90 / 09,07 22,86 / 20,50 22,06 / 19,97 22,26 / 20,03 22,38 / 20,11 21,40 / 19,70 21,54 / 19,56 21,43 / 19,62 19,99 / 18,83 17,16 / 16,34 17,32 / 16,61 16,83 / 16,07

95 / 08,57 22,69 / 20,14 21,68 / 19,52 21,86 / 19,59 22,05 / 19,87 21,03 / 19,21 21,19 / 19,31 21,04 / 19,20 19,88 / 18,43 16,22 / 15,57 16,87 / 16,02 16,64 / 15,76

TABLE III: Peak signal to noise ratio values for the result of SM(EMAX) (left value) and BM(EIP ) (right value) for all the
data sample and the noise range. The first column indicates the value of the variance of the noise (�) in counts and the PSNR
of the noisy image. The bold values indicates that the highest values is achieved with SM(EMAX) method while the non-bold is
achieved by BM(EIP ).

Fig. 8: Estimations compute for the Crab nebula (top) and galaxy cluster (bottom) by FABADA with noise levels of � = 25, 80
counts, respectively. From left to right is shown the original image, the noisy image, the SM(EMAX) and BM(EIP ) models, and
also the optimal solutions of FABADA, SM(MSEmin), and BM(MSEmin). In top of the image is shown the PSNR (25) in
decibels (dB) computed for that estimation.

62% (130 out of 209), implying that the Bayesian model
has more potential to reduce the MSE, especially when
the original signal-to-noise ration is high. Its smoothing
is more conservative and requires more iterations, but
the reconstructed model is closer to the original solution.
For noisy data, the MSE metric always favors the more
aggressive smoothing carried out by the single model
SM(EMAX).

B. Quality of the reconstruction
We will now assess the ability of the different variants of

our algorithm to recover the underlying signal. In order to
facilitate the comparison with previous results reported in
the literature, we will use the Peak Signal-to-Noise Ratio
(PSNR) defined in expression (25) which is just a measure
of the Mean Squared Error (MSE), expressed in decibel
(dB).

The results of the different model selection criteria
are illustrated in figure 8, using the images of the Crab

nebula and the galaxy cluster as an example. The noise
levels are � = 25 and 80 counts, respectively, and the
PSNR achieved by each method is quoted at the top of
the corresponding panel. All models yield fairly similar
reconstructions for the high signal-to-noise image of the
Crab Nebula, and FABADA has been able to increase the
PSNR from the 20.19 dB of the noisy data to 28.83 dB for
SM(EMAX) and 28.37 dB for BM(EIP ). This represents
an improvement of almost one order of magnitude in MSE,
and it is close to the optimum model when the number of
iterations is adjusted a posteriori. For the noisy image of
the galaxy cluster, with an initial PSNR of 10.07 dB, the
effect of noise reduction is more noticeable. The maximum
possible PSNR would be 23.55 dB for SM(MSEmin),
once again with very little difference (0.03 dB) with
respect to the Bayesian model BM(MSEmin). However,
we notice that SM(EMAX) is able to achieve a PSNR of
22.38 dB, whereas BM(EIP ) only reaches 20.68 dB.
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Fig. 9: Comparison example of the Eagle nebula for all the methods explained in III-A for a noise level of � = 45 counts. From
top to bottom, the first row of images shown are the real image, the noisy image, the recoveries found with SM(EMAX) and
BM(EIP ) model, and the optimal solutions SM(MSEmin), and BM(MSEmin). The second row again from left to right the
images shown are the recovery using the Median, Savitzky-Golay, low-pass frequency, and Photoshop filter while the last one of
this row is the BM3D recovery. In the last block is listed, from top to bottom, and left to right the PSNR of these recoveries.

In any case, the improvement in image quality is notable
for both models. The images returned by SM(EMAX) are
smoother, while BM(EIP ) is more conservative. Thus,
the MSE (or PSNR) tends to favor the former, although
visual inspection hints that some details, as well as the
overall sharpness of the image, may be somewhat blurred
in the smoothest models. The Bayesian models do a better
job at keeping any significant structures and/or jumps in
the original data, losing less information, at the expense
of a less powerful noise reduction that results in more
significant image ‘grain’. This effect is highlighted in
the close-ups of the images, focusing on one of the
characteristic filaments of the Crab nebula and a small
group of galaxies in the cluster; all these structures seem
to be slightly more defined in the Bayesian than in the
single models.

Similar trends are observed in other images and noise
levels (a further example is provided in figure 9) and one-
dimensional spectra (figure 10), where BM(EIP ) seems to
adapt more faithfully to spectral features such as emission
and absorption lines, even in presence of significant noise.
These results make us think that perhaps the MSE is not
the optimal metric to gauge the quality of the recovered
solution or, more likely, that it should be complemented
with another test statistic that quantifies information loss
and/or gives more weight to informative features.

Figures 9 and 10 also plot the results obtained by the
other algorithms described in Section III-A: the median,
Savitzky-Golay (SGF), low-pass frequency (LPFF), Photo-
shop noise reduction, and block-matching (BM3D) filters
for the images, and the median, SGF, locally weighted
scatterplot smoothing (LOWESS), and LPFF for spectra.

Figure 9 shows the recovery of the Eagle nebula image,
along the PSNR values obtained and a close-up of some
structures to see whether the smoothing methods can
reproduce their shape and edges. The best reconstruction in
terms of the MSE is by the BM3D method, that improves
the PSNR from 15.0.7 dB to 29.38 dB, around one and
a half orders of magnitude of noise reduction. This is
around 50% more than the recovery with the optimal

solution of FABADA (27.60 dB), and around twice the
recovery of FABADA’s models, BM(EIP ) (25.40 dB) and
SM(EMAX) (26.82 dB). While the optimal solutions of
FABADA have closer results to the state of the art method
(BM3D) for this example, there is still a lot of room for
improvement for the BM(EIP ) and SM(EMAX) models.

The classical filters (median, SGF, LPFF) yield values
comparable to SM(EMAX) and slightly above BM(EIP )
when their parameters are tuned to minimize the MSE,
and about ⇡ 1 dB (⇠ 25%) below FABADA’s optimal
solutions. The best possible solution for Photoshop is well
below any of the other methods in terms of the MSE, with
a difference of almost an order of magnitude.

On the other hand, it is interesting to note how, re-
gardless of the MSE statistic, the median, SGF, and LPFF
virtually miss the entire shape of the zoomed structure,
while FABADA, Photoshop, and BM3D recover a more
realistic shape. Lacking a quantitative comparison, our
subjective opinion based on visual inspection would be
that BM(EIP ) and Photoshop provide a somewhat better
reconstruction than BM3D in terms of fidelity to the
original structure. In particular, several edges in the latter
seem to be a little bit more blurry, artificially ‘straightened’
and/or aligned with the image axes; more importantly,
the top left ‘arm’ is an artifact that has been amplified
from a random statistical fluctuation of the noise, but
was not present in the original data. Regarding overall
visual appearance of the whole image, BM3D has been
extremely successful in eliminating the high-frequency
‘grain’, albeit the smooth areas of the real image are
transformed into more staggered gradients. This feature
might be inherent to the BM3D algorithm, whose aim is
to classify similar square sections of the image into groups,
thus resulting in patches with relative constant gradients
and/or straight edges. One may imagine that Photoshop,
on the other extreme, tries to avoid this kind of visual
effect, and therefore carries an extremely conservative
smoothing procedure, but this hypothesis is difficult to
test due to the private nature of the algorithm and the
lack of proper documentation. The fully automatic model
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Fig. 10: Comparison example of the spectra data sample for all the methods explained in III-A. The top figure are the recoveries
(blue line) found of the Arp 256 spectrum (blue line) with a noise level of � = 10 (red line). In the first row is represented the
FABADA models and optimal solutions either for the single and Bayesian methods. In the second row are shown the recoveries found
with the standards methods explained in III-A. From left to right, the Savitzky-Golay, the locally weighted scatterplot smoothing,
the low-pass frequency filter, and the median methods are shown. With the same color code, and the same distribution, the middle
set of figures are the recovery of the Kurucz model with a noise level of � = 25. And the last one for the SN132D spectrum with
a noise level of � = 50.

selection methods implemented in FABADA, based on the
mean evidence, seem to offer a reasonable compromise
solution. Models SM(MSEmin) and BM(MSEmin) are
able to reduce the MSE at the cost of significantly blurring
the image. The effect is not as severe as in the standard
methods (especially the median and SGF), but we do
think that this aspect of the image reconstruction is not
adequately captured by the MSE, and complementary test
statistics should be sought.

This discussion becomes even more relevant in the
context of astrophysical spectra. Figure 10 displays several
examples, for the three different spectra with different
noise levels: � = 10 counts for the Arp 256 spectrum (top),

25 for the Kurucz model (middle), and 50 for SN132D.
At high signal-to-noise ratio, all algorithms display not

only a similar performance, but actually converge to very
similar solutions. The highest value of PSNR is obtained
by the optimized Bayesian model BM(MSEmin), but the
improvement with respect to the originally high quality of
the data is necessarily modest in all cases. Regarding the
ability to reproduce the relevant structures, the close-up
shows a zoom into the OIII-H� window at ⇠ 5000 Å,
where all algorithms are able to correctly trace the pres-
ence of the three emission lines that are present, albeit
with somewhat reduced amplitude, and fail, as expected,
to realize that one of the peaks in the noisy measurements
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(a)

(b)

Fig. 11: Peak Signal to Noise Ratios (PSNR) obtained for all the data samples and noise ranges considered in the
comparison process. In the top set of figures (a) is shown the results from the spectra sample while in (b) is represented
the results from the image sample. Each figure of both groups is labeled with the reference name given. The red color
corresponds to FABADA’s models and optimal solutions proposed in this work and the dashed yellow line represents
the PSNR of the noisy data. Dotted lines with unfilled symbols refers to the optimized methods SM(MSEmin) (�),
BM(MSEmin) (⇤), SGF (7), LOWESS in 1D and Photoshop in 2D (⌃), LPFF ( ) and median (4) while solid lines
with filled symbols refers to the non-parametric methods SM(EMAX) ( ), BM(EIP ) (⌅) and BM3D (H).

is due to a random statistical fluctuation.

More significant differences appear for the Kurucz
stellar atmosphere on the middle row, where it becomes
more difficult to discriminate significant spectral features
from Gaussian random noise. Zooming into the spectral
region of the Balmer break at ⇠ 4000 Å, all models
display a similar behavior regarding the overall shape of
the continuum, and they are able to correctly reproduce
the break. The Balmer absorption lines, though, are much
more difficult to recover, and all the methods that are tuned
to optimize the MSE fail to trace them, although hints of
H� and H� are still present in the smoothed models. Only
the evidence-based criteria SM(EMAX) and BM(EIP )
are able to provide a good description of these features

with this level of noise in the input data, albeit further
lines along the Balmer series are completely lost.

If we now turn to the recovery ot the SN132D spectrum,
we can see how the PSNR of LPFF, SGF and LOWESS
is higher than the FABADA models, but basically all the
spectral information is gone. At these high levels of noise,
the MSE metric is absolutely inadequate to assess the
quality of reconstructed emission line spectra, because
it incurs in minimal penalty for failing to reproduce a
handful of peaks that are barely statistically significant.
Both criteria in the standard FABADA implementation are
much more conservative, and keep a lot of the random
fluctuations (hence their lower PSNR) together with the
actual signal. It is somewhat remarkable that, even when
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optimized in terms of the MSE, FABADA and the median
filter manage to recover some of the brightest lines, at
variance with the other methods. Let us please stress once
again that this does not necessarily imply a failure of the
latter, but of the MSE as a goodness-of-fit indicator. On the
other hand, it does highlight the robustness of FABADA
and the median filter in this respect.

Focusing on the PSNR alone, the results for all data
samples, noise levels, and methods are plotted as a func-
tion of � in figure 11a for one-dimensional spectra and
figure 11b for two-dimensional images.

In one dimension, we can easily see that the highest
values of PSNR are achieved with the optimized Bayesian
model of FABADA (BM(MSEmin)), specifically 30 of
the 57 (53%) tries, followed by the (also optimized)
low-pass frequency filter (LPFF), who obtained the best
PSNR for 24 (42%) estimations. The remaining 3 (5%)
correspond to the optimize single model of FABADA
(SM(MSEmin)). If we don’t take into account the opti-
mal models of FABADA, 51 (89%) of the highest values
are achieved with the optimal models of LPFF and the rest
6 (11%) with FABADA’s Bayesian model (BM(EIP )).

The LPFF achieves the best estimation evaluated with
the MSE for the highest values of noise, specifically for
� ' 50. We can again see how the models of FABADA
diverge from the optimal solution for these higher values
of noise. However, for lower noise levels, FABADA’s mod-
els have similar performance than the optimal solutions
of the standard models until � / 25. Above this level,
the PSNR values are lower than all the standard models.
Although high PSNR values can directly associate with
best recoveries, we have to take into account that for
almost all of the standard methods, the solution achieved
for higher values of noise in the SN132D spectrum has
lost all the information contained. As we have just shown,
these optimized solutions were not able to recover any
emission line and were more similar to a straight line than
to an astrophysical spectrum (see figure 10).

For the two-dimensional images (figure 11b) we can
see that BM3D reaches the highest values of PSNR for
almost all combinations of target and noise levels. For
139 out of 152 tests (91%), the highest values were
achieved by BM3D. The remaining 13 (9%) correspond
to FABADA’s optimal models, BM(MSEmin) (12) and
SM(MSEmin) (1). Although this gives an average of
1.9 dB higher values of PSNR than the best FABADA
result, we can see that this difference varies for different
images. For example, in the Saturn image the values of
PSNR are about 10 dB higher than the rest, one order of
magnitude in terms of the MSE, while for the star images
there is a much lower difference and even for higher levels
of noise does not dominate. This variance is driven by the
grouping method, where for periodic images (or images
with repetitive patterns), bigger groups can be formed that
perform better in a collaborative filter. Such patterns can
be easily found in Saturn’s image (in the atmosphere of
the planet as well as its rings), whereas they are virtually
absent in the stars image.

The difference between FABADA models and the other
(optimized) solutions is much lower than for the spectra.
Excluding BM3D from the comparison, the highest values

are distributed in the following way: BM(MSEmin)
accounts for 68 (45%), followed by LPFF with 43 (28%),
then SM(MSEmin) with 29 (19%), and finally Photo-
shop with 12 (8%) in its favor. We can see that almost
all the optimized solutions of the standard models behave
in the same way, and have obtained similar results except
for Photoshop. Photoshop achieves higher values of PSNR
for lower values of noise (� / 15) while for higher noise
levels it tends to perform much worse. This might be
due to an optimization for lower noise levels, as they are
arguably the most common in its domain of application.

Discarding also the optimized FABADA models in
order to compare our evidence-based criteria with the
optimized standard methods, we find that BM(EIP ) and
SM(EMAX) only reach the highest PSNR for 24 (16%)
and 7 (5%) recoveries, respectively, although the behavior
of all algorithms is fairly similar, and the average differ-
ence in PSNR in favor of one or the other is often not more
than 1� 1.5 dB. In general, FABADA’s SM(EMAX) and
BM(EIP ) models tend to have higher values of PSNR for
� / 40. Above this level, the evidence-based models start
to diverge from the optimal MSE solution. As can be seen
in the zoomed insets, may be still considered competitive
with SGF and the median filter in this regime, but they
are below LPFF in terms of MSE.

C. Time Efficiency

For the whole sample of the recoveries process shown in
the previous section, we have computed the time consumed
for each of the methods to produce the estimation of the
real data. The results can be shown, with the same color
codes, in the figures 12a for the spectra sample and 12b
for the image sample. For the optimized standard models,
we have only taken into account the time consumed by the
run with the optimal parameters, the optimization process
is not considered. We weren’t able to measure the time
process for Photoshop. In table IV is listed, from lowest
to highest, the average times taken in one dimension ht1Di
and for two dimension ht2Di data sample. We can see that
the behavior of the implementations is similar for both of
the dimensions for all the methods. As expected, the fastest
method is the SGF, due to its simple implementation
where it only has to carry out a convolution between the
coefficients, theoretically computed, and the data. Then is
followed by FABADA’s single SM(EMAX) and Bayesian
BM(EIP ) models, and followed by the median. In the one
dimensional implementation, the median filter oscillates
between FABADA’s models, which depends on the box
size used. The next fastest algorithm is the LPFF which
also varies between the spectra data sample due to the
difference in the length of the data. While SN132D had
around 8000 data points, Arp 256 had 2300 data points,
and the Kurucz model only had around 1000. We also
see that for the FABADA optimal models the amount of
time spent has a dependence on the noise levels, being
slower for higher values of noise. This can be understood
with the results already shown, where we see that for the
single and Bayesian models, there is no much difference
in the iterations done for most noises while for the optimal
models it requires many iterations for higher noise levels,
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(a)

(b)

Fig. 12: Execution time, in seconds, taken to produce the recovered results as a function of the noise level (�) for each
of the data sample and methods. In the set of figures 12a is shown the results for each of the spectra sample while in
the set of figures 12b is shown the results obtained for the images sample. Each figure is labeled with the reference
name of the data, and the color and symbols codes used are the same as in figure 11.

producing the divergence of the iteration number between
the models and the optimal solution. It also varies with
the image, where it can vary the maximum and the
inflection point of the average evidence and the iterations
need to find the optimal solution. It is also interesting
to see how this also affects highest values obtained in
the one dimensional average. While the MSE is trying to
destroy the information and achieve a smoother spectrum
without any spectral line, our models is trying to save
these features with the effects of the evidence. This is
translate into much more iterations and even more for
the Bayesian optimal solution, where its harder to get
rid of these features due to the weighted average. The
LOWESS algorithm have also a big dependence on the
number of data points like LPFF, and it more or less took
the same time than the slowest FABADA’s optimal model
BM(MSEmin). The biggest difference seen is with the

BM3D model, where is the only model which is always
above the second, with the highest average of 4.3s. This
implies a difference of about four times two orders of
magnitude, in average, for FABADA’s single and Bayesian
model and for the single optimal model while for the
optimal Bayesian model the difference oscillates from two
orders of magnitude to 5 times due to the high oscillation
of these models. This might not be seen as an important as
it is, taking into account that we are on the second’s scale,
but these results have been obtained with a 512⇥512 pixel
image which corresponds to a really low resolution for
nowadays. The common resolution for images is around
⇡ 3000 � 4000 pixels which are not only resolutions for
professional CCDs but also for most nowadays telephones.
This is an increase in almost one order of magnitude
per side, two from the total number of pixels. Assuming
an ideal linear escalation with the number of pixels N ,
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Method ht1Di ht2Di

SGF 0.5 · 10�3 1.7 · 10�2

SM(EMAX) 2.3 · 10�3s 6.5 · 10�2

BM(EIP ) 4.8 · 10�3 0.12

Median 3.1 · 10�3 0.7

LPFF 0.015 0.87

SM(MSEmin) 0.09 0.08

BM(MSEmin) 0.3 0.77

LOWESS 0.17 —

BM3D — 4.81

TABLE IV: Average time taken to generate the recoveries
for method given. These time have been computed from
the results of figure 12. The values are listed from lowest
to highest values, i.e, from fastest to slowest method.

BM3D would take around 7 min for an image with this
resolution while for FABADA would only take around
20 s. Using the original resolution of the Crab Nebula
image, 4291 ⇥ 4291 pixels, BM3D took 10 minutes
while for BM(EIP ) model took only 40s which implies
it might have even bigger scaling. If we scale up a little
more, and if we want to process the whole images of a
survey, let’s say like Pan-STARRS, this relationship would
become more important. Pan-STARRS has 3⇡ steradians
of the sky covered and a scale of 0.26 ”/pixel. This
survey contains around ⇡ 6 · 1012 pixels and assuming
a linear escalation with the number of pixels, which in
reality is probable bigger, BM3D would take, at least,
3.48 years while FABADA’s BM(EIP ) would take only
31 days. In these kinds of automatic processes the only
possible models used have to be nonparametric and the
time efficiency plays a major role. While fast algorithms
as FABADA, could deal with this heavy operation with
multiple processors nowadays computers within no more
than some days of CPU time, low methods would need to
be executed in supercomputers in order to decrease the
execution time to days which would become the main
reason to be ruled out of this kind of tasks.

V. CONCLUSIONS AND FUTURE WORK

In this work we present two new approaches to au-
tomate model selection in our Fully Adaptive Bayesian
Algorithm for Data Analysis (FABADA): the single model
SM(EMAX) maximizes the average evidence and the
Bayesian model BM(EIP ) combines all the iterations of
the algorithm according to Bayes’ theorem. We compare
both prescriptions with other methods that are representa-
tive of the current state of the art in image analysis and
digital signal processing.

Our results support the viability of FABADA as a
competitive alternative, especially taking into account that
is completely parameter-free. The two prescriptions devel-
oped in the present M.Sc. thesis appear to produce reliable
smoothing results that adapt to the structure present in
the input data. For the sake of a fairer comparison, we
also investigate the FABADA solutions that minimized
the Mean Square Error (MSE), as we did to set the

parameters of the standard methods. The differences are
minimal at high signal-to-noise ratios, but they become
more significant as the noise increases.

However, the optimal solution in terms of the MSE
might discard valuable information contained in the input
data. As seen in figures 9 and 10, the MSE might not be
the best metric for quantifying the recovery of physical
structures within the data, leading to over-smoothing and
loss of significant structures at low SNR. FABADA was
meant to recover information in a statistically robust way,
and our automatic prescriptions perform a more conser-
vative smoothing. Even when the algorithm is optimized
with respect to the MSE, traces of the most prominent
features can still be found in the recovered solution. On
the other hand, it is also of major importance to find a
metric that strongly penalizes the introduction of artificial
features that might be later interpreted as a real signal.
This is indeed a potential pitfall for BM3D, whose results
in two dimensions clearly stand out over all other methods,
including FABADA, in terms of MSE.

Besides the quality of the reconstruction, execution time
might become a significant issue for sufficiently large
data sets. BM3D is fairly computationally intensive in this
respect. The standard algorithms are also very fast, but the
optimization process (which is not possible in a real case)
would require a potentially time-consuming exploration of
their parameter space. The two prescriptions present here
are parameter-free, and they can considerably improve the
PSNR within modest CPU times. These two properties
make FABADA a good candidate, for instance, for video
noise reduction: for 2 minutes at 4K resolution and 20
frames per second, an extrapolation of the results shown
in figure 12b yields 1.4 h in a single processor without
any previous analysis of the video.

Further work along these lines should focus on several
improvements. First, our results evidence that the qual-
ity of the FABADA solution could benefit from aspects
borrowed from the other methods, such as including
information about the gradients of the image into the
prior probabilities (BM3D) or using another smoothing
techniques (SGF, LPFF) instead of the moving median to
produce the priors of each new iteration. Other ideas that
would be worth exploring would be to test the statistical
distribution of the residuals and adapt the iteration process
to each pixel evaluating the optimal number of iterations
on an individual basis. For the time being, a new, fully
functional automatic method of noise reduction has been
generated, which can be applied in its current state to any
type of one and two-dimensional data.
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