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Abstract

In the last decade, deep neural networks have become remarkably popular due to the great
result that they perform in practice. However, why they are so empirically e�cient is uncertain
so far. In this thesis, we try to clarify the black box of deep learning. For this purpose, we
�rst study the approximation ability of neural networks in terms of their depth and the number
of weights to deduce that deep neural networks can perform faster convergence than shallow
networks. Then, we focus on one of the most used learning process named Stochastic Gradient
Descent. We approximate the learning iteration by a stochastic process in order to analyse its
asymptotic behaviour. Finally, we conclude that this method implicitly performs variational
inference and regularization, which are quite desired properties in supervised learning.
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CHAPTER 1

Introduction

In this age of digitalization that we are living, the amount of data that each of us generates
has increased extremely. In order to deal with such quantities of information and thanks to
the computation power that we have nowadays, di�erent arti�cial intelligence tasks have been
developed such as image classi�cation and speech recognition.

In the last decades, deep learning has been the main tool that has improved the-state-of-
the-art in this subject. This technique arises from the idea of mimicking the neural activity of
human brain by a computer. In the middle of 20th century, neuropsychologist D. Hebb (1904-
1985) created a learning hypothesis based on the mechanism of neuronal plasticity that became
known as Hebbian learning. The main idea of this theory was that when two neurons or systems
of neurons are repeatedly activated at the same time, they will tend to become associated so
that activity in one facilitates activity in the other.

Inspired by this research, F. Rosenblatt constructed the electronic device named Perceptron
in 1958, which showed the ability to learn in accordance with associationism. He introduced
the perceptron as a binary classi�er within the context of vision system. Its mechanism can be
described as follows:

• Consider an input data given by a vector x ∈ Rn.

• Apply an a�ne transformation T : Rn → R, de�ned by T (x) =
∑n

i=1wixi +w0, where the
elements wi of the matrix associated to T are called weights.

• Finally, an activation function σ : R→ R, which is a non-linear function, is used in order to
classify the data. Initially, a common choice was the Heaviside function, but also smoother
functions such as tanh and the logistic function were considered.
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Figure 1.1: Visualization of perceptron.
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2 Introduction

The learning process that the perceptron performs is based on considering the weights as
parameters to be chosen in order to obtain a better classi�cation. Therefore, given a training
sample, those weights are modi�ed progressively by minimization of the error of classi�cation.
This leads to an early implementation of so-called supervised classi�cation.

The perceptron is a linear classi�er, which means that it is useful only if the data can
be appropriately separated by a hyperplane. However, this limitation was overcome with the
appearance of the neural networks. The main idea was just to put several perceptrons together
in parallel in order to get a vector-valued perceptron, and in series, in order to obtain a network
made of many �layers� of neurons.

In this case, the number of a�ne transformations Tk : Rnk−1 → Rnk is equal to the number
of layers of the network and the activation function is applied in each neuron of the layers. Since
we want to generalize the functions that can be constructed with this architecture, we do not
use the activation function in the output. Notice that if we want to obtain a binary classi�er, it
su�ces to apply a threshold I{x>a} to the output.

Therefore, for a �xed vector of weights W , the neural network represents a function
ηW : Rn0 → RnL given by the composition of a�ne transformations and the activation function:

ηW (x) = TL ◦ σ ◦ TL−1 ◦ · · · ◦ σ ◦ T1(x).

Let remark that all layers in between the input and the output are called �hidden�. The power
of this new tool was shown by the Universal Approximation Theorem, proved by G. Cybenko
in 1989. The theorem states that any continuous function with compact support on Rn can
be approximated with arbitrarily small error by a 2-layer network (that is, a network with 1
hidden layer) with a sigmoid-type activation function. Nevertheless, the width of the hidden
layer will increase exponentially as the error get smaller, which represents a strong limitation on
any computational implementation of this network.

As we will see in Chapter 2, neural networks with many layers, that is, deep neural networks,
are able to approximate continuous functions with optimal rate of convergence. The aim of the
�rst part of this thesis will be to prove this statement given by D. Yarotsky in 2018, which
suggest that deep networks can be much more e�cient than shallow networks.

On the other hand, the main issue that has been discussed about neural networks is the
learning process. Once we have that the architecture of the neural network is good enough, how
can we choose the weights W in order to get the desired function? This is the essential question
about this topic that we will try to answer. Notice that in image recognition for example, the
function that we are looking for is an underlying classi�er of images which is unknown, so we
desire to get the optimal values of the weights based on a sample of images previously classi�ed.

The most common process of choosing, or �learning�, the weights is called Backpropagation,
announced by D. Rumelhart, G. Hinton and R. Williams in 1986. As we will show in Chapter 3,
it is a method based on gradient descent, but instead of updating all the parameters with respect
to the error, backpropagation �rst propagates the error term from output layer back to the layer
at which parameters need to be updated and then uses standard gradient descent to update
parameters with respect to the propagated error. Intuitively, the derivation of backpropagation
is about organizing the terms when the gradient is expressed with the chain rule.

This classic method leads us to an open problem: How can we ensure that optimizing the
weights does not reach a local minimum of the error which is not global? Convexity provides an
answer to this question, but in high-dimensional spaces convexity properties are quite di�cult to
obtain. That is an instance of what is known as the curse of dimensionality. Moreover, we cannot
compute the error of the whole training sample at once and then look for the best weights, since
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Figure 1.2: Fully-connected neural network with 3 layers, or with 2 hidden layers.

the computational cost would be prohibitively expensive. In consequence, the method that we
study is a slight modi�cation of the classic method which is called Stochastic Gradient Descent

(SGD).

As we will see in Chapter 3, the underlying idea is to implement some randomness in the
choice of elements of the training sample to be used in each step of the optimization. In this
way, the evaluation of the error, and hence the update of the weights, does not have any order
with respect to the training sample, which will be the key to avoid local minimums.

Introducing randomness in the backpropagation leads us to consider the framework of stochas-
tic processes. In Chapter 4, we will present fundamental concepts about this theory and Itô's
calculus. There, the Fokker-Planck equation will play an important role, since it will describe
the probability density function of those stochastic processes.

Then, in Chapter 5, we will present a model of the Stochastic Gradient Descent in terms of
stochastic di�erential equations given by Li, Tai and Weinan in 2017. The basic idea is to de�ne
a continuous-time stochastic model whose Euler discretization can be seen as an approximation
of the SGD iteration rule. Consequently, we will describe what is considered as approximation
in this problem and we will show a proof that the considered model satis�es those conditions.

Following the results of P. Chaudhari and S. Soatto in 2018, in the last chapter we will prove
that SGD implicitly performs variational inference, as is often claimed informally in literature.
Furthermore, we will show that SGD maximizes an entropic term which can be considered as
an implicit regularization. This would explain why SGD has such generalization properties in
practice.

Thus, in this thesis we will present the mathematical basis of deep neural network and its
approximation and learning properties.





CHAPTER 2

Deep approximation

As it was announced in the introduction, the aim of this chapter is to show the approximation
power of deep neural networks. With this purpose, we will show the bene�ts of choosing the
Recti�ed Linear Unit as activation function and we will prove upper bounds for the approximation
error given by estimates of the Vapnik-Chervonenkis dimension of networks. But �rst, let us
present some basic concepts of learning complexity.

2.1. Learning complexity

Learning algorithms

A network N is a machine capable of taking on a number of �states�, each of which represents
a function computable by the machine. They give functions from X to Y , that normally are
X ⊂ Rd and Y = {0, 1}. Nevertheless, all the statements can be easily generalised to Y = R.

Let Ω be the set of states, then N give us a function F : Ω × X → Y . For any ω ∈ Ω,
hω : X → Y is the function represented by state ω, given by hω(x) = F (ω, x).

The set of functions computable by N is H = {hω : ω ∈ Ω}.

We consider a training sample of length m, z = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m and we
denoted by P a probability distribution on X × Y . Then, given a function h ∈ H, the error of
h with respect to P is de�ned as follows

erP (h) = P{(x, y) ∈ X × Y : h(x) 6= y}.

Similarly, the observed error on the sample z is

êrz(h) =
1

m
|{i : 1 ≤ i ≤ m and h(xi) 6= yi}|.

We de�ne the approximation error of the class H as the minimum error that a function in
H can give, that is,

optP (H) = inf
h∈H

erP (h).

The aim of the learning process is, given ε > 0, produce an h ∈ H such that

erP (h) < optP (H) + ε.

5



6 Deep approximation

In order to construct a more general model which can consider noise in the data, we formalize
the concept of learning as a process that can satisfy this condition above with high probability
for su�ciently large training samples.

De�nition 2.1. Suppose that H is a class of functions that map from a set X to {0, 1}. A
learning algorithm L for H is a function

L :
∞⋃
m=1

(X × Y )m → H

with the following property:

Given ε, δ ∈ (0, 1), there exists m0(ε, δ) such that if m ≥ m0(ε, δ) then, for any probability
distribution P , if z is a sample of length m drawn according to Pm, we have

erP (L(z)) < optP (H) + ε,

with probability 1− δ, that is

Pm{z : erP (L(z))− optP (H) < ε} > 1− δ.

Equivalently, there exists a function ε0(m, δ) such that for all m, δ and P , with probability at
least 1− δ over z ∈ (X × Y )m choosing accordingly with Pm,

erP (L(z)) < optP (H) + ε0(m, δ)

and for all δ ∈ (0, 1), ε0(m, δ) approaches to zero as m tends to in�nity.

De�nition 2.2. We say that H is learnable if there is a learning algorithm for H.

One measure of e�ciency of a learning algorithm is the minimum sample size m0(ε, δ) su�-
cient for (ε, δ)-learning.

De�nition 2.3. We de�ne the sample complexity function mL(ε, δ) of L as

mL(ε, δ) = min{m : m is a su�cient sample size for (ε, δ)-learning H}

It is also useful to de�ne the inherent sample complexity mH(ε, δ) of the learning problem for H:

mH(ε, δ) = min
L
mL(ε, δ),

where the minimum is taken over all learning algorithms for H.

Analogously, we de�ne the estimation error εL(m, δ) of L to be the smallest possible estima-
tion error bound.

Vapnik-Chervonenkis dimension

Consider a �nite subset S ⊂ X. For a class of functions H from X to {0, 1}, the restriction of H
to the set S is denoted by H|S . If |H|S | = 2|S| then H contains all the classi�ers of S, therefore
that is a good way to measure the classi�cation complexity of H with respect to S.

De�nition 2.4. The growth function of H, ΠH : N→ N, is de�ned as

ΠH(m) = max{|H|S | : S ⊂ X and |S| = m}.
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Notice that ΠH(m) ≤ 2m for all m and if H is �nite then ΠH(m) ≤ |H| with equality for a
su�ciently large m. Thus, this function can be considered to be a re�nement of the notion of
cardinality that is applicable to in�nite sets of functions.

De�nition 2.5. Given a �nite set S ⊂ X, we say that H shatters S if H contains all the
dichotomies over S, that is, if |H|S | = 2|S|.

De�nition 2.6. (Vapnik-Chervonenkis dimension). We de�ne the VC-dimension of H, a
set of functions from X to {0, 1}, as

VCdim(H) = max{|S| : H shatters S ⊂ X},

or equivalently,

VCdim(H) = max{m : ΠH(m) = 2m}.

If H is a class of real-valued functions, we set VCdim(H) :=VCdim(Θ(H)), where

Θ(H) = {Θ(h) : h ∈ H}

and Θ(x) = 1 if x > 0, Θ(h) = 0 if x ≤ 0.

The relation between VC-dimension and the sample complexity is very tight. For ε and δ
small(<1/40), we show this relation by the following inequalities from [Anthony-Barlett] for any
learning algorithm L for H,

C1

ε2

(
VCdim(H) + log

(
1

δ

))
≤ mL(ε, δ) ≤ C2

ε2

(
VCdim(H) + log

(
1

δ

))
(2.1)

Moreover, a direct relationship between VC-dimension and learnability is summarized by the
following theorem of [Anthony-Barlett, Theorem 5.5].

Theorem 2.7. For a class H of functions mapping from X to {0, 1}, the following statements

are equivalent:

i) H is learnable.

ii) mH(ε, δ) = O
(

1
ε2

log
(

1
δ

))
iii) VCdim(H) < +∞

iv) ΠH(m) is bounded by a polynomial in m.

A class of functions H of special interest is the one which ReLU networks can represent, as we
will discuss in the next section. Here we recall a recent result by [Barlett et al.], which provides
a sharp estimate on VC-dimension.

Theorem 2.8. Let VCdim(W,L) be de�ned as the largest VC-dimension of ReLU network with

W weights and L layers. Then, the following inequality holds

cWL log(W/L) ≤ VCdim(W,L) ≤ CWL log(W ).(2.2)
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2.2. ReLU Calculus

In this section we focus on ReLU networks. We will show that they are equivalent to any network
with a continuous piecewise linear activation function. However, this equivalence is not free of
charge, we will have to increase the number of units, weights and layers, and we will try to bound
this growth. But �rst, let us de�ne ReLU networks.

De�nition 2.9. For any number of layers L, input and output dimensions, n0 and nL respec-
tively, a Rn0 → RnL ReLU network is given by a sequence of L − 1 numbers n1, . . . , nL−1

representing widths of hidden layers, a set of L−1 a�ne transformations Ti : Rni−1 → Rni and a
linear transformation TL : RnL−1 → RnL corresponding to the weights of the hidden layers. This
L-layer ReLU network represents the function f : Rn0 → RnL de�ned as

f = TL ◦ σ ◦ TL−1 ◦ · · · ◦ T2 ◦ σ ◦ T1,(2.3)

where σ(x) = (max{0, x1}, . . . ,max{0, xn}). For a ReLU network, we de�ned its size as n1 +
· · ·+ nL−1, its depth as L and its width as max{n1, . . . , nL−1}.

Let us show some basic results about ReLU networks that will be useful.

Lemma 2.10. Let f1 : Rn1 → Rn2 be represented by a ReLU network with depth L1 and size

s1, and let f2 : Rn2 → Rn3 be represented by a ReLU network with depth L2 and size s2. Then,

f2 ◦ f1 can be represented by a ReLU network with depth L1 + L2 − 1 and size s1 + s2.

Proof. The result follows from (2.3),

f2 ◦ f1 = (T 2
L2
◦ σ ◦ T 2

L2−1 ◦ · · · ◦ T 2
2 ◦ σ ◦ T 2

1 ) ◦ (T 1
L1
◦ σ ◦ T 1

L1−1 ◦ · · · ◦ T 1
2 ◦ σ ◦ T 1

1 )

= T 2
L2
◦ σ ◦ T 2

L2−1 ◦ · · · ◦ T 2
2 ◦ σ ◦ T ′ ◦ σ ◦ T 1

L1−1 ◦ · · · ◦ T 1
2 ◦ σ ◦ T 1

1 ,

where T ′ = T 2
1 ◦ T 1

L1
. �

Lemma 2.11. Let f1 : Rn1 → Rn2 be represented by a ReLU network with depth L and size

s1, and let f2 : Rn2 → Rn3 be represented by a ReLU network with depth L and size s2. Then,

f1 + f2 can be represented by a ReLU network with depth L and size s1 + s2.

Proof. We just put the two ReLUs in parallel with the same inputs and combine the outputs
to get the sum.

�

Lemma 2.12. Let f1, · · · , fm : Rn → R be functions that can be represented by ReLU networks

with depth Li and size si, i = 1, . . . ,m. Then, the function f = max{f1, . . . , fm} can be rep-

resented by a ReLU network of depth at most max{L1, . . . , Lm} + dlog(m)e and at most size

s1 + · · ·+ sm + 4(2m− 1). The result is analogous to f = min{f1, . . . , fm}.

Proof. We prove it by induction on m. The case m = 1 is trivial.

For m ≥ 2, consider g1 := max{f1, . . . , fbm
2
c} and g2 := max{fbm

2
c+1, . . . , fm}. By the

induction hypothesis and since bm2 c, d
m
2 e < m when m ≥ 2, g1 and g2 can be represented by

ReLU networks of depths at most max{L1, . . . Lbm
2
c}+ dlog(bm2 c)e and max{Lbm

2
c+1, . . . , Lm}+

dlog(bm2 c)e respectively.
Moreover, both networks will have at most size s1 + · · ·+ sbm

2
c + 4(2bm2 c − 1) and

sbm
2
c+1 + · · ·+ sm + 4(2bm2 c − 1), respectively.
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Therefore, the function G : Rn → R2 given by G(x) = (g1(x), g2(x)) can be implemented by
a ReLU network with depth at most max{L1, . . . , Lm}+ dlog(dm2 e)e and at most size s1 + · · ·+
sm + 4(2m− 2).

Let us show know how to represent the function T : R2 → R de�ned as T (x, y) = max{x, y} =
x+y

2 + |x−y|
2 by a 2-layer ReLU with size 4.

Inputs

x1

x2

x1+x2
2 + |x1−x2|

2
Output

1

−1

1

−1

1

−1

−1

1

σ

σ

σ

σ

1/2

−1/2

1/2

1/2

Figure 2.1: Maximum function represented by a ReLU network.

Finally, the result follows from the fact that f = T ◦G and Lemma 2.10.

�

By [Yarotsky 2017], we have the following result involving approximation of continuous piece-
wise linear functions by ReLU networks.

Proposition 2.13. Let τ : R→ R be any continuous piecewise linear function with 1 ≤M <∞
breakpoints. Let ξ be a network with the activation function τ , having length L, W weights and

size s. Then there exists a ReLU network η that has depth L, not more than (M + 1)2W weights

and size not larger than (M + 1)s, that computes the same function as ξ.

Proof. Let a1 < ... < aM be the break points of τ . Notice that we can express τ via the ReLU
function σ, as a linear combination

τ(x) = c0σ(a1 − x) +
M∑
m=1

cmσ(x− am) + h

for some speci�c coe�cients {ci}Mm=0 and h. We use this representation to rewrite the computa-
tion performed by a single τ -unit,

x1, . . . , xN 7→ τ

(
N∑
k=1

wkxk + b

)
,

as a linear combination of M + 1 σ-units,

x1, . . . , xN 7→

σ
(∑N

k=1wkxk + b− am
)
, m = 1, . . . ,M,

σ
(
a1 − b−

∑N
k=1wkxk

)
, m = 0.

Thus, we can replace one-by-one all the τ -units without incrementing the depth, just by increasing
the size to (M + 1)s with at most (M + 1)2W connections.

�
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Now, we consider this equivalence by increasing the depth. Let us prove a strong result about
upper bound of ReLu network's depth given by [Arora et al.].

Theorem 2.14. Every piecewise linear function Rn → R can be represented by a ReLU network

with at most dlog(n+ 1)e depth.

Proof. First, notice that any continuous piecewise linear function can be represented as a linear
combination of piecewise linear convex functions. More precisely, by [Wang-Sun], we have that
any continuous piecewise linear function f : Rn → R, there exists a �nite set of a�ne linear
functions l1, . . . , lk and subsets of indexes I1, . . . , Ip ⊆ {1, . . . , k} (not necessarily disjoint) with
cardinality at most n+ 1, such that

f =

p∑
j=1

sj

(
max
i∈Ij

li

)
,

where sj ∈ {−1,+1} for all j = 1, . . . , p. Observe that maxi∈Ij li is a piecewise linear convex
function with at most n + 1 pieces, since |Ij | ≤ n + 1. By Lemma 2.12, it holds that for each
maxi∈Ij li there exists a ReLU network with depth at most dlog(n + 1)e which represents it.
Furthermore, using Lemmas 2.10 and 2.11, it follows that neither the sum nor the composition
of functions increases the depth of the ReLU network which represents each operation. Hence,
we conclude that for any continuous piecewise linear function there exists a ReLU network with
at most dlog(n+ 1)e.

�

2.3. Deep approximation

In the previous section we have shown the relevance of the ReLU activation function, in this
section we focus on the approximation properties of ReLU networks. In particular, we are
interested in the minimal requirements that a ReLU network must satisfy to achieve a desired
performance. Namely, we will prove some lower bounds for the number of weights and layers
that a ReLU network needs to approximate a function with error ε. The class of functions that
we want to approximate is the unit ball of the Sobolev space Wn,∞([0, 1]d), which we denote by

Fd,n = {u ∈Wn,∞([0, 1]d) : ‖u‖Wn,∞ ≤ 1}.

In this setup, the error is given in the norm of Wn,∞([0, 1]d) and some lower bounds on the
network complexity can be obtained as a consequence of existing upper bounds on VC-dimension
of networks. The �rst result that we present is [Yarotsky 2017, Theorem 4].

Theorem 2.15. Fix d, n. For any ε ∈ (0, 1), a ReLU network architecture capable of approxi-

mating any function f ∈ Fd,n with error ε must have at least cε−d/2n weights, with some constant

c = c(d, n) > 0.

Proof. Given a positive integer N , let choose S a set of Nd points x1, . . . ,xNd in the cube
[0, 1]d such that distance between any of them is not less than 1/N . For any assignment of values
y1, . . . , yNd ∈ R, we can de�ne a smooth function f satisfying f(xm) = ym for every m by

f(x) =
Nd∑
m=1

ymφ(N(x− xm)),
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where φ ∈ C∞c (Rd) is some cut-o� function such that φ(0) = 1 and φ(x) = 0 if |x| > 1/2. Notice
that for any x ∈ Rd the value φ(N(x−xm)) can be non-zero at most for a singlem ∈ {1, . . . , Nd},
since |xm − xk| ≥ 1/N for every m 6= k.

In order to ensure that f belongs to Fd,n we give the following condition. For any multi-index
α = (α1, . . . , αd) with |α| ≤ n, it holds that

max
x
|Dαf(x)| ≤ N |α|max

m
|ym|max

x
|Dαφ(x)|,

therefore, if

max
m
|ym| ≤ c4N

−n,(2.4)

with c4 = ‖φ‖−1
Wn,∞ , then ‖f‖Wn,∞ ≤ 1, that is f ∈ Fd,n.

Now, set

ε =
c4

3
N−n.(2.5)

Let suppose that there is a ReLU network architecture η that can approximate, by adjusting its
weights, any f ∈ Fd,n with error less than ε. We denote by η(x,w) the output of the network
for the input x and the weights w.

Consider any assignment z of Boolean values z1, . . . , zNd ∈ {0, 1}. Set

ym = zmc4N
−n,

and let f be given as before. Thus, condition (2.4) holds and hence f ∈ Fd,n. The objective is
now to obtain a lower bound on the complexity of a network that can approximate such an f .

By assumption over η, there exists a vector of weights wz such that for every x ∈ [0, 1]d,
η(x,wz) approximates f(x) with an error smaller than ε. In particular, for all m we have
|η(xm,wz)− ym| ≤ ε. Therefore, if zm = 1, then

η(xm,wz) ≥ c4N
−n − ε =

2

3
c4N

−n >
c4N

−n

2
.

On the other hand, if zm = 0, then

η(xm,wz) ≤ ε < c4N
−n

2
.

Hence, the threshold network η1 = I(η > c4N
−n/2) has outputs

η1(xm,wz) = zm, ∀m ∈ {1, . . . , Nd}.

Since the Boolean values zm were arbitrary, we conclude that the subset S is shattered by the
class of function given by the ReLU network architecture η1. That is, any dichotomy of S can
be represented by η1 with some speci�c weights. Hence,

VCdim(η1) ≥ Nd.

Expressing N through ε with (2.5), we obtain

VCdim(η1) ≥
(

3ε

c4

)−d/n
(2.6)
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Figure 2.2: Function f considered in the proof for d = 2. Figure from [Yarotsky 2017].

In order to conclude the proof, we combine this inequality with the following upper bound
of VCdim(η1) given by [Anthony-Barlett, Theorem 8.6],

VCdim(η1) ≤ c3W
2.

Notice that W is the number of weights, which is the same as in η since we do not consider the
threshold parameter as a weight. By (2.6) it holds that(

3ε

c4

)−d/n
≤ c3W

2,

or equivalently

W ≥ cε−d/(2n),

with c = (c3(3/c4)d/n)−1/2, as we want to prove.

�

This Theorem states that a ReLU network with W weights generally cannot provide approx-
imation in Fn,d with accuracy better than O(W−2n/d), since

W ≥ cε−d/2n ⇒ CW−2n/d ≤ ε.

The ReLU network architecture that is presented in Theorem 1 of [Yarotsky 2017] is able to
approximate with error O(W−n/d logn/dW ). Up to the logarithmic factor, this approximation
reaches the optimal rate over all models under the assumption of continuous parameter selection.

However, this rate is quite far from the optimal rate that we have obtain in Theorem 2.15,
since the gap between the powers 2n

d and n
d is considerably large.

Therefore, the main matter now is how to bridge this gap of rates of approximation. We
will present results that go in this direction, developed for W 1,∞([0, 1]d). The phase diagram for
approximation rates that we will prove involves the modulus of continuity ωf of the function f ,
which is de�ned as follows

ωf (r) = max{|f(x)− f(y)| : x,y ∈ [0, 1]d, |x− y| ≤ r},

where |x| is the Euclidean norm.

Let f̃ : [0, 1]d → R be the approximation of a continuous function f by a network architecture
ηW with d inputs and W weights. The relevant question is which powers p ∈ R can be achieved,
by choosing the architecture and the weights for the following inequality:

‖f − f̃‖∞ ≤ aωf (cW−p), ∀f ∈ C([0, 1]d),(2.7)
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with some constant a and c.

Notice that if the equality above holds for some p, then it also holds for any smaller p, since
if r < R we have that

ωf (r) ≤ ωf (R).

A �rst answer to this question can be given in the p = 1
d phase in which the approximation

can be obtained using a standard piecewise linear interpolation. This represents only a minor
improvement on the previously mentioned O(W−n/2 logn/2(W )) result.

Proposition 2.16. There exists a network architecture ηW with W weights and, for each W,

a weight assignment linear in f such that Equation (2.7) is satis�ed with p = 1
d . The network

architecture can be chosen as O(W ) parallel blocks each having the same architecture that only

depends on d.

Proof. The proof follows from a construction of an approximating function of linear combi-
nation of spike function as in the proof of Theorem 2.15. For the details see [Yarotsky 2018].

We turn now to the region p > 1
d . As we will see, the results concerning this region are given

by the tight relation between VC dimension bounds and approximation theory that we have been
showing along this section.

Theorem 2.17. Let f ∈ Fd,1.

i) (Feasibility) Approximation rate (2.7) cannot be achieved with p > 2
d .

ii) (Inherent depth) If approximation rate (2.7) is achieved with some p ∈ (1
d ,

2
d ] by an ar-

chitecture ηW with W weights, then ηW must have depth L ≥ cW pd−1/ logW , with c > 0
possibly depending on d and p.

Proof. First, let us see that if the approximation rate (2.7) holds for some p, then all f ∈ Fd,1
can be approximated in W 1,∞ by architectures ηW with accuracy

εW = c1W
−p.(2.8)

This holds since if we consider x0, y0 ∈ [0, 1]d that maximize |f(x0)−f(y0)| and satisfy |x0−y0| ≤
cW−p, we get

aωf (cW−p) = a|f(x0)− f(y0)|
≤ aLf |x0 − y0|
≤ c1W

−p.

Notice that c1 does not depend on f despite Lf is its Lipschitz constant. This happens due to
the fact that f is in Fd,1 and then Lf ≤ 1.

Now, let us prove each part of the Theorem.

i) This statement is a consequence of Theorem 2.15, where it is proved that any architecture

which approximates all f ∈ Fd,1 with accuracy εW must satisfy W ≥ c2ε
−d/2
W for some constant

c2. Thus, (2.8) implies that

W ≥ c2

(
c1W

−p)−d/2 ⇒W ≥ cW pd/2,

and hence

pd

2
≤ 1⇒ p ≤ 2

d
.
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ii) The second part can be obtained by combining arguments of Theorem (2.7) with the
recently established tight upper bound (2.2) for the VC dimension,

VCdim(W,L) ≤ CWL logW,(2.9)

where C is a global constant.

Suppose that η is a network architecture which can approximate all f ∈ Fd,1 with accuracy
εW . Then, by inequality (2.6) we obtain

c2ε
−d
W ≤ VCdim(ηW ).

Now, using Equation (2.8) and (2.9), it holds that

c3W
pd ≤ VCdim(ηW ) ≤ CWL logW,

and we conclude that

c3W
pd ≤ CWL logW ⇒ L ≥ c W

pd−1

logW
.

�

Thus, we have proved that the best rate of approximation that we can achieve is p = 2
d , so

the natural question that arises is which architecture can obtain this rate. In [Yarotsky 2018], it
is shown that deep neuronal networks with constant number of neurons per layer can reach this
optimum rate. Namely, he is able to construct a network with constant width at least 2d + 10,
whose number of weights increases by rising the depth and weight assignment is discontinuous
that satis�es this approximation property.

In practice, this results motivates the use of deep neuronal networks instead of shallow net-
works, since even if the Universal Approximation Theorem claims that shallow networks can
approximates with an arbitrary error, the weight growth will be exponential and the conver-
gence will be slower than deep networks.

Figure 2.3: The parallel, constant depth network architecture implementing piecewise linear
interpolation ensures approximation rate p = 1

d . Figure from [Yarotsky 2018].

Figure 2.4: An example of narrow fully-connected network architecture with constant width.
These architectures provides the optimal approximation rate p = 2

d . Figure from [Yarotsky 2018].



CHAPTER 3

Supervised learning

Once we have seen the approximation ability of deep neural networks, let focus on the learning
process. From now on, we will study how to choose the weights of a given architecture in order
to get the underlying function. For instance, this desired function could be an image classi�er
which recognizes two di�erent features in images such as if there appears a cat or a dog.

The aim is to let deep neural networks learn how to classify data from a given training sample.
In our case, we will work in the framework of supervised learning where the training sample is
already classi�ed and hence it is possible to contrast the output of the network with the available
data. Nevertheless, it should be noted that there exist other setups for deep learning problems,
such as the unsupervised learning, where the main idea is to classify into groups or clusters the
data whose characteristics are similar, according to an appropriate notion of similarity.

In this chapter we will present one of the most frequently used methods of weights assignments
in supervised learning, which is called Stochastic Gradient Descent. It is a modi�cation of the
common Gradient Descent, where we introduce some randomness in order to avoid reaching local
minimums and saddle points. Moreover, we will show explicitly how to update the weights by
Backpropagation method. The key of this procedure is that the error is propagated from the
output layer back to hidden layers, providing update rules to the weights of each layer.

First, let us recall how neural networks are constructed. Let us consider a neural network
with L layers. For each layer l ∈ {1, . . . , L}, we use nl to denote the number of neurons in it.
So the network maps from Rn0 to RnL . We use W [l] ∈ Mnl×nl−1

(R) to represent the matrix of

weights at layer l. More precisely, w
[l]
jk is the weight that neuron j at layer l applies to the output

of neuron k at layer l− 1. Similarly, b[l] ∈ Rnl is the vector of biases for layer l, therefore neuron
j at layer l uses the bias b

[l]
j . Thus, the a�ne transformation Tl : Rnl−1 → Rnl which maps from

layer l − 1 to layer l is given by

Tl(x) = W [l]x+ b[l].

As we have seen previously, after applying each a�ne transformation we use an activation
function. We de�ne the activation function as a non-linear function, σ : R → R similar to the
step function which mimics the behaviour of a neuron in the brain. This means that it gives
positive output if the input is large and 0 otherwise. Notice that this functions is useful to
distinguish the layers due to the non-linearity, since if this was not the case we could consider
deep networks as single-hidden-layer networks.

We use a
[l]
j to denote the result of the activation function applied to the output of the neuron

j in the layer l, what we will simply call activation. We also de�ne a[l] := (a
[l]
1 , . . . , a

[l]
nl)

T ∈ Rnl as
the activation vector of the layer l. Hence, we can describe the feed-forward algorithm as follows.

15



16 Supervised learning

Feed-forward algorithm. Giving an input x ∈ Rn0 , we may summarize how the network
works.

a[0] = x ∈ Rn0

a[l] = σ
(
W [l]a[l−1] + b[l]

)
∈ Rnl , for l = 1, 2, . . . , L.

This algorithm will feed the input x forward through the network in order to produce the output
vector a[L] ∈ Rnl .

The weights and biases that we have de�ned before are considered parameters which the
network readjust after working at a training sample {(x{i},y{i})}Ni=1 ⊂ Rn0 × RnL . Therefore,
we de�ne an error function depending on weights and biases that we want to be minimized by
the network. In order to show weights and biases as the variables of the error function it is
convenient to consider these matrices and vectors as a unique vector p ∈ Rs which is composed
of each component of them.

De�nition 3.1. Given a training sample {
(
x{i},y{i}

)
}Ni=1 ⊂ Rn1 × RnL and an architecture

speci�ed by p = {(W [l], b[l])}Ll=1 ∈ Rs, we de�ne the error function f : Rs → R by

f(p) =
1

N

N∑
i=1

1

2
‖y{i} − a[L](x{i})‖22.

We also de�ne fi as the error function for a single sample (x{i},y{i}) by

fi(p) =
1

2
‖y{i} − a[L](x{i})‖22.

Observe that the relationship between both de�nition is

f(p) =
1

N

N∑
i=1

fi(p).

The classical approach of supervised learning of neural networks is the minimization of this
error function. Note that the architecture is �xed, and hence the only objective of such a
minimization is the value of weights and biases.

3.1. Stochastic Gradient

The most common learning technique is based on the iteration given by the gradient descent
method. This method which was �rst proposed by Cauchy in 1847 [Cauchy] and its description
can be found on any introductory textbook on optimization, such as [Nesterov]. Here we will
only brie�y sketch the idea.

Let f ∈ C1,1(Rs), so that ∃L > 0:

|f(y)− f(x)− < ∇f(x), y − x > | ≤ L

2
|x− y|2 ∀x, y ∈ Rs.

The method of gradient descent consist of evaluating �rst ∇f at a point p ∈ Rs, and then
performing the update

(3.1) p→ p− η∇f(p),
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where η is a real number called the learning rate. In more complex training methods this
parameter can be dependent on the iteration, namely, the learning rate will be large in the �rst
steps and it will be small when it approaches to the minimum, see [Nesterov, Section 1.2.3].

In our case, where we consider η �xed and su�ciently small, this iteration guarantees that

f(p− η∇f(η)) ≤ f(p)− η
(

1− ηL

2

)
|∇f(p)|2,

which corresponds to a decrease of f .

We would like to apply this method for the error function of the whole training sample, but
normally we have a large number of parameters and a large number of training points, that makes
the computation prohibitively expensive. A frequently used strategy to overcome this problem
is the following.

Stochastic gradient method. A single step may be summarized as

1. Choose an integer i ∈ {1, . . . , N} uniformly random.

2. Update

p→ p− η∇fi(p).

This is the simplest form of these type of methods where one randomly chosen training point
is used to represent the full training set. As the iteration proceeds, the method choose di�erent
points, so there is some hope that this reduction of cost-per-iteration will be worthwhile overall.

Stochastic gradient for mini-batch. As the method before tries to approximate the
mean over all training points by a single sample, it is natural to consider instead a small sample
average. For some b� N we could take steps as follows.

1. Choose b integers uniformly random, k1, . . . , kb ∈ {1, . . . , N}.

2. Update

p→ p− η

b

b∑
i=1

∇fi(p).

The purpose of Chapters 5 and 6 is to provide a quantitative analysis of this method.

3.2. Backpropagation

We are now interested in applying the stochastic gradient method in order to train the net-
work. For this purpose we will present the backpropagation process which was announced by
[Rumelhart et al.] in 1986 . The point is that we compute the chain rule of the gradient of the
loss function in order to propagate the error from the output layer back to the hidden layers.
Therefore, we switch from the general vector of parameters p to the entries in the weight matrixes
and biases.

Namely, our goal is to compute the gradient of the error function with respect to each w
[l]
jk

and b
[l]
j . As the error function f is a linear combination of fi for every training point and the

partial derivatives are linear operators we just focus on computing the partial derivatives of fi.
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Hence, for a �xed training point we will make a slight abuse of notation and use f to represent
fi and simply write

f =
1

2
‖y − a[L]‖22.

We also de�ne the weighted input for neuron j at layer l as follows

z[l] = W [l]a[l−1] + b[l] ∈ Rnl , for l = 1, 2, . . . , L.

Notice that the relation between weighted inputs and the activation which propagates the
information through the network is

a[l] = σ
(
z[l]
)
, for l = 1, 2, . . . , L.

De�nition 3.2. Let local gradient, δ[l] ∈ Rnl , be de�ned by

δ
[l]
j =

∂f

∂z
[l]
j

, for 1 ≤ j ≤ nl and 1 ≤ l ≤ L.

The importance of this object is that the error function can only be at a minimum if all
components of δ[l] are zero.

At this stage we also de�ne the Hadamard product of two vectors. If u, v ∈ Rn, then u ◦ v :=
(u1v1, . . . , unvn)T ∈ Rn. Now, we conclude this chapter presenting the explicit computation of
the elements of backpropagation given by [Higham].

Lemma 3.3. Let σ be piecewise di�erentiable. With the above notation we have

δ[L] = σ′
(
z[L]
)
◦
(
a[L] − y

)
,(3.2)

δ[l] = σ′
(
z[l]
)
◦
(
W [l+1]

)T
δ[l+1], for 1 ≤ l ≤ L− 1,(3.3)

∂f

∂b
[l]
j

= δ
[l]
j , for 1 ≤ l ≤ L,(3.4)

∂f

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k , for 1 ≤ l ≤ L.(3.5)

Proof. We begin by proving (3.2). Notice that by the chain rule we obtain

δ
[L]
j =

∂f

∂z
[L]
j

=
∂f

∂a
[L]
j

∂a
[L]
j

∂z
[L]
j

, for 1 ≤ j ≤ nl.

As we write before we know that a[L] = σ
(
z[L]
)
, so

∂a
[L]
j

∂z
[L]
j

= σ′
(
z

[L]
j

)
.

On the other hand, we can compute the partial derivative of the error function by its de�ni-
tion,

∂f

∂a
[L]
j

=
∂

∂a
[L]
j

(
1

2
‖y − a[L]‖22

)
= −(yj − a[L]

j ).
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Hence,

δ
[L]
j =

(
a

[L]
j − yj

)
σ′
(
z

[L]
j

)
,

which is the componentwise form of (3.2).

To prove (3.3), recall that z
[l+1]
k and z

[l]
j are related by

z
[l+1]
k =

nl∑
s=1

w
[l+1]
ks σ

(
z[l]
s

)
+ b

[l+1]
k .

Therefore,

∂z
[l+1]
k

∂z
[l]
j

= w
[l+1]
kj σ′

(
z

[l]
j

)
.

Now, we can apply these results to compute the local gradient of a hidden layer l,

δ
[l]
j =

∂f

∂z
[l]
j

=

nl+1∑
k=1

∂f

∂z
[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

=

nl+1∑
k=1

δ
[l+1]
k w

[l+1]
kj σ′

(
z

[l]
j

)
= σ′

(
z

[l]
j

)(
(W [l+1])T δ[l+1]

)
j
.

In order to prove 3.4, we remark how are z
[l]
j and b

[l]
j connected,

z
[l]
j =

(
W [l]σ

(
z[l−1]

))
j

+ b
[l]
j .

Since z[l−1] does not depend on b
[l]
j , we obtain

∂f

∂b
[l]
j

=
∂f

∂z
[l]
j

∂z
[l]
j

∂b
[l]
j

= δ
[l]
j .

Finally, to show (3.5), we start with the componentwise version of the de�nition of z[l],

z
[l]
j =

nl−1∑
k=1

w
[l]
jka

[l−1]
k + b

[l]
j ,

which gives

∂z
[l]
j

∂w
[l]
jk

= a
[l−1]
k and

∂z
[l]
s

∂w
[l]
jk

= 0, for s 6= j.

It holds these results because the jth neuron at layer l uses the weights from only the jth row
of W [l], and applies them linearly. Then,

∂f

∂w
[l]
jk

=

nl∑
s=1

∂f

∂z
[l]
s

∂z
[l]
s

∂w
[l]
jk

=
∂f

∂z
[l]
j

∂z
[l]
j

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k .

�
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Hence, the learning scheme can then be summarized by the following algorithm:

1. Initialize W and b.

2. Choose x ∈ X at random.

3. Compute ∂f
∂wij

and ∂f
bj

using backpropagation Lemma 3.3.

4. Update W and b by gradient descent (3.1).

5. Loop steps 2., 3. and 4.

Observe that this algorithm can be easily modi�ed for the mini-batch. However, convergence
of the scheme above is not granted, and depends not only on the architecture but also on the
training data. In terms of concepts introduced in Chapter 2, the problem may not even be
learnable.

Moreover, even when some kind of convergence is reached, the learned parameters W and
b (and the quality of the result) may depend on the initialization. Therefore, in practice, it is
often the case that the learning algorithm is performed several times and either a selection or a
combination of the results is kept.



CHAPTER 4

Stochastic Di�erential Equations

Before we start studying the behaviour of SGD, it is required to present some basic concepts
about stochastic processes. Namely, we will follow [Evans] to show some results of Itô's calculus
and to see how they can be used in stochastic di�erential equations. We will assume some basic
preliminary notions of stochastic calculus such as that of Itô integral. The main objective of this
chapter is to provide the connection between the probability density functions of the solutions
to those equations and the Fokker-Planck equation, following [Schuss].

Let us start by considering a probability space (Ω,U , P ) and the 1-dimensional Brownian
motionW (·) de�ned on it. As usual, given a random variable X, we denote by U(X) the smallest
sub-σ-algebra of U with respect to which X is measurable. Recall also that the Brownian motion
is a collection of random variables {W (t)|t ≥ 0} such that

i) W (0) = 0,

ii) W (t)−W (s) ∼ N(0, t− s) ∀t ≥ s ≥ 0,

iii) for all 0 < t1 < . . . < tn the random variables

W (t1),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

are independents.

Then, we present the following de�nitions:

De�nition 4.1. i) The σ-algebra W(t) = U(W (s)|0 ≤ s ≤ t) is called the history of the
Brownian motion up to time t.

ii) The σ-algebra W+(t) = U(W (s)−W (t)|s ≥ t) is called the future of the Brownian motion
beyond time t.

De�nition 4.2. A family F(·) of σ-algebras contained in U is called a �ltration (or nonantici-
pating with respect to W (·)) if

i) F(t) ⊇ F(s) for all t ≥ s ≥ 0.

ii) F(t) ⊇ W(t) for all t ≥ 0.

iii) F(t) is independent of W+(t) for all t ≥ 0.

We could think of F(t) as the σ-algebra which contains all information available to us at
time t.

21
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From this de�nition, we will say that a real-valued stochastic process G(·) is adapted if for
each time t ≥ 0, G(t) is F(t)-measurable with respect to a �ltration F . The idea is that for each
t ≥ 0, the random variable G(t) depends on the information available in F(t) uniquely.

Actually, we will need a stronger condition, namely that G(·) be progressively measurable.
This means that for every time t, the map [0, t] × Ω → R de�ned by (s, ω) → X(s, ω) is
B(R)⊗F(t)-measurable. This implies G(·) is F(t)-adapted.

De�nition 4.3. i) We denote by L2(0, T ) the space of all real-valued and progressively mea-
surable stochastic processes G(·) such that

E
(∫ T

0
G2dt

)
<∞.

Notice that this condition means that the variance of the random variable
∫ T

0 GdW is �nite,
as we will see below, in the Lemma 4.5.

ii) On the other hand, we denote by L1(0, T ) the space of all real-valued and progressively
measurable stochastic process G(·) such that

E
(∫ T

0
|G|dt

)
<∞.

In order to achieve some properties about the integrals of process in L2(0, T ), we will prove
them for step processes in that space and then we will use approximation just as it is done for
the Lebesgue integral.

De�nition 4.4. A process G ∈ L2(0, T ) is called a step process if there exists a partition
{0 = t0 < t1 < . . . < tm = T} and a family {Gk}m−1

k=0 of random variables such that

G(t) ≡ Gk for tk ≤ t < tk+1, where k = 0, 1, . . . ,m− 1.

The main feature that makes this de�nition useful is that Itô integral of a step process G on
the interval (0, T ) is given by∫ T

0
GdW =

m−1∑
k=0

Gk(W (tk+1)−W (tk)).(4.1)

Lemma 4.5. Let G ∈ L2(0, T ) be an adapted step process. Then:

(i)

E
(∫ T

0
GdW

)
= 0.

(ii)

E

((∫ T

0
GdW

)2
)

= E
(∫ T

0
G2dt

)
.

Proof. (i) By 4.1 we have

E
(∫ T

0
GdW

)
=

m−1∑
k=0

E (Gk(W (tk+1)−W (tk))) .
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Recall that Gk is F(tk)-measurable and F(tk) is independent ofW+(tk). SinceW (tk+1)−W (tk)
is W+(tk)-measurable, we obtain that Gk and W (tk+1)−W (tk) are independent. Therefore,

E (Gk(W (tk+1)−W (tk))) = E(Gk)E(W (tk+1)−W (tk)) = 0,

due to the fact that E(W (tk+1)−W (tk)) = 0 by de�nition of the Brownian motion.

(ii) Again using (4.1) we have

E

((∫ T

0
Gdw

)2
)

=

m−1∑
k,j=1

E(GkGj(W (tk+1)−W (tk))(W (tj+1)−W (tj))).

Let us �rst see that the terms with j 6= k vanish. Without lost of generality, we can assume
j < k. Then, by de�nition of �ltration, it holds,

(4.2) F(tk) ⊇ F(tj) and W+(tk) independent of F(tk).

Since G is adapted, then GkGj is F (tk)-measurable, so it is independent of W (tk+1) −W (tk),
which is W+(tk)-measurable. Also, by the independence of the increments of the Brownian
motion, W (tk+1)−W (tk) is independent of W (tj + 1)−W (tj).

This implies, in particular, that

E(GkGj(W (tk+1)−W (tk))(W (tj+1)−W (tj))) = E(GkGj(W (tj+1)−W (tj)))E(W (tk+1)−W (tk)).

Thus, since G ∈ L2(0, T ), we use Cauchy-Schwarz inequality to obtain

|E(GkGj(W (tk+1)−W (tk))(W (tj+1)−W (tj)))|
= |E(GkGj(W (tj+1)−W (tj)))| |E(W (tk+1)−W (tk))|
≤ E(G2

k)
1/2 E(G2

j (W (tj+1)−W (tj))
2)1/2 |E(W (tk+1)−W (tk))|

= E(G2
k)

1/2︸ ︷︷ ︸
<∞

E(G2
j )

1/2︸ ︷︷ ︸
<∞

(E(W (tj+1)−W (tj))
2)1/2︸ ︷︷ ︸

=(V ar(W (tj+1)−W (tj)))1/2<∞

|E(W (tk+1)−W (tk))|︸ ︷︷ ︸
=0

= 0,

where we have used that Gj and W (tj+1)−W (tj) are independent , since F(tj) andW+(tj) are.

Hence, keeping only the diagonal terms in the sum, we get

E

((∫ T

0
Gdw

)2
)

=

m−1∑
j=0

E(G2
j (W (tj+1)−W (tj))

2)

=
m−1∑
j=0

E(G2
j )E((W (tj+1)−W (tj))

2)

=

m−1∑
j=0

E(G2
j )(tj+1 − tj)

= E
(∫ T

0
G2dt

)
,

where the second identity is the variance of the Brownian motion.

�

As we have said before, we can extend those properties to every process in L2(0, T ) by the
following lemma.
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Lemma 4.6. (Approximation by step processes). If G ∈ L2(0, T ), there exists a sequence

of bounded step processes Gn ∈ L2(0, T ) such that

E
(∫ T

0
|G−Gn|2dt

)
→ 0.

4.1. Itô's formula

The aim of this section is to introduce a fundamental result for SDE, known as Itô's formula.

De�nition 4.7. (i) Let W(·) = (W 1(·), . . . ,Wm(·)) be the m-dimensional Brownian motion.

(ii) An Mn×m-valued stochastic process B = ((bij)) belongs to L2
n×m(0, T ) if

bij ∈ L2(0, T ) with i = 1, . . . , n; j = 1, . . . ,m.

(iii) An Rn-valued stochastic process a = (a1, . . . , an) belongs to L1
n(0, T ) if

ai ∈ L1(0, T ) where i = 1, . . . , n

De�nition 4.8. If B ∈ L2
n×m(0, T ), then ∫ T

0
B dW

is an Rn-valued random variable, whose i-th component is

m∑
j=1

∫
0
bij dW j where i = 1, . . . , n.

We observe at this point that, by approximation with step processes as in Lemma 4.6, by
Lemma 4.5 we obtain the following result which will be useful in the next section.

Lemma 4.9. If B ∈ L2
n×m(0, T ), then

E
(∫ T

0
B dW

)
= 0,

and

E

(∣∣∣∣∫ T

0
B dW

∣∣∣∣2
)

= E
(∫ T

0
|B|2dt

)
,

where |B|2 =
∑m

i=1

∑n
j=1 |bij |2.

In order to introduce Itô's formula, we recall the de�nition of stochastic di�erential.

De�nition 4.10. If X(·) = (X1(·), . . . , Xn(·)) is an Rn-valued stochastic process such that

(4.3) X(r) = X(s) +

∫ r

s
a dt+

∫ r

s
B dW,

for some a ∈ L1
n(0, T ), B ∈ L2

n×m(0, T ) and all 0 ≤ s ≤ r ≤ T . Then, we say X(·) has the
stochastic di�erential

(4.4) dX = a dt+ B dW, X(s) = x.

Equivalently, each component of X satis�es the SDE

dXi = ai dt+

m∑
j=1

bij dW j for i = 1, . . . , n.
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Theorem 4.11. (Itô's formula). Let X be an Rn-valued stochastic process satisfying (4.4).

Let f : Rn× [0, T ]→ R be continuous , with continuous partial derivations ∂f
∂t ,

∂f
∂xi

, ∂2f
∂xi∂xj

, when

i, j = 1, . . . , n. Then

d(f(X(t), t)) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dXi +

1

2

n∑
i,j=1

∂2f

∂xi∂xj

m∑
k=1

bikbjk dt.

For a proof of this theorem we refer to [Evans]. An useful formulation of this result can be
obtained by introducing explicitly (4.7) and isloating the Brownian motion. To this end, de�ne

σij(X(t), t) =
1

2

m∑
k=1

bik(X(t), t)bjk(X(t), t),

as the components of the di�usion matrix

σ(X(t), t) =
1

2
B(X(t), t) BT (X(t), t),(4.5)

and set the backward Kolmogorov operator

(4.6) L∗f(X(t), t) =

n∑
i=1

n∑
j=1

σij(X(t), t)
∂2f(X(t), t)

∂xi∂xj
+

n∑
i=1

ai(X(t), t)
∂f(X(t), t)

∂xi
.

Corollary 4.12. With the same hypothesis stated in the previous theorem, the Itô's formula can

be expanded as

d(f(X(t), t)) =

[
∂f

∂t
+ L∗f

]
dt+

n∑
i=1

m∑
j=1

bij
∂f

∂xi
dW j

=

∂f
∂t

+

n∑
i=1

n∑
j=1

σij
∂2f

∂xi∂xj
+

n∑
i=1

ai
∂f

∂xi

 dt+

n∑
i=1

m∑
j=1

bij
∂f

∂xi
dW j .

4.2. The Fokker-Planck equation

We are now interested in �nding the probability density function of the solution to a special case
of (4.4). Namely, let a ∈ L1(Rn × [0, T ],Rn), B ∈ L2(Rn × [0, T ],Rn,m), x ∈ Rn and consider
the stochastic process Y satisfying{

dY = a(Y, t)dt+ B(Y, t)dW, t > s

Y(s) = x
(4.7)

Denote by p(y, t|x, s) its probability density. This function satis�es two di�erent PDEs, one with
respect to the forward variables (y, t) and one with respect to the backward variables (x, s). The
former is called the Fokker-Planck equation as can be seen in [Schuss, Section 4.5], and it will be
discussed in this section.

De�nition 4.13. (The Fokker-Planck operator). Let σ be as in (4.5). The partial di�eren-
tial operator L given by

(4.8) L p =
n∑
i=1

∂

∂yi

 n∑
j=1

∂(σij(Y, t) p)

∂yj
− ai(Y, t)p


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is called the Fokker-Planck operator for the SDE (4.7). Equivalently, we can rewrite this operator
in its divergence form, which is the form that we will use in Chapter 6,

L p = ∇ · (∇ · (σ p)− a p).

Note that this operator L is the adjoint of the operator L∗ de�ned in (4.6), with respect to
the L2(Rn) inner product (·, ·)L2 . This means that for every f, g ∈ C∞c (Rn) it holds that

(Lf, g)L2 = (f, L∗g)L2 .

Theorem 4.14. (The Fokker-Planck equation, FPE). Let Y be an Rn-valued stochastic

process satisfying (4.7). Then, the probability density function p(y, t|x, s) is the fundamental

solution to the following problem.
∂tp(y, t|x, s) = Lp(y, t|x, s) for x, y ∈ Rn, t > s

lim
t→s

p(y, t|x, s) = δ(x− y).

(FPE)

Proof. Let f ∈ C∞c (Rn). By integrating the Itô's formula for f(Y(t)), we get

f(Y(t))− f(Y(s)) =

∫ t

s
d(f(Y(τ)))

=

∫ t

s

 n∑
i=1

ai(Y(τ), τ)
∂f(Y(τ))

∂yi
+

n∑
i=1

n∑
j=1

σij(Y(τ), τ)
∂2f(Y(τ))

∂yi∂yj

 dτ
+

m∑
j=1

∫ t

s

[
n∑
i=1

bij(Y(τ), τ)
∂f(Y(τ))

∂yi

]
dW j(τ).

Now we compute the expectation of f(Y(τ)) conditioned to Y(s) = x in order to have an
equation with respect to p(y, t|x, s). Notice that by Lemma 4.9, we obtain that the expectation
of the second addend vanishes:

E


m∑
j=1

∫ t

s

[
n∑
i=1

bij(Y(τ), τ)
∂f(Y(τ))

∂yi

]
dW j(τ)


=

m∑
j=1

E

{∫ t

s

[
n∑
i=1

bij(Y(τ), τ)
∂f(Y(τ))

∂yi

]
dW j(τ)

}
= 0.

Hence,

E [f(Y(t))|Y(s) = x] = f(x) + E

{∫ t

s

[
n∑
i=1

ai(Y(τ), τ)
∂f(Y(τ))

∂yi

+
n∑
i=1

n∑
j=1

σij(Y(τ), τ)
∂2f(Y(τ))

∂yi∂yj

 dτ | Y(s) = x

 .
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Which means that

∫
Rn
f(y)p(y, τ |x, s)dy

(4.9)

= f(x) +

∫
Ω

∫ t

s

 n∑
i=1

ai(Y(ω), τ)
∂f(Y(ω))

∂yi
+

n∑
i=1

n∑
j=1

σij(Y(ω), τ)
∂2f(Y(ω))

∂yi∂yj

 dτ dP (ω)

= f(x) +

∫ t

s

∫
Ω

 n∑
i=1

ai(Y(ω), τ)
∂f(Y(ω))

∂yi
+

n∑
i=1

n∑
j=1

σij(Y(ω), τ)
∂2f(Y(ω))

∂yi∂yj

 dP (ω)dτ

= f(x) +

∫ t

s

∫
Rn

 n∑
i=1

ai(y, τ)
∂f(y)

∂yi
+

n∑
i=1

n∑
j=1

σij(y, τ)
∂2f(y)

∂yi∂yj

 p(y, τ |x, s)dydτ.
Equation (4.9) is the weak form of the PDE that the probabilistic density function satis�es

because we have considered that equation for all test function in C∞c (Rn).

In order to obtain the PDE for p(y, t|x, s), we integrate by parts in eq. (4.9) and we change
the order of integration by Fubini.

∫
f p dy = f(x) +

∫ t

s

∫ n∑
i=1

ai p
∂f(y)

∂yi
+

n∑
i=1

n∑
j=1

σij p
∂2f(y)

∂yi∂yj
dy

 dτ

= f(x) +

∫ t

s

∫ − n∑
i=1

∂(ai p)

∂yi
f(y) +

n∑
i=1

n∑
j=1

∂2(σij p)

∂yi∂yj
f(y)dy

 dτ

=

∫
f(y)δ(x− y)dy +

∫
f(y)

∫ t

s
−

n∑
i=1

∂(ai p)

∂yi
+

n∑
i=1

n∑
j=1

∂2(σij p)

∂yi∂yj
dτ

 dy

=

∫
f(y)δ(x− y)dy +

∫
f(y)

∫ t

s

n∑
i=1

∂

∂yi

 n∑
j=1

∂2(σij p)

∂yi∂yj
− ai p

 dτ
 dy.

Thus, in the sense of distributions, we have obtained the following equation

p(y, t|x, s) = δ(x− y) +

∫ t

s

n∑
i=1

∂

∂yi

 n∑
j=1

∂2(σij(y, τ) p(y, τ |x, s))
∂yi∂yj

− ai(y, τ) p(y, τ |x, s)

 dτ.
= δ(x− y) +

∫ t

s
L p(y, τ |x, s)dτ,(4.10)

which is the equation for the fundamental solution (FPE).

�

For the previous theorem we have considered a formal derivation of a parabolic equation
without assuming any regularity on the coe�cients. The classical theory for a and B Hölder
continuous can be found in [Friedman]. Moreover, the notion of fundamental solution and its
relation with the (distributional) initial problem considered here, also commonly called funda-
mental solution, for parabolic equations, can be found in [Friedman, Chapter 1, Section 7] and
it is frequently called Duhamel's principle.





CHAPTER 5

Continuous-time SGD

Since we have presented the basis of stochastic processes in Chapter 5, we can start now using
these tools to study how SGD behaves. The aim of this chapter is to show that the SGD learning
iteration can be approximated by a stochastic process characterized by a particular Stochastic
Di�erential Equation. Then, following the inverse path of the so-called Euler discretization to
obtain a continuous-time SGD, we will be able to analyse this learning process by means of
studying the associated Fokker-Planck Equation. This approach was introduced in [Li et al.].

As observed in Chapter 3, Stochastic Gradient Descent tries to minimize a loss function

(5.1) min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

where, for neural networks, x ∈ Rd are the weights and each fi : Rd → R for i = 1, . . . , n is the
loss function associated to the ith sample (n is the size of the whole training sample). We shall
call f the total loss function.

Solving (5.1) using the standard Gradient Descent (GD), given by

xk+1 = xk − η∇f(xk),

requires prohibitively expensive computations when n � 1. Therefore, we try the alternative
method of Stochastic Gradient Descent, where we replace the full gradient ∇f by a gradient of a
loss function of a randomly chosen sample i. In its simplest form, the SGD iteration is given by

(5.2) xk+1 = xk − η∇fγk(xk),

where k ≥ 0 represents the iteration of the learning process and {γk} are i.i.d. uniform random
variables taking values in {1, . . . , n}. Unlike GD, the computational complexity of SGD per
iteration is independent of n.

Let us rewrite the SGD iteration rule (5.2) as follows,

(5.3) xk+1 = xk − η∇f(xk) +
√
ηVk,

where Vk = Vk(xk) =
√
η(∇f(xk)−∇fγk(xk)) is a d-dimensional random vector.

We want to approximate (5.3) with a simpler stochastic evolution of the form

Xk+1 = Xk − ηb(Xk) +
√
ησ(Xk)Zk,(5.4)

where {Zk} are i.i.d. random variables with distribution Nd(0, 1) and σ(Xk) is the covariance
matrix of Vk(Xk). Observe that for η = ∆t, (5.4) is the Euler discretization of following SDE

(5.5) dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0.

29
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In the next section, we will then provide conditions on b that make 5.5 an approximation of (5.2)
with the identi�cation t = kη.

5.1. Stochastic approximation

It is now important to discuss which is the meaning of �approximation�. Following [Li et al.], we
will consider an approximation in the weak sense below.

De�nition 5.1. Let 0 < η < 1, T > 0 and set N = bT/ηc. Let us de�ne the set of functions
with polynomial growth,

G := {g : Rd → R | ∃K, k > 0 s.t. |g(x)| < K(1 + |x|k) ∀x ∈ Rd}.

Then, we say that the SDE (5.5) is an order α weak approximation to the SGD (5.2) if for every
g ∈ G, there exists C > 0, independent of η, such that for all k = 0, 1, . . . , N,∣∣E [g(Xkη)]− E [g(xk)]

∣∣ < Cηα.

Notice that we are considering SDE to be a weak approximation of SGD just by studying
the expectation of certain class of test functions applied to them. This is a standard de�nition
in numerical analysis of SDEs, since weak approximation are close to the original process not in
terms of individual sample paths, but their distributions.

Now, we show two theorems of approximation associated with what we will call Stochastic
Modi�ed Equations (SME) for the SGD iterations. This theorem from [Li et al., Theorem 1]
allows us to use the SME to deduce distributional properties of the SGD, but with an important
di�erence with respect to usual convergence studies. Namely, it describes dynamical behaviour
and is derived without convexity assumptions on f or fi.

Theorem 5.2. (Stochastic modi�ed equations). Let 0 < η < 1, T > 0 and set N = bT/ηc.
Let xk ∈ R, 0 ≤ k ≤ N denote a sequence of SGD iterations de�ned by (5.2). De�ne Xt ∈ Rd as
the stochastic process satisfying the SDE

(SME)

{
dXt = −∇f(Xt)dt+

√
ηD(Xt)dWt,

X0 = x0,

where D(x) = 1
n

∑n
i=1(∇f(x) − ∇fi(x))(∇f(x) − ∇fi(x))T . Fix some test function g ∈ G as

before. Suppose also that the following conditions are met:

(i) ∇f , ∇fi satisfying a Lipschitz condition: there exists L > 0 such that

|∇f(x)−∇f(y)|+
n∑
i=1

|∇fi(x)−∇fi(y)| ≤ L|x− y| ∀x, y ∈ Rd.

(ii) f , fi and its partial derivatives up to order 7 belong to G.

(iii) ∇f , ∇fi satisfy a growth condition: there exists M > 0 such that

|∇f(x)|+
n∑
i=1

|∇fi(x)| ≤M(1 + |x|) ∀x ∈ Rd.
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(iv) g and its partial derivatives up to order 6 belong to G.

Then, the equation (SME) is an order 1 weak approximation of the SGD iterations.

It can be also constructed a SME which is higher order weak approximation of the SGD, as
we can see in the following theorem.

Theorem 5.3. Let consider the same conditions that we assume in the Theorem 5.2. Let de�ne

the following stochastic process Xt ∈ Rd given by the SDE

(5.6)

{
dXt = −∇(f(Xt) + 1

4η|∇f(Xt)|2)dt+ (ηD(Xt))
1/2dWt,

X0 = x0,

where D(x) = 1
n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T , as before. Then, we have that (5.6)

is an order 2 weak approximation of the SGD iterations.

5.2. Stochastic approximation - Proofs

In order to prove these theorems we start by showing that a one-step approximation has order 3
error. After that we will use the general result given by Milstein (1986), to show that the overall
global error is of order α = 1 and α = 2 for Theorem 5.2 and Theorem 5.3, respectively.

In the following proofs we will make repeated use of Taylor expansions in powers of η. To
simplify presentation, we introduce a modi�ed use for the notation O(ηα), which will means
that there exists a function K(x) ∈ G such that the error terms are bounded by K(x)ηα. For
example, we write

b(x+ η) = b0(x) + ηb1(x) +O(η2),

to mean that there exists K ∈ G such that

|b(x+ η)− b0(x)− ηb1(x)| ≤ K(x)η2.

Since the noise we are trying to model is small, we may assume from the outset that b(x) =
O(1) but σ(x) = O(η1/2). For brevity, we will simply denote the noise term of the SDE by η1/2σ.
We will denote by ∂i the partial derivative with respect to the i-th component.

First step to de�ne the approximating SDE (5.4) is to compute expectation and covariance
of Vk.

Lemma 5.4. Let Vk be de�ned as before. Then, E[Vk] = 0 and

Var[Vk] = ηD(xk),

where D(x) := 1
n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T .

Proof. First, we calculate the expectation of Vk.

E(Vk) =
√
η ∇f(xk)−

√
η E(∇fγk(xk)) =

√
η ∇f(xk)−

√
η

n∑
i=1

P (γk = i)∇fi(xk)

=
√
η ∇f(xk)−

√
η

1

n

n∑
i=1

∇fi(xk) = 0.
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In order to know the covariance matrix of Vk, denoted by Var[Vk], let compute the generic term
Var[Vk]l,j . Notice that,

Cov
[
V l
k , V

j
k

]
= E

[
(V l
k − E(V l

k))(V j
k − E(V j

k ))
]

= E
[
V l
kV

j
k

]
.

Therefore, simplifying notation f = f(xk) we obtain

Cov
[
V l
k , V

j
k

]
= E

[√
η(∂lf − ∂lfγk)

√
η(∂jf − ∂jfγk)

]
= ηE

[
∂lf∂jf − ∂lf∂jfγk − ∂lfγk∂jf + ∂lfγk∂jfγk

]
= η

[
∂lf∂jf − ∂lfE(∂jfγk)− E(∂lfγk)∂jf + E(∂lfγk∂jfγk)

]
= η

[
∂lf∂jf − ∂lf

1

n

n∑
i=1

∂jfi −
1

n

n∑
i=1

∂lfi∂jf +
1

n

n∑
i=1

∂lfi∂jfi

]

= η
1

n

n∑
i=1

[∂lf∂jf − ∂lf∂jfi − ∂lfi∂jf + ∂lfi∂jfi]

= η
1

n

n∑
i=1

(∂lf − ∂lfi)(∂jf − ∂jfi).

Hence, we conclude that the matrix expression for the covariance is

Var [Vk] = η
1

n

n∑
i=1

(∇f(xk)−∇fi(xk))(∇f(xk)−∇fi(xk))T = ηD(xk).

Moreover, let us remark that D(x) is a positive de�ned matrix, since ηD(x) is a covariance
matrix and η > 0.

�

Next, we will need a lemma regarding a general fact about moments of SDEs with small
noise, see [Li et al., Lemma 1].

Lemma 5.5. Let 0 < η < 1. Consider a stochastic process Xt, t ≥ 0 satisfying the SDE

(5.7) dXt = b(Xt)dt+ η1/2σ(Xt)dWt,

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. De�ne the one-step

di�erence ∆ = Xη − x, then we have

(i) E[∆i] = bi(x)η + 1
2

(∑d
j=1 bj(x)∂jbi(x)

)
+O(η3).

(ii) E [∆i∆j ] =
(
bi(x)bj(x) + σσTij

)
η2 +O(η3).

(iii) E
[∏s

j=1 ∆ij

]
= O(η3) for all s ≥ 3, ij = 1, . . . , d.

All functions above are evaluated at x.

An equivalent result holds for one SGD iteration, for which we give a full proof.
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Lemma 5.6. Let 0 < η < 1. Consider xk, k ≥ 0 satisfying the SGD iterations

(5.8) xk+1 = xk − η∇fγk(xk),

with x0 = x ∈ Rd. De�ne the one-step di�erence ∆̄ = x1 − x = −η∇fγ0(x), then we have

(i) E[∆̄i] = −(∂if(x))η

(ii) E[∆̄i∆̄j ] = (∂if(x)∂jf(x)) η2 +Dij(x)η2.

(iii) E
[∏s

j=1 ∆̄ij

]
= O(η3) for all s ≥ 3, ij = 1, . . . , d.

where D(x) = 1
n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T .

Proof. By (5.8), we have that ∆i = −η ∂ifγ0(x) which implies (i).

In order to prove (ii), we recall V := V0 =
√
η(∇f −∇fγ0) de�ned in (5.3). It is clear that

∆̄ =
√
ηV − η∇f , then by Lemma (5.4) and using that ∇f is deterministic we obtain that

Var[∆̄] = Var[
√
ηV − η∇f ] = η Var[V ] = η2D.

We also know that
Var
[
∆̄
]

= E
[
∆̄∆̄T

]
− E

[
∆̄
]
E
[
∆̄
]T
.

Therefore, by (i) we conclude

E
[
∆̄∆̄T

]
= η2(∇f)(∇f)T + η2D,

which implies (ii).

Finally, we prove (iii) for s = 3:

E
[
∆̄i∆̄j∆̄k

]
= E

[
−η3∂ifγ0∂jfγ0∂kfγ0

]
= η3E [−∂ifγ0∂jfγ0∂kfγ0 ] = O(η3),

where the last equality holds because fγ0(x) is not related to η and the expectation of its deriva-
tives belongs to G. If s > 3, by a similar argument we get higher orders in η.

�

Now, we will need a key result linking one-step approximations to global approximations
given by [Milstein, Theorem 2, Lemma 5]. We reproduce the theorem tailored to our problem.

Theorem 5.7. (Milstein). Let α be a positive integer and let the assumptions in Theorem 5.2

hold. Assume, in addition, that there exist K1,K2 ∈ G so that∣∣∣E[ s∏
j=1

∆ij

]
− E

[ s∏
j=1

∆̄ij

]∣∣∣ ≤ K1(x)ηα+1,

for s = 1, 2, . . . , 2α+ 1 and

E
[ 2α+2∏
j=1

|∆̄ij |
]
≤ K2(x)ηα+1.

Then, there exists a constant C such that for all k = 0, 1, . . . , N and all g ∈ G we have∣∣E[g(Xkη)]− E[g(xk)]
∣∣ ≤ Cηα
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Thus, we have all the tools to prove Theorem 5.2.

Proof of Theorem 5.2. We want to show that the hypotheses of Theorem 5.7 are satis�ed

by (SME). We just compute E
[ s∏
j=1

∆ij

]
and E

[ s∏
j=1

∆̄ij

]
using Lemma 5.5 and Lemma 5.6 and

compare their di�erence.

• Case s = 1:

E[∆i] = −∂ifη +
1

2
η2

d∑
j=1

∂jf∂j∂if +O(η3)

E[∆̄i] = −∂ifη.

Therefore,

E[∆i]− E[∆̄i] = O(η2)

• Case s = 2:

E[∆i∆j ] = η2[∂if∂jf +Dij ] +O(η3)

E[∆̄i∆̄j ] = η2[∂if∂jf +Dij ]

Therefore,

E[∆i∆j ]− E[∆̄i∆̄j ] = O(η3).

Since 0 < η < 1 by assumption, we obtain that

E[∆i∆j ]− E[∆̄i∆̄j ] = O(η2).

• Case s ≥ 3:

As we know that E
[ s∏
j=1

∆ij

]
= O(η3) and E

[ s∏
j=1

∆̄ij

]
= O(η3), it holds that E

[ s∏
j=1

∆ij

]
−

E
[ s∏
j=1

∆̄ij

]
= O(η3). Thus,

E
[ s∏
j=1

∆ij

]
− E

[ s∏
j=1

∆̄ij

]
= O(η2).

• The last hypothesis that we have to ensure is the case 2α+ 2 = 4:

E
[ 4∏
j=1

|∆̄ij |
]

= E
[ 4∏
j=1

η|∂ijfγ0 |
]

= η4E
[ 4∏
j=1

|∂ijfγ0 |
]

= O(η4)

Therefore,

E
[ 4∏
j=1

|∆̄ij |
]

= O(η2)
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Hence, we can apply Theorem 5.7with α = 1 to conclude.

�

Proof of Theorem 5.3. We will follow the same steps as before. But �rst, we make some
calculations in order to simplify the proof.

Recall that in this Theorem we consider b(x) = −∇(f(x) + 1
4 |∇f(x)|2), so

bi = −∂if −
1

4
η∂i(|∇f |2) = −∂if −

1

2
η

d∑
k=1

∂kf∂i∂kf

∂jbi = −∂j∂if −
1

2
η

d∑
k=1

(∂j∂kf∂i∂kf + ∂kf∂j∂i∂kf) .

Now, let us show that conditions of Theorem 5.7 are satis�es by using Lemma 5.5.

• Case s = 1:

E[∆i] = −η∂if −
1

2
η2

d∑
k=1

∂kf∂i∂kf +
1

2
η2

d∑
j=1

[bj∂jbi] +O(η3)

= −η∂if −
1

2
η2

d∑
k=1

∂kf∂i∂kf +
1

2
η2

d∑
j=1

∂jf∂i∂jf +O(η3)

= −η∂if +O(η3),

since 1
2 η

2
d∑
j=1

[bj∂jbi] = 1
2η

2
d∑
j=1

[(−∂jf)(−∂j∂if)] +O(η3).

Therefore,
E[∆i]− E[∆̄i] = O(η3).

• Case s = 2:

E[∆i∆j ] = η2 [bibj +Dij ] +O(η3) = η2 [∂if∂jf +Dij ] +O(η3),

since η2bibj = η2∂if∂jf +O(η3).

Then,
E[∆i∆j ]− E[∆̄i∆̄j ] = O(η3).

• Case s ≥ 3: We obtain directly from the lemmas that

E
[ s∏
j=1

∆ij

]
− E

[ s∏
j=1

∆̄ij

]
= O(η3).

• The last hypothesis that we have to check is the case 2α+ 2 = 6:

E
[ 6∏
j=1

|∆̄ij |
]

= E
[ 6∏
j=1

η|∂ijfγ0 |
]

= η6 E
[ 6∏
j=1

|∂ijfγ0 |
]

= O(η6)

Therefore,

E
[ 6∏
j=1

|∆̄ij |
]

= O(η3).

Hence, we conclude that (5.6) is an order 2 weak approximation of SGD iterations by applying
Theorem 5.7.

�
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5.3. SGD for mini-batch

In this section, we will generalize the results of this chapter in SGD for mini-batch. Recall from
section 3.1 that iterations of this learning process are described as

xk+1 = xk −∇fb(xk),(5.9)

where ∇fb(xk) is the average gradient over a mini-batch b,

∇fb(x) =
1

b

∑
k∈b
∇fγk(x).

It should be pointed out that we use notation b for both the randomly chosen set of examples in a
mini-batch and its size. As a way to know more about this object, let us compute its expectation
and covariance matrix.

Lemma 5.8. Let ∇fb(x) be de�ned as before. Then, E[∇fb(x)] = ∇f(x) and

Var[∇fb(x)] =
D(x)

b
,

with D(x) = 1
n

∑n
i=1(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T , as in Lemma 5.4.

Proof. First, notice that

E[∇fb] = E

[
1

b

∑
k∈b
∇fγk

]
=

1

b

∑
k∈b

E [∇fγk ] =
1

b

∑
k∈b

n∑
i=1

1

n
∇fi =

1

b

∑
k∈b
∇f = ∇f.

On the other hand,

Var[∇fb] = Var

[
1

b

∑
k∈b
∇fγk

]
= E

( 1

b

∑
k∈b
∇fγk −∇f

)(
1

b

∑
k∈b
∇fγk −∇f

)T .
Since for k 6= j we have that γk and γj are independent, it holds that

Cov[∇fγk ,∇fγj ] = E[∇fγk∇f
T
γj ]−∇f∇f

T = E[∇fγk ]E[∇fTγj ]−∇f∇f
T = 0.

Thus, we can apply the following formula

Var[X + Y ] = Var[X] + Var[Y ] + Cov[X,Y ] + Cov[Y,X],

in order to obtain

Var

[
1

b

∑
k∈b
∇fγk

]
=

1

b2

∑
k∈b

Var [∇fγk ] .

By Lemma 5.4, we have that

ηD = Var [
√
η (∇f −∇fγk)] = ηVar[∇fγk ],

which implies
Var[∇fγk ] = D.

Hence, we conclude that

Var[∇fb] = Var

[
1

b

∑
k∈b
∇fγk

]
=

1

b2

∑
k∈b

Var [∇fγk ] =
D

b
.

�
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Now, we can follow the same steps as in Theorem 5.2 in order to obtain a continuous-time
representation of the SGD for mini-batch.

Corollary 5.9. Let 0 < η < 1, T > 0 and set N = bT/ηc. Let xk ∈ R, 0 ≤ k ≤ N denote

a sequence of SGD for mini-batch iterations de�ned by (5.9). De�ne Xt ∈ Rd as the stochastic

process satisfying the SDE

(5.10)

{
dXt = −∇f(Xt)dt+

√
η
bD(Xt)dWt,

X0 = x0.

Then, assuming the same conditions of the Theorem 5.2, it holds that (5.10) is an order 1 weak

approximation of the SGD for mini-batch iteration.

Proof. We can rewrite the iteration process (5.9) as

xk+1 = xk − η∇f(xk) +
√
ηṼk,

where Ṽk =
√
η (∇f(xk)−∇fb(xk)).

Notice that E[Ṽk] = 0, since we have that E[∇fb(xk)] = ∇f(xk) by Lemma 5.8. Moreover,
we know that Var[∇fb(xk)] = 1

bD(xk), therefore

Var[Ṽk] = ηVar[∇fb(xk)] =
η

b
D(xk).

Thus, the proof is equivalent to the one given in Theorem 5.2 just dividing D by the constant b.

�

In conclusion, we have approximated the learning iteration for mini-batch SGD as a stochastic
process described in (5.10). Therefore, we can obtain results about its behaviour by studying
the associated stochastic process and its probability density function.





CHAPTER 6

Asymptotic behaviour of SGD

As it has been studied so far in the literature, two main problems emerge when training deep
neural networks. On the one hand, it is required that the neural network minimizes a loss
function with respect to a given training sample by choosing suitable weights. As we have
previously commented, optimizing a loss function in a high-dimensional space is a very di�cult
problem, since global minima may be elusive. On the other hand, we would like the neural
network to avoid over�tting, that is, it has to be able to generalize from the training sample.
This is a crucial task in deep learning since we do not want a neural network which is only capable
of memorizing the training data, indeed the neural network should learn from the training sample
and perform good results for new data.

The challenge of obtaining both properties is the so-called bias-variance tradeo�, which has
been tried to resolve by implementing an explicit regularization term in the loss function. In this
way, we penalized weights with large norms in the learning process and hence we avoid over�tting.
However, in practice, it has been shown that SGD performs better generalization results than
other methods even if they used some regularization. Therefore, is widely believed that SGD
perform implicit regularization when used to train deep neural networks, but the precise manner
in which this occurs has thus far been elusive.

In this �nal chapter, we follow [Chaudhari-Soatto] in order to prove that this fact about SGD
is well founded. Indeed, we prove that SGD minimizes an average potential over the posterior
distribution of weights along with an entropic regularization term. Moreover, we will show in
which situations this potential is the loss function and hence SGD performs variational inference.

Concretely, for a loss function f(x) with weights x ∈ Rd, if ρss is the steady-state distribution
over the weights estimated by SGD, we prove that

ρss = arg min
ρ

Ex∼ρ
[
Φ(x)

]
− η

2b
H(ρ),

where H(ρ) is the entropy of the distribution ρ and η and b are the learning rate and the batch-
size, respectively. We next prove that the implicit potential Φ(x) is equal to our chosen loss
f(x) if and only if the noise in mini-batch gradients is isotropic. However, this condition is not
always satis�ed by deep neural networks and hence SGD implicitly discovers locations where
∇Φ(x) = 0, which are di�erent from ∇f(x) = 0. Thanks to the special architecture of deep
networks, SGD helps itself to a potential Φ with properties that lead to both generalization and
acceleration.

39
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6.1. Framework

In this section, we present the theoretical background and the assumptions that are necessary
for understanding Theorem 6.10, which is the main result of this chapter.

Functionals over probability density functions

We will consider the space of probability measures over Ω ⊂ Rd which are absolutely continuous
with respect to the Lebesgue measure. Nevertheless, this theory can be generalized to the whole
space of probability measures over Ω without di�culty.

We are particularly interested in the probability distribution functions of those probability
measures. Thus, we de�ne the following space.

De�nition 6.1. Let D(Ω) denote the space of all probability density functions over Ω, that is

D(Ω) = {ρ ∈ L1(Ω) : ‖ρ‖1 = 1 and ρ(x) ≥ 0 a.e. x ∈ Ω}.

Notice that this space is complete with respect to the L1-norm, but it is not a Banach space
since it is not a vector space.

Let us see some interesting functionals de�ned over this space.

De�nition 6.2. (Entropy). We denote the entropy of a given probability density function by
the functional H : D(Ω)→ R ∪ {∞}, which is de�ned as follows:

H(ρ) = −
∫

Ω
ρ(x) log(ρ(x))dx.

This is a very popular functional used with di�erent meanings in many areas such as thermo-
dynamics and information theory. In deep learning framework, the entropy of the distribution of
the weights is considered a regularization term, since maximizing the entropy implies that values
of the weights are evenly distributed and hence over�tting is prevented. From the point of view
of information theory, this e�ect can be seen as a way to avoid the information to be stored in
few weights as can be seen in [Achille et al.]. Otherwise, we could obtain a deep neural network
which has memorized the training sample but is incapable to generalize.

Let us present a concept which is closely related to entropy.

De�nition 6.3. (Kullback-Leibler divergence). Let P and Q be two probability measures
over a set Ω, satisfying that P is absolutely continuous with respect to Q. Then, the Kullback-
Leibler divergence (KL-divergence) is de�ned as follows,

KL(P ‖Q) =

∫
Ω

log

(
dP

dQ

)
dP

where dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q.

Moreover, if P and Q are probability distributions of two continuous random variables with
p and q probability density functions respectively, we de�ne

KL(p ‖ q) =

∫
Ω

log

(
p(x)

q(x)

)
p(x)dx.

Then, given a function ρ0 ∈ D(Ω) we can de�ne the functional KL(· ‖ ρ0) : D(Ω)→ R∪ {∞} by

KL(ρ ‖ ρ0) =

∫
Ω
ρ(x) log

(
ρ(x)

ρ0(x)

)
dx.
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Notice that by splitting the logarithm we obtain

KL(ρ ‖ ρ0) = −
∫

Ω
ρ(x) log(ρ0(x))dx+

∫
Ω
ρ(x) log(ρ(x))dx

= Eρ
[
− log(ρ0)

]
−H(ρ).(6.1)

The KL-divergence can be interpreted as a measure of discrepancy between probability density
functions as the following lemma shows:

Lemma 6.4. (Information inequality). Let p and q be two probability density functions, then
KL(p ‖ q) ≥ 0 with equality if and only if p = q.

Proof. We �rst recall the Jensen's inequality, which states that, if (Ω,A, P ) is a probability
space and g is a real-valued function, then for any convex function φ on the real line it holds
that

φ

(∫
Ω
g dP

)
≤
∫

Ω
φ ◦ g dP.

Now, let us use this statement in the de�nition of KL-divergence with φ = − log and g = q
p ,

KL(p ‖ q) =

∫
Ω

log

(
p

q

)
p dx =

∫
Ω
− log

(
q

p

)
p dx

≥ − log

(∫
Ω

q

p
p dx

)
= − log

(∫
Ω
q dx

)
= − log(1) = 0.

On the other hand, notice that

KL(p ‖ p) =

∫
Ω

log

(
p

p

)
p dx =

∫
Ω

log (1) p dx = 0.

�

In order to analyse these functionals, we now pass to the computation of the �rst variations.
Since they are only de�ned in the convex set D(Ω), we prefer to give a more speci�c de�nition.

De�nition 6.5. (First Variation). Given a functional F : D(Ω)→ R∪ {∞}, we call δFδρ (ρ), if
it exists, any measurable function satisfying

d

dε
F (ρ+ εχ)

∣∣∣∣
ε=0

=

∫
Ω

δF

δρ
(ρ)χdx

for any perturbation χ = ρ̃− ρ with ρ̃ ∈ L∞c ∩ D(Ω).

Observe that from the fact that
∫
dχ = 0, it is clear that δF

δρ (ρ) is de�ned up to additive
constants. On the other hand, up to this invariance, we have uniqueness. Furthermore, we state
the following lemma from [Santambrogio, Section 7.2]:

Lemma 6.6. Let F : D(Ω)→ R∪{∞} be an integral functional de�ned by F (ρ) =
∫

Ω f(ρ(x))dx.
If f ∈ C1 and f ′ satis�es suitable bounds, typically f and f ′ must have polynomial growth, then

it holds that δF
δρ (ρ) = f ′(ρ).

We can apply this lemma to the functionals described in this section.
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Corollary 6.7. The �rst variation of the entropy is given by

δH

δρ
= − log(ρ)− 1.

Moreover, for a given ρ0 ∈ D(Ω), the �rst variation of KL(ρ ‖ ρ0) is

δKL(ρ ‖ ρ0)

δρ
= log

(
ρ

ρ0

)
+ 1.

Proof. By de�nition of entropy and using Lemma 6.6, we only have to focus on f(x) = −x log(x).
It is clear that f ∈ C1 and f ′ have polynomial growth, so we obtain that

δH

δρ
(ρ) = f ′(ρ) = − log(ρ)− 1.

For the KL functional, by linearity of the �rst variation and using (6.1), we only have to compute
the �rst variation of E(ρ) =

∫
Ω−ρ log(ρ0)dx which can be done directly,

d

dε
E(ρ+ εχ)

∣∣∣∣
ε=0

= lim
t→0

∫
Ω
−1

t
[(ρ+ (ε+ t)χ)− (ρ+ εχ)] log(ρ0)dx

=

∫
Ω
− log(ρ0)χdx.

Hence,

δKL(ρ ‖ ρ0)

δρ
=
δE

δρ
− δH

δρ
= − log(ρ0) + log(ρ) + 1

= log

(
ρ

ρ0

)
+ 1.

�

Assumptions for Theorem 6.10

We now state the natural assumptions for Theorem 6.10. Before doing that, we summarize in a
lemma some essential results from Chapter 4 and Chapter 5, involving the stochastic di�erential
equation for the SGD updates, Corollary 5.9, and the associated Fokker-Planck equation for its
probability density function, Theorem 4.14.

Lemma 6.8. The continuous-time SGD is given by

dx(t) = −∇f(x)dt+
√

2β−1D(x)dW (t),(6.2)

where D is the di�usion matrix described in Chapter 5 and β−1 = η
2b is the temperature. The

probability density function of the weights ρ(x, t) evolves according to the Fokker-Planck equation:

∂tρ = ∇ · (∇f(x)ρ+ β−1∇ · (D(x)ρ))(FP)

where the divergence operator is applied column-wise to matrices such as D(x).
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Note that β−1 completely captures the magnitude of the noise in SGD that depends only on
the learning rate η and the mini-batch size b. This noise is crucial to improve SGD behaviour
around saddle points for non-convex losses, therefore optimizing β−1 is an a relevant problem,
as can be seen in [Nakamura et al.], for instance.

Let us present the �rst assumption concerning solutions for the elliptic equation associated
to (FP).

Assumption 1 (Steady-state distribution exists and is unique). We assume that
the steady-state probability density function of the Fokker-Planck equation (FP) exists and is
unique. It is denoted by ρss(x) and satis�es

0 = ∂tρ
ss = ∇ ·

(
∇f(x)ρss + β−1∇ · (D(x)ρss)

)
.(6.3)

This assumption is quite natural since we are considering ρss as a solution of the linear
equation (6.3). Therefore, under smoothness and growth condition over the loss function and
the di�usion matrix this assumption will be satis�ed. For more details see [Bogachev et al.].

Now, let us implicitly de�ne the potential Φ(x) using the steady-state probability density
function ρss:

Φ(x) = −β−1 log (ρss(x)) + C.

Thus, we can express ρss in terms of the potential using a normalizing constant Z(β) =
∫

Ω e
−βΦ

as

ρss(x) =
1

Z(β)
e−βΦ(x).

It can be easily proved that it is also the steady-state solution of

dx = β−1∇ ·D(x)dt−D(x)∇Φ(x)dt+
√

2β−1D(x)dW (t),(6.4)

just by direct substitution in (FP).

Note that this remark suggests that if ∇f(x) can be written in terms of the di�usion matrix
and a gradient term ∇Φ(x), the steady-state probability density function of this SDE can be
easily obtained. We leverage this observation to de�ne the di�erence between −∇f(x) and the
drift term in (6.4):

j(x) = −∇f(x) +D(x)∇Φ(x)− β−1∇ ·D(x).(6.5)

We now make an important assumption on j(x) which has its origins in thermodynamics.

Assumption 2 (Force j(x) is conservative). We assume that

∇ · j(x) = 0.

In physics, the Fokker-Planck equation typically models a system which exchanges energy with
an external environment. In our case, this physical system is the gradient dynamics∇·(∇f ρ) and
the interaction with the environment is through the term involving temperature β−1∇·(∇·(Dρ)).
This assumption is motivated by the second law of thermodynamics which states that the entropy
of a system can never decrease.

An important consequence of this assumption is given by the following lemma:

Lemma 6.9. Under Assumption 2, it holds that j(x) is orthogonal to ∇ρss(x) for any x ∈ Ω.
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Proof. Using the de�nition of j(x), we can rewrite the Fokker-Planck equation (FP) as

0 = ∂tρ
ss = ∇ · (−jρss +D∇Φρss − β−1(∇ ·D)ρss + β−1∇ · (Dρss))

= ∇ · Jss.

From (6.4), we also have that

0 = ∂tρ
ss = ∇ · (D∇Φρss + β−1D∇ρss),

and consequently,

0 = ∇ · (jρss)
= (∇ · j)ρss − j · ∇ρss.

Thus, by Assumption 2 we conclude that j · ∇ρss = 0.

�

6.2. SGD performs variational inference

We are now in a position to state the main result of this chapter, which is given by [Chaudhari-Soatto].

Theorem 6.10. The functional

F (ρ) = β−1KL(ρ ‖ ρss)(6.6)

decreases monotonically along the trajectories of the Fokker-Planck equation (FP). and converge

to its minimum, which is zero, at steady-state. Moreover, we also have an energetic-entropic split

F (ρ) = Eρ
[
Φ(x)

]
− β−1H(ρ).(6.7)

where the potential can be de�ned implicitly by Φ(x) = −β−1 log(ρss(x)).

This theorem shows that SGD implicitly minimizes a functional which is a combination of
an energetic term and an entropic term. Note that the �rst is the average of a potential (not
necessary equal to the loss function) over a distribution ρ. That is, the steady-states is such
that it places most of its probability mass in regions where Φ has small values over the weights
space. The second term shows that SGD has an implicit bias towards solutions that maximize
the entropy of ρ. This is closely associated with the implicit regularization of SGD which is
widely believed by empirical results, see [Zhang et al.].

Proof. By Lemma 6.4, we know that F (ρ) ≥ 0 with equality if and only if ρ = ρss.

The proof of this theorem is based on showing that dF (ρ)
dt ≤ 0 with equality only at ρ = ρss

when F (ρ) reaches its minimum and the Fokker-Planck equation achieves its steady-state.

STEP I: We compute the �rst variation of the functional F (ρ) = β−1
∫

Ω ρ(x) log
(

ρ
ρss

)
. Using

Corollary 6.7 and the linearity of the �rst variation we obtain

δF

δρ
(ρ) = β−1

(
log

(
ρ

ρss

)
+ 1

)
.

Note that we can rewrite it in terms of the potential Φ(x) = −β−1 log(ρss(x)) as

δF

δρ
(ρ) = Φ + β−1(log(ρ) + 1).(6.8)
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STEP II: Let us try to rewrite the Fokker-Planck equation (FP), in terms of the �rst variation
of F and the force j described in (6.5).

From equation (6.8), we obtain that

∇
(
δF

δρ

)
= β−1 1

ρ
∇ρ+∇Φ

and
−jρ = ρ∇f − ρD∇Φ + β−1ρ∇ ·D.

Thus,

−jρ+ ρD ∇
(
δF

δρ

)
= ρ∇f − ρD∇Φ + β−1ρ∇ ·D + β−1D∇ρ+ ρD∇Φ

= ρ∇f + β−1ρ∇ ·D + β−1D∇ρ
= ρ∇f + β−1∇ · (Dρ),

since ∇ · (Dρ) = (∇ ·D)ρ+D∇ρ. Then, we can rewrite (FP) as follows,

∂tρ = ∇ ·
(
−j ρ+ ρD ∇

(
δF

δρ

))
.(6.9)

STEP III: Let us compute the derivative of F with respect to the time t.

dF (ρ)

dt
= β−1

∫
Ω

d

dt

(
ρ log

(
ρ

ρss

))
dx = β−1

∫
Ω
∂tρ log

(
ρ

ρss

)
+ ∂tρ dx

=

∫
Ω
∂tρ

(
β−1 log

(
ρ

ρss

)
+ β−1

)
dx =

∫
Ω
∂tρ

δF

δρ
dx

Then, we replace ∂tρ by its representation in (6.9) in order to obtain that

dF (ρ)

dt
=

∫
Ω
∂tρ

δF

∂ρ
dx

=

∫
Ω

δF

δρ
∇ · (−j ρ) dx+

∫
Ω

δF

δρ
∇ ·
(
ρD∇

(
δF

δρ

))
dx

Let us show that the �rst term in the right hand side vanishes. Note that by Assumption 2 we
have ∇ · (−jρ) = −∇ · j ρ− j · ∇ρ = −j · ∇ρ, therefore it su�ces to prove∫

Ω

∂F

δρ
j · ∇ρdx = 0.(6.10)

With this purpose, we use de�nition of δFδρ and integration by parts to obtain∫
Ω

δF

δρ
j · ∇ρ = β−1

∫
Ω
j · ∇ρ+ β−1

∫
Ω

log(ρ)j · ∇ρ− β−1

∫
Ω

log(ρss)j · ∇ρ

= β−1

∫
Ω
j · ∇ρ− β−1

∫
Ω
∇ · (log(ρ)j)ρ+ β−1

∫
Ω
∇ · (log(ρss)j)ρ

= β−1

∫
Ω
j · ∇ρ− β−1

∫
Ω
∇ρ · j − β−1

∫
Ω

log(ρ)ρ∇ · j + β−1

∫
Ω
∇ · (log(ρss)j)ρ

= −β−1

∫
Ω

log(ρ)ρ∇ · j + β−1

∫
Ω

ρ

ρss
∇ρss · j + β−1

∫
Ω

log(ρss)ρ∇ · j
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Thus, applying Assumption 2 and Lemma 6.9 we obtain (6.10). This lead us to express time
derivative of F (ρ) by

dF (ρ)

dt
=

∫
Ω

δF

δρ
∇ ·
(
ρD∇

(
δF

δρ

))
dx.

STEP IV: In order to conclude the proof we have to show dF (ρ)
dt ≤ 0 and dF (ρss)

dt = 0.

Under suitable boundary condition on the Fokker-Planck equation which ensures that no
probability mass �ows across the boundary of the domain ∂Ω as in Step III, we obtain the
following result using integration by parts:

dF (ρ)

dt
= −

∫
Ω
∇
(
δF

δρ

)
·
(
ρD∇

(
δF

δρ

))
dx

= −
∫

Ω
ρ

(
D∇

(
δF

δρ

))
· ∇
(
δF

δρ

)
dx

≤ 0,

since ρ ≥ 0 and D is positive-de�ned, that is, Du · u ≥ 0 for any u ∈ Rd. Furthermore, for ρss it
holds that

δF

δρ
(ρss) = β−1 + β−1 log

(
ρss

ρss

)
= β−1.

Thus, ∇
(
δF
δρ (ρss)

)
= 0, which implies that

dF (ρss)

dt
= 0.

�

A natural question arises from Theorem 6.10: Which is the potential Φ that is minimized in

the functional F (ρ)? Indeed, we are interested in the relation between Φ and the loss function
f . For this purpose, let us show the following lemma:

Lemma 6.11. If the di�usion matrix D(x) is isotropic, i.e., a positive constant multiple of the

identity, the implicit potential is the original loss itself

D(x) = cId×d ⇔ Φ(x) =
1

c
f(x).

Proof. The forward implication is given by substituting ρss(x) ∝ e−
β
c
f(x) in the Fokker-Planck

equation (FP),

∇ · (∇f e−
β
c
f + β−1∇ · (cI e−

β
c
f )) = ∇ ·

(
∇f e−

β
c
f −∇f e−

β
c
f
)

= 0.

The reverse implication is true since otherwise it would contradict Lemma 6.9.

�
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6.3. Conclusion and further discussion

The main result of this chapter states that SGD does perform variational inference using a new
potential which is not necessarily equal to the loss function. Indeed, if the di�usion matrix is
non-isotropic, as it happens usually in deep neural networks, the di�erence between them will
be considerable. In [Chaudhari-Soatto], they give an explicit computation of this new potential
by comparing the A-type SDE and Itô's SDE associated to the same Fokker-Planck equation.

Despite this di�erence between Φ and f may seem problematic, it opens a new way to study
SGD learning. A remarkable point of view proposed in [Soatto et al.] is that minimizing the
potential Φ instead of the loss function lead SGD to approach wide minimums of f . As it
has been seen in practice, avoiding sharp minimums is quite desirable, since they often cause
over�tting. On the other hand, the entropic term of the functional F (ρ) also provides the implicit
regularization of SGD that has been commonly believed. Note that if β−1 → 0, the entropic
term vanishes, which it implies that β−1 = η

2β should not be small.

Additionally, Theorem 6.10 also can be studied in the framework of Gradient Flows, where
we consider Fokker-Planck equation as an in�nte-dimensional ODE, see [Santambrogio]. Ob-
serve that if the di�usion matrix is isotropic, this theorem is equivalent to the celebrated JKO
functional in optimal transportation [Jordan et al.].

From the point of view of information theory, the functional F (ρ) is equivalent to the in-
formation bottleneck principle [Tishby et al.]. Moreover, minimizing this functional explicitly
has been shown to lead to invariant representation. Theorem 6.10 proves that SGD implicitly
contains this bottleneck and therefore begets these properties, naturally.

An interesting open question that we propose is implementing in SGD other noises instead
of white noise which lead us to Brownian motion. We suggest to consider this variation which
may lead us to the novel framework of fractional Laplacian.

In conclusion, we have presented a global view of the modern theory about deep neural
networks, describing their approximation properties and analysing the commonly used learning
process, SGD. We also have described a line of investigation about this subject showing many
open problems.
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