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Resumen

La légica de primer orden continua es una generalizaciéon de la clasica donde el conjunto
de valores de verdad {0,1} se substituye por un continuo. Una estructura métrica es una
estructura de varias clases donde cada clase es un espacio métrico completo de didmetro
acotado, junto con: elementos distinguidos (pertenecientes a los diferentes espacios métricos)
y funciones uniformemente continuas, o bien entre las clases o de las clases a un intervalo
acotado de R.

El trabajo consite en un desarrollo de los principales conceptos y resultados de la teoria de
modelos para estructuras métricas. Se basa en los articulos Model theory for metric structures
de I. Ben Yaacov, et al. y Algebraic closure in continuous logic de C. W. Henson, y H. Tellez,
Desarrollamos la construccion del ultraproducto de estructuras métricas y probamos el teo-
rema de Lo§’s y el teorema de compacidad. Probamos el teorema de Lowenheim-Skolem y la
existencia de estructuras suficientemente saturadas y fuertemente homogéneas. Demostramos
que el espacio de tipos es un espacio topoloégico metrizable. Consideramos diferentes concep-
tos de definabilidad y algebraicidad de los que damos varias cracterizaciones y estudiamos
como se comportan en extensiones y subestructuras elementales. Finalmente consideramos
la teoria de los espacios de Hilbert en este contexto, en particular los de dimensién infinita,
caracterizamos la clausura definible de un conjunto usando la clausura respecto a la norma
de las combinaciones lineales de elementos del conjunto y probamos que el tipo de una tupla
sobre un conjunto A estd definido por su proyeccion sobre el subespacio generado por A y
el producto escalar de las coordenadas, relacionamos la métrica del espacio de tipos con la
métrica del espacio de Hilbert,.

Abstract

Continuous first order logic is a generalization of classical first order logic where a contin-
uum is allowed as truth value set. A metric structure is a many-sorted structure where each
sort is a complete metric space of bounded diameter, together with distinguished elements
(belonging to the distinct sorts) and uniformly continuous functions, either between sorts or
from the sorts into bounded closed intervals of R.

We develop the main concepts of model theory for metric structures. This memoir is
based on Model theory for metric structures by 1. Ben Yaacov, et al. and Algebraic closure
in continuous logic by C.W. Henson, and H. Tellez, We develop the ultraproduct of metric
structures and prove ¥.o§’s theorem and compactness theorem. We prove Lowenheim-Skolem
theorem and the existence of sufficiently saturated and strongly homogeneous structures. We
prove that the type space is a metrizable topological space. We introduce several concepts of
definability and algebraicity, we prove some characterization results and study their behaviour
in elementary extensions and substructures. Finally, we consider the theory of infinite Hilbert
spaces in this context, we characterize the definable closure of a set using the norm closure
and linear span of the set and prove that the type of an tuple over a set A is defined by its
projection over the subspace generated by A and the inner product of the coordinates. We
show the relation between the metric on the space of types and the metric of the Hilbert
space.
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Introduction

Spanish

En la logica cléasica de primer orden, a cada enunciado se le asigna un valor de verdad
0 o 1. La logica continua de primer orden es una generalizaciéon donde el conjunto
de valores {0,1} se substituye por un conjunto mas complejo, en este trabajo va a
ser el intervalo real [0,1]. Una estructura métrica es una estructura de varias clases
donde cada una de las clases es un espacio métrico completo de didmetro acotado. Las
estructuras métricas pueden también tener elementos distinguidos pertenecientes a los
diferentes espacios métricos (constantes) y funciones uniformemente continuas o bien
entre las clases (funciones) o de las clases a un intervalo acotado de R (predicados).
Por simplicidad, es util asumir que todos los intervalos acotados son el intervalo [0, 1].
Algunos ejemplos de estructuras métricas son los espacios métricos, los reticulos de
Banach, las C*-algebras, los espacios de Hilbert y las estructuras de la teoria de
modelos clasica. En la légica continua, la métrica d (de cada clase) ocupa el lugar
del simbolo = en la logica clasica. El requisito de continuidad uniforme sobre las
funciones y predicados es esencial para poder desarrollar una buena teoria. En la
logica continua, una conectiva n-aria es cualquier funciéon continua de [0, 1]™ en [0, 1].
Sin embargo, esta definicién de conectiva puede extenderse a funciones continuas
de [0,1]Y en [0,1] (véase proposicion 2.1.2). Puesto que el conjunto de valores de
verdad que consideramos esté linealmente ordenado, es natural que dos cuantificadores
importantes sean sup e inf. La mayoria de los resultados de la teoria de modelos
clasicas tienen un anélogo en la teoria de modelos para estructuras métricas, de hecho,
varios de los resultados de la teoria de modelos clésica se pueden obtener restringiendo
los resultados para estructuras métricas al caso donde la métrica d es la métrica
discreta.

La teoria de modelos para espacios métricos aparece por primera vez en 1966
en el libro Continuous Model Theory de C.C.Chang y H.J.Keisler [8], los autores
permiten cualquier conjunto Hausdorff compacto como conjunto de valores de verdad.
El desarrollo de esta teoria fue retomado méas tarde por C. W. Henson [12], [13] basado
los trabajos de J. L. Krivine [17], [18] y Stern [21], més tarde por J.Iovino [16] y més
recientemente por I. Ben Yaacov [3|, A. Usvyatsov |22], M. Lupini [11] y otros autores
[7]. Actualmente, la teoria de modelos para espacios métricos es un area en auge y
con perspectivas de futuro, existen una gran cantidad de publicaciones recientes con

vil



viii Introduction

importantes resultados de diferentes grupos de investigacion (véase por ejemplo [11],
171, 14], [6] v [23]).

Una motivacion adicional para estudiar la teoria de modelos para estructuras
métricas son sus aplicaciones en andlisis, analisis funcional [14] y geometria [20]. Es-
tas aplicaciones suelen estar relacionadas con ultraproductos de estructuras métricas,
aunque otras logicas han sido también desarrolladas para estudiar estas aplicaciones
[1].

Como aplicaciéon de la teoria de modelos para espacios métricos cabe mencionar
el la demostracion de Ben Yaacov en [2] de que el grupo de las isometrias lineales
del espacio de Gurarij es un grupo polaco universal, donde el espacio de Gurarij es el
tinico espacio de Banach separable, universal y aproximadamente homogéneo.

Este trabajo estd basado principalmente en los articulos Model theory for metric
structures [5] y Algebraic closure in continuous logic [15]. Puesto que ambos son articu-
los extensos donde se desarrolla la teoria desde el principio y con mucho detalle, varias
demostraciones se han extraido literalmente para hacer este trabajo autocontenido en
la medida de lo posible. Las demostraciones mas avanzadas y con menos detalles se
han ampliado y completado. La memoria se divide en tres capitulos. En el primer
capitulo introducimos los conceptos bésicos de la teoria de modelos para estructuras
métricas, entre estos conceptos se encuentra el de estructura métrica, preestructura
métrica e inmersiéon. Demostramos algunos resultados preliminares como el anélogo al
test de Tarski-Vaught (proposicion 1.1.5) . También tratamos un problema relacionado
con la cardinalidad del conjunto de férmulas que surje al permitir cualquier funcion
continua de [0, 1] en [0, 1] como conectiva. Presentamos la construccion del ultrapro-
ducto de estructuras métricas y demostramos los analogos a resultados tales como el
teorema fundamental de los ultraproductos (teorema 1.2.7) y el teorema de compaci-
dad (teorema 1.2.11). Presentamos también una caracterizacion de cuando una clase
de estructuras meétricas es axiomatizable. Demostramos el teorema de Lowenheim-
Skolem (proposicion 1.2.17) ademas de la existencia de estructuras suficientemente
saturadas y fuertemente homogéneas (teorema 1.2.23). Finalizamos el primer capi-
tulo con la construccién del espacio de tipos, probamos que en el contexto de la teoria
de modelos para estructuras métricas es un espacio topologico metrizable (teorema
1.3.7). En el segundo capitulo introducimos los conceptos de predicado definible, con-
junto definible y funcién definible, estudiamos como se comportan estos conceptos
con respecto a extensiones y subestructuras elementales, demostramos que podemos
axiomatizar los predicados con forma dist(x, D), donde D es un conjunto cerrado
(teorema 2.1.8) y demostramos varias caracterizaciones de definibilidad, por ejemplo,
en una estructura suficientemente saturada una funcién es definible si y solo si su
grafo es un conjunto tipo-definible (proposicion 2.1.14). Concluimos el segundo capi-
tulo con las definiciones de clausura algebraica y clausura definible, estudiamos su
comportamiento en extensiones y subestructuras elementales ademas de probar var-
ios resultados de caracterizaciéon de elementos algebraicos y definibles, por ejemplo,
un elemento de una estructura métrica es definible si y solo si en cualquier exten-
sién elemental de esta estructura no existen otros elementos que realicen el mismo
tipo (proposicion 2.2.6). En el tercer capitulo, usamos los conceptos y resultados de-
sarrollados a lo largo del trabajo para estudiar la teoria de los espacios de Hilbert
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infinito-dimensionales I HS. Demostramos que la clausura definible de un conjunto es
la clausura con respecto de la norma de las combinaciones lineales de elementos del
conjunto (proposicion 3.0.2). Probamos que el tipo de una tupla sobre un conjunto A
estd definido por la proyeccion de las coordenadas sobre el subespacio generado por
Ay el producto de las coordenadas dos a dos (lema 3.0.1). Terminamos presentando
algunos resultados adicionales sobre la teoria IHS.

English

In classical first order logic, a truth value of 0 or 1 is assigned to each sentence.
Continuous first order logic is a generalization where more complex sets are allowed as
truth value sets, in this memoir the set of truth values will be the real interval [0,1]. A
metric structure is a many-sorted structure where each of the sorts is a complete metric
space of bounded diameter. Metric structures can also have distinguished elements
belonging to the distinct sorts (constants) and uniformly continuous functions between
sorts (functions) and from the sorts into bounded closed intervals of R (predicates),
for convenience, it is useful to assume that all intervals are [0,1]. Some examples
of metric structures are metric spaces, Banach lattices, C*-algebras, Hilbert spaces
and structures in the sense of classical model theory. In continuous first order logic,
the metric d (of each sort) plays the role of the symbol = in the classical case. The
uniform continuity of the functions and predicates is essential to develop a successful
theory. In continuous first order logic, the n-ary connectives are continuous functions
from [0,1]™ into [0,1]. However, one could broaden the definition of connective to
allow continuous functions from [0, 1]Y into [0, 1] (see proposition 2.1.2). As our set
of truth values is linearly ordered, is natural that we have two special quantifiers, sup
and inf. Most of the results of classical model theory have an analogous counterpart in
model theory for metric structures, furthermore, sometimes the results in the metric
structures setting imply the classical results when we consider the metric to be discrete
metric.

Model theory for metric structures was first introduced in 1966 in the book Contin-
uous Model Theory by C.C. Chang y H. J. Keisler [8], the authors allowed any compact
Hausdorff space as a set of truth values. The development of the theory was retaken
by C. W. Henson [12], [13] based on the publications of J. L. Krivine [17|, [18] and Stern
[21], later by J.Iovino [16] y and more recently by I. Ben Yaacov [3], A. Usvyatsov [22],
M. Lupini [11] and other authors [7]. Nowadays, model theory for metric structures if
a flourishing topic with good prospects for the future. There exists a large number of
recent publications with significant results from different researching groups (see [11],
[7], 14], [6] and [23] for example).

Other motivations to study model theory for metric structures are its connection
to applications in analysis, functional analysis and geometry [20]. These applications
are usually based in the ultraproduct construction [14]. Other logics have also been
used to study these applications [1].

As an explicit application of model theory for metric structures, we mention the
proof of Ben Yaacov in 2| of the linear isometry group of the Gurarij space being an
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universal Polish group, where the Gurarij space is the unique, separable, universal,
approximately homogeneous Banach space.

This memoir is mainly based in the papers Model theory for metric structures |5|
and Algebraic closure in continuous logic [15]. Since both of them are papers where the
theory is developed from the beginning and in great detail, several proofs have been
literally drawn to make this memoir as self-contained as possible. Those proofs that
were more advanced and those that were less detailed have been expanded and more
details have been added. The memoir is divided in three chapters. In the first chapter,
we introduce the basics concepts of model theory for metric structures as structures,
prestructures and embeddings, we also prove some preliminary results as the analo-
gous of the Tarski-Vaught test (proposition 1.1.5). We discuss the cardinality problem
of the set of formulas that arise when we allow all continuous functions on [0, 1] to be
connectives. We show the construction of the ultraproduct of metric structures and
prove results as the analogous of the fundamental theorem of ultraprodutcs (Lo§’s
Theorem 1.2.7), the compactness theorem (theorem 1.2.11), and a characterization
of the axiomatizability of a class of metric structures. We prove Léwenheim-Skolem
theorem (proposition 1.2.17) and the existence of sufficiently saturated and strongly
homogeneous models (theorem 1.2.23). The first chapter ends with the construction
of the space of types, we show that in the metric structures setting, the space of types
is a metrizable topological space (theorem 1.3.7). In the second chapter we introduce
the concepts of definable predicates, definable sets and definable functions. We study
their behaviour with respect to elementary extensions and substructures, we prove
that predicates of the form dist(z, D), where D is a closed set, are axiomatizable
(theorem 2.1.8) and we prove several characterizations of these objects, for example,
in sufficiently saturated structures a function is definable if and only if its graph is
a type-definable set (proposition 2.1.14). The second chapter ends with the defin-
able and algebraic closures, we study their behaviour in elementary extensions and
substructures. We also prove some results about characterizations of definable and
algebraic elements, for example, an element of a metric structure is definable if and
only if is the only realization of its type in any elementary extension o f the structure
(proposition 2.2.6). In the last chapter, we apply the results and concepts developed
previously to the theory of infinite dimensional Hilbert spaces IH.S. We characterize
the definable closure of a set using the norm closure and linear span of the set (propo-
sition 3.0.2). We prove a results that shows that the type of an tuple over a set A
is defined by its projection over the subspace generated by A and the inner product
of the coordinates (lemma 3.0.1). The memoir ends introducing further results about
the theory ITHS.



CHAPTER 1

Metric Structures

We begin by giving the basic definitions needed to develop the model theory of metric
structures. As one can see as one reads, in general, these definitions are very similar to
the classical ones. We will try to emphasize the differences between these two theories.

1.1. Basics

Let (M,d) be a complete, bounded metric space. A metric structure M based on
(M,d) is a tuple
M = (M,R;, Fj,a:ie€l,je J keK).

Where each R; is an uniformly continuous function from M™ for some n > 1 into
some bounded interval in R, a predicate. Each Fj is an uniformly continuous function
from M" for some n > 1 into M, we call it function or operation. And each ay is
a distinguished element of M, a constant. Sometimes, d will be treated as a binary
predicate, and expressions like x = y will be used instead of d(z,y) = 0. If all the
index sets are empty, M is just a bounded, complete metric space.

To motivate this work, we give some examples of metric structures that could be
studied with the machinery we are going to develop:

A bounded, complete metric space.

The unit ball of a Banach space X over C or R, where the norm is included as a

predicate, the element 0 as a constant and the functions are f, g(z,y) = ax + By for
a and (3 scalars satisfying |a| 4+ |8] < 1. To be more specific one can think of some
LP(0,1) with p € [1,00].
Remark 1.1.1. We can look at structures of classical first order model theory as
structures on this new logic. To do so, we endorse the universe A of an structure 2
with the discrete metric. Functions of the structure are obviously uniformly continuous
with respect to the discrete metric. Constant are also carried without changes. To bring
relations to this new interpretation, we consider the set R of all elements that satisfy
the relation R and we introduce the indicator function of the set R.

Asin classical first order logic, we will need the notion of language, or equivalently,
the notion of signature of a metric structure. To each metric structure M we associate
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a signature L in a very similar way as one does in the classical theory. To each
predicate R of M we associate a predicate symbol P and its arity; we denote R by
PM. To each function F of M we associate a function symbol f and its arity. Finally,
to each constant a of M we associate a constant symbol c; we denote a by ¢™. But
for metric structures a signature must specify more: for each predicate symbol P,
it must provide a closed bounded interval Ip < R where PM takes its values, and
a modulus of uniform continuity Ap for PM. For each function symbol f, L must
provide a modulus of uniform continuity A for fM. Finally, L must provide a non
negative real number Dy, which is a bound on the complete metric space (M, d) on
which M is based.

Thus, as in classical first order model theory, M is an L-structure if L correspond
to the signature of M.

For simplicity and without loss of generality, we will usually assume that our
signatures L satisfy Dy = 1 and Ip = [0, 1] for every predicate symbol P in L.

We introduce the definition of embedding of metric structures, the difference with
the classical case is that we ask the embedding to be a metric space isometry, this is
a natural requirement as one can see below.

Let L be a signature for metric structures and suppose M and N are L-structures.
An embedding from M into N is a metric space isometry

T: (M,d™) - (N,dV)

that commutes with the interpretations of the function and predicate symbols of L
as in the classical case We use the same notation and definition for the concepts of
1somorphism, automorphism and substructure as we did in classical first order model
theory.

We skip most of the construction of the syntactical part of the theory because it
is the standard construction but we note the main differences with the classical one.
Continuous functions u : [0,1]" — [0,1] of finitely many variables n > 1 are the
connectives and the symbols sup and inf are the quantifiers in this logic. Letting all
continuous functions w : [0,1]" — [0, 1] to be connectives, could make the cardinality
of the set of L-formulas too big. We treat this problem later in this section. Terms
are constructed inductively, exactly as in classical first order-logic with (individual)
variables and constants as terms of lowest complexity. However, formulas are a bit
different. Fix a signature for metric structures, L, atomic formulas are formal ex-
pressions of the form P(t1,...,t,) or d(t1,t2), where all t1,...,t, are L-terms and P
is any predicate in L. The class of L-formulas, that we denote by Form(L), is the
smallest class that contains atomic formulas and is closed under the following rules.

1. If w : [0,1]" — [0,1] is a connective and ¢1,...,p, are L-formulas, then
u(e1, ..., ) is an L-formula.

2. If ¢ is an L-formula and x is a variable, inf, ¢ and sup,, ¢ are L-formulas.

Many other syntactic notions can be carried over word for word into this setting.
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Asin classical first order logic, the interpretation of an L-term t in M, is a function
tM : M™ — M. However, the value of a L(M)-sentence o is a real number in the
interval [0, 1] and it is denoted o™, which we are going to define, as usual, via the
the value of formulas, which in turn we define by induction its complexity, as follows:

L (d(ty, )M = dM(#1, 971) for any 1, t;
2. for any n-ary predicate symbol P of L and tq,...,t,,

(P(ty ..., to))YM = PM@M, e,

n

3. for any continuous function w : [0,1]" — [0, 1] and any L(M )-sentences o1, . .., on,
(u(or,...,on))M = u(eM, ..., oM);

4. for any L(M)-formula ¢p(z),
(sup ()™

is the supremum in [0, 1] of the set {¢(a)™ : a € M};

5. for any L(M)-formula (z),
(inf ()™

is the infimum in [0, 1] of the set {¢(a)™ : a € M}.

Where all terms t1,...,t, are L(M)-terms in which no variables occur.

Given an L(M)-formula o(z1,...,z,) let o : M™ — [0,1] denote the function
defined by
M

oM(ar, ... am) = (plar ..., an))M.

An important fact about formulas in continuous logic is that they define uniformly
continuous functions whose modulus of uniform continuity does not depend on M but
only on the data given by the signature L. This is stated precisely in the following re-
mark. We do not include the proof here but it is based in the fact that the composition
of uniformly continuous function is uniformly continuous.

Remark 1.1.2. Let t(x1,...,xz,) be an L-term and o(x1, ..., xy,) an L-formula. Then
there exist functions Ay and Ay from (0,1] to (0,1] such that for any L-structure M,
A; is a modulus of uniform continuity for the function t" : M™ — M and A, is a
modulus of uniform continuity for the predicate e : M™ — [0,1].

Given two L-formulas ¢(z1,...,2,) and ¥(z1,...,2,) we define the logical dis-
tance between them as

|Q0 - sz)| = Sup|(70M(a17 s 70’”) - Tr[)M(alv' . -;an)|;

where the supremum is taking over all L-structures M and all ay,...,a, € M.
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This function induces a pseudometric on the set of all formulas with free variables
among 1, ..., ZTy. Iwo formulas are logically equivalent if the logical distance between
them is 0.

In contrast with the classical theory, where we have a clear definition of what
means for an element to satisfy a formula, here we just have the formula evaluated in
the element. So we have to define some value of truth. To do so, we introduce the
following concept.

An L-condition E is a formal expression of the form ¢ = 0, where ¢ is an L-
formula. We say that E is closed if ¢ is a sentence.

Let E be the L(M)-condition ¢(z1,...,z,) = 0 and ay,...,a, € M, we say that
Eis true of ay,...,a, in M, M = Efa;y ..., a,], if eM(ay,...,a,) = 0.

We adapt the definition of logical equivalence from formulas to conditions in a
natural way:

Let E; be the L-condition ¢1(x1,...,2,) = 0 and let Ey be the L-condition
wo(x1,...,2,) = 0. We say that Ey and FEy are logically equivalent if for every L-
structure M and every a; ..., a, € M we have

MEEia...,a,] <= ME Es]ar...,a,].

Writing everything as a condition can be tedious, to simplify the notation we use
the expression ¢ = 1 as an abbreviation for the condition |p — | = 0 for ¢ and ¢
formulas. Since each number r € [0, 1] can be seen as a connective, expressions of the
form ¢ = r will also be regarded as a condition.

It is common to construct a metric space as the quotient of a pseudometric space
or as the completion of such a quotient, and the same is true for metric structures. To
do that construction, we need to consider what we will call prestructures and develop
the semantics of continuous logic for them.

Let us fix a signature L for metric structures. An L-prestructure Mgy based on
(Mp, dp) is a structure defined the same way as an L-structure, except that it is based
on a pseudometric space. Given an L-prestructure My, let (M,d) be the quotient
metric space induced by (My,dy) with quotient map 7 : My — M. We define a
prestructure M, in which the interpretations in M of the symbols of L are the natural
interpretations induced by the prestructure Mg and 7. Using the usual properties of
uniformly continuous functions it is easy to check that these interpretations are well-
defined and L is the signature of M. We need one step more because we have required
the space to be complete. We define an L-structure N by taking a completion of M.
This is based on a complete metric space (NN, d) that is a completion of (M,d), and
its additional structure is defined the natural way, induced by the prestructure M.
As before, usual properties of uniformly continuous functions guarantee that A is an
L-structure.

As an example, one could construct the unit ball of LP((0,1)) for p € [1, 0] starting
with the prestructure consisting of all integrable functions from a measure space X to
(0,1) which have norm less than 1. There, the norm induces a pseudometric. In this
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particular case, the resulting quotient prestructure is already complete, and hence a
structure.

Also, as it is natural, we have that the interpretations of formulas and terms are
not changed when taking the steps necessary to construct an L-structure from an
L-prestructure.

Remark 1.1.3. Let Mg be an L-prestructure with underlying pseudometric space
(Mo, dy); let M be is quotient L-prestructure with quotient map 7 : My — M, and let
N be the L-structure that results from completing M. Let t(z1,...,x,) be any L-term
and p(x1...,x,) be any L-formula. Then:

(1) N (x(ar), ..., m(an)) = tM(x(a1), ..., 7(an)) = tM(ay,. .., ay) for all elements

A1y...,0n € My;
2) PNr(ar), ... m(an)) = eM(n(ar),...,w(an)) = ¢M(ar,...,a,) for all ele-
ments ai,...,a, € Moy,

We introduce some fundamental model theoretic concepts and their basic proper-
ties. Fix a signature L for metric structures.

A theory is a set of closed L-conditions.

We say that M is a model of T, M =T, if M |= E for every E € T. We denote
Modp,(T) to the collection of all L-structures that are models of 7.

A theory is complete if it has the form of Th(M), the set of all closed L-conditions
satisfied by an L-structure M.

Let M and N be L-structures:

1. We say that M and N are elementarily equivalent, and write M = N, if
Th(M) = Th(N).

2. A function F' from a subset of M into N is called an elementary map from M
into NV if for all p(x1,...,2,) € Form(L) and ay,...,a, € Dom(F'), we have

oMar, ... an) = ¢V (F(ar),..., Flay)).

An elementary map whose domain is all of M is called an elementary embedding.
If the inclusion map from M into N is an elementary embedding, we say that
M is an elementary substructure of N or that N is an elementary extension of

M and write M < N.

Remark 1.1.4. Let M be an L-structure and A < M, if a and o’ are elements of M
that satisfy the same set of L(A)-conditions, then the map

F:Au{a} > Au{d}c M
which is the identity over A and sends a to a’ is an elementary map.

The next result gives a method to check if a substructure is an elementary sub-
structure:



6 Metric Structures

Proposition 1.1.5 (Tarski-Vaught Test). Let S be any set of L-formulas which is
dense in the set of all L-formulas with respect with logical distance. Let M, N be
L-structures with M S N. Then, the following statements are equivalent:

(1). MN;
(2). For every L-formula ¢(x1,...,2n,y) in S and ay,...,ay, € M,

inf{o™ (a1,...,an,b) : be N} = inf{¢N (a1,...,an,c) : c€ M}

Proof. (1) = (2). Let ¢(x1,...,2n,y) be any L-formula and let ay,...,a, € M,
then from (1) we have

inf{oN (a1, ..., an,b) : be N} = (inf p(ay, . .., an, 1))V =
(inf p(a1, . .., an, y))™M = inf{p(a1,...,an,c) : ce M} =
inf{oN (a1,...,an,c) : ce M}.

(2) = (1). Let us first prove that (2) holds for the set of all L-formulas.
Let ¢(x1,...,2pn,y) be any L-formula. Given ¢ > 0, let ¥(x1,...,2,,y) be an L-
formula in S that approximates ¢(z1, ..., x,,y) within € in the logical distance. Let
ai,...,an € M. Then we have

inf{tpN(al,...,amb):beN}Zinf{w/\[(al,...,an,b):beN}—EZ
inf{wN(al,...,an,c) :ceM}—eZinf{goN(al,...,an,c):ceM}—2€.

Letting € tend to 0, we obtain
inf{oN (a1,...,an,b) : be N} = inf{¢ (a1, ...,an,c) : c€ M}.

The equality now follows from M < N.

Now, we prove that this implies (1) by induction on the complexity of the formulas:
For atomic formulas is inmediate because M € N.

Connectives: Let ¢ = u(p1,...,¢n)(T). Then, for all a e M,
(et o))M(@) = u(@' @), ... 03" @) = ulel @), ... 00 @) = (wlpr, .., 00))V (@)
sup and inf: For the infimum case, let @ € M, then

(iI;f(p(E, )V (@) = inf{eN(a,b) : be N} = inf{oN (a,¢) : ce M} =

= inf{eM(@,¢) : ce M} = (ilg}fcp(f, )M (@).

The supremum case follows by using sup ¢(Z,y) = 1 — inf(1 — ¢(Z, y)). O
Yy Y



1.1 Basics 7

We discuss now the cardinality problem we remarked when describing the con-
struction of formulas, the solution will be to take a dense countable set of connectives
so that the cardinality of the set of formulas will be max(|L|,w), as usual. The results
of this section will ensure that this works properly.

A system of connectives C = (C,, : n > 1) is a family where each C), is a set of
n-ary connectives. A system of connectives C is full if its closure under projection to
the coordinates and composition is dense in the set of all connectives, with respect to
the supremum distance.

Let C be a system of connectives, the collection of C-restricted formulas is the
smallest set of formulas that contains atomic formulas and is closed under the follow-

ing:

1. fu e Cp and 1, ..., p, are C-restricted formulas, then u(p1,...,¢y) is a C-
restricted formula.

2. If ¢ is a C-restricted formula, then sup, ¢ and inf, ¢ also are C-restricted for-
mulas.

The following theorem states the result we needed about the density of the re-
stricted formulas when we are working with countable full sets of connectives.

Theorem 1.1.6. If C is a full system of connectives, then, for any € > 0 and any
L-formula o(x1,...,xy,) there exists a C-restricted formula ¥ (x1,...,x,) such that

|@M(a1,...,an) — wM(al,...,an)] <e

for all L-structures M and all ay,...,a, € M.

Proof. We fix € > 0 and proceed by induction on formulas.

Atomic formulas are included in the C-restricted formulas so the statement is
trivial.

Connectives. Let ¢ = u(p1,...,¢n). Using the uniform continuity of u, we take
d > 0 small enough so that if d(z,y) < ¢ then d(u(z),u(y)) < §. Now we approximate
each ¢; by a C-restricted formula v; which is within distance §. Hence, we have

€
|u(S017 . ‘79071) - U(’(/Jl, e 7¢’n)| < 5
Now, we take # € C such that |u — | < 5. Therefore, using triangular inequality

|u(9017' 7‘Pn) _ﬁ(¢17 7wn)| <e.

We only have left the quantifier case. As usual, we do the inf case because supre-
mum is analogous. Let ¢(x) = inf, ¢ (z,y). So, for each structure M and a € M™,
o(a)M = inf{(a,b) : be M}. Now we approximate ¢ by a C-restricted formula 1
within distance € and we get

o(a)™ = inf{yM(a,b) : be M} <inf{(a,b) :be M} +¢
o(a)™ = inf{y™(a,b) : be M} > inf{¢M(a,b) : be M} —¢.

Hence, inf, 1;(33, y) is the required formula. O
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In the light of the previous theorem, we present a very simple countable full set
of connectives. This will be the connectives that we will mean when we just say
restricted connectives or restricted formulas.

Before constructing it, we need to define a connective. Let = : [0, 1] x[0,1] — [0, 1]
be the function defined by

This function is obviously uniformly continuous.

Our system of connectives will be Cp = (C, : n > 1), where C; = {0,1, 3},
Cy = {~} and C,, = J for n > 3. Some relevant connectives we can build by
composition and projection to the coordinates are:

min(z,y) =z = (z ~ y),

max(z,y) = 1 = min(l - z,1 =~ y),
. .om .
and every dyadic fraction on D [0,1].

Proposition 1.1.7. Cy is a full system of connectives.

Proof. We are going to apply the following result: 'Let X be compact, and let A be a
sublattice of C'(X), the set of real valued continuous functions on X. Then cl(A), with
the supremum distance, contains every function f in C'(X) that can be approximated
at each pair of points in X by a function from A.’

Firstly, note that since we can express maximum and minimum with our connec-
tives Coln (Co restricted to n-ary connectives) is a sublattice of C([0,1]™), where the
partial order is f < g < Va€ [0,1] f(a) < g(a).

Let D be the set of dyadic fractions in [0, 1]. We are going to prove that for each
x,y € D with z # y, we have that D? < {(g(z),9(y)) : g € Co|1}. Fix z,y € D with
r < y and let (a,b) € D?. Suppose b < a. Take m € N such that a < m(y — x) and
let g : [0,1] — [0, 1] be defined by

g(t) = max(a =~ m(t - z),b).

It is easy to see that g € Cp|1 and that g(x) = a and g(y) = b. If a < b we can achieve
the same result using 1 = @ and 1 = b and the function 1 = g(¢).

Next, by the above mentioned result, we have to show that we can approximate
an arbitrary connective u in two arbitrary points x,y of [0,1]". If x # y at least one
coordinate is different. Suppose 1 < y; without loss of generality. Let a = u(x)
and 3 = u(y), we do the case 8 < «, the case a < [ is done changing the function
that we will define the same way as g(t) in the beginning of the proof. We take
a,b € D with b < a such that d(a,a) = d(b,) < 5 and 21,71 € D close enough to
x1,y1 for the function g(¢) = max(a ~m(t = 1),b) to satisfy d(g(x1),9(%1)) < § and
d(g9(y1),9(#1)) < §. Finally, let h(z) = g(m1(x)), this function satisfies

d(h(x),u(x)) = d(g(z1), @) <d(g(x1),9(F1)) +d(a,a) < ¢
d(h(y),u(y)) = d(g(y1), @) <d(g(y1),9(H1)) +d(b, B) < e
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The case x = y is trivially approximated because D is dense in [0,1]. Then, the
result stated at the beginning of the proof ensures that Cy|, is dense in the set of
n-ary connectives with respect to the supremum distance, for all n, that is, Cp is a full
system of connectives. O

We explain here an argument that will be frequently used in the remaining sections
of this document.

Proposition 1.1.8. Let E = {pi(z) = 0 : i € I} be a set of L-conditions, then we
can assume without loss of generality that its cardinality is less than max(card(L),w).
That is, there is a subset D € E of cardinality at most max(card(L),w) such that, for
any L-structure M and any a € M™, the element a satisfies all the conditions in E if
and only if a satisfies all the conditions in D.

Proof. We consider the set of L-formulas E = {¢;(z) : i € I}. We claim that we can
chose a subset D € E of cardinality at most max(card(L),w) that is dense in E, with
respect to the logical distance. To prove this, consider the space Form(L) with the
logical distance, we know that the set of restricted formulas C is a dense subset of the
required cardinality. Let 9 be the family of balls of rational radius where the centre
is an element of C and consider %y = {BmE :Be P and BNE # &}. Choosing any
element xp in every set B of the family %, we construct the set D= {xp : B € %y},
which is a dense subset of £ with respect to the logical distance and has cardinality
at most max(card(L),w). Then, all L-conditions of the set D = {¢(z) = 0: p € D}
are satisfied by an element a of an L-structure M if and only if a satisfies all the
conditions in F. O

1.2. Construction of models

We start this section by discussing ultrafilter limits in topology. Let X be a topological
space and let (z;);er be a collection of elements of X. If D is an ultrafilter on I and
x e X, we write

limz;, =z

i,D
and say that x is the D-limit of (z;);er if for every neighborhood U of z, the set
{iel:x;eU} belongs to D.

Sometimes, it can be useful to consider the collection (z;);e; as a the image of a
function f: I — X, then x is the D-limit of (x;);es if for every neighborhood U of z,
we have f~1(U) € D.

Lemma 1.2.1. Let X be a topological space:

(1) The topology on X is compact if and only if for every collection (x;)ier of ele-
ments of X, and every ultrafilter D on I the D-limit of (x;)es exists.

(2) The topology on X is Hausdorff if and only if for every collection (x;)ier of
elements of X, and every ultrafilter D on I the D-limit of (x;)ier, if exists, is
UNIqUE.
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Proof. (1) Assume X is compact. Let f: I — X be a function and D an ultrafilter on
I. Suppose (x;);er has no D-limit. Hence, for every = € X there exists a neighborhood
U, of = such that f~'(U,) ¢ D. We have that {U, : z € X} is a cover of X. By
compactness, there exists a finite subcover Uy, ..., U,, of X, therefore

n
U £ Y(Us,) = I, but this is a contradiction.
i=1

Assume now that the required limits exist. Suppose that X is not compact. Let
{Uy : € A} be an open cover of X with no finite subcover. Then every intersection
of finitely many elements of the family A = {US : @« € A} is not empty. Hence, A can
be extended to an ultrafilter D on X. Let x be the D-limit of (i);ex. Take o € A such
that x € U,, but then, by our definition of D-limit U, € D. This contradicts that D
is an ultrafilter because U§ € D.

(2) Assume that X is Haussdorf. We proceed by contradiction. Let x,y € X be
such that y = ljrg z; and x = ljrg)l x;. Let U,V € X be two open sets such that x € U,
i, i,

yeVand UV = . By our definition of D-limit we have that {ie [ : z; e U} € D
and {i € I : x; € V} € D, but this is a contradiction because those two sets are disjoint.

Assume the uniqueness of the required limits. Suppose that X is not Hausdorff,
that is, there exist z,y € X, x # y, such that for all U,V € X neighborhoods of z
and y respectively U n'V # (. This means that we can enlarge the set

{A < X : A is neighborhood of x or y}
to an ultrafilter D on X. Finally,

=limi=2x
Yy oD s

where we are taking I = X. d

The following lemmas show that the D-limit behaves well with respect to contin-
uous functions, supremum and infimum.

Lemma 1.2.2. Let X, X' be topological spaces and F : X — X' be a continuous
function. For any collection (x;):er from X and any ultrafilter D on I we have that:

limz; =2 = lim F(x;) = F(x)

i,D i, D

where the ultrafilter limits are taken in X and X' respectively.

Proof. Let U be an open neighbourhood of F(z) in X’. Due to the continuity of
F, F~Y(U) is an open neighbourhood of z. By definition of D-limit of a sequence
(7)1, there exists A € D such that for all i € A, z; € F~1(U). Hence, for all i € A,

Lemma 1.2.3. Let X be a closed, bounded interval in R. Let (S; : i € I) be any
collection of sets and let (F; : i€ I) be a family of functions F; : S; - X. Then, for
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any ultrafilter D on I

sup(lim F;(z;)) = lim(sup F; ()

x 1, 7/7D T

inf(lim Fj(z;)) = im(inf F;(x;)),

z i,D iD
where in the left hand side, the supremum and infimum are taken over all collections
x = (x;)ier € | [;e; Si and in the right hand side the supremum and the infimun are
taken over each S;.

Proof. The sup and inf cases are analogous, so we just do the sup one.

Let r; = sup,, I;(z;) for each i € I and let r = limr;. Let € > 0 and let A(e) be

i
an element of D such that r; is within distance ¢ from r for each i € A(¢).

We prove the equality in two parts.

For each € > 0, we have F;(x;) < r; < r + ¢ for each i € A(e). Hence, we have

that h%l Fi(x;) < r+e. Letting € tend to 0 and taking the supremum gives us the
2
inequality sup(lim Fj(z;)) < lim(sup Fj(z;)).
€T /L7D 7‘7D T4

For the other inequality, fix ¢ > 0 and for each ¢ € I chose x; € S; such that
r; < Fy(x;) + §. For each i € A(5) one has that r < Fj(x;) + . Taking D-limit first
and supremum after that we get ljrél(supﬂ(xi)) < sup(lj%lﬂ(:ci)) +¢e. Letting € tend

3 x 2

) Z;
to 0 gives us the required result. O

To construct the ultraproduct of metric structures, first we have to discuss about
ultraproducts of metric spaces and functions.

Let us start by studying the structure of the product of metric spaces. Let
((M;,d;) i € I) be a family of bounded metric spaces, all having a common bound
K for the diameter and let D be an ultrafilter on I. We define a function d on the
cartesian product [ [... M; by

€1

d(.’L‘, y) = hm dl(xza yl)v

2,D
where © = (x;)ier and y = (y;)ier- Note that this D-limit is taken in [0, K] so the
existence and uniqueness is guaranteed. It is clear that this defines a pseudometric on
the cartesian product, so we can define the natural equivalence relation x ~p y if and
only if d(z,y) = 0. Furthermore, the pseudometric d induces a metric in the quotient

space
([ [M)p = [M)/~p
i€l i€l
that we also denote d. The metric space (([ [,c; Mi)p,d) is called the D-ultraproduct
of ((M;,d;) : i € I) and the equivalence class of (;)ser € [ [;c; M; is denoted ((;)ser)p-
Note that when we defined metric structures, we required the space to be complete,
the following lemma ensures that we will not have any difficulties when constructing

the ultraproduct of a family of structures.
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Proposition 1.2.4. Let ((M;,d;) : i € I) be a family of complete, bounded metric
spaces, all having diameter less than K. Let D be an ultrafilter on I and let (M, d) be
the D-ultraprouct of ((M;,d;) : i € I). The metric space (M,d) is complete.

Proof. Tt suffices to show that every Cauchy sequence has a limit in M. Let ()=
be a Cauchy Sequence moreover, we may assume that d(z®,z**1) < 2% holds for
all £ > 1. Let (x )ze[ be a representative of z* for each k > 1. For each m > 1 let
Ay, be the set of all 4 € I such that d; (xl,mfﬂ) < 27% holds for all k = 1,...,m

Obviously, the sets (A;;)m=1 form a decreasing chain, they are also all in D because
they are finite intersections of sets that are in D by definition of the distance d. Now,
we construct a representative (y;)ie; of the limit of the Cauchy sequence (z¥)z>; in
(M,d). If i ¢ Ay, we take y; to be an arbitrary element of M;. If i € A;,\A;41 for
some m > 1, we take y; = 2" If i € A,, for all m > 1, then (zF);>; is a Cauchy

sequence in a complete metric space (M;,d;), so we take y; to be its limit.

Now, for each m > 1 and each i € A,,, we claim that d;(27,y;) < 27™*L. To
show this, we check the two cases. If i ¢ A, for some k > 1, then y; = $m+k and
di(x ;) < 270mHR) o omm < ommHL If e Ay for all k > 1, then y; is the limit
of the Cauchy sequence (:L‘f) r>1 and we use that in a Cauchy sequence like the ones
we are assuming, the distance between the m-th term and the limit is at most 27+,
Hence, ((y:)ier)p is the limit in (M, d) of the sequence (z¥)g=1. O

Let us note a particular case of the ultraproduct of metric spaces.

Remark 1.2.5. If all (M;,d;) are the same metric space (M,d), the construction
above is called the D-ultrapower and its denoted by (M)p. We can define the diag-
onal map T : M — (M)p as T(x) = ((x)ier)p- The diagonal map is an isometric
embedding, moreover, if (M,d) is a compact metric space, then T is also surjective.

Proof. Take any (x;)ier € [ [;,e; Mi. As M is compact, by lemma 1.2.1, this sequence
has a D-limit x. Then, by definition of the metric in (M)p and properties of the
D-limit, we have d((z;)ier, T(x)) =0, so T(x) = ((zi)ier) D- O

Now, we define ultraproduct of functions.

Let ((M;,d;) :i€I) and ((M],d.) : i € I) be families of metric spaces all of them

1)
with diameter less than K. Fixn > 1 and let f; : M]* — M/ be a uniformly continuous

function for each i € I, all of them with the same modulus of uniform continuity A.
Then, given an ultrafilter D on I, we define a function

o [M)p— (Mo
i€l el el

by setting

Hfz Dien)Ds - ((#)ien)p) = ((filzf, ..., a}))ier) D

el

for all (xi)iel € Hie] Mi-
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As in the ultraproduct of metric spaces, we note here that we required functions
of our metric structures to be uniformly continuous. The next lemma ensures that we
will have no problem when defining the ultraproduct of metric structures.

Lemma 1.2.6. The function defined above is well defined and uniformly continuous
with modulus of uniform continuity A.

Proof. For simplicity, we do the case n = 1, the case n > 1 is analogous because we
use the maximum distance when we discuss finite powers of a metric space.

Fix € > 0 and let ((z)ier)p, (¥s)ier) D € ([ [;,e; Mi)p be a pair of points such that
d(((z3)ier) D> ((y:)ier)p) < A(g). Then, by definition of the distance and the D-limit,
there exist A € D such that d;(z;,v;) < A(e) for all i € A. Since A is a modulus of
uniform continuity for all of the functions f;, we have that d;(f;(x;), fi(y:)) < e for all

i€ A. Hence d((fi((x:))ier) D, (fi((:))ier)p) < €. This shows that ([ [;c; fi)p is well
defined and has A as a modulus of uniform continuity. O

Note that in the latter proof it is the first time that our precise definition of uniform
continuity is relevant.

Finally, we define the ultraproduct of metric structures. Let (M; : i € I) be a
family of L-structures with underlying metric spaces (M;, d;) and D an ultrafilter on
1. As all M; are L-structures and L includes Dy, a bound for the diameter of the
L-structures, there exist an uniform bound on the diameters of all M;, so we may
form their D-ultraproduct. Moreover, for each function or predicate symbol in L, as
their modulus of uniform continuity are included in L, their interpretations have the
same modulus of uniform continuity, so their D-ultraproduct is well defined. In the
case of predicates, we identify the D-ultrapower of [0, 1] with [0, 1] itself (see remark
1.2.5).

Therefore, we can define the D-ultraproduct of the family (M; : i € I), usually
denoted by ([ [;c; Mi)p, as the following L-structure

[TMp = ([ TMo. T2 (L2 0, (@ )ier)p € Tk e K, le L),
i€l i€l i€l i€l
Where K, J and L are the set of index of functions, predicates and constants in L.
Next, we have the analogous result in continuous model theory to L.os’s funda-

mental theorem of ultraproducts.

Theorem 1.2.7. Let (M; : i € I) be a family of L-structures. Let D be any ultrafilter
on I and let M be the D-ultraproduct of (M; : i € I). Let o(x1,...,2y,) be an
L-formula. If aj, = ((a¥)ier)p are elements of M for k = 1,...,n, then

M(ay, ... an) = limeMi(al, ... al).

4 i,D

Proof. We proceed by induction of formulas.

Atomic formulas. Let P be a predicate symbol in L and let ((a})icr) D, - - -, ((a?)ier) D
be elements of M. Then, for any b € [0, 1], using the diagonal embedding to identify
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bas (b)ier € Hle[[ 1] we have that PM(((a})ier)D; - - -, ((a?)ier) p) = b if and only if

(Hze[ PMi(al ... a®), (b)icr) = 0. This is equivalent, by our definition of limit, to
1il%lP i(al,...,a") =b.
Connectives. Let u be an n-ary connective,let ¢1,...,p, be L-formulas and let

((a})ier)Ds - - -, ((aM)ier)p be elements of M. Using the induction hypothesis and
lemma 1.2.2 we get the following equalities.

(u(prs- - o)™ ((@ier)ps -, ((@)ier)p =
1

u(liirll)lgol(a},...,a?)v hglgpn(

)

3 Mz i
lil%l(u(g01 R QpnM )(ai" .- ,CL?))

l,im(u((pla s 790n)Mi (a%7 < 7a?))'

©,D

Quantifiers. Let ¢(z) be infy ¢(z,y) and let ((a})ier) D, - - -, ((al)ier) p be elements
of M. We have the following equalities by lemma 1.2.3.

(inf 9 (z, DM((@])ien)p, - -+ ((a])ier)p) =

lﬂf{¢M((( Dien)ps -+ ((@ien) D, ((bi)ier)p) = ((bi)ier)p € M} =

1nf{l1r51¢Ml( yeeyal b)) bie My iel} =

li%r[r)l(inf{zﬂMi(a}, coal, b))t bie M) = hm((lnfw(:v y)Mi(al, ... a).
Hence,

(p(((@)ien)ps - ((@)ier) D)™ = lim((¢o(ay, .., af)™).
Which is the required result.
0

Corollary 1.2.8. If M is an L-structure and T : M — (M)p is the diagonal embed-
ding, then T is an elementary embedding of M into (M)p.

Proof. Let ¢ be an L-formula and ay,...,a, € M. Then, by the previous result
go(M)D(T(al), o T(ay)) = lii%l cpM(al, ceyQp) = cpM(al, ceey Q).
As the domain of T is all M, T is an elementary embedding. O

Corollary 1.2.9. If M and N are L-structures with isomorphic ultrapowers, then
M=N.

Proof. Let E € Th(M) be the closed L-condition ¢ = 0. By the previous result, we
have that o™ = 0 implies @(M)D = 0. By the isomorphism between ultrapowers we

get gp(N )0 = 0, and, as ¢ has no free variables, that means (pN = 0 and we conclude
E € Th(N). O
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The converse to the preceding result is also true. It is the analogous to the Keisler-
Shelah theorem in continuous model theory. The proof of this results if out of the
scope of this memoir.

Theorem 1.2.10. [5, theorem 5.7] If M and N are L-structures such that M =N,
then there exist an ultrafilter D such that (M)p = (N)p.

The following result is the analogous to the compactness theorem in continuous
model theory.

Theorem 1.2.11 (Compactness theorem). Let T' be an L-theory and C a class of L-
structures. Assume that T is finitely satisfiable in C. Then, there exists an ultraproduct
of structures from C that is a model of T

Proof. Let A be P<“(T). For each A € A, let M, denote a fixed structure in C such
that M = E, for each E € A, which exists by hypothesis.

For each L-condition £ € T, let S(E) = {A € A : E € A}. As the collection
{S(F) : E € T} has the finite intersection property, there exists an ultrafilter D on A
such that D contains all S(F) for E € T.

Now, let M = ([ [,cp M2)p. Note that for every E € T and A € S(F), M, | E.
So the set {\ € A : M) = E} belongs to D. Hence, for every L-condition E := (¢ = 0)
we can apply theorem 1.2.7 to ¢ and we get @™ = 1)\1%1 ©Mx. Since for every A € S(E),

@Mx = 0, properties of the limit imply %\1%1 ©™» = 0 and hence M = E. As E was
arbitrary, M = T. ’ O

In the context of the continuous model theory, the compactness theorem gives a
better result that in the classical setting. To explore this improvement we introduce
the following definition.

For any set 3 of L-conditions, X% is the set of all conditions ¢ < % such that
@ =0 is an element > and n > 1.

Corollary 1.2.12. Let T be an L-theory and C a class of L-structures. Assume that
T+ is finitely satisfiable in C. Then there exists an ultraproduct of structures from C
that is a model of T'.

Proof. Applying the compactness theorem 1.2.11 to T'F, we get an L-structure M
which is an ultraproduct of structures of C and a model of T". Note that every L-
structure which is a model of T is also a model of T. Hence, we have the required
result. O

Let T be an L-theory and X(z; : j € J) a set of L-conditions. We say that ¥ is
consistent with T' if for every finite subset F' of ¥ there exist M € Mod(T) and a
tuple a of elements in M such that for every condition F € F'; M = FElal.
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Corollary 1.2.13. Let T be an L-theory and 3(z; : i € I) a set of L-conditions, and
assume that X1 is consistent with T. Then there exists M € Modp(T) and a set of
elements {a; : i € I} of M such that

M= Ela; i€l
for every L-condition E € 3.

Proof. We introduce a new set of constants {¢; : i € I} ans we consider the extended
signature L({c; : ¢ € I}). The consistency of ¥t implies that the L({¢; : i € I})-
theory T'U X7 (¢; : 7 € I) is finitely satisfiable in the class of L({c; : i € I})-structures
C={M,(¢;:i€I)): M T}, that is, all models of T" and all possible assignation of
the constants to elements of M. Applying compactness theorem to the L({c; : i € I})
theory T'U X7 (¢; : i € I) and the class C of L({c¢; : i € I})-structures yields a model
M of T where the interpretations of ¢; for i € I satisfy X% (x; : ¢ € I), hence they
satisfy X(z; : i € I). O

Proposition 1.2.14. Suppose that C is a clsss of L-structures. The following state-
ments are equivalent:

(1) C is aziomatizable in L.

(2) C is closed under isomorphisms and ultraproducts, and its complement is closed
under ultrapowers.

Proof. (1) = (2). If C is axiomatizable, then is closed under isomorphisms because
isomorphic models have the same theory. The same is true for ultraproducts because
theorem 1.2.7 implies that if all structures of C involved in the ultraproduct satisfy
the L-condition ¢ = 0, then the ultraproduct also satisfy ¢ = 0. The complement of
C is closed under ultrapowers by corollary 1.2.8.

(2) = (1).Let T be the set of closed L-conditions satisfied by every structure
in C. We are going to prove that M }= T if and only if M € C. Assume first that
M E T, we claim that Th(M)™ is finitely satisfiable in every L-structure of C. To

prove the claim, supose that it is false, that is, there exists sentences o1, ..., ¢, and
e > 0 such that goZM =0 foralli=1,...,n but for any N' € C we have that goé\/ >
for some j = 1,...,n. This gives us a contradiction because max(¢1,...,¢n) = € is

an L-condition in 7T but is not satisfied in M.

As Th(M)* is finitely satisfiable in C, compactness theorem 1.2.11 implies the
existence of a model M’ of Th(M)* which is an ultraproduc of structures in C and
hence M’ € C. Since every model of Th(M)T is a model of Th(M), this implies
M’ = M. Finally, theorem 1.2.10 implies that there exists an ultrafilter D such that
(M")p = (M)p and our assumptions of C imply M € C. O

Let A be a linearly ordered set, a chain of L-structures is a family of L-structures
(M : Xe A) such that My € M,, for A < 7. If we have such a family, we can define
its union as an L-prestructure in the natural way. Note that we say prestructure
because an arbitrary union of complete metric spaces may not be complete. After
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taking the completion, we denote the resulting L-structure by (J M) and refer to it
AeA
as the union of the chain of L-structures.

Remark 1.2.15. If the cofinality of A is not countable, then the union | J M)y of the
AEA
metric spaces is complete. Hence, the universe of the L-structure |J My is |J M.
AEA AeA

Proof. Let a be an element of the completion of () M. There exist a Cauchy

AEA
sequence (ap)p>1 in | J M) converging to a. The cofinality of A implies the ex-
AeA
istence of o« < A such that a, € M, for all n = 1. Hence, as M, is complete,
a€e M, U M. L]

AEA

A chain of structures (M : X € A) is called an elementary chain if My < M,, for
all A <.

The next result is the analogous to the Tarski chain lemma in the classical theory.

Proposition 1.2.16. If (M) : A € A) is an elementary chain and X\ € A, then we

have My < |J M.
AeA

Proof. By construction, we already know My < |J My = M. Now, we apply the
AEA
Tarski-Vaught theorem 1.1.5. We have to check that for any L-formula ¢(x,y) and

any a € My withn > 1
inf{o™(a,b) : be M} = inf{pM(a,c) : c€ My}.

Obviously, the left hand side is at most equal to the right hand side. Suppose that

is strictly less, then, as | J M) is dense in M, there exists b € [ J M)y such that
AEA AeA

@M(a,g) < inf{eM(a,c) : c € My}. However be Mg for some > A, so the previous
inequality contradicts My < Mg. Hence, we have the equality between the two sides
and Tarski Vaught yields M) < M. O

The density character of a topological space X is the least cardinal among card(A)
for A € X dense subset. We denote this cardinal by density(X)

Proposition 1.2.17 (Lowenheim-Skolem). Let k be an infinite cardinal and assume
card(L) < k. Let M be an L-structure and suppose A S M satisfies density(A) < k.
Then there exist a substructure N of M such that

1N < M;
2. AC N;

3. density(N) < k.



18 Metric Structures

Proof. Let Ag be a dense subset of A of cardinality at most . We first prove that we
can enlarge Ag to obtain a prestructure with universe Ny, whose metric is induced by
the one on M, such that Ag € Ny € M, card(Ny) < k and which has the following
closure property: for every restricted L-formula ¢(z1,...,zy,, Tp+1) and every rational
e>0,if pM(ay,...,an,c) < ewithay,...,a, € Ngand c € M, then there exist b e N
such that @™ (a1, ...,an,b) < e. We start with Ay and we enlarge it to satisfy the
above closure property except that we restrict to the case a1,...,a, € Ag and ce M,
then, we add the images of all tuples of elements of this enlarged set by functions
in L. We call the new set Aj, as the cardinality of Ag, the cardinality of the set of
restricted formulas and the cardinality of L are all at most k. The cardinality of A;

is at most k. Repeating this process we get Ap, A1,... and increasing chain of sets,
then Ny = | J Ay has the required closure property. The set Ny is the universe of an
keN

L-prestructure since its a metric space (with the metric induced by the metric on M)
and its closed by constants and functions in L.

Let N be the topological closure of Ny in M, since Ag € Ny, A € N. Since
Ny has cardinality less than s, density(N) < k. Using that a closed subspace of a
complete metric space is also complete, N is the universe of an L-structure . To
prove N < M, we first prove that N’ € M, then we apply Tarski-Vaught 1.1.5. Let
¢ € L be a constant symbol and let p(z) be d(¢,x). Since M is an L-structure, there
exists ¢ € M such that o™ (c) = 0. Thus, by construction of Ny, for each n € w, n # 0
there exists ¢, € Ny such that o™ (¢,) < % so ¢ belongs to the closure of Ny. Now, let
f be an m-ary function symbol of L and let ¢(z1,...,2m,y) be d(f(z1,...,2m),y).
Let ay,...,am € Ny, since M is an L-structure and Ny S M, there exists b € M
such that @™ (a1, ..., am,b) = 0. Thus, by construction of Ny, for each n € w, n # 0
there exists b, € Ny such that @™ (a1, ..., am,by) < %, so fM(ay,...,a,) belongs
to the closure of Ny and since aj,...a, were arbitrary, Ny is dense in N and f is
uniformly continuous, we have that N is closed under functions. Now, we apply the
Tarski-Vaught test. We need to check that for all ¢(x1,...,z,) restricted L-formula
and ay...,ap € N

inf{oM(a1,...,am,b) : be M} = inf{oM(ay,...,am,c) : ce N}.

Since N € M, one of the inequalities is trivial. For the nontrivial one, let

inf{oM(a1,...,am,b) : b € M} = z, for all § > 0 there exists b € M such that
oM(a, . .. ,am,g) < x + 9, by density of Ny and uniform continuity of the formulas,
for all € > 0, there exist ay,...,a, € Ny such that @M(&l,...,&m,Z) <z +0+e¢
now, we use the closure properties of Ny and get that there exists ¢ € Ny such that
oM (@1, ..., 8m,¢) <z 46+ and so oM(ay,...,am,c) <z + 6+ 2. Finally, letting
e and d go to 0, we get inf{oM(ay,...,am,c):ce N} <uz. O

Let T'(x1,...,2,) be a set of L-conditions and let M be an L-structure. We say
that I'(x1,...,z,) is satisfiable in M if there exist elements aq, ..., a, of M such that
M ETa,...,a).

Let M be an L-structure and let x be an infinite cardinal. We say that M is
k-saturated if for every A € M with |A| < k and for all I'(xy,...,z,) set of L(A)-
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conditions, if every finite subset of I' is satisfiable in (M, a)4ea, then the entire set T’
is satisfiable in (M, a)qea.

The following result shows that in saturated models we have more similarities to
the classical setting, we can analyse L-conditions using the quantifiers V and 3.

Proposition 1.2.18. Let M be an L-structure and suppose E(x1,...,Ty) is the L-
condition

Qzln QT Ty Y1,y Yn) =0
where each Q° is either inf or sup and o is quantifier free.

Let E(x1, ..., xm) be the mathematical statement
Qzln Q0T Ty YL,y Yn) =0

where leyl 18 Ay, if Q;h is inf,, and Vy; if Q;Z_ iS SUp,), -

If M is w-saturated, then for any elements a1,...,a, € M, we have
M = Elay, ... an] if and only if E(aq, ..., an) is true in M.

Proof. We proceed by induction on the number of quantifiers. The case n = 0 is trivial.
For the case n + 1, suppose we are considering the condition inf ¢(x1,...,Zm,y) =0
y

where ¢ is an L-formula with n quantifiers. Let aj...,a, € M. If there exists
b€ M such that ¥(aq,...,am,b) = 0 it follows that inf ¢ (ay,...,an,y) = 0. For the
y

converse, consider I'(y) = {t(a1,...,am,y) < = : n € wyn # 0} set of L(ay, ..., am)-

conditions, it is clear that every finite subset is satisfiable in (M, a; ..., an), so by

saturation there exists b € M such that (M, a;...,an) E (Y(a1,...,am,y) = 0)[b].

Finally we apply the induction hypothesis to the condition ¥ (aq,...,am,b) = 0. The

sup(x1,...,Tm,y) = 0 case is trivial. O
y

Let M be an L-structure and N be an elementary extension of M. We say that N/
is an enlargement of M if for every A € M and I'(x1, ..., z,) set of L(A)-conditions,
whenever every finite subset of I'(x1, ..., x,) is satisfiable in (M, a)qe 4, then the entire
set T' is satisfiable in (N, a)geA-

Lemma 1.2.19. Every L-structure has an enlargement.

Proof. Let M be and L-structure and let J be a set with cardinality bigger than
the cardinality of L(M)-formulas (by remark 1.1.8, max(w,|L(M)|) suffices). Let
I = P=¥(J) and let D be an ultrafilter on I containing the sets S; = {i € I : j € i},
for j € J. We claim that N' = (M)p is an enlargement of M.

First, we already know that M < N by corollary 1.2.8. Let A € M and suppose
[(x1,...,zy,) is a set of L(A)-conditions such that every finite subset of I is satisfiable
in (M, a)sea. Let a be a function from J onto I'. Given i = {j1,...,jm} € I, let
(a},...,a%) be any n-tuple from M that satisfies {a(j1), ..., (jm)} in (M, a)aea. For
each k = 1,...,n set a; = ((af)ieI)D. We check that Log theorem 1.2.7 yields that
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(a1,...,ay,) satisfies I' in (N, a)qea. Let ¢ = 0 be any condition in T, by ¥.o§ theorem,

1 n

@N(al, cey Q) = 11%1 ©M(al,...,a?), this limit is 0 since for any j in the preimage
Z?
by a of the condition ¢ = 0 the set S is in the ultrafilter D.
O

Proposition 1.2.20. Let M be an L-structure. For every infinite cardinal x, M has
a k-saturated elementary extension.

Proof. By increasing k if necessary we may assume k is regular and w < . By
induction we construct an elementary chain (M, : a < k) such that My = M,
if 3 = a+1 we take Mg an enlargement of M,, if 8 is a limit ordinal we take
Mp = |J Mq. Let N = |J M,. By the Tarski chain lemma 1.2.16, M, < NV

a<f a<k
for all @ < k. It remains to prove that A is s-saturated. To do so, let A © N be

a subset of cardinality strictly less than k. Since k is regular, remark 1.2.15 yields
that the universe of N is |J M,. Hence, there exists @ < k such that A S M,.

a<Kk

Therefore, M+ witness that (N, a).e4 realizes every finitely satisfiable set of L(A)-
conditions. ]

Let M be an L-structure and let x be an infinite cardinal. We say that M is
k-homogeneous if for every elementary map F : A — M, where A € M satisfies
|A| < k, and every element a € M, there exists an elementary map F : AU {a} > M
extending F'.

Theorem 1.2.21. Let M be an L-structure. If M is k saturated, then M is k-
homogeneous.

Proof. Let A € M be any subset of the universe and let F': A — M be any elementary
map. Let b € M be any element. Let I'(x) be the set of all L(A)-conditions satisfied
by b. We define I'(z) as the set of L(F(A))-conditions resulting by substituting, in
each condition in I'(x), each apparition of a € A by F(a). Using lemma 1.2.18, the
set of conditions f(w) is finitely satisfiable. Hence, by the saturation of M, there
exists b’ € M such that M |= I[']. This implies that for any L(A)-formula ¢, we
have @™ (b) = @™ (V'). Furthermore, this yields that F' U {(b,b')} is an elementary

map. ]

Let M be an L-structure and let x be an infinite cardinal. We say that M is
strongly k-homogeneous if for every extension L(C') of L by constants with card(C) <
k and maps f,g: C — M such that

(M7 f(c))ceC = (M7g(c))ceC

one has

(Mv f(c))CGC = (M,g(C))cec.

The next result is an auxiliary lemma that we will need later.
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Lemma 1.2.22. Let M and N be L-structures such that M < N and N is 7-
saturated, where T is a cardinal bigger than card(L) and card(M). Let C be a set of
less than T new constants and let f,g be maps from C into M such that

(M, f(e))eec = (M, g(c))cec

Then, there exist an elementary embedding T from M into N such that T(f(c)) = g(c)
for every ce C.

Proof. Note that as M < N, the map h : {f(c) : c € C} - {g(c) : ¢ € C} sending
f(c) to g(c) for every ¢ € C is an elementary map from M to N. Now, we fix an
enumeration (aq)a<y of M where v = card(M) and use the 7-saturation of N to
extend our original elementary map h. We proceed by transfinite induction. Let
Ay = {ag : B < a} and assume we have already constructed a compatible family
of elementary maps fg : Ag — N for f < a. If a is a limit ordinal |J fs is an
B<a
elementary map from A, to N. If o = n + 1, we consider the set I'(x) of all L(A4,)-
conditions satisfied by a,. Using lemma 1.2.18, the set ['(z) of L( fy(Ay))-conditions
resulting by substituting each apparition of a € A4, in T" by f,(a) is finitely satisfiable,
and by our hypothesis of saturation of A/ and the cardinality of all the sets, we get
that there exists b € N such that f, U {(a,,b)} is an elementary map that extends f,.
Finally, () fa is the required elementary embedding. O

a<y

Theorem 1.2.23. Let M be an L-structure. For every infinite cardinal K, M has a
k-saturated elementary extension N such that each reduct of N to a sublanguage of L
1s strongly k-homogeneous.

Proof. We may assume that x is regular without loss of generality. Given any L-
structure M, we construct an elementary chain (M, : @ < k) whose union has the
desired properties. Let My = M, for each o < &, if 8 = a + 1 let Mg be an
elementary extension of M, that is 74-saturated, where 7, is a cardinal bigger than
card(L) and bigger than the cardinality of M,; if 5 is a limit ordinal we take unions.
Let AV be the union of (M, : @ < k). Tarski chain lemma 1.2.16 yields M < N. To
prove the s regularity of N, we argument as in proposition 1.2.20.

Assume that (N, f(¢))ec = (N, g(¢))cec- As k is regular, there exists a < & such
that g(c), f(c) € My, for all c € C. This implies (Mg, f(¢))eec = (Ma, g(¢))eec, that
is, there exists an elementary map h : {f(c:ce C)} - {g(c) : c € C} (as subsets
of My) such that h(f(c)) = g(c) for all ¢ € C. Hence, the result above yields an
elementary embedding hy : My — Mga1 such that the image of f(c) is g(c) for all
c € C. Now, we have that (M1, a)aer, = (Mat1, ha(a))aens, so the previous result
yields an elementary embedding hg11 : Mat1 — Mge such that hgs1(ha(a)) = a
for all a € M. We can keep this doing this construction in an analogous way, getting
hat2 @ Mata = Mgz such that hgio(hat1(a)) = a for all a € My41 and so on.
Note that h;}H extends hgy, hato extends h;}H and so on. In limit ordinal we take
unions of pairs hg U hgil. Using this argument we proceed by induction to construct

all hg with o < 8 < k. Finally, taking the union of all the constructed pairs hgu hgil
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we get the required isomorphism since each hgu hg}rl is an elementary map with Mg
contained in the domain and Mg, contained in the image.

Let L' be a sublanguage of L. For each o < k the reduct of M,11 to L' is 7,
saturated. Hence, we can apply an analogous argument to the given above to the
reduct of N to L'. O

The next corollary follows immediately from the proposition above.

Corollary 1.2.24. Every complete theory has a k-saturated, strongly k-homogeneous
model for every infinite cardinal k.

1.3. The space of types

The space of types is a relevant part of both theories, the classical and the continuous
one. We show in this section that in the continuous setting, when 7' is complete, this
space is not just a topological space as in classical model theory, it is also a metric
one.

We fix a signature L for metric structures and a complete L-theory T'.

For N, a model of T, and A € N. We denote the L(A)-structure (N, a)qea by
Na and Ty = Th(Ng).

Let x1,...,z, be distinct variables. A set p of L(A)-conditions with all free vari-
ables among x1, ..., x, is called an n-type over A if there exist a model M 4 of T4 and
e1,...,en € M such that p is the set of all L(A)-conditions E(x; ...,x,) for which
My = Elei,...,ey). In this case, we denote p = tpay(eq,...,en/A) and say that
(e1,...,en) realizes p in M.

The collection of all such n-types over A is denoted S, (T'4), or simply S,(A) if
the context makes T4 clear.

The following properties follows from the definition of type.

Remark 1.3.1. Let M be an L-structure and, A be as subset of M. Let e, ¢ be
n-tuples from M.

1. tpag(e/A) = tppq(€/A) if and only if (Ma,e) = (Ma, €.

2. If M XN, then tpy(e/A) = tpy(e/A).

Remark 1.3.2. Suppose M is a k-saturated L-structure. Then, for any A < M of
cardinality strictly less than k, every type in Sp(T4) is realized in M for every n > 1.
In fact, this property is equivalent to k-saturation of M.

Proof. Let p € S,(Ta), by definition of type, there exist N' =Ty and ey,...,e, € N

such that N = ple1,...,en]. Let T(xy...,2,) = {p1 = 0,...,0, = 0} be a finite
subset of p. Then, N }=T[e1,...,e,]. This implies

N = iglf...iglf(/\ 0i((x1,...,2,))) = 0.
j=1
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As this is an L(A)-sentence,

(M, a)aea = i;llf...inf(/\ oi((x1,...,2,))) = 0.

x
n j:].

Finally, proposition 1.2.18 yields that there exist elements e;...,e, € M such that
(M, a)aea E Tler,...,e,] and, as T' was arbitrary, the r-saturation of M ensures
that p is realized in M. The converse can be done as in the classical case. O

Now, we study the topology of the space of types.

The logic topology on S, (T4) is defined as follows. If p € S,,(T4), the basic open
neighborhoods of p are the sets of the form

[ <e]l={qe Sn(Ta): ¢ <disin q for some 0 < I <&}

for which the condition ¢ = 0is in p and € > 0.
Note that sets of the form

[p <e] ={qe Su(Ta): ¢ <eisin g},

where ¢(x1,...,xy,) is an L(A)-formula and € > 0, are closed. This follows from the
fact that its compliment is ¢§ if ¢ > 1 and [1 =~ ¢ < 1 — ¢] otherwise.

Remark 1.3.3. The logic topology on Sy,(T4) is Hausdorff.

Proof. If p and ¢ are distinct types of S, (T4), there exist an L(A)-formula ¢ such
that ¢ = 0 is in p but not in ¢. Therefore, ¢ = 7 is in ¢ for some positive r. Taking
e = 5, the sets [p < ¢] and [(r = ¢) < €] are disjoint open sets one containing p and
the other containing q. d

Lemma 1.3.4. The closed subsets of S, (Ta) for the logic topology are exactly the sets
of the form Cr = {p € S,,(T4) : ['(x1,...,2,) S p} where I'(x1,...,2,) is a set of
L(A)-conditions.

Proof. Given a set I'(x1,...,x,) of L(A)-conditions, note that Cr is the intersection
of all sets [¢ < 0] where ¢ = 0 is any condition in I". Hence Cr is closed. Conversely,
suppose C' < S,(T4) is closed in the logic topology and let p € S,(T4)\C. By the
definition of the logic topology there exists an L(A)-condition ¢ = 0 in p and € > 0
such that [p < ¢] is disjoint from C. We may assume the nontrivial case ¢ < 1.
Then the closed [(¢ = ¢) < 0] contains C' and does not have p as an element. We can
represent C' as the set of all types containing all the conditions of the form (¢ ~¢) =0
with ¢ =0 € p and € > 0. O

Proposition 1.3.5. For any n > 1, S,(T4) is compact with respect to the logic
topology.
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Proof. By the previous result, we already know that closed sets can be expressed
as Cr = {p € Sp(Ta) : I'(z1,...,2,) S p}, where I'(x1,...,2,) is a set of L(A)-
conditions. Hence, Cr, n Cr, = Cr,ur,. Suppose that the family {Cr, : i € I} has
the finite intersection property, this implies that every finite subset of | J{T'; : i € I}
is consistent with 74. Then, compactness theorem 1.2.11 yields that the entire set
is consistent with T4. Therefore, there exists at least one p € S,(T4) such that
(AT : i € I} < p. Therefore, (,.; Cr, # . O

Now, we define a metric on the space of types S, (T4). For each n > 1 the metric
is defined as a quotient of the given metric d in M", where M is the universe of a
suitable model M 4 = T4. We also denote this metric by d.

This suitable model is any M 4 = T4 where M is a k-saturated model of T with
k > |A|. Therefore, each type in S, (T4) is realized for each n > 1. Let (M, d) be the
underlying metric space of M. For p,q € S,,(T4), we define d(p, q) to be

inf{ max d(b;,c;) : My = plbi,...bp], Ma = qlcr, ..., cnl}

1LJEN

Note that this expression does not depend on M 4, since M 4 realizes every type of a
2n-tuple (by,...,bn,c1,...,Cn) Over A.

Lemma 1.3.6. The infimum above is always attained at a pair of points a,b € M™

such that My = pla], Ma = q[b].

Proof. Since the set of conditions p(z) u ¢(y) v {d(z,y) < d(p,q) + % :n = 1} is
finitely satisfiable, the saturation of M implies that there exists an element satisfying
the whole set. Hence, if d(p, q) = 0, they have a common realization, so p = q. ]

Theorem 1.3.7. The distance d defined above, defines a metric in Sp(T4).

Proof. The only property of a metric that is nontrivial is the triangular inequality.
To prove it, we first show that given a’ € M™ such that My | p[a’], there exists
b'e M"™, My = q[b'], such that d(a’,b") = d(p, q). Suppose that d(p, ¢) is attained in
a pair of points a,b € M™. As a and a’ both realize the same type p over A, there
exists an elementary map

h:Au{a} > Au{d}.

Now, we use that k-saturation implies x-homogeneity 1.2.21 to extend this ele-
mentary function to an elementary map

h':Au{a,b} > Au{d, b} S M.
Hence M [= ¢[V'] and d(a,b) = d(d’, V') = d(p, q).

Now, let p,q,7 € S,(T4). Suppose that d(p,r) = d(a,c1) and d(r,q) = d(cz2,b).
As, ¢1 and ¢y realize the same type r over A, by the discussion above, there exist ¥',
M = q[V], such that d(c1,V’) = d(cz,b). Hence,

d(p,r) +d(r,q) = d(a, c1) + d(c1,b') = d(a,b') = d(p, q),

Where the middle inequality is just the tiangular inequality for the metric on M". O
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Proposition 1.3.8. The d-topology is finer than the logic topology on Sy (T4)

Proof. 1t suffices to prove that there is a d-open set inside each basic open set of the
logic topology. Let My be as above and let [¢ < ¢] with € > 0 be a basic open
neighborhood of p € S,,(T4). By the uniform continuity of formulas, there exist § > 0
such that if z,y € M™ satisfy d(x,y) < 6, then |p™(2) — M (y)| < e. Tt follows easily
that the open ball around p of radius § with respect to the d-metric is contained in
[p <] O

Proposition 1.3.9. The metric space (Sp(T4),d) is complete.

Proof. Let (pr)r=1 be a Cauchy sequence in (S,(T4),d). Without loss of generality
we may assume d(py, pr41) < 27F for all k. Let A/ be an w-saturated and strongly
w-homogeneous model of Ty.

Without loss of generality we may assume N = M4 for some M = T. We claim
that for any o’ € N such that N = p[a’], there exists b’ € N satistfying N = pr41[V']
such that d(a’,b") = d(pg,pr+1). Indeed, let a and b the elements of N such that
d(a,b) = d(pg,pr+1), the existence of this elements is guaranteed by 1.3.6 . Since a
and o' satisfy the same type over A, we have that there exists an elementary map

h:{a} > {d} SN

As N is strongly w-homogeneous, we can extend this elementary map to an iso-
morphism f : (N,a) — (N,d’). Setting b’ = f(b) we have that b satisfy the same
type over A as b and that d(a’,V') = d(a,b) = d(pk,pr+1). Therefore, proceeding
inductively we may generate a sequence (bg)p>1 in M™ such that d(by,bpy1) < 27F
for all k. This implies that (bg) is a Cauchy sequence in M™ so it has a limit b € M™.
It follows that tpy(b) is the limit of (pg) in (S, (Ta),d). O

We have proved that L-formulas defined functions from L-structures to [0, 1].
Now, we prove that formulas can be used to define functions from the space of types
to [0,1].

Let M4 = T4 be a model where every type in S, (T4) is realized for all n > 1.
For any ¢(z1...,x,) L-formula, we define a function ¢ : S,,(T4) — [0,1] as
@(p) = ™ (b), where b is any realization of p in M4. This function is well defined
because there is only one condition of the form ¢ = r in each type.

Lemma 1.3.10. Let p(x1,...,x,) be any L(A)-formula. The function
@ Sp(Ta) — [0,1] is continuous for the logic topology and uniformly continuous for
the d-metric in S, (T4).

Proof. Let r € [0,1] and € > 0, we check that
GHr—e,r+e)=[lp—7<e]

Remember that [[¢ — 7| <e] = {p € Sp(T4) : | —r| < 0 is in p for some 0 < &}.
So if we take t € (r—e,7+¢), 37H(t) = {p€ Sn(Ta) : p—t =0 isin p} S [|p—7| < €].
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On the other hand, if p € [|[¢ — 7| < €] then ¢ = r + ¢ is in p for some ¢ satisfying
0] < e.

Hence @ is continuous for the logic topology. To prove the uniform continuity,
remember that by remark 1.1.2, there exists a modulus of uniform continuity A, for
oM. We claim that A, is also a modulus of uniform continuity for . Indeed, take

€ (0,1] and let 6 = A,(e). Suppose p,q € S,(Ta) satisty d(p,q) < d. Take a,be M"
such that M = pla], M k= ¢[b] and d(a,b) = d(p,q). Then, by our choice of A, we
have

3(p) — 3(a)] = l¢™(a) — M (b)| <e.
0

Proposition 1.3.11. For any function ® : S,(T4) — [0, 1] the following are equiva-
lent:

(1) @ is continuous for the logic topology on S, (T4).

(2) There exist a sequence (pg(x1,...,2n)) k=1 of L(A)-formulas such that the se-
quence (Pr)r=1 converges uniformly to ® on S, (T4).

(3) @ is continuous for the logic topology and uniformly continuous for the d-metric

on Sp(T4).

Proof. (3) = (1) is trivial.

(1) = (2): We are going to apply the following lattice version of the Stone-
Weierstrass theorem:

'Let X be compact, and let A be a sublattice of C'(X), the real valued continuous
functions on X. Then cl(A), with the supremum distance, contains every function f
in C'(X) that can be approximated at each pair of points in X by a function from A.’

It is easy to see that the functions of the form @ form a sublattice of C'(X) that
contains constant functions r € [0, 1] and separates points, i.e. for every p,q € S, (T'4)
with p # ¢, there exists @ such that @(p) # @(q). To apply the result, we need to
approximate an arbitrary continuous function ® : S,,(74) — [0, 1] in an arbitrary pair
of points z,y € Sp(Ta).

If x = y we can take the constant function r = ®(x).

N If  # y, as the lattice separates points, there exists 1; such that QZ(QJ) = a’ and
P(y) = b with o # V. Let ®(x) = a and ®(y) = b. We have several cases

a <V f= % satisfies f(x) =0 and f(y) = 1. Soif a < b, then (b~a)f +a
approximates ® at x and y, and if b < a, then (a = b)(1 =~ f) + b approximates ® at
x and y.

N; / .
b <d. Weuse f = ff,;z, in an analogous manner.

Where we have considered that the operations a + b and 7 have their range re-
stricted to [0,1]. This implies that functions of the form ¢ are dense in the set of
[0, 1]-valued continuous functions on S, (7’4) which implies (2).
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(2) = (3). The properties of uniform continuity for the d-metric and continuity
for the logic topology are both preserved by uniform continuity. Hence, as each @
has these properties, so does their uniform limit O

Proposition 1.3.12. Let M =T and A< B < M and let w: Sp(TB) — Sn(Ta) be
the restriction map. Then

1

T 18 surjective.

2) m 18 continuous for the logic topologies.

3) m 1s uniformly continuous for the d-metrics.

(
(
(
(4

)
)
)
) If A is dense in B, then 7 is a homeomorphism for the logic topologies and a
surjective isometry for the d-metrics.

Proof. (1). Let p € S,,(T4). The set of L(A)-formulas p™ is finitely satisfiable in
(M, b)pep- Hence, using compactness theorem 1.2.11, p is realized in some elementary
extension of (M,b)ep. If (e1,...,e,) realize p in such elementary extension, then

p=m(tp(er, ..., en/B)).
(2). If o(z1,...,2,) is an L(A)-formula and € > 0, it is clear that the preimage

of [¢ < €] as a basic neighborhood in S,(T4) is [¢ < €] as a basic neighborhood in
Sn(TB). Hence 7 is continuous.

(3). Any realization of p € S,,(Tp) is a realization of 7(p). Hence, d(7(p), 7(q)) <
d(p,q), that means that 7 is a non-expansive function for the d-metrics, which implies
that is uniformly continuous.

(4) As A is dense in B, the uniform continuity of formulas implies that any L(B)-
formula can be approximated by a sequence of L(A)-formulas. Hence, if ¢ = r € p,
there exist a sequence @i = 1 of L(A)-conditions in p with 7 converging to r. This
implies that any realization of 7(p) is also a realization of p. As 7 is continuous for
the logic topology, is also closed since Sy, (Tg) is compact and S, (7) is Hausdorff.
Since we proved that 7 is inyective, then we have the properties required. ]

Remark 1.3.13. When T is not a complete theory, we consider types over the empty
set. In this case, all the results are exactly the same, excluding the ones about the
d-metric on types. The distance between types can be modified to allow T not to be
complete by setting d(p,q) = o if p and q belong to different completions of T






CHAPTER 2

Definability, algebraic and
definable closures

In this chapter we develop all the concepts related with definability in continuous
model theory. We start with predicates and construct the rest of the notions from
that one.

2.1. Definability

2.1.1. Predicates

We say that an n-ary predicate P is definable in M over A if there exist a sequence
of L(A)-formulas (¢ : k > 1) such that (p(x) : k > 1) converges uniformly to P on
M™. Tt is clear that definable predicates are uniformly continuous since they are the
uniform limit of a sequence of uniformly continuous functions.

Lemma 2.1.1. If P and Q are definable predicates in M over A, then inf, P(x) is
also a definable predicate in M over A and so is u(P, Q) for each connective u.

Proof. Let (¢, : k > 1) be the sequence of formulas such that (o' : k > 1) converges
uniformly to P on M"™ and let (¢ : k = 1) be the sequence of formulas such that
(cpé‘/‘ : k = 1) converges uniformly to @ on M™. Properties of uniform convergence
of uniformly continuous functions ensure that the sequence of uniformly continuous
function (inf, M : k > 1) converges uniformly to inf, P(z) on M™ and that the
sequence (u(r, ¥r)™ : k = 1) converges uniformly to u(P, Q) on M™™, O

Instead of working with uniform limits, one could broad the definition of connec-
tive. In order to do that, we consider the space [0,1]" equipped with the distance

~ oo
d((a), (br)) = . 27F|ag — bg|. If we allow continuous functions u : [0, 1] — [0,1]
k=0

to be connec‘civeg7 we can reformulate our definition without causing any problem as
the following result shows.

29
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Proposition 2.1.2. Let M be an L-structure and let A < M. Suppose P is an n-ary
predicate. Then, P is definable in M over A if and only if there exist a continuous
function w : [0, 1]N — [0,1] and a sequence of L(A)-formulas (p; : i € N) such that

P(x) = u(gM(@) i € N)
for all z e M™.

Proof. Suppose P(z) has the form u(M(z) : i € N). We need to show that for every
£ > 0 there exists an L(A)-formula . such that [P (a) — oM (a)| < & for all a € M™.
Fixing ¢ > 0, we are going to show that there exists an L(A)-formula ¢ such that
|PM(a) — pM(a)| < e for all a e M™.

The compacity of ([0, 1]V, p) implies that u is uniformly continuous. Hence if the
sequences (ag : k € N) and (b : k € N) are such that ay = by for all k =0,...,m for
a large enough m we have that

[u((ar)ken) — u((br)ren)| < €.

For that large enough m, let us define u,, : [0,1]™*1 — [0, 1] as
Um(ag, - - am) = ulag, ..., am,0,0,...)

for all ag,...,an € [0,1]. The continuity of v implies the continuity of u,,, hence u,,
is a connective. Let p(x) be the L(A)-formula defined by

p(r) = um(po(@), - - Pm(2))-

Then, it is clear that we have

|PM(a) = ¢™(@)] = lul(pr(@)ken) — um(po(a),. .., om(a))| <e

for all a € M™. Hence P is definable in M over A.

For the converse, we note that ([0, 1]Y, p) is a normal topological space and hence
we have the Tietze extension theorem:

'If X is a normal topological space and A € X a closed subset. For every contin-
uous function f : A — R, there exists a continuous function F' : X — R extending
[

Assuming that P : M™ — [0, 1] is definable in M over A, for every k € N| let o
be an L(A)-formula such that

o (z) — P(z)| < 27F

for all z € M™.

Consider the set C of all sequences (ay, : k € N) in [0, 1] satisfying |ag —a;| < 27V
whenever N € Nand k,l > N +1. We claim that set C is a closed subset of [0, 1] and
also a subset of the Cauchy sequences in [0, 1], the latter implies that every sequence

in C has a limit. To prove the claim, note that if (a; : £ > 1) ¢ C then there exists
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some N € N and some k,I > N + 1 such that |ay — a;| > 27V, taking 6 > 0 small
enough, it is easy to see that every (cx : k > 1) € B;s((ay)) also satisfies |cx —c;| > 27V,
It is also easy to check that (¢2!(x) : k € N) € C for every x € M™. We also claim that
the function lim : C' — [0,1] is a continuous function with respect to the subspace
topology of C. To prove this claim one can use that in sequences like the ones we
are considering, the distance between the n coordinate and the limit is bounded, also
noting that for § small enough, if d((az), (cx)) < & then ¢, and a, are close. Finally,
Tietze Extension Theorem yields a continuous function v : [0, 1] — [0, 1] that agrees

with lim on C. The latter u is the required connective. O

We study now the relation between definable predicates and elementary extensions
or substructures.

Proposition 2.1.3. Let Py, ..., Py be n-ary definable predicates in M over A. Let
N X M with A € N and let Q; be the restriction of P; to N for each i. Then, the
following holds:

(Nlea"'an) < (Mapla"'apm)-

Proof. We first note the following two properties of predicates related to uniform
convergence of formulas:

Firstly, if P is a definable predicate in M over A and @ is its restriction to N
we claim that inf, P(x) = inf, Q(z), where inf, is taken over M™ in the left hand
side and over N™ on the right hand side. This is because if (¢ : k = 1) is the set of
formulas whose interpretations converge to P in M"™ we have

inf P(z) = lim inf g} (x) = lim inf o' () = inf Q(a),

where the second equality holds because properties of uniform limits allow us to com-
mute the limit and the infimum.

Secondly, if Py, ..., Py, are definable predicates in M over A. Let (¢} : k > 1)
the sequence of formulas whose interpretations converge to P; on M"™ and let v be an
m-ary connective. Using properties of uniform convergence we have

(Tm))-

. M M
u(Pi(@1), -, Pn(wm)) = im u(py (21), - 0"

—0

From this two observations and from the fact that predicates can only be in the
scope of a quantifier or in composition with a connective, it follows that given a
formula @™ (Py(21), ..., Pu(2m), ) we have that whenever ay, . .., an,a are tuples of
elements in N

M

. M m
SOM(Pl(al)’ K ’Pm(am)7a) = kh—{{olo @M((pllc (al)’ -y Pl (am)va) =

= lim N (e} (@), oo (@) @) = ¢V (Qular), -, Qulan), a).
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Definable predicates are well behaved when passing to elementary extensions or
substructures as the next results show.

Proposition 2.1.4. Let P be an n-ary predicate definable in M over A and let N be
such that M < N. Then there exists an unique n-ary definable predicate in N over
A, Q, that extends P. Furthermore, (M, P) < (N, Q).

Proof. Before proving the existence, let us show that if such predicate @) exists, it
must be unique.

Suppose Q1, Q> are predicates definable in A/ over A whose restrictions to M"

is equal to P. Applying proposition 2.1.3, we get that (M, P, P) < (N, Q1,@Q2) and
hence

sup{|Q1(z) — Q2(x)| : x € N"} = sup{|P(z) — P(z)| : x € M"} = 0.
Therefore, Q1 = Q3.

To prove the existence, let (¢ : k € N) a sequence of L(A)-formulas converging
uniformly to P on M™. Since M < N, for any k,l € N we have

sup{| @}’ (b) — ¢ (b)] : be N} = sup{|e}(a) — ¢{'(a)] s a € M"}.

Hence (gofgv : k € N) is a Cauchy sequence of functions that converges uniformly on N™
to some function @ : N — [0, 1]. It is clear that @) extends P, and by construction is
definable in A/ over A. The statement (M, P) < (N, Q) follows immediately applying
proposition 2.1.3. O

The following result gives a characterization of definable predicates with respect
to continuous functions on the type space.

Theorem 2.1.5. Let P : M"™ — [0,1] be a function. Then, P is a definable predicate
in M over A if and only if there exists a continuous function (with respect to the logic
topology) @ : Sp(Th(Ma)) — [0,1] satisfying P(a) = ®(tpr(a/A)) for all a € M™.

Proof. If there exists such continuous function ®. We know by proposition 1.3.11
that there exists a sequence (g : k = 1) of L(A)-formulas such that the sequence of
functions ($9! : k > 1) (where each function is defined as in 1.3) converges uniformly
to ® on S,(Th(My)). Then, for any a € M" let p = tpy(a/A). We have, by
definition of the function 3y, the equality ¢7!(a) = 3y (p) for all k > 1, and so

e (@) = P(a)| = [Bk(p) — @(p)].

Hence, the functions (apévl : k = 1) converge uniformly to P on M", that is, P is
definable in M over A.

For the converse, suppose that (pr : k > 1) is a sequence of L(A)-formulas such
that the functions (¢3! : k& > 1) converge uniformly to P on M™. Let N be a r-
saturated elementary extension of M with |A| < k. Since M < N, for any k,l > 1
we have

sup{| @}’ (b) — ¢ (b)] : be N} = sup{|e}(a) — ¢! (a)] s a € M"}.
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Hence (gpjkv : k € N) is a Cauchy sequence of functions that converges uniformly on
N™ to some function @ : N™ — [0,1]. The predicate @ extends P and is definable
in A over A since is the uniform limit of the same sequence of formulas as P. Let p
be any type in S,,(T4) and define ®(p) = Q(b), where b € N™ is any realization of p.
Since Q(b) is the limit of a sequence of L(A)-formulas, the value of Q(b) only depends
on tpar(b/A). We claim that ® is the uniform limit of (@ : k& = 1) on S, (T4). To
prove this, we note that for any p € S,,(T4) and all £ > 1 we have

Bk(p) = 2(p)] = 01 (b) = QD)

where b € N™ is any realization of p, by the saturation hypothesis on A/ always exists
at least one realization of p. Since (¢ : k = 1) is a sequence of continuous functions,
® is continuous with respect to the logic topology (see 1.3.11). Finally for any a € M™
we have P(a) = Q(a) = ®(tpy(a/A)) = ®(tpr(a/A)) as required. O

We now give a characterization of definable predicates for saturated models.

Let M be an L-structure and A € M. A set S € M"™ is called type-definable
in M over A if there exists a set of L(A)-formulas ¥(z1,...,2,) (or a set of L(A)-
conditions E = {¢ = 0: ¢ € ¥)}) such that for any a € M"™ we have a € S if and only
if oM (a) = 0 for every p € .

Corollary 2.1.6. Let M be a k-saturated structure and A = M with |A| < k. Let
P: M" — [0,1] be a function. Then P is a predicate definable in M over A if and
only if the sets {a € M™ : P(a) < r} and {a € M" : P(a) = r} are type-definable in
M over A for every r € [0,1].

Proof. Suppose P is a definable predicate in M over A. Theorem 2.1.5 gives us
a continuous function ® : S, (T4) — [0, 1] such that P(a) = ®(tpy,(a/A)) for all
a € M™. Fix r € [0,1]. The sets ®~1([0,7]) and ®~!([r,1]) are closed subsets of
Sn(T4) for the logic topology. Due to lemma 1.3.4, we know that those sets have the
form

<I>’1([O,r]) ={pe Sp(Ta):I'i(x1,...,2,) S p}
and

<I>_1([r, 1)) = {p€ Su(Ta) : Ta(x1,...,z,) S p},

where I'; and 'y are sets of L(A)-conditions. It follows that {a € M™ : P(a) < r}
is type-defined in M over A by the set of formulas I'; and {a € M™ : P(a) > r} is
type-defined in M over A by the set of formulas I's

For the converse, let P be a function such that the sets {a € M™ : P(a) < r} and
{a € M™: P(a) = r} are type-definable in M over A for every r € [0,1]. This allows
us to define ® : S,(T4) — [0,1] by setting ®(p) = P(a) whenever p € S,(T4)and
a € M™ realizes p. The existence of this element a is guaranteed by the saturation of
M. We claim that & is well defined and continuous for the logic topology. Indeed,
to prove continuity, we only need to check that the preimages of closed intervals are
closed sets. We note first that ®~1([ry,72]) = ®7([0,72]) n ®~1([r1,1]) and that
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the sets {a € M" : P(a) < ro} and {a € M™ : P(a) = 71} are type-definable in M
over A by some sets of L(A)-conditions I'y and I's. Now let p € S,,(T4). We have
p e ®1([0,72]) if and only if any realization a € M™ of p satisfies P(a) < g, that is,
if and only if M = T'y[a] , it follows that @ 1([0,72]) = {p € Sn(T4) : T < p} which
is closed by lemma 1.3.4. An analogous argument applies to ®~*([r1, 1]). From what
we have proved it also follows that ® is well defined since we can express ® !({r})
as ®71([0,7]) n @~1([r,0]). After ® is constructed, we can apply theorem 2.1.5, this
ensures that P is definable in M over A. O

The following corollary is the analogous to the Theorem of Svenonius from classical
model theory.

Corollary 2.1.7. Let M be an L-structure with A € M and let P : M™ — [0, 1] be a
predicate. Then, P is definable in M over A if and only if whenever for any elementary
extension (M, P) < (N, Q), the predicate Q is invariant under all automorphisms of
N that leaves A fized pointwise.

Proof. First, assume that P is definable in M over A. Let (¢ : k = 1) be a sequence
of L(A)-formulas such that (¢ : k > 1) converges uniformly to P in M™. If (N, Q)
is an elementary extension of (M, P), then the proof of proposition 2.1.4 implies that
the predicate @ is the uniform limit of (cp{g/ :k>=1)on N™. Since each go{c\/ is invariant
under all automorphisms of A that fix A pointwise, the uniform limit of (¢ : k > 1)
also is invariant under all automorphisms of A/ that fix A pointwise.

For the converse, let (ANV,Q) be an elementary extension of (M, P) such that
N is strongly k-homogeneous and (N, Q) is k-saturated with |A] < k. We define
O : S,(Ta) — [0,1] by ®(p) = Q(b), where b is any element of N” realizing p.
We are going to check that this function is well-defined and continuous in order to
apply theorem 2.1.5. Note first that our saturation hypothesis implies that every p €
Sn(Ty) is realized in Ny and that the homogeneity hypothesis implies that Aut4(N)
acts transitively on the set of realizations of any p € S,(T4). Hence, since Q is
Aut o(N)-invariant, the function ® is well defined. Now we are going to check that
® is continuous for the logic topology on S, (T4). Fix p € S,(T4) and let r = ®(p).
Since all realizations b of p in N™ satisfy Q(b) = r, the k-saturation of (N, Q) implies
that for every € > 0 there exists a condition ¢ = 0 in p and § > 0 such that for any
be N" oN(b) < & implies |Q(b) — 7| < £. Therefore for every p € @~ !(r —e,r +¢)
there exists an open neighbourhood with respect to the logic topology [¢ < ] of p
contained in ®~1(r — e,7 + ¢). Hence ® is continuous. Finally, by theorem 2.1.5 we
conclude that P is definable in M over A. O

Now, we show that distance predicates can be axiomatized in continuous logic.

Theorem 2.1.8. Let (M, P) be an L-structure satisfying
sup inf max(P(y),|P(z) — d(z,y)|) = 0
T Y

and
sup|P(z) — inf min(P(y) + d(x,y),1)| =0
T Y
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and let D = {x € M" : P(z) = 0}. Then, P(x) = dist(x, D) for all x € M"

Proof. Due to the second condition, we have that P(z) < P(y) + d(z,y) for all y. In
particular, if y € D, we have that P(x) < d(x,y). Hence, P(z) < dist(z, D).

Now, we prove that for any £ > 0 we have dist(xz, D) < P(x) + ¢ for all z € M™.
Fix € > 0. We generate a sequence (yy) of elements of M using the first condition
Firstly, we set y1 = =, any fixed element of M". We take yo to satisfy P(y2) < §
and |P(z) — d(z,y2)| < §. Inductively, we construct the rest of the sequence where
yx satisfy P(yx) < migr and |P(z) — d(yk—1,Yx)| < 557 Therefore,

€

27.

This implies that (yz) is a Cauchy sequence, and hence it has a limit y € M™. As P
is continuous P(y) = 0. Moreover,

d(Yk, Yr+1) < Pye) + [P(z) — d(yk, ye11)| <

o0
d(x,y) = lim d(yr,ye) < Y, d(y, yrs1) < P(a) +e.
k=1

Since y € D, we have dist(x, D) < dist(z,y) < P(z) + € as required. O

2.1.2. Sets

Now we study the concept of definable sets, this concept is based on the concept of
definable predicate.

Let M be an L-structure and let D S M™" be a closed subset. We say that D is a
definable set in M over A if the predicate dist(x, D) is definable in M over A.

Lemma 2.1.9. Let X be a metric space and let f,g : X — [0,1] be functions such
that
Ve > 035 > Ve e X(f(x) <6 = g(x) <e).

Then, there exist an increasing continuous function « : [0,1] — [0, 1] such that «(0) =
0 and

vz e X(g(r) < a(f(x)))-

The importance of this concept of definability for sets is that in continuous first
order logic, we retain the definability of predicates if we quantify over definable sets
but not over arbitrary sets.

Theorem 2.1.10. Let M be an L-structure and D € M™ a closed subset. Then, the
following are equivalent:

1. D is definable in M over A.

2. For any definable predicate P : M™ x M™ — [0,1] in M over A, the predicate
Q: M™ — [0,1] defined by

Q(z) = inf{P(z,y) : y € D}
is definable in M over A.
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Proof. Assume D is definable in M over A. Let P : M™ x M™ — [0,1] be any
definable predicate in M over A. We know that P is uniformly continuous, hence
by lemma 2.1.9 for f(y,z) = |P(z,y) — P(x,2)| and g(y,z) = d(y, z), there exists
an increasing continuous function « : [0,1] — [0,1] with a(0) = 0 such that for all
reM™and y,ze M"

|P(z,y) — P(x,2)| < a(d(y, 2)).

Let @ : M™ — [0,1] be Q(x) = inf{P(z,y) : y € D}. To prove that @ is definable
we are going to show that Q(x) = inf{P(z, z) + a(dist(z, D)) : z € M"}. Hence if P
and dist(z, D) are definable in M over A, so is @ by lemma 2.1.1. Notice that the
infimum is taken over M™, so it is expressible in continuous logic.

We have P(z,y) < P(x,2) + a(d(y, 2)) for all z € M™ and y,z € M™ due to our
choice of . Taking the infimum over y € D and noting that since « is continuous and
increasing it satisfies inga(d(z,y)) = a(dist(z, D)), we get that

yE
Q(z) < P(z,2) + a(dist(z, D))
for all x € M™ and z € M™ . Finally, we have
Q(z) < inf{P(z, z)+a(dist(z, D)) : z € M"} < inf{P(z, 2)+a(dist(z, D)) : z € D} = Q(x)
for all x € M™.

For the converse, we set m = n and P(z,y) = d(z,y). This implies
Q(z) = inf{P(z,y) : y € D} = dist(z, D)
is definable in M over A. Hence D is definable in M over A. O

The following result shows some properties that definable sets have with respect
to elementary substructures.

Proposition 2.1.11. Let N', M be substructures such that N < M and let D < M"
be definable in M over A, with A € N. Then, the following are satisfied:

1. dist(z, D) = dist(x, D n N™) for all x € N™. Hence, D n N" is definible in N
over A.

2. (N,dist(-, D n N™)) < (M, dist(-, D)).
3. If D # & then D n N"™ # (.

Proof. (1): Consider the function P : N™ — [0, 1] defined by P(x) = dist(x, D), the
zeroset of P is D n N™ and P satisfy the conditions in theorem 2.1.8. Hence, this
gives us dist(z, D) = dist(z, D n N™) for any x € N™ and so D n N™ is definable in
N over A.

Statement (2) follows from (1) by proposition 2.1.3.

To prove statement (3), note that if D # ¢, then inf, dist(z, D) = 0. Hence, by
statement (2), inf, dist(z, D n N™) = 0 in /. This implies that there exists a € N"
such that dist(a, D n N™) < 1. Therefore D n N™ # (. O
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If a closed D € M™ is a definable set, then it is the set of zeroes of a definable
predicate, but the converse is not true in general. The next result tries to illustrate
the difference between definable sets and zerosets of definable predicates.

Proposition 2.1.12. Let M be an L-structure and let D € M™ be a closed subset.
Then the following are equivalent:

(1) D is definable in M over A.

(2) There exists a sequence of L(A)-formulas (¢k : k = 1) and a sequence of positive
real numbers (6, : k = 1) such that all x € D satisfy op'(z) = 0 for all k > 1
and

1
ol (x) < 6, = dist(z, D) < o

for allte M™ and k > 1.

(3) There exist an n-ary predicate P definable in M over A such that all x € D
satisfy P(x) =0 and

Ve > 030 > OV € M"(P(x) < § = dist(x, D) < ¢).
Proof. (1) = (2): Assume Q(z) = dist(z, D) is definable in M over A. So there

exists a sequence (¢, : m > 1) of L(A)-formulas such that for all x € M™ and all
m > 1 we have

1
—_ M < -
Q) ~ @) < 51
Hence if z € D, M (z) < ?%m Also, by triangular inequality, if ;¥ (z) < 3%1 we have
1
Q(z) < Ypl(x) + Q) — Y (w)] < g

Hence the L(A)-formulas ¢p,(z) := ¥y (z) = 5= have the required properties with

Om < 3-
(2) = (3): The predicate P(z) = Y. °_, 27 ™M (x) is definable in M over

A since the partial sums converge to P(z). The predicate P satisfies the required
properties since goj\n/l (£) =0 for all z € D and all m > 1 and for every £ > 0, we can
find 6 > 0 such that P(z) < § implies ¢;1(2)8,, for an m big enough to satisfy = < e.

(3) = (1): Proposition 2.1.9 gives us a continuous increasing function
a :[0,1] — [0,1] such that «(0) = 0 and for all x € M", dist(z, D) < a(P(x)). Let
F' be the predicate defined by

F(z) = igf min(a(P(y)) + d(x,y), 1).

As P is definable in M over A, so is F since « is a connective. Notice that we have
F(z) < dist(x, D) because P(y) = 0 if y € D. On the other hand,for all y € M™, we
have dist(y, D) < a(P(y)) and hence

F(x) > iry1f min(a(P(y)) + d(x,y), 1) = min(dist(y, D), 1) = dist(y, D).

Therefore D is definable in M over A. O

Finally, we introduce the concept of definable functions.
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2.1.3. Functions

Let M be an L-structure and A € M. We say that the function f is definable in M
over A if the predicate d(f(x),y) is definable in M over A.

Proposition 2.1.13. Let f be a definable function in M over A, then f is uniformly
continuous.

Proof. We already know definable predicates are uniformly continuous functions. Let
A : (0,1] — (0,1] be a modulus of uniform continuity for the definable predicate
d(f(x),y). We have that if d(z,2") < A(e) and d(y,y’) < A(e), then

|d(f(z),y) —d(f(2'),y)| <e.
Taking y = ¢ = f(a') we get that d(z,z") < A(e) implies d(f(z), f(2')) < e. O
Proposition 2.1.14. Let k be an uncountable cardinal, M be a k-saturated structure

and A € M such that |A| < k. Let f: M™ — M be any function, the following are
equivalent:

(1) f is definable in M over A.
(2) Gy, the graph of f, is type-definable in M over A.

Proof. (1) = (2) We claim that if f: M™ — M is a definable function in M over
A, then Gy is a definable set in M over A. To prove the claim, note that since f is
a definable function in M over A, the predicate d(f(z),y) is definable in M over A.
Then, the claim follows from the following equality

dist((x, ). G) = inf max(d(z, =), d(f(2).v).

Note that the saturation hypothesis is not needed.

To prove (2) = (1) we make use of corollary 2.1.6. Hence, we need to check that
for the predicate P : M1 — [0,1] defined by P(xz,y) = d(f(x),y) for all z € M™,
y € M the sets {(a,b) € M™"! . P(a,b) < 7} and {(a,b) € M™"! : P(a,b) > r}
are type-definable in M over A for all r € [0,1]. To do so, let I'(z, y) be the set of
L(A)-conditions that type-defines G in M. Note that for a fixed r € [0, 1] we have

P(z,y) <r <= 3z((x,2) € Gf A d(z,y) <)
and
P(x,y) 2r < 3z((x,2) € Gy Ad(z,y) = 7).

Hence the set {(a,b) € M"*! : P(a,b) < r} is type-defined in M by the set of
L(A)-conditions of the form

inf max(gp(x, Z)v d(z) y)) =0,

where ¢ = 0 is any condition in I'. The same argument applies to the set
{(a,b) € M™"1 : P(a,b) = r}, as r € [0,1] was arbitrary, we can apply corollary
2.1.6. [
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Proposition 2.1.15. Let M be an L-structure and A € M. Suppose that the function
f:M"™ > M is definable in M over A. Then:

(1) If N XM and AS N, then f maps N™ into N and the restriction of f to N"
is definable in N over A.

(2) If M < N then there is a function g : N — N such that g extends f and g is
definable in N over A.

Proof. (1) We show that f maps N™ to N, so that the restriction of f on N makes
sense. The definability of f in A over A will follow immediately. Fix any element
(ai,...,an) € N™ and let P be the predicate defined by P(y) = d(f(a1,...,an),y)
for all y € M. This predicate is definable in M over A U {a1,...,a,} S N. Let the
predicate  : N — [0, 1] be the restriction of P to N. The same sequence of formulas
whose evaluation converge to P witness that @ is a definable predicate in N over
Au{ay,...,a,}. Then, applying proposition 2.1.3 we get (N, Q) < (M, P). Since,
for all 2,y € M™ we have inf, P(y) = 0 and d(z,y) < P(z) + P(y), VNV, Q) < (M, P)
implies that @ satisfies inf, Q(y) = 0 and d(z,y) = Q(z) + Q(y) for all z,y € N™.
We can use this properties to construct a sequence (¢ : k > 1) of elements of N that
satisfy Q(cx) < £ and d(cg, ;) < + + 7. This means that (cj : k > 1) is a convergent
sequence in N, since N is complete b = limy_,o cx is in N and P(b) = Q(b) = 0.
However, the only zero of P is f(ai,...,ay), hence f(ay,...,a,) =be N.

(2) Let M < N. The statement (1) allows us to assume that N is w;-saturated
without loss of generality. Let P(z,y) be d(f(z),y), by proposition 2.1.4, there exists
Q : N""1 — [0,1] a definable predicate in A/ over A extending P and satisfying
(M, P) < (N,Q). Since f is a function we have sup, inf, P(z,y) = 0 and hence the
same is true for Q.

We want to define the extension g via Q. We first claim that for all x € N™
there exists at least one y € NV such that Q(z,y) = 0. To prove the claim, note first
that if (g : & > 1) is the sequence of functions whose interpretations in N converge
uniformly to @, then sup, inf, Q(z,y) = sup, kli_r}glo(infy (p{c\/(x, y)). Now, let x € N" be

a fixed element the statement. We claim that the statement klim (inf, N (z,y)) = 0 is
—00

equivalent to a finitely satisfiable set of L(g)—conditions, where A is the set of elements
of A that appears in at least one of the formulas ¢y. Let (¢x : k > 1) be the sequence
(inf, gp{c\/(az, y) : k = 1). Without loss of generality, we can assume that (¢ : k > 1) is a
non increasing sequence of real numbers tending to 0. From the fact that (4,0{;[ tk>1)
is uniformly convergent, we get that for any j € N there exist ¢; > 0 such that if
k,1 > 7, then |¢), — ¢y < &j. Hence, the set T(y) = {oN(z,y) < cp +ep: k= 1} is

finitely satisfiable. Using now the wi-saturation of N, we get that for each element
x € N" there exists at least one y € IV satisfying all the conditions in I', this implies

Qx,y) = klim oV (x,y) = 0, as we claimed.
—00

Now, to prove the uniqueness of the element y satisfying Q(x,y) = 0 for each
x € N™, note that from the definition of P and the triangle inequality follows that P
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satisfies
sup sup sup(|d(y. y') = P(z,y)| = P(x,y)) = 0.
y

Since the same is true for @, it follows that for each x € N™ there is at most one
y € N™ such that Q(z,y) = 0. Therefore, the zeroset of @ is the graph of some
function. It also follows that if Q(x,y) = 0 then Q(z,y’) = d(y,y’) for all y' € N.
So we can define the function g via Q(z,y’') = d(g(x),y’) for all ¥’ € N. Hence g is
definable in A/ over A as required. O

Corollary 2.1.16. Let f, g, f1,..., fn be definable functions in M over A and P be
a definable predicate in M over A. Then, f o g is a definable function in M over A
and P(f1,..., fn) is a definable predicate in M over A.

Proof. Using proposition 2.1.4 and proposition 2.1.15 we may work in a sufficiently
saturated extension M < N.

Let f: N® - N and g : N — N be two definable functions in N over A. First,
we are going to show that Ggo is type-definable. We have

(@,9) € Ggoy <= Fz((w,2) € G A (2,9) € Gy).

If I'y and I'y are the sets of L(A)-formulas witnessing the type-definability of Gy and
Gy respectively, that is the conditions that type-define G are of the form ¢ = 0 with
¢ € T'y and the same for I'y. Then Gyof is type-defined in N over A by the set of
conditions

H;f max(p(, 2),¥(2,y)) = 0,

where ¢ is a formula from I'y and ¢ is a formula from I'y. Hence, by proposition
2.1.14, g o f is a definable function in N over A.

For the second statement, we do the case of a definable predicate and two definable
functions, one can see that this proof is easy to generalize to the case of n definable
functions.

Let P: N? — [0,1] be a definable predicate and let f : N® — N, g: N™ — N
be definable functions. We claim that the predicate @ : N"*™ — [0, 1] defined by
Q(z,y) = P(f(z),g(y)) is definable in N over A. To prove it, we are going to check
that for any r € [0,1] the sets {(z,y) € N*™™ : Q(z,y) < r} and {(z,y) € N**™ :
Q(z,y) = r} are type-definable in A/ over A. We have that

Qz,y) <r < Jz132((x,21) € Gf A (2, 22) € Gg A P(21,22) <1).

Since the sets G, Gy and {(21, 22) € N? : P(21,22) < r} are type-definable in \ over
A, let 'y, I'y and I'p be the sets of L(A)-formulas witnessing the type-definability of
those sets. Then {(x,y) € N"t™ : Q(x,y) < r} is type-defined in N over A by the set
of conditions

inf inf max(p(z, 21),9%(y, 22), 0(21, 22)) = 0,

21 22

where ¢ is a formula from I'¢, ¢ is a formula from I'; and o is a maximum of a finite set
of formulas from I'p.An analogous argument applies to {(z,y) € N : Q(z,y) = r}
and hence Q(x,y) is a definable predicate in A over A. O
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2.2. Algebraic and definable elements

Let M be an L-structure, A € M a subset of M and a € M™ a tuple of M. We say
that a is definable in M over A if the set {a} is definable in M over A. We say that
a is algebraic in M over A if there exists a compact set C = M™ such that a € C' and
C is definable in M over A. The set of all definable points in M over A is called the
definable closure of A in M and it is denoted by decla((A). The set of all algebraic
points in M over A is called the algebraic closure of A in M and it is denoted by
aclp(A).

As in classical first order model theory, the properties of the tuples reduce to the
properties of their coordinates.

Proposition 2.2.1. Let M be an L-structure and A € M. Let a € M™ be any tuple.
Then, a is definable in M over A if and only if a; is definable in M over A for each
1 =1,...,n. The same is true if we substitute algebraic for definable in the previous
statement.

Proof. We begin with the definable case. Suppose that a € M" is definable in M
over A. Note that the predicates Q; : M?" — [0, 1] defined by Q;(z,y) = d(z;,y;) are
definable predicates for ¢ = 1,...,n. Hence, applying theorem 2.1.10, the predicates
P, : M"™ — [0,1] defined by Pi(z) = d(zi,a;) = Pi(z,...,z;) are definable for all
i = 1,...,n. Thus, a; is definable in M over A for all ¢ = 1,...,n. Conversely,
assume that a; is definable in M over A for all i = 1,...,n. Then, we have that

d(z,a) = max(d(z1,a1),...,d(xn,an)).

Hence, a € M™ is definable in M over A by lemma, 2.1.1.

Now, for the algebraic case, we follow the same strategy. Suppose that a € M"™
is definable in M over A and C is the compact set witnessing this property. Note
that the projection C; over the i-th coordinate is a compact set containing a;. Hence,
it suffices to prove that C; is definable for each ¢ = 1,...,n. As in the definable
case, note that the predicates Q; : M>"* — [0,1] defined by Q;(x,y) = d(x;,y;) are
definable predicates for ¢ = 1,...,n. Hence, applying theorem 2.1.10, the predicates
P, : M™ — [0,1] defined by P;(z) = dist(x;,C;) = Pi(xi,...,x;) are definable for
all i = 1,...,n. Therefore, the sets C; for ¢ = 1,...,n are definable in M over A.
For the converse, assume that C4,...,C, are compact subsets of M witnessing that
a1,...,a, are algebraic in M over A. The product C' = C; x --- x Cy, is a compact
subset of M" containing a. We claim that C is also a definable subset of M™. To
prove the claim, note that

dist((x1,...,2,),C) = inf ... inf max(d(z1,y1),...,d(Tn,Yn))
y1601 ynECn

and the right side is definable by lemma 2.1.1 and theorem 2.1.10. O

The definable and algebraic closures depend only on A and not on the structure
in which they are defined.
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Proposition 2.2.2. Let M <N and A< M. If C < N" is definable in N over A
and C n M™ is compact, then C € M".

Proof. Assume that the predicate Q(z) = dist(x, C) is definable in M over A and let P
be the restriction of @ to M™. Proposition 2.1.11 implies that P(z) = dist(z, CnM™)
for all z € M™ and proposition 2.1.3 implies (M, P) < (N,Q). Since C n M™ is
compact, there exists a finite e-net for each € > 0. Fix € > 0 and let ¢q,...¢y be a
finite e-net in C' n M™. This implies that if P(z) < e, then d(x,c;) < 2¢ for some
7 =1,...,m. We can write the last statement as a closed condition

supmin(e ~ P(z), min(d(z,c1), ..., d(z, cp) = 2¢€)) = 0,

T

this condition holds in (M, P), hence the condition

supmin(e = P(z), min(d(z,c1),...,d(z,cpn) ~2¢)) =0
x
holds in (N, Q). It follows that c1,..., ¢y, is a finite 2e-net in C. Letting & tend to
0, we see that every element in C' is the limit of a sequence of elements in M™, since
M™ is complete, this implies that C' € M™ as required. O

Corollary 2.2.3. For L-structures M, N such that M < N we have the following
chain of inclusions

delp(A) = dely(A) S acly(A) = aclp(A).

Proof. Tt is clear that for any L-structure N, dclpy(A) S acly(A) since singletons are
compact sets.

First, we are going to show that dcla(A) S deln(A) and aclp(A) S aclpy(A). To
do so, suppose that C' € M™ is compact and definable in M over A. This means that
the predicate P(z) = dist(z,C) is definable in M over A and hence by proposition
2.1.4, there exist a predicate @ : N™ — [0, 1] definable in N over A extending P such
that (M, P) < (N,Q). Let D € N™ be the zeroset of Q. It is easy to check that
P satisfies the conditions in theorem 2.1.8, and hence, so does ). Thus, @ is the
predicate dist(z, D) for all x € N™. Therefore, by proposition 2.2.2, it follows that
D = C. This implies that C is definable in N over A and hence dclip(A) € delp(A)
and aclp(A) € aclpy(A).

For the converse, note that if C' € N™ is a compact set, we have that C' n M"™
is also a compact set. Hence if C' is also a definable set in A/ over A, by proposition
2.2.2 we have C € M™. This implies that C' is compact and definable in M over A.
Moreover, this shows dcly(A) S delp(A) and aclp(A) S aclp(A) O

The previous proof shows the following corollary.
Corollary 2.2.4. If C € M" is compact and definable in M over A, then, it is

compact and definable over A in any elementary extension of M.

As long as we work in sufficiently saturated models, we can define the algebraic
and definable closures in terms of compact zerosets instead of compact definable sets.
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Proposition 2.2.5. Let M be an wi-saturated L-structure and A < M. If C is a
compact subset of M"™, the following are equivalent:

(1) C is definable in M over A.

(2) C is the zeroset of a definable predicate in M over A.

Proof. Let P : M™ — [0, 1] be a definable predicate in M over A whose zeroset is
C. Giver € > 0, let ' < C be a finite §-net in C. We claim that there exists § > 0
such that any a satisfying P(a) < 6 must be at distance within ¢ of some element of
F'. To prove the claim, suppose that it is false. Hence, for any £ > 1 we can find an
element b satisfying P(b) < 3 and d(b,c) = ¢ for all ¢ € F. Then, the w;-saturation
of M gives us an element a € M™ satisfying P(a) < 1 for every k > 1 and d(a,c) > ¢
for all ¢ € F which is a contradiction. The existence of such § > 0, for each ¢ > 0,
implies that P satisfies the conditions in proposition 2.1.12(3). Hence C' is definable

in M over A.
The converse is trivial since C' is the zeroset of the definable predicate dist(z, C).

O

Proposition 2.2.6. Let M be an L-structure, A € M, and a € M™. The following
statements are equivalent:

(1) a is definable in M over A.

(2) For any N elementary extension of M the only realization of tp,(a/A) in N
5 a.

(3) For any € > 0 there is an L(A)-formula o(z) and 6 > 0 such that ¢™(a) = 0
and the diameter of {be M™ : ™ (b) < 6} is less than ¢.

Proof. (1) = (2). Let Q be the predicate definable in N over A extending d(z, a)
such that (M, d(x,a)) < (N, Q). Since d(x,a) satisfy

supsup(|d(2’, ) — d(2',)a| = d(z,a)) = 0,

T x!

the same is true for Q(x). This condition implies that ) has at most one zero in N.

(2) = (3). We may assume that M is k-saturated with x > |A| due to corollary
2.2.3. Suppose that (3) does not hold. That is, there exists ¢ > 0 such that for any
k > 1 and any ¢ € tp(a/A) the set {b € M™ : o (b) < 1} has diameter grater than e.
That is, the set of L(A)-conditions

tp(x/A)" Utp(y/A)T LUd(z,y) > e

is finitely satisfiable. Hence, the saturation of M implies then that there exist elements
¢,d € M" such that ¢ and d satisfy tp(a/A) and d(c,d) > . This contradicts (2).

(3) = (1). Follows from proposition 2.1.12. O
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We introduce some characterizations on being algebraic.

Lemma 2.2.7. Let M be an L-structure, A < M and let a € M™. Then, a € aclp(A)
if and only if there exists some predicate P definable in M over A such that P(a) =0
and {be N : Q(b) = 0} is compact for all N and Q satisfying (M, P) < (N, Q).

Proof. Suppose that a is algebraic in M over A. This implies that there exists a
compact set C € M" definable in M over A with a € C and so dist(z,C) is a
definable predicate in M over A. By corollary 2.2.4 and the uniqueness of the predicate
extending dist(x, C), the zeroset of @ is C' and hence is compact.

Now, suppose that there exists P : M™ — [0, 1] definable in M over A such
that P(a) = 0 and for all (V,Q)>(M, P), the set Cpy = {b € N" : Q(b) = 0} is
compact. In particular, let N to be wi-saturated. Then, by proposition 2.2.5, Cys
is definable in N over A. Finally, as Cyy n M™ is compact, proposition 2.2.2 implies
that C' = Cy n M™ is a compact set definable in M over A, and contains a. O

Actually, the previous proof shows a stronger property.

Corollary 2.2.8. Let M be an L-structure, A < M and let a € M™. Then, a €
aclp(A) if and only if there exists some predicate P definable in M over A such that
P(a) = 0 and {b € N : Q(u) = 0} is compact for some wy-saturated L-structure N
and some predicate Q satisfying (M, P) < (N, Q).

Now, we show a sufficient condition for being algebraic that will be useful in later
proofs.

Lemma 2.2.9. Let M be an wi-saturated L-structure with A € M and a € M. If for
every n > 1 there exists an L(A)-formula o, such that p\'(a) = 0 and the zeroset of
©n has a finite %—net, then a is algebraic in M over A.

0

Proof. Let C,, be the zeroset of ¢, in M, the set C = [ C,, is the zeroset of the
n=1

predicate P = 3} 27"y, in M. The set C has a finite L-net for every n > 1 since we

n
n=1
can modify the original net on C, to be a %—net by adding finitely many new points,
hence, C' is a compact set. Proposition 2.2.5 then implies that the set C' is definable
in M over A and contains a. O

Let M be an L-structure and A € M. The bounded closure of A in M, denoted
bddpa(A), is the set of elements a € M™ for which there exists some cardinal 7 such
that for any elementary extension N of M, the set of realizations of tp(a/A) in N
has cardinality less than 7.

Theorem 2.2.10. Let M be an L-structure with A € M. Then, aclp(A) = bddpr(A)
Proof. Let a € aclp(A) and let P be as in lemma 2.2.7. Let (N, Q)>(M, P) and let

S be the set of realizations of tp(a/A) in N. It is clear that S € {be N : Q(b) = 0}.
Since the set {b € N : Q(b) = 0} is compact, there exists a countable dense subset.
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This implies that any element of S can be identified with the limit of a sequence of
elements in the dense subset. Hence, the following holds

S| < |{be N : Q(b) = 0}| < 2%.

This implies that a € bdda(A).

Now, we may assume M is wi-saturated. Let a € M\aclp(A). The auxiliary
lemma 2.2.9 implies that there exists some n > 1 such that given any cardinal 7 the
set of conditions

E={0=g0(:va):oz<7‘;<pM(a)=O}u{0=%;d(xa,:n5):a<ﬁ<7'}

is finitely satisfiable in M. Let M’ be a s-saturated elementary extension of M with
k > 7. Then ¥ is realized in M’ by (an : @ < 7). However, since any a, is a
realization of tp(a/A) in M, the set of realizations of tp(a/A) in M has cardinality
grater than 7. hence a ¢ bdd(A). O

Corollary 2.2.11. Let M be a r saturated L-structure with k > 280, Let S be the
set of realizations of any type tp(a/A) with |A| < k. Then, either |S| < 2% and so
every element of S is algebraic, or |S| = k.

We prove some properties of the algebraic closure.

Proposition 2.2.12. For any L-structure M such that A,B < M the following
statements hold:

1) A< aclpm(A);

2) if A C aclp(B) then aclp(A) € aclp(B);

3) if a € aclp(A) then there exists a countable Ay A such that a € aclyp(Ap);

(1)
(2)
(3)
(4)

4) if A is a dense subset of B, then aclp(A) = aclp(B).

Proof. (1) For any a € A, the set {a} is compact and d(z, a) is definable in M over A.

(2) We may assume that M is strongly x-homogeneous, with x > |B|. Let a be an
element of aclr((A). The homogeneity of M implies that for any b € M™ satisfying
tp(a/B) there exists 0 € Autg(M) with o(a) = b. We fix an isomorphism o} for each
b satisfying tp(a/B). Let S be the set of realizations of tp(a/B) in M. We define
the following equivalence relation in S: by ~ by if o3, (x) = op,(x) for all x € A. Note
that if by ~ ba then tp(b1/oy, (A)) = tp(bz2/op,(A)). Hence, |S/ ~| is less than the
number of possible images of A under B-isomorphism. However, since every element
of A is algebraic over B, by corollary 2.2.11, every element can only have 280 images,
hence |S/ ~| < (2%0)I4l. Note also that for any given b e S, the equivalence class [b] -
is a subset of the realizations of tp(oy(a)/op(A)). Since the latter set is in bijection
with the set of realizations of tp(a/A), and a is algebraic over A, corollary 2.2.11
implies that |[b]~] < 2%, Thus |S| < (2R0)l42% = (2%0)l4l Since S is bounded,
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corollary 2.2.11 implies |S| < 280 and so a € bdd(A). Finally, lemma 2.2.10 gives us
a € aclp(B).

(3) Let C' be the compact subset witnessing a € acly((A), the definability of C
only depends in a countable set of L(A)-functions, since the length of each formula is
finite, it only depends in a countable Ag € A. Hence, a € acla(Ag).

(4) Statement (2) implies aclpm(A) € aclp(B). Now, we are going to prove
aclp(B) € aclp(A). Let a € aclp(B) and let C € M be a compact set definable
in M over B containing a. Hence, the definable predicate dist(z,C) is the limit of
the interpretations of a sequence of L(B)-formulas (¢, : n > 1). Let a, be the tuple
of elements of B that occur in ¢,. Since A is dense in B, for every n there exists a
sequence of tuples of elements in A (agﬂ) : k > 1) converging to a,. Taking a subse-
quence if necessary, we may assume that for every n > 1, |pa(z, a,) —dist(z, C)| < 5=
for all tuples x of elements in M. Let A, be the modulus of uniform continuity of

@M. Taking a subsequence if necessary, we may assume that for any each n > 1,

d(an,a%k)) < Ap(5) for k = n. This implies that [pA!(z, a,) — o2 (2, a,(ln))| < 5= for

all tuples x of elements in M. Hence, applying the triangular inequality,

|dist(z, C) = o (2, a()| < |} (2, an) — dist(z, C)| + e (2, an) — o3 (z, V)| <

n

for every tuple x of elements in M. This imply that the interpretations of the sequence
of L(A)-formulas (@n(x,a%n)) : n = 1) converge uniformly to dist(z,C) on M and

hence C is definable in M over A. O

Proposition 2.2.13. Let M be an L-structures with A, B € M. Then, any elemen-
tary map o : A — B extends to an elementary map o from aclp(A) into aclp(B).
Moreover, if « is surjective, then so is o/

Proof. Let M’ be an elementary extension of M sufficiently saturated and strongly

homogeneous. The homogeneity of M’ implies that a extends to an automorphism

g of M’. Since automorphisms of metric structures are continuous functions (they

are Lipschitz with constant 1), if C < M is a compact set, so is g(C) < M.
1 m(n)

Moreover, if (¢n(z,a,,...,an ) : n = 1) is the sequence of L(A)-formulas wit-

nessing the definability of dist(x,C) on M, then the sequence of L(B)-formulas
(o(z,g(al),... ,g(a;n(n))) :n > 1) witness that g(C) is definable in M over A. Hence,
g(acip(A)) € alep(B). Thus, taking the restriction of g to acla(A) we get the re-

quired elementary map o’.

If a(A) = B, then for any compact set C' definable in M over B, the definable
predicate can be written as the limit of the interpretations of a sequence of formulas
(Yn(z, f(ayn)) : n = 1), where the a,, are tuples of elements of A not necessarily all of
the same length. This implies that C' = g(K) for some set K definable in M over A.
Since g~ ! is also an automorphism of M’, g~ ! is a continuous function and hence K
is compact. Therefore, g(acip(A)) = aclp(B).

O



CHAPTER 3
Further work

In this chapter, we study applications of model theory for metric structures to Hilbert
spaces over R, that is, real vector spaces equipped with an inner product and complete
with respect to the corresponding norm. In continuous logic, we identify them with
many sorted metric structures structures. That is, we identify a Hllbert space H with

M(H) = ((Bn(H) :n 2 1),0,{Inm}tn<m, {Ar}rer, +, = (),

where B, (H) = {x € H : {x,z) < n?} for all n > 1, each sort with the metric induced
by the norm; 0 is the zero vector in By(H); for n < m I @ By, — By, is the
inclusion map; for r € R, n > 1 and and the unique k > 1 satisfying k — 1 < |r| < k,
A\ : By, — By is the scalar multiplication by 7; furthermore, {-) : B,,(H) — [-n?,n?]
is the inner product for each n > 1 and the functions + : B, (H) x B, (H) — Ba,(H)
and — : By (H) x B, (H) — By, (H) are vector addition and subtraction respectively.

It is easy to construct a signature L for which each many sorted structure M(H)
as above is an L-structure since the bounds on the metric spaces are trivial and the
moduli A of uniform continuity are easy to specify.

By proposition 1.2.14 it can be proved that the class of Hilbert spaces is axioma-
tizable (see [5, page 90])

Let THS be the L-theory obtained by adding to the theory of Hilbert spaces the
L-conditions

inf . ..inf iy — 0;4]) =

inf...inf max ([Czs,2;) —0i4]) =0
for all n > 1, where the variables range over the sort By(H). Then it is clear that any
model of I HS is isomorphic to M(H) for some infinite dimensional Hilbert space H.

If A is a subset of a Hilbert space H, we denote A to the norm closure of the
linear span of A and A+ to the orthogonal complement of A. A well known property
of Hilbert spaces is the orthogonal decomposition H = A® A+. We denote Py(x) the
projection on the subspace A of the element .

We are going to prove that A coincides with the definable closure of A, to do so,
we need first a lemma.

47
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Lemma 3.0.1. Let H be an infinite dimensional Hilbert space, and let c1,. .., cp,
di,...,dy, € H. Then, (c1,...,d1) and (d1,...,d,) realize the same type over A< H
if and only if Py(c;) = P4(d;) = and {c;,cj) ={d;,d;) for al 1 <i,j < n.

Proof. Assume that tp(cy,...,c,/A) = tp(di,...,dn/A). Then, {¢;,c;) = {d;,d;) for
1 < 4,5 < n. Furthermore, for every a,b € A {¢;—b,a)y = {d;—b,a) since {x;—b,ay =7
belongs to tp(ci,...,c,/A) for some r € [0,1]. This implies Pz(c;) = Pz(d;) for all
1=1,...,n.

Assume now that P(c;) = P4(d;) and {¢;, c;) = {(d;,d;) for all 1 <, j < n. Then
we have that ¢; — P(c;) and d; — P5(d;) belongs to AL hence d; — ¢; € A" for all
1 =1,...,n. Furthermore,

(¢i = Px(ci), ¢j — Pglc;)) = (di — Px(di), dj — Pg(dy)),

for any 1 < 4,5 < n. This means that we can construct an A-isomorphism between
the subspace generated by cy, ..., ¢, and the subspace generated by d, ..., d, sending
¢i to d; for i = 1,...,n. Using Gram-Schmidt (which in arbitrary cardinalities is
obtained using Zorn’s Lemma) we can extend this isomorphism between the respective
subspaces to an A-automorphism of H taking ¢; to d; for all i = 1,...,n. O

Proposition 3.0.2. Let H be an infinite dimensional Hilbert Space and let A < H.
Then, dcl(A) = A.

Proof. We may assume that A is a proper subspace of H, passing to an elementary
extension if needed. Note that by lemma 2.2.3, passing to an elementary extension
does not change del(A).

Assume that ¢ € A. Then, there exists a Cauchy sequence (¢, : n > 1) of elements
in span(A) such that lim ¢, = ¢. Taking a subsequence if necessary we may assume
n—oo0

llc —enll < ﬁ for all n > 1. Finally, by proposition 2.1.12 or proposition 2.2.6, the
family of formulas ¢, := ||z — cy|| = 5= and numbers {§, = 5} witness that {c} is a
definable set over A.

Assume now that ¢ ¢ A. Then, ¢ — Px(c) # 0. Let y € A+ be such that
[yl = llc — Px(c)||. Then, by lemma 3.0.1, tp(c/A) = tp((Pz(c) + y)/A). Since A+
is nonempty by assumption, this shows that there exists at least one realization of
tp(c/A) in H that is different from ¢ and hence by proposition 2.2.6, ¢ ¢ dlc(A). O

We give a result relating explicitly the distance in the type space with the norm
of the realizations.

Proposition 3.0.3. Let H be an infinite dimensional Hilbert Space. For each x,y € H
and A € H the following equality holds:

d(tp(z/A), tp(y/A))? = | P5(2) = Ps@)|I* + [llz = P3(@)ll = lly — Ps@)|II*.
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Proof. Let z,y,2',y' € H and let A € H be such that tp(z/A) = tp(a’/A) and
tp(y/A) = tp(y'/A). Then,

l2” = o/ll = |1 Px(") = Ps@)I* + lI(a" = Px(a")) = (v = Pz(y)Il =
1Px(2") = Pr(y)I* + [ll2" = Pz(a")]l = Iy’ = Px()II* =
1Px(x) = Ps@)|I* + [llz = Px(2)|| = lly = Pz(w)lI*,

where the last equality follows from 3.0.1. Since d(tp(xz/A),tp(y/A)) is realized at
some pair of elements, the inequality above implies

d(tp(z/A), tp(y/A))? = | P5(z) = Ps@)|I* + [llz = P3(@)ll = lly — Ps@)|I*.

For the other inequality, we denote x| = x — Px(z) and y; = y — P4(y). We may

assume x| # 0 since for ;| = 0 the result is trivial. Let o = ”gi” and let 2z = ax .

From lemma 3.0.1 it follows that tp(y/A) = tp((P4(y) + 2)/A). Hence,

d(tp(z/A), tp(y/A)* < |lz = (Px(y) + 2)|* =
1Px(x) = PaW)I1* + |20 — aw o |® = | P4(x) = Pr@)* + [lzo] = Iy ]I

We also introduce some results that are out of the scope of this memoir.

Proposition 3.0.4. [5, page 90] IHS is a complete theory.

We say that an L-formula ¢(x1,...,x,) is approzimable in T by quantifier-free
formulas if for every e > 0 there is a quantifier-free L-formula ¢ (z1,...,x,) such that
for all M =T and all ay,...,a, € M, we have

M (ay, ... an) — v M(a, ..., a,)| <e.

We say that an L-theory T admits quantifier elimination if every L-formula is ap-
proximable in T by quantifier-free formulas.

Corollary 3.0.5. [5, corollary 15.2] The theory IHS admits quantifier elimination.

We say that an L-theory T is A-stable if for any M =T and A € M with |A| < A,
there exists a dense subset in S7(7'4) (with respect to the d-metric) of cardinality less
or equal than .

Proposition 3.0.6. [5, proposition 15.5] The theory IHS is w-stable.
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