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Resumen

La lógica de primer orden continua es una generalización de la clásica donde el conjunto
de valores de verdad t0, 1u se substituye por un continuo. Una estructura métrica es una
estructura de varias clases donde cada clase es un espacio métrico completo de diámetro
acotado, junto con: elementos distinguidos (pertenecientes a los diferentes espacios métricos)
y funciones uniformemente continuas, o bien entre las clases o de las clases a un intervalo
acotado de R.

El trabajo consite en un desarrollo de los principales conceptos y resultados de la teoría de
modelos para estructuras métricas. Se basa en los artículos Model theory for metric structures

de I. Ben Yaacov, et al. y Algebraic closure in continuous logic de C.W. Henson, y H. Tellez,
Desarrollamos la construcción del ultraproducto de estructuras métricas y probamos el teo-
rema de �o±'s y el teorema de compacidad. Probamos el teorema de Lowenheim-Skolem y la
existencia de estructuras su�cientemente saturadas y fuertemente homogéneas. Demostramos
que el espacio de tipos es un espacio topológico metrizable. Consideramos diferentes concep-
tos de de�nabilidad y algebraicidad de los que damos varias cracterizaciones y estudiamos
como se comportan en extensiones y subestructuras elementales. Finalmente consideramos
la teoría de los espacios de Hilbert en este contexto, en particular los de dimensión in�nita,
caracterizamos la clausura de�nible de un conjunto usando la clausura respecto a la norma
de las combinaciones lineales de elementos del conjunto y probamos que el tipo de una tupla
sobre un conjunto A está de�nido por su proyección sobre el subespacio generado por A y
el producto escalar de las coordenadas, relacionamos la métrica del espacio de tipos con la
métrica del espacio de Hilbert.

Abstract

Continuous �rst order logic is a generalization of classical �rst order logic where a contin-
uum is allowed as truth value set. A metric structure is a many-sorted structure where each
sort is a complete metric space of bounded diameter, together with distinguished elements
(belonging to the distinct sorts) and uniformly continuous functions, either between sorts or
from the sorts into bounded closed intervals of R.

We develop the main concepts of model theory for metric structures. This memoir is
based on Model theory for metric structures by I. Ben Yaacov, et al. and Algebraic closure

in continuous logic by C.W. Henson, and H. Tellez, We develop the ultraproduct of metric
structures and prove �o±'s theorem and compactness theorem. We prove Löwenheim-Skolem
theorem and the existence of su�ciently saturated and strongly homogeneous structures. We
prove that the type space is a metrizable topological space. We introduce several concepts of
de�nability and algebraicity, we prove some characterization results and study their behaviour
in elementary extensions and substructures. Finally, we consider the theory of in�nite Hilbert
spaces in this context, we characterize the de�nable closure of a set using the norm closure
and linear span of the set and prove that the type of an tuple over a set A is de�ned by its
projection over the subspace generated by A and the inner product of the coordinates. We
show the relation between the metric on the space of types and the metric of the Hilbert
space.
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Introduction

Spanish

En la lógica clásica de primer orden, a cada enunciado se le asigna un valor de verdad
0 o 1. La lógica continua de primer orden es una generalización donde el conjunto
de valores t0, 1u se substituye por un conjunto más complejo, en este trabajo va a
ser el intervalo real [0,1]. Una estructura métrica es una estructura de varias clases
donde cada una de las clases es un espacio métrico completo de diámetro acotado. Las
estructuras métricas pueden también tener elementos distinguidos pertenecientes a los
diferentes espacios métricos (constantes) y funciones uniformemente continuas o bien
entre las clases (funciones) o de las clases a un intervalo acotado de R (predicados).
Por simplicidad, es útil asumir que todos los intervalos acotados son el intervalo r0, 1s.
Algunos ejemplos de estructuras métricas son los espacios métricos, los retículos de
Banach, las C�-álgebras, los espacios de Hilbert y las estructuras de la teoría de
modelos clásica. En la lógica continua, la métrica d (de cada clase) ocupa el lugar
del símbolo � en la lógica clásica. El requisito de continuidad uniforme sobre las
funciones y predicados es esencial para poder desarrollar una buena teoría. En la
lógica continua, una conectiva n-aria es cualquier función continua de r0, 1sn en r0, 1s.
Sin embargo, esta de�nición de conectiva puede extenderse a funciones continuas
de r0, 1sN en r0, 1s (véase proposición 2.1.2). Puesto que el conjunto de valores de
verdad que consideramos está linealmente ordenado, es natural que dos cuanti�cadores
importantes sean sup e inf. La mayoría de los resultados de la teoría de modelos
clásicas tienen un análogo en la teoría de modelos para estructuras métricas, de hecho,
varios de los resultados de la teoría de modelos clásica se pueden obtener restringiendo
los resultados para estructuras métricas al caso donde la métrica d es la métrica
discreta.

La teoría de modelos para espacios métricos aparece por primera vez en 1966
en el libro Continuous Model Theory de C.C.Chang y H. J.Keisler [8], los autores
permiten cualquier conjunto Hausdor� compacto como conjunto de valores de verdad.
El desarrollo de esta teoría fue retomado más tarde por C.W.Henson [12], [13] basado
los trabajos de J. L.Krivine [17], [18] y Stern [21], más tarde por J. Iovino [16] y más
recientemente por I. Ben Yaacov [3], A.Usvyatsov [22], M. Lupini [11] y otros autores
[7]. Actualmente, la teoría de modelos para espacios métricos es un área en auge y
con perspectivas de futuro, existen una gran cantidad de publicaciones recientes con
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viii Introduction

importantes resultados de diferentes grupos de investigación (véase por ejemplo [11],
[7], [4], [6] y [23]).

Una motivación adicional para estudiar la teoría de modelos para estructuras
métricas son sus aplicaciones en análisis, análisis funcional [14] y geometría [20]. Es-
tas aplicaciones suelen estar relacionadas con ultraproductos de estructuras métricas,
aunque otras lógicas han sido también desarrolladas para estudiar estas aplicaciones
[1].

Como aplicación de la teoría de modelos para espacios métricos cabe mencionar
el la demostración de Ben Yaacov en [2] de que el grupo de las isometrías lineales
del espacio de Gurarij es un grupo polaco universal, donde el espacio de Gurarij es el
único espacio de Banach separable, universal y aproximadamente homogéneo.

Este trabajo está basado principalmente en los artículos Model theory for metric

structures [5] y Algebraic closure in continuous logic [15]. Puesto que ambos son artícu-
los extensos donde se desarrolla la teoría desde el principio y con mucho detalle, varias
demostraciones se han extraído literalmente para hacer este trabajo autocontenido en
la medida de lo posible. Las demostraciones más avanzadas y con menos detalles se
han ampliado y completado. La memoria se divide en tres capítulos. En el primer
capítulo introducimos los conceptos básicos de la teoría de modelos para estructuras
métricas, entre estos conceptos se encuentra el de estructura métrica, preestructura
métrica e inmersión. Demostramos algunos resultados preliminares como el análogo al
test de Tarski-Vaught (proposición 1.1.5) . También tratamos un problema relacionado
con la cardinalidad del conjunto de fórmulas que surje al permitir cualquier función
continua de r0, 1s en r0, 1s como conectiva. Presentamos la construcción del ultrapro-
ducto de estructuras métricas y demostramos los análogos a resultados tales como el
teorema fundamental de los ultraproductos (teorema 1.2.7) y el teorema de compaci-
dad (teorema 1.2.11). Presentamos también una caracterización de cuando una clase
de estructuras métricas es axiomatizable. Demostramos el teorema de Löwenheim-
Skolem (proposición 1.2.17) además de la existencia de estructuras su�cientemente
saturadas y fuertemente homogéneas (teorema 1.2.23). Finalizamos el primer capí-
tulo con la construcción del espacio de tipos, probamos que en el contexto de la teoría
de modelos para estructuras métricas es un espacio topológico metrizable (teorema
1.3.7). En el segundo capítulo introducimos los conceptos de predicado de�nible, con-
junto de�nible y función de�nible, estudiamos como se comportan estos conceptos
con respecto a extensiones y subestructuras elementales, demostramos que podemos
axiomatizar los predicados con forma distpx,Dq, donde D es un conjunto cerrado
(teorema 2.1.8) y demostramos varias caracterizaciones de de�nibilidad, por ejemplo,
en una estructura su�cientemente saturada una función es de�nible si y solo si su
grafo es un conjunto tipo-de�nible (proposición 2.1.14). Concluimos el segundo capí-
tulo con las de�niciones de clausura algebraica y clausura de�nible, estudiamos su
comportamiento en extensiones y subestructuras elementales además de probar var-
ios resultados de caracterización de elementos algebraicos y de�nibles, por ejemplo,
un elemento de una estructura métrica es de�nible si y solo si en cualquier exten-
sión elemental de esta estructura no existen otros elementos que realicen el mismo
tipo (proposición 2.2.6). En el tercer capítulo, usamos los conceptos y resultados de-
sarrollados a lo largo del trabajo para estudiar la teoría de los espacios de Hilbert
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in�nito-dimensionales IHS. Demostramos que la clausura de�nible de un conjunto es
la clausura con respecto de la norma de las combinaciones lineales de elementos del
conjunto (proposición 3.0.2). Probamos que el tipo de una tupla sobre un conjunto A
está de�nido por la proyección de las coordenadas sobre el subespacio generado por
A y el producto de las coordenadas dos a dos (lema 3.0.1). Terminamos presentando
algunos resultados adicionales sobre la teoría IHS.

English

In classical �rst order logic, a truth value of 0 or 1 is assigned to each sentence.
Continuous �rst order logic is a generalization where more complex sets are allowed as
truth value sets, in this memoir the set of truth values will be the real interval r0, 1s. A
metric structure is a many-sorted structure where each of the sorts is a complete metric
space of bounded diameter. Metric structures can also have distinguished elements
belonging to the distinct sorts (constants) and uniformly continuous functions between
sorts (functions) and from the sorts into bounded closed intervals of R (predicates),
for convenience, it is useful to assume that all intervals are r0, 1s. Some examples
of metric structures are metric spaces, Banach lattices, C�-algebras, Hilbert spaces
and structures in the sense of classical model theory. In continuous �rst order logic,
the metric d (of each sort) plays the role of the symbol � in the classical case. The
uniform continuity of the functions and predicates is essential to develop a successful
theory. In continuous �rst order logic, the n-ary connectives are continuous functions
from r0, 1sn into r0, 1s. However, one could broaden the de�nition of connective to
allow continuous functions from r0, 1sN into r0, 1s (see proposition 2.1.2). As our set
of truth values is linearly ordered, is natural that we have two special quanti�ers, sup
and inf. Most of the results of classical model theory have an analogous counterpart in
model theory for metric structures, furthermore, sometimes the results in the metric
structures setting imply the classical results when we consider the metric to be discrete
metric.

Model theory for metric structures was �rst introduced in 1966 in the book Contin-
uous Model Theory by C.C.Chang y H. J.Keisler [8], the authors allowed any compact
Hausdor� space as a set of truth values. The development of the theory was retaken
by C.W.Henson [12], [13] based on the publications of J. L.Krivine [17], [18] and Stern
[21], later by J. Iovino [16] y and more recently by I. Ben Yaacov [3], A.Usvyatsov [22],
M. Lupini [11] and other authors [7]. Nowadays, model theory for metric structures if
a �ourishing topic with good prospects for the future. There exists a large number of
recent publications with signi�cant results from di�erent researching groups (see [11],
[7], [4], [6] and [23] for example).

Other motivations to study model theory for metric structures are its connection
to applications in analysis, functional analysis and geometry [20]. These applications
are usually based in the ultraproduct construction [14]. Other logics have also been
used to study these applications [1].

As an explicit application of model theory for metric structures, we mention the
proof of Ben Yaacov in [2] of the linear isometry group of the Gurarij space being an
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universal Polish group, where the Gurarij space is the unique, separable, universal,
approximately homogeneous Banach space.

This memoir is mainly based in the papers Model theory for metric structures [5]
and Algebraic closure in continuous logic [15]. Since both of them are papers where the
theory is developed from the beginning and in great detail, several proofs have been
literally drawn to make this memoir as self-contained as possible. Those proofs that
were more advanced and those that were less detailed have been expanded and more
details have been added. The memoir is divided in three chapters. In the �rst chapter,
we introduce the basics concepts of model theory for metric structures as structures,
prestructures and embeddings, we also prove some preliminary results as the analo-
gous of the Tarski-Vaught test (proposition 1.1.5). We discuss the cardinality problem
of the set of formulas that arise when we allow all continuous functions on r0, 1s to be
connectives. We show the construction of the ultraproduct of metric structures and
prove results as the analogous of the fundamental theorem of ultraprodutcs (�o±'s
Theorem 1.2.7), the compactness theorem (theorem 1.2.11), and a characterization
of the axiomatizability of a class of metric structures. We prove Löwenheim-Skolem
theorem (proposition 1.2.17) and the existence of su�ciently saturated and strongly
homogeneous models (theorem 1.2.23). The �rst chapter ends with the construction
of the space of types, we show that in the metric structures setting, the space of types
is a metrizable topological space (theorem 1.3.7). In the second chapter we introduce
the concepts of de�nable predicates, de�nable sets and de�nable functions. We study
their behaviour with respect to elementary extensions and substructures, we prove
that predicates of the form distpx,Dq, where D is a closed set, are axiomatizable
(theorem 2.1.8) and we prove several characterizations of these objects, for example,
in su�ciently saturated structures a function is de�nable if and only if its graph is
a type-de�nable set (proposition 2.1.14). The second chapter ends with the de�n-
able and algebraic closures, we study their behaviour in elementary extensions and
substructures. We also prove some results about characterizations of de�nable and
algebraic elements, for example, an element of a metric structure is de�nable if and
only if is the only realization of its type in any elementary extension o f the structure
(proposition 2.2.6). In the last chapter, we apply the results and concepts developed
previously to the theory of in�nite dimensional Hilbert spaces IHS. We characterize
the de�nable closure of a set using the norm closure and linear span of the set (propo-
sition 3.0.2). We prove a results that shows that the type of an tuple over a set A
is de�ned by its projection over the subspace generated by A and the inner product
of the coordinates (lemma 3.0.1). The memoir ends introducing further results about
the theory IHS.



CHAPTER 1

Metric Structures

We begin by giving the basic de�nitions needed to develop the model theory of metric
structures. As one can see as one reads, in general, these de�nitions are very similar to
the classical ones. We will try to emphasize the di�erences between these two theories.

1.1. Basics

Let pM,dq be a complete, bounded metric space. A metric structure M based on
pM,dq is a tuple

M � pM,Ri, Fj , ak : i P I, j P J, k P Kq.

Where each Ri is an uniformly continuous function from Mn for some n ¥ 1 into
some bounded interval in R, a predicate. Each Fj is an uniformly continuous function
from Mn for some n ¥ 1 into M , we call it function or operation. And each ak is
a distinguished element of M , a constant. Sometimes, d will be treated as a binary
predicate, and expressions like x � y will be used instead of dpx, yq � 0. If all the
index sets are empty, M is just a bounded, complete metric space.

To motivate this work, we give some examples of metric structures that could be
studied with the machinery we are going to develop:

A bounded, complete metric space.

The unit ball of a Banach space X over C or R, where the norm is included as a
predicate, the element 0 as a constant and the functions are fα,βpx, yq � αx� βy for
α and β scalars satisfying |α| � |β| ¤ 1. To be more speci�c one can think of some
Lpp0, 1q with p P r1,8s.

Remark 1.1.1. We can look at structures of classical �rst order model theory as

structures on this new logic. To do so, we endorse the universe A of an structure A
with the discrete metric. Functions of the structure are obviously uniformly continuous

with respect to the discrete metric. Constant are also carried without changes. To bring

relations to this new interpretation, we consider the set R of all elements that satisfy

the relation R and we introduce the indicator function of the set R.

As in classical �rst order logic, we will need the notion of language, or equivalently,
the notion of signature of a metric structure. To each metric structureM we associate

1
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a signature L in a very similar way as one does in the classical theory. To each
predicate R of M we associate a predicate symbol P and its arity; we denote R by
PM. To each function F of M we associate a function symbol f and its arity. Finally,
to each constant a of M we associate a constant symbol c; we denote a by cM. But
for metric structures a signature must specify more: for each predicate symbol P ,
it must provide a closed bounded interval IP � R where PM takes its values, and
a modulus of uniform continuity ∆P for PM. For each function symbol f , L must
provide a modulus of uniform continuity ∆f for fM. Finally, L must provide a non
negative real number DL which is a bound on the complete metric space pM,dq on
which M is based.

Thus, as in classical �rst order model theory, M is an L-structure if L correspond
to the signature of M.

For simplicity and without loss of generality, we will usually assume that our
signatures L satisfy DL � 1 and IP � r0, 1s for every predicate symbol P in L.

We introduce the de�nition of embedding of metric structures, the di�erence with
the classical case is that we ask the embedding to be a metric space isometry, this is
a natural requirement as one can see below.

Let L be a signature for metric structures and suppose M and N are L-structures.
An embedding from M into N is a metric space isometry

T : pM,dMq Ñ pN, dN q

that commutes with the interpretations of the function and predicate symbols of L
as in the classical case We use the same notation and de�nition for the concepts of
isomorphism, automorphism and substructure as we did in classical �rst order model
theory.

We skip most of the construction of the syntactical part of the theory because it
is the standard construction but we note the main di�erences with the classical one.
Continuous functions u : r0, 1sn Ñ r0, 1s of �nitely many variables n ¥ 1 are the
connectives and the symbols sup and inf are the quanti�ers in this logic. Letting all
continuous functions u : r0, 1sn Ñ r0, 1s to be connectives, could make the cardinality
of the set of L-formulas too big. We treat this problem later in this section. Terms
are constructed inductively, exactly as in classical �rst order-logic with (individual)
variables and constants as terms of lowest complexity. However, formulas are a bit
di�erent. Fix a signature for metric structures, L, atomic formulas are formal ex-
pressions of the form P pt1, . . . , tnq or dpt1, t2q, where all t1, . . . , tn are L-terms and P
is any predicate in L. The class of L-formulas, that we denote by FormpLq, is the
smallest class that contains atomic formulas and is closed under the following rules.

1. If u : r0, 1sn Ñ r0, 1s is a connective and ϕ1, . . . , ϕn are L-formulas, then
upϕ1, . . . , ϕnq is an L-formula.

2. If ϕ is an L-formula and x is a variable, infx ϕ and supx ϕ are L-formulas.

Many other syntactic notions can be carried over word for word into this setting.
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As in classical �rst order logic, the interpretation of an L-term t inM, is a function
tM : Mn Ñ M . However, the value of a LpMq-sentence σ is a real number in the
interval r0, 1s and it is denoted σM, which we are going to de�ne, as usual, via the
the value of formulas, which in turn we de�ne by induction its complexity, as follows:

1. pdpt1, t2qq
M � dMptM1 , tM2 q for any t1, t2;

2. for any n-ary predicate symbol P of L and t1, . . . , tn,

pP pt1 . . . , tnqq
M � PMptM1 , . . . , tMn q;

3. for any continuous function u : r0, 1sn Ñ r0, 1s and any LpMq-sentences σ1, . . . , σn,

pupσ1, . . . , σnqq
M � upσM1 , . . . , σMn q;

4. for any LpMq-formula ϕpxq,

psup
x
ϕpxqqM

is the supremum in r0, 1s of the set tϕpaqM : a PMu;

5. for any LpMq-formula ϕpxq,

pinf
x
ϕpxqqM

is the in�mum in r0, 1s of the set tϕpaqM : a PMu.

Where all terms t1, . . . , tn are LpMq-terms in which no variables occur.

Given an LpMq-formula ϕpx1, . . . , xnq let ϕ
M : Mn Ñ r0, 1s denote the function

de�ned by

ϕMpa1, . . . , amq � pϕpa1 . . . , anqq
M.

An important fact about formulas in continuous logic is that they de�ne uniformly
continuous functions whose modulus of uniform continuity does not depend on M but
only on the data given by the signature L. This is stated precisely in the following re-
mark. We do not include the proof here but it is based in the fact that the composition
of uniformly continuous function is uniformly continuous.

Remark 1.1.2. Let tpx1, . . . , xnq be an L-term and ϕpx1, . . . , xnq an L-formula. Then

there exist functions ∆t and ∆ϕ from p0, 1s to p0, 1s such that for any L-structure M,

∆t is a modulus of uniform continuity for the function tM : Mn Ñ M and ∆ϕ is a

modulus of uniform continuity for the predicate ϕM : Mn Ñ r0, 1s.

Given two L-formulas ϕpx1, . . . , xnq and ψpx1, . . . , xnq we de�ne the logical dis-

tance between them as

|ϕ� ψ| :� sup|ϕMpa1, . . . , anq � ψMpa1, . . . , anq|,

where the supremum is taking over all L-structures M and all a1, . . . , an PM .



4 Metric Structures

This function induces a pseudometric on the set of all formulas with free variables
among x1, . . . , xn. Two formulas are logically equivalent if the logical distance between
them is 0.

In contrast with the classical theory, where we have a clear de�nition of what
means for an element to satisfy a formula, here we just have the formula evaluated in
the element. So we have to de�ne some value of truth. To do so, we introduce the
following concept.

An L-condition E is a formal expression of the form ϕ � 0, where ϕ is an L-
formula. We say that E is closed if ϕ is a sentence.

Let E be the LpMq-condition ϕpx1, . . . , xnq � 0 and a1, . . . , an P M , we say that
E is true of a1, . . . , an in M, M |ù Era1 . . . , ans, if ϕ

Mpa1, . . . , anq � 0.

We adapt the de�nition of logical equivalence from formulas to conditions in a
natural way:

Let E1 be the L-condition ϕ1px1, . . . , xnq � 0 and let E2 be the L-condition
ϕ2px1, . . . , xnq � 0. We say that E1 and E2 are logically equivalent if for every L-
structure M and every a1 . . . , an PM we have

M |ù E1ra1 . . . , ans ðñ M |ù E2ra1 . . . , ans.

Writing everything as a condition can be tedious, to simplify the notation we use
the expression ϕ � ψ as an abbreviation for the condition |ϕ � ψ| � 0 for ϕ and ϕ
formulas. Since each number r P r0, 1s can be seen as a connective, expressions of the
form ϕ � r will also be regarded as a condition.

It is common to construct a metric space as the quotient of a pseudometric space
or as the completion of such a quotient, and the same is true for metric structures. To
do that construction, we need to consider what we will call prestructures and develop
the semantics of continuous logic for them.

Let us �x a signature L for metric structures. An L-prestructure M0 based on
pM0, d0q is a structure de�ned the same way as an L-structure, except that it is based
on a pseudometric space. Given an L-prestructure M0, let pM,dq be the quotient
metric space induced by pM0, d0q with quotient map π : M0 Ñ M . We de�ne a
prestructure M, in which the interpretations in M of the symbols of L are the natural
interpretations induced by the prestructure M0 and π. Using the usual properties of
uniformly continuous functions it is easy to check that these interpretations are well-
de�ned and L is the signature of M. We need one step more because we have required
the space to be complete. We de�ne an L-structure N by taking a completion of M.
This is based on a complete metric space pN, dq that is a completion of pM,dq, and
its additional structure is de�ned the natural way, induced by the prestructure M.
As before, usual properties of uniformly continuous functions guarantee that N is an
L-structure.

As an example, one could construct the unit ball of Lppp0, 1qq for p P r1,8s starting
with the prestructure consisting of all integrable functions from a measure space X to
p0, 1q which have norm less than 1. There, the norm induces a pseudometric. In this
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particular case, the resulting quotient prestructure is already complete, and hence a
structure.

Also, as it is natural, we have that the interpretations of formulas and terms are
not changed when taking the steps necessary to construct an L-structure from an
L-prestructure.

Remark 1.1.3. Let M0 be an L-prestructure with underlying pseudometric space

pM0, d0q; let M be is quotient L-prestructure with quotient map π : M0 ÑM , and let

N be the L-structure that results from completing M. Let tpx1, . . . , xnq be any L-term
and ϕpx1 . . . , xnq be any L-formula. Then:

p1q tN pπpa1q, . . . , πpanqq � tMpπpa1q, . . . , πpanqq � tM0pa1, . . . , anq for all elements

a1, . . . , an PM0;

p2q ϕN pπpa1q, . . . , πpanqq � ϕMpπpa1q, . . . , πpanqq � ϕM0pa1, . . . , anq for all ele-

ments a1, . . . , an PM0;

We introduce some fundamental model theoretic concepts and their basic proper-
ties. Fix a signature L for metric structures.

A theory is a set of closed L-conditions.

We say that M is a model of T , M |ù T , if M |ù E for every E P T . We denote
ModLpT q to the collection of all L-structures that are models of T .

A theory is complete if it has the form of ThpMq, the set of all closed L-conditions
satis�ed by an L-structure M.

Let M and N be L-structures:

1. We say that M and N are elementarily equivalent, and write M � N , if
ThpMq � ThpN q.

2. A function F from a subset of M into N is called an elementary map from M
into N if for all ϕpx1, . . . , xnq P FormpLq and a1, . . . , an P DompF q, we have

ϕMpa1, . . . , anq � ϕN pF pa1q, . . . , F panqq.

An elementary map whose domain is all ofM is called an elementary embedding.
If the inclusion map from M into N is an elementary embedding, we say that
M is an elementary substructure of N or that N is an elementary extension of
M and write M ¤ N .

Remark 1.1.4. Let M be an L-structure and A �M , if a and a1 are elements of M
that satisfy the same set of LpAq-conditions, then the map

F : AY tau Ñ AY ta1u �M

which is the identity over A and sends a to a1 is an elementary map.

The next result gives a method to check if a substructure is an elementary sub-
structure:
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Proposition 1.1.5 (Tarski-Vaught Test). Let S be any set of L-formulas which is

dense in the set of all L-formulas with respect with logical distance. Let M, N be

L-structures with M � N . Then, the following statements are equivalent:

p1q. M ¤ N ;

p2q. For every L-formula ϕpx1, . . . , xn, yq in S and a1, . . . , an PM ,

inftϕN pa1, . . . , an, bq : b P Nu � inftϕN pa1, . . . , an, cq : c PMu

Proof. p1q ùñ p2q. Let ϕpx1, . . . , xn, yq be any L-formula and let a1, . . . , an P M ,
then from (1) we have

inftϕN pa1, . . . , an, bq : b P Nu � pinf ϕpa1, . . . , an, yqq
N �

pinf ϕpa1, . . . , an, yqq
M � inftϕMpa1, . . . , an, cq : c PMu �

inftϕN pa1, . . . , an, cq : c PMu.

p2q ùñ p1q. Let us �rst prove that p2q holds for the set of all L-formulas.
Let ϕpx1, . . . , xn, yq be any L-formula. Given ε ¡ 0, let ψpx1, . . . , xn, yq be an L-
formula in S that approximates ϕpx1, . . . , xn, yq within ε in the logical distance. Let
a1, . . . , an PM . Then we have

inftϕN pa1, . . . , an, bq : b P Nu ¥ inftψN pa1, . . . , an, bq : b P Nu � ε �

inftψN pa1, . . . , an, cq : c PMu � ε ¥ inftϕN pa1, . . . , an, cq : c PMu � 2ε.

Letting ε tend to 0, we obtain

inftϕN pa1, . . . , an, bq : b P Nu ¥ inftϕN pa1, . . . , an, cq : c PMu.

The equality now follows from M � N .

Now, we prove that this implies (1) by induction on the complexity of the formulas:

For atomic formulas is inmediate because M � N .

Connectives: Let ϕ � upϕ1, . . . , ϕnqpxq. Then, for all a PM ,

pupϕ1, . . . , ϕnqq
Mpaq � upϕM

1 paq, . . . , ϕM
n paqq � upϕN

1 paq, . . . , ϕ
N
n paqq � pupϕ1, . . . , ϕnqq

N paq

sup and inf: For the in�mum case, let a PM , then

pinf
y
ϕpx, yqqN paq � inftϕN pa, bq : b P Nu � inftϕN pa, cq : c PMu �

� inftϕMpa, cq : c PMu � pinf
y
ϕpx, yqqMpaq.

The supremum case follows by using sup
y
ϕpx, yq � 1� inf

y
p1� ϕpx, yqq.
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We discuss now the cardinality problem we remarked when describing the con-
struction of formulas, the solution will be to take a dense countable set of connectives
so that the cardinality of the set of formulas will be maxp|L|, ωq, as usual. The results
of this section will ensure that this works properly.

A system of connectives C � pCn : n ¥ 1q is a family where each Cn is a set of
n-ary connectives. A system of connectives C is full if its closure under projection to
the coordinates and composition is dense in the set of all connectives, with respect to
the supremum distance.

Let C be a system of connectives, the collection of C-restricted formulas is the
smallest set of formulas that contains atomic formulas and is closed under the follow-
ing:

1. If u P Cn and ϕ1, . . . , ϕn are C-restricted formulas, then upϕ1, . . . , ϕnq is a C-
restricted formula.

2. If ϕ is a C-restricted formula, then supx ϕ and infx ϕ also are C-restricted for-
mulas.

The following theorem states the result we needed about the density of the re-
stricted formulas when we are working with countable full sets of connectives.

Theorem 1.1.6. If C is a full system of connectives, then, for any ε ¡ 0 and any

L-formula ϕpx1, . . . , xnq there exists a C-restricted formula ψpx1, . . . , xnq such that

|ϕMpa1, . . . , anq � ψMpa1, . . . , anq| ¤ ε

for all L-structures M and all a1, . . . , an PM .

Proof. We �x ε ¡ 0 and proceed by induction on formulas.

Atomic formulas are included in the C-restricted formulas so the statement is
trivial.

Connectives. Let ϕ � upϕ1, . . . , ϕnq. Using the uniform continuity of u, we take
δ ¡ 0 small enough so that if dpx, yq   δ then dpupxq, upyqq ¤ ε

2 . Now we approximate
each ϕi by a C-restricted formula ψi which is within distance δ. Hence, we have

|upϕ1, . . . , ϕnq � upψ1, . . . , ψnq| ¤
ε

2
.

Now, we take ru P C such that |u� ru| ¤ ε
2 . Therefore, using triangular inequality

|upϕ1, . . . , ϕnq � rupψ1, . . . , ψnq| ¤ ε.

We only have left the quanti�er case. As usual, we do the inf case because supre-
mum is analogous. Let ϕpxq � infy ψpx, yq. So, for each structure M and a P Mn,

ϕpaqM � inftψMpa, bq : b P Mu. Now we approximate ψ by a C-restricted formula rψ
within distance ε and we get

ϕpaqM � inftψMpa, bq : b PMu ¤ inft rψMpa, bq : b PMu � ε

ϕpaqM � inftψMpa, bq : b PMu ¥ inft rψMpa, bq : b PMu � ε.

Hence, infy rψpx, yq is the required formula.
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In the light of the previous theorem, we present a very simple countable full set
of connectives. This will be the connectives that we will mean when we just say
restricted connectives or restricted formulas.

Before constructing it, we need to de�ne a connective. Let � : r0, 1s�r0, 1s Ñ r0, 1s
be the function de�ned by

x� y �

#
x� y if y ¤ x

0 if x ¤ y.

This function is obviously uniformly continuous.

Our system of connectives will be C0 � pCn : n ¥ 1q, where C1 � t0, 1, x2 u,
C2 � t�u and Cn � H for n ¥ 3. Some relevant connectives we can build by
composition and projection to the coordinates are:

minpx, yq � x� px� yq,

maxpx, yq � 1�minp1� x, 1� yq,

and every dyadic fraction
m

2n
in r0, 1s.

Proposition 1.1.7. C0 is a full system of connectives.

Proof. We are going to apply the following result: 'Let X be compact, and let A be a
sublattice of CpXq, the set of real valued continuous functions on X. Then clpAq, with
the supremum distance, contains every function f in CpXq that can be approximated
at each pair of points in X by a function from A.'

Firstly, note that since we can express maximum and minimum with our connec-
tives C0|n (C0 restricted to n-ary connectives) is a sublattice of Cpr0, 1snq, where the
partial order is f ¤ g ðñ @a P r0, 1s fpaq ¤ gpaq.

Let D be the set of dyadic fractions in r0, 1s. We are going to prove that for each
x, y P D with x � y, we have that D2 � tpgpxq, gpyqq : g P C0|1u. Fix x, y P D with
x   y and let pa, bq P D2. Suppose b ¤ a. Take m P N such that a   mpy � xq and
let g : r0, 1s Ñ r0, 1s be de�ned by

gptq � maxpa�mpt� xq, bq.

It is easy to see that g P C0|1 and that gpxq � a and gpyq � b. If a   b we can achieve
the same result using 1� a and 1� b and the function 1� gptq.

Next, by the above mentioned result, we have to show that we can approximate
an arbitrary connective u in two arbitrary points x, y of r0, 1sn. If x � y at least one
coordinate is di�erent. Suppose x1   y1 without loss of generality. Let α � upxq
and β � upyq, we do the case β ¤ α, the case α   β is done changing the function
that we will de�ne the same way as gptq in the beginning of the proof. We take
a, b P D with b ¤ a such that dpa, αq � dpb, βq ¤ ε

2 and rx1, ry1 P D close enough to
x1, y1 for the function gptq � maxpa�mpt� rx1q, bq to satisfy dpgpx1q, gprx1qq ¤

ε
2 and

dpgpy1q, gpry1qq ¤
ε
2 . Finally, let hpxq � gpπ1pxqq, this function satis�es

dphpxq, upxqq � dpgpx1q, αq ¤dpgpx1q, gprx1qq � dpa, αq ¤ ε

dphpyq, upyqq � dpgpy1q, αq ¤dpgpy1q, gpry1qq � dpb, βq ¤ ε
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The case x � y is trivially approximated because D is dense in r0, 1s. Then, the
result stated at the beginning of the proof ensures that C0|n is dense in the set of
n-ary connectives with respect to the supremum distance, for all n, that is, C0 is a full
system of connectives.

We explain here an argument that will be frequently used in the remaining sections
of this document.

Proposition 1.1.8. Let E � tϕipxq � 0 : i P Iu be a set of L-conditions, then we

can assume without loss of generality that its cardinality is less than maxpcardpLq, ωq.
That is, there is a subset D � E of cardinality at most maxpcardpLq, ωq such that, for

any L-structure M and any a PMn, the element a satis�es all the conditions in E if

and only if a satis�es all the conditions in D.

Proof. We consider the set of L-formulas rE � tϕipxq : i P Iu. We claim that we can
chose a subset pD � rE of cardinality at most maxpcardpLq, ωq that is dense in rE, with
respect to the logical distance. To prove this, consider the space FormpLq with the
logical distance, we know that the set of restricted formulas C is a dense subset of the
required cardinality. Let B be the family of balls of rational radius where the centre
is an element of C and consider B0 � tBX rE : B P B and BX rE � Hu. Choosing any
element xB in every set B of the family B0, we construct the set rD � txB : B P B0u,
which is a dense subset of rE with respect to the logical distance and has cardinality
at most maxpcardpLq, ωq. Then, all L-conditions of the set D � tϕpxq � 0 : ϕ P rDu
are satis�ed by an element a of an L-structure M if and only if a satis�es all the
conditions in E.

1.2. Construction of models

We start this section by discussing ultra�lter limits in topology. LetX be a topological
space and let pxiqiPI be a collection of elements of X. If D is an ultra�lter on I and
x P X, we write

lim
i,D

xi � x

and say that x is the D-limit of pxiqiPI if for every neighborhood U of x, the set
ti P I : xi P Uu belongs to D.

Sometimes, it can be useful to consider the collection pxiqiPI as a the image of a
function f : I Ñ X, then x is the D-limit of pxiqiPI if for every neighborhood U of x,
we have f�1pUq P D.

Lemma 1.2.1. Let X be a topological space:

p1q The topology on X is compact if and only if for every collection pxiqiPI of ele-

ments of X, and every ultra�lter D on I the D-limit of pxiqiPI exists.

p2q The topology on X is Hausdor� if and only if for every collection pxiqiPI of

elements of X, and every ultra�lter D on I the D-limit of pxiqiPI , if exists, is
unique.
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Proof. (1) Assume X is compact. Let f : I Ñ X be a function and D an ultra�lter on
I. Suppose pxiqiPI has no D-limit. Hence, for every x P X there exists a neighborhood
Ux of x such that f�1pUxq R D. We have that tUx : x P Xu is a cover of X. By
compactness, there exists a �nite subcover Ux1 , . . . , Uxn of X, therefore
n�
i�1

f�1pUxiq � I, but this is a contradiction.

Assume now that the required limits exist. Suppose that X is not compact. Let
tUα : α P Λu be an open cover of X with no �nite subcover. Then every intersection
of �nitely many elements of the family A � tU cα : α P Λu is not empty. Hence, A can
be extended to an ultra�lter D on X. Let x be the D-limit of piqiPX . Take α P Λ such
that x P Uα, but then, by our de�nition of D-limit Uα P D. This contradicts that D
is an ultra�lter because U cα P D.

(2) Assume that X is Haussdorf. We proceed by contradiction. Let x, y P X be
such that y � lim

i,D
xi and x � lim

i,D
xi. Let U, V � X be two open sets such that x P U ,

y P V and U X V � H. By our de�nition of D-limit we have that ti P I : xi P Uu P D
and ti P I : xi P V u P D, but this is a contradiction because those two sets are disjoint.

Assume the uniqueness of the required limits. Suppose that X is not Hausdor�,
that is, there exist x, y P X, x � y, such that for all U, V � X neighborhoods of x
and y respectively U X V � H. This means that we can enlarge the set

tA � X : A is neighborhood of x or yu

to an ultra�lter D on X. Finally,

y � lim
i,D

i � x,

where we are taking I � X.

The following lemmas show that the D-limit behaves well with respect to contin-
uous functions, supremum and in�mum.

Lemma 1.2.2. Let X, X 1 be topological spaces and F : X Ñ X 1 be a continuous

function. For any collection pxiqiPI from X and any ultra�lter D on I we have that:

lim
i,D

xi � x ùñ lim
i,D

F pxiq � F pxq

where the ultra�lter limits are taken in X and X 1 respectively.

Proof. Let U be an open neighbourhood of F pxq in X 1. Due to the continuity of
F , F�1pUq is an open neighbourhood of x. By de�nition of D-limit of a sequence
pxiqiPI , there exists A P D such that for all i P A, xi P F

�1pUq. Hence, for all i P A,
F pxiq P U .

Lemma 1.2.3. Let X be a closed, bounded interval in R. Let pSi : i P Iq be any

collection of sets and let pFi : i P Iq be a family of functions Fi : Si Ñ X. Then, for
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any ultra�lter D on I

sup
x
plim
i,D

Fipxiqq � lim
i,D
psup
xi
Fipxiqq

inf
x
plim
i,D

Fipxiqq � lim
i,D
pinf
xi
Fipxiqq,

where in the left hand side, the supremum and in�mum are taken over all collections

x � pxiqiPI P
±
iPI Si and in the right hand side the supremum and the in�mun are

taken over each Si.

Proof. The sup and inf cases are analogous, so we just do the sup one.

Let ri � supxi Fipxiq for each i P I and let r � lim
i,D

ri. Let ε ¡ 0 and let Apεq be

an element of D such that ri is within distance ε from r for each i P Apεq.

We prove the equality in two parts.

For each ε ¡ 0, we have Fipxiq ¤ ri ¤ r � ε for each i P Apεq. Hence, we have
that lim

i,D
Fipxiq ¤ r � ε. Letting ε tend to 0 and taking the supremum gives us the

inequality sup
x
plim
i,D

Fipxiqq ¤ lim
i,D
psup
xi
Fipxiqq.

For the other inequality, �x ε ¡ 0 and for each i P I chose xi P Si such that
ri ¤ Fipxiq �

ε
2 . For each i P Ap

ε
2q one has that r ¤ Fipxiq � ε. Taking D-limit �rst

and supremum after that we get lim
i,D
psup
xi
Fipxiqq ¤ sup

x
plim
i,D

Fipxiqq� ε. Letting ε tend

to 0 gives us the required result.

To construct the ultraproduct of metric structures, �rst we have to discuss about
ultraproducts of metric spaces and functions.

Let us start by studying the structure of the product of metric spaces. Let
ppMi, diq : i P Iq be a family of bounded metric spaces, all having a common bound
K for the diameter and let D be an ultra�lter on I. We de�ne a function d on the
cartesian product

±
iPiMi by

dpx, yq � lim
i,D

dipxi, yiq,

where x � pxiqiPI and y � pyiqiPI . Note that this D-limit is taken in r0,Ks so the
existence and uniqueness is guaranteed. It is clear that this de�nes a pseudometric on
the cartesian product, so we can de�ne the natural equivalence relation x �D y if and
only if dpx, yq � 0. Furthermore, the pseudometric d induces a metric in the quotient
space

p
¹
iPI

MiqD � p
¹
iPI

Miq{ �D

that we also denote d. The metric space pp
±
iPIMiqD, dq is called the D-ultraproduct

of ppMi, diq : i P Iq and the equivalence class of pxiqiPI P
±
iPIMi is denoted ppxiqiPIqD.

Note that when we de�ned metric structures, we required the space to be complete,
the following lemma ensures that we will not have any di�culties when constructing
the ultraproduct of a family of structures.
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Proposition 1.2.4. Let ppMi, diq : i P Iq be a family of complete, bounded metric

spaces, all having diameter less than K. Let D be an ultra�lter on I and let pM,dq be
the D-ultraprouct of ppMi, diq : i P Iq. The metric space pM,dq is complete.

Proof. It su�ces to show that every Cauchy sequence has a limit in M . Let pxkqk¥1

be a Cauchy sequence, moreover, we may assume that dpxk, xk�1q   2�k holds for
all k ¥ 1. Let pxki qiPI be a representative of xk for each k ¥ 1. For each m ¥ 1 let
Am be the set of all i P I such that dipx

k
i , x

k�1
i q   2�k holds for all k � 1, . . . ,m.

Obviously, the sets pAmqm¥1 form a decreasing chain, they are also all in D because
they are �nite intersections of sets that are in D by de�nition of the distance d. Now,
we construct a representative pyiqiPI of the limit of the Cauchy sequence pxkqk¥1 in
pM,dq. If i R A1, we take yi to be an arbitrary element of Mi. If i P AmzAm�1 for
some m ¥ 1, we take yi � xm�1

i . If i P Am for all m ¥ 1, then pxki qk¥1 is a Cauchy
sequence in a complete metric space pMi, diq, so we take yi to be its limit.

Now, for each m ¥ 1 and each i P Am, we claim that dipx
m
i , yiq ¤ 2�m�1. To

show this, we check the two cases. If i R Am�k for some k ¥ 1, then yi � xm�ki and
dipx

m
i , yiq   2�pm�kq� � � � � 2�m ¤ 2�m�1. If i P Ak for all k ¥ 1, then yi is the limit

of the Cauchy sequence pxki qk¥1 and we use that in a Cauchy sequence like the ones
we are assuming, the distance between the m-th term and the limit is at most 2�m�1.
Hence, ppyiqiPIqD is the limit in pM,dq of the sequence pxkqk¥1.

Let us note a particular case of the ultraproduct of metric spaces.

Remark 1.2.5. If all pMi, diq are the same metric space pM,dq, the construction

above is called the D-ultrapower and its denoted by pMqD. We can de�ne the diag-

onal map T : M Ñ pMqD as T pxq � ppxqiPIqD. The diagonal map is an isometric

embedding, moreover, if pM,dq is a compact metric space, then T is also surjective.

Proof. Take any pxiqiPI P
±
iPIMi. As M is compact, by lemma 1.2.1, this sequence

has a D-limit x. Then, by de�nition of the metric in pMqD and properties of the
D-limit, we have dppxiqiPI , T pxqq � 0, so T pxq � ppxiqiPIqD.

Now, we de�ne ultraproduct of functions.

Let ppMi, diq : i P Iq and ppM 1
i , d

1
iq : i P Iq be families of metric spaces all of them

with diameter less thanK. Fix n ¥ 1 and let fi : Mn
i ÑM 1

i be a uniformly continuous
function for each i P I, all of them with the same modulus of uniform continuity ∆.
Then, given an ultra�lter D on I, we de�ne a function

p
¹
iPI

fiqD : p
¹
iPI

Miq
n
D Ñ p

¹
iPI

M 1
iqD

by setting

p
¹
iPI

fiqDpppx
1
i qiPIqD, . . . , ppx

n
i qiPIqDq � ppfipx

1
i , . . . , x

n
i qqiPIqD

for all pxiqiPI P
±
iPIMi.
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As in the ultraproduct of metric spaces, we note here that we required functions
of our metric structures to be uniformly continuous. The next lemma ensures that we
will have no problem when de�ning the ultraproduct of metric structures.

Lemma 1.2.6. The function de�ned above is well de�ned and uniformly continuous

with modulus of uniform continuity ∆.

Proof. For simplicity, we do the case n � 1, the case n ¡ 1 is analogous because we
use the maximum distance when we discuss �nite powers of a metric space.

Fix ε ¡ 0 and let ppxiqiPIqD, ppyiqiPIqD P p
±
iPIMiqD be a pair of points such that

dpppxiqiPIqD, ppyiqiPIqDq   ∆pεq. Then, by de�nition of the distance and the D-limit,
there exist A P D such that dipxi, yiq   ∆pεq for all i P A. Since ∆ is a modulus of
uniform continuity for all of the functions fi, we have that dipfipxiq, fipyiqq ¤ ε for all
i P A. Hence dppfippxiqqiPIqD, pfippyiqqiPIqDq ¤ ε. This shows that p

±
iPI fiqD is well

de�ned and has ∆ as a modulus of uniform continuity.

Note that in the latter proof it is the �rst time that our precise de�nition of uniform
continuity is relevant.

Finally, we de�ne the ultraproduct of metric structures. Let pMi : i P Iq be a
family of L-structures with underlying metric spaces pMi, diq and D an ultra�lter on
I. As all Mi are L-structures and L includes DL, a bound for the diameter of the
L-structures, there exist an uniform bound on the diameters of all Mi, so we may
form their D-ultraproduct. Moreover, for each function or predicate symbol in L, as
their modulus of uniform continuity are included in L, their interpretations have the
same modulus of uniform continuity, so their D-ultraproduct is well de�ned. In the
case of predicates, we identify the D-ultrapower of r0, 1s with r0, 1s itself (see remark
1.2.5).

Therefore, we can de�ne the D-ultraproduct of the family pMi : i P Iq, usually
denoted by p

±
iPI MiqD, as the following L-structure

p
¹
iPI

MiqD � pp
¹
iPI

MiqD, p
¹
iPI

PMi
k qD, p

¹
iPI

fMi
j qD, ppa

Mi
l qiPIqD : j P J, k P K, l P Lq,

Where K, J and L are the set of index of functions, predicates and constants in L.

Next, we have the analogous result in continuous model theory to �o±'s funda-
mental theorem of ultraproducts.

Theorem 1.2.7. Let pMi : i P Iq be a family of L-structures. Let D be any ultra�lter

on I and let M be the D-ultraproduct of pMi : i P Iq. Let ϕpx1, . . . , xnq be an

L-formula. If ak � ppaki qiPIqD are elements of M for k � 1, . . . , n, then

ϕMpa1, . . . , anq � lim
i,D

ϕMipa1
i , . . . , a

n
i q.

Proof. We proceed by induction of formulas.

Atomic formulas. Let P be a predicate symbol in L and let ppa1
i qiPIqD, . . . , ppa

n
i qiPIqD

be elements of M . Then, for any b P r0, 1s, using the diagonal embedding to identify
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b as pbqiPI P
±
iPIr0, 1s we have that P

Mpppa1
i qiPIqD, . . . , ppa

n
i qiPIqDq � b if and only if

dp
±
iPI P

Mipa1
i , . . . , a

n
i q, pbqiPIq � 0. This is equivalent, by our de�nition of limit, to

lim
i,D

PMipa1
i , . . . , a

n
i q � b.

Connectives. Let u be an n-ary connective,let ϕ1, . . . , ϕn be L-formulas and let
ppa1

i qiPIqD, . . . , ppa
n
i qiPIqD be elements of M . Using the induction hypothesis and

lemma 1.2.2 we get the following equalities.

pupϕ1, . . . , ϕnqq
Mppa1

i qiPIqD, . . . , ppa
n
i qiPIqD �

uplim
i,D

ϕ1pa
1
i , . . . , a

n
i q, . . . , lim

i,D
ϕnpa

1
i , . . . , a

n
i qq �

lim
i,D
pupϕMi

1 , . . . , ϕMi
n qpa1

i , . . . , a
n
i qq

lim
i,D
pupϕ1, . . . , ϕnq

Mipa1
i , . . . , a

n
i qq.

Quanti�ers. Let ϕpxq be infy ψpx, yq and let ppa
1
i qiPIqD, . . . , ppa

n
i qiPIqD be elements

of M . We have the following equalities by lemma 1.2.3.

pinf
y
ψpx, yqqMpppa1

i qiPIqD, . . . , ppa
n
i qiPIqDq �

inftψMpppa1
i qiPIqD, . . . , ppa

n
i qiPIqD, ppbiqiPIqDq : ppbiqiPIqD PMu �

inftlim
i,D

ψMipa1
i , . . . , a

n
i , biq : bi PMi, i P Iu �

lim
i,D
pinftψMipa1

i , . . . , a
n
i , biq : bi PMiuq � lim

i,D
ppinf

y
ψpx, yqqMipa1

i , . . . , a
n
i qq.

Hence,
pϕpppa1

i qiPIqD, . . . , ppa
n
i qiPIqDqq

M � lim
i,D
ppϕpa1

i , . . . , a
n
i qq

Miq.

Which is the required result.

Corollary 1.2.8. If M is an L-structure and T : M Ñ pMqD is the diagonal embed-

ding, then T is an elementary embedding of M into pMqD.

Proof. Let ϕ be an L-formula and a1, . . . , an PM . Then, by the previous result

ϕpMqDpT pa1q, . . . , T panqq � lim
i,D

ϕMpa1, . . . , anq � ϕMpa1, . . . , anq.

As the domain of T is all M , T is an elementary embedding.

Corollary 1.2.9. If M and N are L-structures with isomorphic ultrapowers, then

M � N .

Proof. Let E P ThpMq be the closed L-condition ϕ � 0. By the previous result, we
have that ϕM � 0 implies ϕpMqD � 0. By the isomorphism between ultrapowers we
get ϕpN qD � 0, and, as ϕ has no free variables, that means ϕN � 0 and we conclude
E P ThpN q.
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The converse to the preceding result is also true. It is the analogous to the Keisler-
Shelah theorem in continuous model theory. The proof of this results if out of the
scope of this memoir.

Theorem 1.2.10. [5, theorem 5.7] If M and N are L-structures such that M � N ,

then there exist an ultra�lter D such that pMqD � pN qD.

The following result is the analogous to the compactness theorem in continuous
model theory.

Theorem 1.2.11 (Compactness theorem). Let T be an L-theory and C a class of L-
structures. Assume that T is �nitely satis�able in C. Then, there exists an ultraproduct

of structures from C that is a model of T .

Proof. Let Λ be P ωpT q. For each λ P Λ, let Mλ denote a �xed structure in C such
that Mλ |ù E, for each E P λ, which exists by hypothesis.

For each L-condition E P T , let SpEq � tλ P Λ : E P λu. As the collection
tSpEq : E P T u has the �nite intersection property, there exists an ultra�lter D on Λ
such that D contains all SpEq for E P T .

Now, let M � p
±
λPΛ MλqD. Note that for every E P T and λ P SpEq, Mλ |ù E.

So the set tλ P Λ : Mλ |ù Eu belongs toD. Hence, for every L-condition E :� pϕ � 0q
we can apply theorem 1.2.7 to ϕ and we get ϕM � lim

λ,D
ϕMλ . Since for every λ P SpEq,

ϕMλ � 0, properties of the limit imply lim
λ,D

ϕMλ � 0 and hence M |ù E. As E was

arbitrary, M |ù T .

In the context of the continuous model theory, the compactness theorem gives a
better result that in the classical setting. To explore this improvement we introduce
the following de�nition.

For any set Σ of L-conditions, Σ� is the set of all conditions ϕ ¤ 1
n such that

ϕ � 0 is an element Σ and n ¥ 1.

Corollary 1.2.12. Let T be an L-theory and C a class of L-structures. Assume that

T� is �nitely satis�able in C. Then there exists an ultraproduct of structures from C
that is a model of T .

Proof. Applying the compactness theorem 1.2.11 to T�, we get an L-structure M
which is an ultraproduct of structures of C and a model of T�. Note that every L-
structure which is a model of T� is also a model of T . Hence, we have the required
result.

Let T be an L-theory and Σpxj : j P Jq a set of L-conditions. We say that Σ is
consistent with T if for every �nite subset F of Σ there exist M P ModLpT q and a
tuple a of elements in M such that for every condition E P F , M |ù Eras.
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Corollary 1.2.13. Let T be an L-theory and Σpxi : i P Iq a set of L-conditions, and
assume that Σ� is consistent with T . Then there exists M P ModLpT q and a set of

elements tai : i P Iu of M such that

M |ù Erai : i P Is

for every L-condition E P Σ.

Proof. We introduce a new set of constants tci : i P Iu ans we consider the extended
signature Lptci : i P Iuq. The consistency of Σ� implies that the Lptci : i P Iuq-
theory T Y Σ�pci : i P Iq is �nitely satis�able in the class of Lptci : i P Iuq-structures
C � tpM, pci : i P Iqq : M |ù T u, that is, all models of T and all possible assignation of
the constants to elements of M. Applying compactness theorem to the Lptci : i P Iuq
theory T Y Σ�pci : i P Iq and the class C of Lptci : i P Iuq-structures yields a model
M of T where the interpretations of ci for i P I satisfy Σ�pxi : i P Iq, hence they
satisfy Σpxi : i P Iq.

Proposition 1.2.14. Suppose that C is a clsss of L-structures. The following state-

ments are equivalent:

p1q C is axiomatizable in L.

p2q C is closed under isomorphisms and ultraproducts, and its complement is closed

under ultrapowers.

Proof. p1q ùñ p2q. If C is axiomatizable, then is closed under isomorphisms because
isomorphic models have the same theory. The same is true for ultraproducts because
theorem 1.2.7 implies that if all structures of C involved in the ultraproduct satisfy
the L-condition ϕ � 0, then the ultraproduct also satisfy ϕ � 0. The complement of
C is closed under ultrapowers by corollary 1.2.8.

p2q ùñ p1q.Let T be the set of closed L-conditions satis�ed by every structure
in C. We are going to prove that M |ù T if and only if M P C. Assume �rst that
M |ù T , we claim that ThpMq� is �nitely satis�able in every L-structure of C. To
prove the claim, supose that it is false, that is, there exists sentences ϕ1, . . . , ϕn and
ε ¡ 0 such that ϕM

i � 0 for all i � 1, . . . , n but for any N P C we have that ϕN
j ¥ ε

for some j � 1, . . . , n. This gives us a contradiction because maxpϕ1, . . . , ϕnq ¥ ε is
an L-condition in T but is not satis�ed in M.

As ThpMq� is �nitely satis�able in C, compactness theorem 1.2.11 implies the
existence of a model M1 of ThpMq� which is an ultraproduc of structures in C and
hence M1 P C. Since every model of ThpMq� is a model of ThpMq, this implies
M1 �M. Finally, theorem 1.2.10 implies that there exists an ultra�lter D such that
pM1qD � pMqD and our assumptions of C imply M P C.

Let Λ be a linearly ordered set, a chain of L-structures is a family of L-structures
pMλ : λ P Λq such that Mλ �Mη for λ   η. If we have such a family, we can de�ne
its union as an L-prestructure in the natural way. Note that we say prestructure
because an arbitrary union of complete metric spaces may not be complete. After
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taking the completion, we denote the resulting L-structure by
�
λPΛ

Mλ and refer to it

as the union of the chain of L-structures.

Remark 1.2.15. If the co�nality of Λ is not countable, then the union
�
λPΛ

Mλ of the

metric spaces is complete. Hence, the universe of the L-structure
�
λPΛ

Mλ is
�
λPΛ

Mλ.

Proof. Let a be an element of the completion of
�
λPΛ

Mλ. There exist a Cauchy

sequence panqn¥1 in
�
λPΛ

Mλ converging to a. The co�nality of Λ implies the ex-

istence of α   λ such that an P Mα for all n ¥ 1. Hence, as Mα is complete,
a PMα �

�
λPΛ

Mλ.

A chain of structures pMλ : λ P Λq is called an elementary chain if Mλ ¤Mη for
all λ   η.

The next result is the analogous to the Tarski chain lemma in the classical theory.

Proposition 1.2.16. If pMλ : λ P Λq is an elementary chain and λ P Λ, then we

have Mλ ¤
�
λPΛ

Mλ.

Proof. By construction, we already know Mλ �
�
λPΛ

Mλ � M. Now, we apply the

Tarski-Vaught theorem 1.1.5. We have to check that for any L-formula ϕpx, yq and
any a PMn

λ with n ¥ 1

inftϕMpa, bq : b PMu � inftϕMpa, cq : c PMλu.

Obviously, the left hand side is at most equal to the right hand side. Suppose that
is strictly less, then, as

�
λPΛ

Mλ is dense in M , there exists rb P �
λPΛ

Mλ such that

ϕMpa,rbq   inftϕMpa, cq : c P Mλu. However rb P Mβ for some β ¥ λ, so the previous
inequality contradicts Mλ ¤Mβ . Hence, we have the equality between the two sides
and Tarski Vaught yields Mλ ¤M.

The density character of a topological space X is the least cardinal among cardpAq
for A � X dense subset. We denote this cardinal by densitypXq

Proposition 1.2.17 (Lowenheim-Skolem). Let κ be an in�nite cardinal and assume

cardpLq ¤ κ. Let M be an L-structure and suppose A �M satis�es densitypAq ¤ κ.
Then there exist a substructure N of M such that

1. N ¤M;

2. A � N ;

3. densitypNq ¤ κ.
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Proof. Let A0 be a dense subset of A of cardinality at most κ. We �rst prove that we
can enlarge A0 to obtain a prestructure with universe N0, whose metric is induced by
the one on M, such that A0 � N0 � M , cardpN0q ¤ κ and which has the following
closure property: for every restricted L-formula ϕpx1, . . . , xn, xn�1q and every rational
ε ¡ 0, if ϕMpa1, . . . , an, cq ¤ ε with a1, . . . , an P N0 and c PM , then there exist b P N0

such that ϕMpa1, . . . , an, bq ¤ ε. We start with A0 and we enlarge it to satisfy the
above closure property except that we restrict to the case a1, . . . , an P A0 and c PM ,
then, we add the images of all tuples of elements of this enlarged set by functions
in L. We call the new set A1, as the cardinality of A0, the cardinality of the set of
restricted formulas and the cardinality of L are all at most κ. The cardinality of A1

is at most κ. Repeating this process we get A0, A1, . . . and increasing chain of sets,
then N0 �

�
kPN

Ak has the required closure property. The set N0 is the universe of an

L-prestructure since its a metric space (with the metric induced by the metric on M)
and its closed by constants and functions in L.

Let N be the topological closure of N0 in M , since A0 � N0, A � N . Since
N0 has cardinality less than κ, densitypNq ¤ κ. Using that a closed subspace of a
complete metric space is also complete, N is the universe of an L-structure N . To
prove N ¤M, we �rst prove that N � M, then we apply Tarski-Vaught 1.1.5. Let
c P L be a constant symbol and let ϕpxq be dpc, xq. Since M is an L-structure, there
exists c PM such that ϕMpcq � 0. Thus, by construction of N0, for each n P ω, n � 0
there exists cn P N0 such that ϕMpcnq ¤

1
n so c belongs to the closure of N0. Now, let

f be an m-ary function symbol of L and let ϕpx1, . . . , xm, yq be dpfpx1, . . . , xmq, yq.
Let a1, . . . , am P N0, since M is an L-structure and N0 � M , there exists b P M
such that ϕMpa1, . . . , am, bq � 0. Thus, by construction of N0, for each n P ω, n � 0
there exists bn P N0 such that ϕMpa1, . . . , am, bnq ¤

1
n , so f

Mpa1, . . . , anq belongs
to the closure of N0 and since a1, . . . an were arbitrary, N0 is dense in N and f is
uniformly continuous, we have that N is closed under functions. Now, we apply the
Tarski-Vaught test. We need to check that for all ϕpx1, . . . , xnq restricted L-formula
and a1 . . . , an P N

inftϕMpa1, . . . , am, bq : b PMu � inftϕMpa1, . . . , am, cq : c P Nu.

Since N �M , one of the inequalities is trivial. For the nontrivial one, let
inftϕMpa1, . . . , am, bq : b P Mu � x, for all δ ¡ 0 there exists rb P M such that
ϕMpa1, . . . , am,rbq ¤ x � δ, by density of N0 and uniform continuity of the formulas,
for all ε ¡ 0, there exist ra1, . . . ,ran P N0 such that ϕMpra1, . . . ,ram,rbq ¤ x � δ � ε,
now, we use the closure properties of N0 and get that there exists c P N0 such that
ϕMpra1, . . . ,ram, cq ¤ x� δ � ε and so ϕMpa1, . . . , am, cq ¤ x� δ � 2ε. Finally, letting
ε and δ go to 0, we get inftϕMpa1, . . . , am, cq : c P Nu ¤ x.

Let Γpx1, . . . , xnq be a set of L-conditions and let M be an L-structure. We say
that Γpx1, . . . , xnq is satis�able in M if there exist elements a1, . . . , an ofM such that
M |ù Γra1, . . . , ans.

Let M be an L-structure and let κ be an in�nite cardinal. We say that M is
κ-saturated if for every A � M with |A|   κ and for all Γpx1, . . . , xnq set of LpAq-
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conditions, if every �nite subset of Γ is satis�able in pM, aqaPA, then the entire set Γ
is satis�able in pM, aqaPA.

The following result shows that in saturated models we have more similarities to
the classical setting, we can analyse L-conditions using the quanti�ers @ and D.

Proposition 1.2.18. Let M be an L-structure and suppose Epx1, . . . , xmq is the L-
condition

Q1
y1 . . . Q

n
ynϕpx1, . . . , xm, y1, . . . , ynq � 0

where each Qi is either inf or sup and ϕ is quanti�er free.

Let Epx1, . . . , xmq be the mathematical statement

rQ1
y1 . . .

rQnynϕpx1, . . . , xm, y1, . . . , ynq � 0

where rQiyi is Dyi if Qiyi is infyi and @yi if Q
i
yi is supyi .

If M is ω-saturated, then for any elements a1, . . . , am PM , we have

M |ù Era1, . . . , ams if and only if Epa1, . . . , amq is true in M.

Proof. We proceed by induction on the number of quanti�ers. The case n � 0 is trivial.
For the case n� 1, suppose we are considering the condition inf

y
ψpx1, . . . , xm, yq � 0

where ψ is an L-formula with n quanti�ers. Let a1 . . . , am P M . If there exists
b P M such that ψpa1, . . . , am, bq � 0 it follows that inf

y
ψpa1, . . . , am, yq � 0. For the

converse, consider Γpyq � tψpa1, . . . , am, yq ¤
1
n : n P ω;n � 0u set of Lpa1, . . . , amq-

conditions, it is clear that every �nite subset is satis�able in pM, a1 . . . , amq, so by
saturation there exists b P M such that pM, a1 . . . , amq |ù pψpa1, . . . , am, yq � 0qrbs.
Finally we apply the induction hypothesis to the condition ψpa1, . . . , am, bq � 0. The
sup
y
ψpx1, . . . , xm, yq � 0 case is trivial.

Let M be an L-structure and N be an elementary extension of M. We say that N
is an enlargement of M if for every A �M and Γpx1, . . . , xnq set of LpAq-conditions,
whenever every �nite subset of Γpx1, . . . , xnq is satis�able in pM, aqaPA, then the entire
set Γ is satis�able in pN , aqaPA.

Lemma 1.2.19. Every L-structure has an enlargement.

Proof. Let M be and L-structure and let J be a set with cardinality bigger than
the cardinality of LpMq-formulas (by remark 1.1.8, maxpω, |LpMq|q su�ces). Let
I � P ωpJq and let D be an ultra�lter on I containing the sets Sj � ti P I : j P iu,
for j P J . We claim that N � pMqD is an enlargement of M.

First, we already know that M ¤ N by corollary 1.2.8. Let A � M and suppose
Γpx1, . . . , xnq is a set of LpAq-conditions such that every �nite subset of Γ is satis�able
in pM, aqaPA. Let α be a function from J onto Γ. Given i � tj1, . . . , jmu P I, let
pa1
i , . . . , a

n
i q be any n-tuple fromM that satis�es tαpj1q, . . . , αpjmqu in pM, aqaPA. For

each k � 1, . . . , n set ak � ppaki qiPIqD. We check that �o± theorem 1.2.7 yields that
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pa1, . . . , anq satis�es Γ in pN , aqaPA. Let ϕ � 0 be any condition in Γ, by �o± theorem,
ϕN pa1, . . . , amq � lim

i,D
ϕMpa1

i , . . . , a
n
i q, this limit is 0 since for any j in the preimage

by α of the condition ϕ � 0 the set Sj is in the ultra�lter D.

Proposition 1.2.20. Let M be an L-structure. For every in�nite cardinal κ, M has

a κ-saturated elementary extension.

Proof. By increasing κ if necessary we may assume κ is regular and ω   κ. By
induction we construct an elementary chain pMα : α   κq such that M0 � M,
if β � α � 1 we take Mβ an enlargement of Mα, if β is a limit ordinal we take
Mβ �

�
α β

Mα. Let N �
�
α κ

Mα. By the Tarski chain lemma 1.2.16, Mα ¤ N

for all α   κ. It remains to prove that N is κ-saturated. To do so, let A � N be
a subset of cardinality strictly less than κ. Since κ is regular, remark 1.2.15 yields
that the universe of N is

�
α κ

Mα. Hence, there exists α   κ such that A � Mα.

Therefore, Mα�1 witness that pN , aqaPA realizes every �nitely satis�able set of LpAq-
conditions.

Let M be an L-structure and let κ be an in�nite cardinal. We say that M is
κ-homogeneous if for every elementary map F : A Ñ M , where A � M satis�es
|A|   κ, and every element a PM , there exists an elementary map rF : AY tau ÑM
extending F .

Theorem 1.2.21. Let M be an L-structure. If M is κ saturated, then M is κ-
homogeneous.

Proof. Let A �M be any subset of the universe and let F : AÑM be any elementary
map. Let b P M be any element. Let Γpxq be the set of all LpAq-conditions satis�ed
by b. We de�ne rΓpxq as the set of LpF pAqq-conditions resulting by substituting, in
each condition in Γpxq, each apparition of a P A by F paq. Using lemma 1.2.18, the
set of conditions rΓpxq is �nitely satis�able. Hence, by the saturation of M, there
exists b1 P M such that M |ù rΓrb1s. This implies that for any LpAq-formula ϕ, we
have ϕMpbq � ϕMpb1q. Furthermore, this yields that F Y tpb, b1qu is an elementary
map.

Let M be an L-structure and let κ be an in�nite cardinal. We say that M is
strongly κ-homogeneous if for every extension LpCq of L by constants with cardpCq  
κ and maps f, g : C ÑM such that

pM, fpcqqcPC � pM, gpcqqcPC

one has

pM, fpcqqcPC � pM, gpcqqcPC .

The next result is an auxiliary lemma that we will need later.
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Lemma 1.2.22. Let M and N be L-structures such that M ¤ N and N is τ -
saturated, where τ is a cardinal bigger than cardpLq and cardpMq. Let C be a set of

less than τ new constants and let f, g be maps from C into M such that

pM, fpcqqcPC � pM, gpcqqcPC .

Then, there exist an elementary embedding T from M into N such that T pfpcqq � gpcq
for every c P C.

Proof. Note that as M ¤ N , the map h : tfpcq : c P Cu Ñ tgpcq : c P Cu sending
fpcq to gpcq for every c P C is an elementary map from M to N . Now, we �x an
enumeration paαqα γ of M where γ � cardpMq and use the τ -saturation of N to
extend our original elementary map h. We proceed by trans�nite induction. Let
Aα � taβ : β   αu and assume we have already constructed a compatible family
of elementary maps fβ : Aβ Ñ N for β   α. If α is a limit ordinal

�
β α

fβ is an

elementary map from Aα to N . If α � η � 1, we consider the set Γpxq of all LpAηq-

conditions satis�ed by aη. Using lemma 1.2.18, the set rΓpxq of LpfηpAηqq-conditions
resulting by substituting each apparition of a P Aη in Γ by fηpaq is �nitely satis�able,
and by our hypothesis of saturation of N and the cardinality of all the sets, we get
that there exists b P N such that fη Ytpaη, bqu is an elementary map that extends fη.
Finally,

�
α γ

fα is the required elementary embedding.

Theorem 1.2.23. Let M be an L-structure. For every in�nite cardinal κ, M has a

κ-saturated elementary extension N such that each reduct of N to a sublanguage of L
is strongly κ-homogeneous.

Proof. We may assume that κ is regular without loss of generality. Given any L-
structure M, we construct an elementary chain pMα : α   κq whose union has the
desired properties. Let M0 � M, for each α   κ, if β � α � 1 let Mβ be an
elementary extension of Mα that is τα-saturated, where τα is a cardinal bigger than
cardpLq and bigger than the cardinality of Mα; if β is a limit ordinal we take unions.
Let N be the union of pMα : α   κq. Tarski chain lemma 1.2.16 yields M ¤ N . To
prove the κ regularity of N , we argument as in proposition 1.2.20.

Assume that pN , fpcqqcPC � pN , gpcqqcPC . As κ is regular, there exists α   κ such
that gpcq, fpcq P Mα for all c P C. This implies pMα, fpcqqcPC � pMα, gpcqqcPC , that
is, there exists an elementary map rh : tfpc : c P Cqu Ñ tgpcq : c P Cu (as subsets
of Mα) such that rhpfpcqq � gpcq for all c P C. Hence, the result above yields an
elementary embedding hα : Mα Ñ Mα�1 such that the image of fpcq is gpcq for all
c P C. Now, we have that pMα�1, aqaPMα � pMα�1, hαpaqqaPMα so the previous result
yields an elementary embedding hα�1 : Mα�1 Ñ Mα�2 such that hα�1phαpaqq � a
for all a PMα. We can keep this doing this construction in an analogous way, getting
hα�2 : Mα�2 Ñ Mα�3 such that hα�2phα�1paqq � a for all a P Mα�1 and so on.
Note that h�1

α�1 extends hα, hα�2 extends h�1
α�1 and so on. In limit ordinal we take

unions of pairs hβ Y h
�1
β�1. Using this argument we proceed by induction to construct

all hβ with α ¤ β   κ. Finally, taking the union of all the constructed pairs hβYh
�1
β�1
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we get the required isomorphism since each hβYh
�1
β�1 is an elementary map with Mβ

contained in the domain and Mβ�1 contained in the image.

Let L1 be a sublanguage of L. For each α   κ the reduct of Mα�1 to L1 is τα
saturated. Hence, we can apply an analogous argument to the given above to the
reduct of N to L1.

The next corollary follows immediately from the proposition above.

Corollary 1.2.24. Every complete theory has a κ-saturated, strongly κ-homogeneous

model for every in�nite cardinal κ.

1.3. The space of types

The space of types is a relevant part of both theories, the classical and the continuous
one. We show in this section that in the continuous setting, when T is complete, this
space is not just a topological space as in classical model theory, it is also a metric
one.

We �x a signature L for metric structures and a complete L-theory T .

For N , a model of T , and A � N . We denote the LpAq-structure pN , aqaPA by
NA and TA � ThpNAq.

Let x1, . . . , xn be distinct variables. A set p of LpAq-conditions with all free vari-
ables among x1, . . . , xn is called an n-type over A if there exist a model MA of TA and
e1, . . . , en P M such that p is the set of all LpAq-conditions Epx1 . . . , xnq for which
MA |ù Ere1, . . . , ens. In this case, we denote p � tpMpe1, . . . , en{Aq and say that
pe1, . . . , enq realizes p in M.

The collection of all such n-types over A is denoted SnpTAq, or simply SnpAq if
the context makes TA clear.

The following properties follows from the de�nition of type.

Remark 1.3.1. Let M be an L-structure and, A be as subset of M . Let e, e1 be
n-tuples from M .

1. tpMpe{Aq � tpMpe1{Aq if and only if pMA, eq � pMA, e
1q.

2. If M ¤ N , then tpMpe{Aq � tpN pe{Aq.

Remark 1.3.2. Suppose M is a κ-saturated L-structure. Then, for any A � M of

cardinality strictly less than κ, every type in SnpTAq is realized in M for every n ¥ 1.
In fact, this property is equivalent to κ-saturation of M.

Proof. Let p P SnpTAq, by de�nition of type, there exist N |ù TA and e1, . . . , en P N
such that N |ù pre1, . . . , ens. Let Γpx1 . . . , xnq � tϕ1 � 0, . . . , ϕn � 0u be a �nite
subset of p. Then, N |ù Γre1, . . . , ens. This implies

N |ù inf
x1
. . . inf

xn
p
m©
j�1

ϕjppx1, . . . , xnqqq � 0.
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As this is an LpAq-sentence,

pM, aqaPA |ù inf
x1
. . . inf

xn
p
m©
j�1

ϕjppx1, . . . , xnqqq � 0.

Finally, proposition 1.2.18 yields that there exist elements e1 . . . , en P M such that
pM, aqaPA |ù Γre1, . . . , ens and, as Γ was arbitrary, the κ-saturation of M ensures
that p is realized in M. The converse can be done as in the classical case.

Now, we study the topology of the space of types.

The logic topology on SnpTAq is de�ned as follows. If p P SnpTAq, the basic open
neighborhoods of p are the sets of the form

rϕ   εs � tq P SnpTAq : ϕ ¤ δ is in q for some 0 ¤ δ   εu

for which the condition ϕ � 0 is in p and ε ¡ 0.

Note that sets of the form

rϕ ¤ εs � tq P SnpTAq : ϕ ¤ ε is in qu,

where ϕpx1, . . . , xnq is an LpAq-formula and ε ¥ 0, are closed. This follows from the
fact that its compliment is H if ε ¥ 1 and r1� ϕ   1� εs otherwise.

Remark 1.3.3. The logic topology on SnpTAq is Hausdor�.

Proof. If p and q are distinct types of SnpTAq, there exist an LpAq-formula ϕ such
that ϕ � 0 is in p but not in q. Therefore, ϕ � r is in q for some positive r. Taking
ε � r

2 , the sets rϕ   εs and rpr � ϕq   εs are disjoint open sets one containing p and
the other containing q.

Lemma 1.3.4. The closed subsets of SnpTAq for the logic topology are exactly the sets

of the form CΓ � tp P SnpTAq : Γpx1, . . . , xnq � pu where Γpx1, . . . , xnq is a set of

LpAq-conditions.

Proof. Given a set Γpx1, . . . , xnq of LpAq-conditions, note that CΓ is the intersection
of all sets rϕ ¤ 0s where ϕ � 0 is any condition in Γ. Hence CΓ is closed. Conversely,
suppose C � SnpTAq is closed in the logic topology and let p P SnpTAqzC. By the
de�nition of the logic topology there exists an LpAq-condition ϕ � 0 in p and ε ¡ 0
such that rϕ   εs is disjoint from C. We may assume the nontrivial case ε ¤ 1.
Then the closed rpε�ϕq ¤ 0s contains C and does not have p as an element. We can
represent C as the set of all types containing all the conditions of the form pε�ϕq � 0
with ϕ � 0 P p and ε ¡ 0.

Proposition 1.3.5. For any n ¥ 1, SnpTAq is compact with respect to the logic

topology.
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Proof. By the previous result, we already know that closed sets can be expressed
as CΓ � tp P SnpTAq : Γpx1, . . . , xnq � pu, where Γpx1, . . . , xnq is a set of LpAq-
conditions. Hence, CΓ1 X CΓ2 � CΓ1YΓ2 . Suppose that the family tCΓi : i P Iu has
the �nite intersection property, this implies that every �nite subset of

�
tΓi : i P Iu

is consistent with TA. Then, compactness theorem 1.2.11 yields that the entire set
is consistent with TA. Therefore, there exists at least one p P SnpTAq such that�
tΓi : i P Iu � p. Therefore,

�
iPI CΓi � H.

Now, we de�ne a metric on the space of types SnpTAq. For each n ¥ 1 the metric
is de�ned as a quotient of the given metric d in Mn, where M is the universe of a
suitable model MA |ù TA. We also denote this metric by d.

This suitable model is any MA |ù TA where M is a κ-saturated model of T with
κ ¡ |A|. Therefore, each type in SnpTAq is realized for each n ¥ 1. Let pM,dq be the
underlying metric space of M. For p, q P SnpTAq, we de�ne dpp, qq to be

inftmax
i¤j¤n

dpbj , cjq : MA |ù prb1, . . . bns,MA |ù qrc1, . . . , cnsu.

Note that this expression does not depend on MA, since MA realizes every type of a
2n-tuple pb1, . . . , bn, c1, . . . , cnq over A.

Lemma 1.3.6. The in�mum above is always attained at a pair of points a, b P Mn

such that MA |ù pras, MA |ù qrbs.

Proof. Since the set of conditions ppxq Y qpyq Y tdpx, yq ¤ dpp, qq � 1
n : n ¥ 1u is

�nitely satis�able, the saturation of M implies that there exists an element satisfying
the whole set. Hence, if dpp, qq � 0, they have a common realization, so p � q.

Theorem 1.3.7. The distance d de�ned above, de�nes a metric in SnpTAq.

Proof. The only property of a metric that is nontrivial is the triangular inequality.
To prove it, we �rst show that given a1 P Mn such that MA |ù pra1s, there exists
b1 PMn, MA |ù qrb1s, such that dpa1, b1q � dpp, qq. Suppose that dpp, qq is attained in
a pair of points a, b P Mn. As a and a1 both realize the same type p over A, there
exists an elementary map

h : AY tau Ñ AY ta1u.

Now, we use that κ-saturation implies κ-homogeneity 1.2.21 to extend this ele-
mentary function to an elementary map

h1 : AY ta, bu Ñ AY ta1, b1u �M.

Hence M |ù qrb1s and dpa, bq � dpa1, b1q � dpp, qq.

Now, let p, q, r P SnpTAq. Suppose that dpp, rq � dpa, c1q and dpr, qq � dpc2, bq.
As, c1 and c2 realize the same type r over A, by the discussion above, there exist b1,
M |ù qrb1s, such that dpc1, b

1q � dpc2, bq. Hence,

dpp, rq � dpr, qq � dpa, c1q � dpc1, b
1q ¥ dpa, b1q ¥ dpp, qq,

Where the middle inequality is just the tiangular inequality for the metric onMn.
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Proposition 1.3.8. The d-topology is �ner than the logic topology on SnpTAq

Proof. It su�ces to prove that there is a d-open set inside each basic open set of the
logic topology. Let MA be as above and let rϕ   εs with ε ¡ 0 be a basic open
neighborhood of p P SnpTAq. By the uniform continuity of formulas, there exist δ ¡ 0
such that if x, y PMn satisfy dpx, yq   δ, then |ϕMpxq�ϕMpyq|   ε. It follows easily
that the open ball around p of radius δ with respect to the d-metric is contained in
rϕ   εs.

Proposition 1.3.9. The metric space pSnpTAq, dq is complete.

Proof. Let ppkqk¥1 be a Cauchy sequence in pSnpTAq, dq. Without loss of generality
we may assume dppk, pk�1q ¤ 2�k for all k. Let N be an ω-saturated and strongly
ω-homogeneous model of TA.

Without loss of generality we may assume N �MA for some M |ù T . We claim
that for any a1 P N such that N |ù pkra

1s, there exists b1 P N satisfying N |ù pk�1rb
1s

such that dpa1, b1q � dppk, pk�1q. Indeed, let a and b the elements of N such that
dpa, bq � dppk, pk�1q, the existence of this elements is guaranteed by 1.3.6 . Since a
and a1 satisfy the same type over A, we have that there exists an elementary map

h : tau Ñ ta1u � N

As N is strongly ω-homogeneous, we can extend this elementary map to an iso-
morphism f : pN , aq Ñ pN , a1q. Setting b1 � fpbq we have that b1 satisfy the same
type over A as b and that dpa1, b1q � dpa, bq � dppk, pk�1q. Therefore, proceeding
inductively we may generate a sequence pbkqk¥1 in Mn such that dpbk, bk�1q ¤ 2�k

for all k. This implies that pbkq is a Cauchy sequence in Mn so it has a limit b PMn.
It follows that tpN pbq is the limit of ppkq in pSnpTAq, dq.

We have proved that L-formulas de�ned functions from L-structures to r0, 1s.
Now, we prove that formulas can be used to de�ne functions from the space of types
to r0, 1s.

Let MA |ù TA be a model where every type in SnpTAq is realized for all n ¥ 1.
For any ϕpx1 . . . , xnq L-formula, we de�ne a function rϕ : SnpTAq Ñ r0, 1s asrϕppq � ϕMpbq, where b is any realization of p in MA. This function is well de�ned
because there is only one condition of the form ϕ � r in each type.

Lemma 1.3.10. Let ϕpx1, . . . , xnq be any LpAq-formula. The functionrϕ : SnpTAq Ñ r0, 1s is continuous for the logic topology and uniformly continuous for

the d-metric in SnpTAq.

Proof. Let r P r0, 1s and ε ¡ 0, we check that

rϕ�1pr � ε, r � εq � r|ϕ� r|   εs.

Remember that r|ϕ � r|   εs � tp P SnpTAq : |ϕ � r| ¤ δ is in p for some δ   εu.
So if we take t P pr�ε, r�εq, rϕ�1ptq � tp P SnpTAq : ϕ�t � 0 is in pu � r|ϕ�r|   εs.
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On the other hand, if p P r|ϕ � r|   εs then ϕ � r � δ is in p for some δ satisfying
|δ|   ε.

Hence rϕ is continuous for the logic topology. To prove the uniform continuity,
remember that by remark 1.1.2, there exists a modulus of uniform continuity ∆ϕ for
ϕM. We claim that ∆ϕ is also a modulus of uniform continuity for rϕ. Indeed, take
ε P p0, 1s and let δ � ∆ϕpεq. Suppose p, q P SnpTAq satisfy dpp, qq   δ. Take a, b PMn

such that M |ù pras, M |ù qrbs and dpa, bq � dpp, qq. Then, by our choice of ∆ϕ, we
have

|rϕppq � rϕpqq| � |ϕMpaq � ϕMpbq| ¤ ε.

Proposition 1.3.11. For any function Φ : SnpTAq Ñ r0, 1s the following are equiva-

lent:

p1q Φ is continuous for the logic topology on SnpTAq.

p2q There exist a sequence pϕkpx1, . . . , xnqqk¥1 of LpAq-formulas such that the se-

quence prϕkqk¥1 converges uniformly to Φ on SnpTAq.

p3q Φ is continuous for the logic topology and uniformly continuous for the d-metric

on SnpTAq.

Proof. (3) ùñ (1) is trivial.

(1) ùñ (2): We are going to apply the following lattice version of the Stone-
Weierstrass theorem:

'Let X be compact, and let A be a sublattice of CpXq, the real valued continuous
functions on X. Then clpAq, with the supremum distance, contains every function f
in CpXq that can be approximated at each pair of points in X by a function from A.'

It is easy to see that the functions of the form rϕ form a sublattice of CpXq that
contains constant functions r P r0, 1s and separates points, i.e. for every p, q P SnpTAq
with p � q, there exists rϕ such that rϕppq � rϕpqq. To apply the result, we need to
approximate an arbitrary continuous function Φ : SnpTAq Ñ r0, 1s in an arbitrary pair
of points x, y P SnpTAq.

If x � y we can take the constant function r � Φpxq.

If x � y, as the lattice separates points, there exists rψ such that rψpxq � a1 andrψpyq � b1 with a1 � b1. Let Φpxq � a and Φpyq � b. We have several cases

a1   b1. f �
rψ�a1

b1�a1 satis�es fpxq � 0 and fpyq � 1. So if a ¤ b, then pb � aqf � a
approximates Φ at x and y, and if b ¤ a, then pa � bqp1 � fq � b approximates Φ at
x and y.

b1   a1. We use f �
rψ�b1

a1�b1 in an analogous manner.

Where we have considered that the operations a � b and a
b have their range re-

stricted to r0, 1s. This implies that functions of the form rϕ are dense in the set of
r0, 1s-valued continuous functions on SnpTAq which implies p2q.
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(2) ùñ (3). The properties of uniform continuity for the d-metric and continuity
for the logic topology are both preserved by uniform continuity. Hence, as each rϕk
has these properties, so does their uniform limit

Proposition 1.3.12. Let M |ù T and A � B � M and let π : SnpTBq Ñ SnpTAq be
the restriction map. Then

p1q π is surjective.

p2q π is continuous for the logic topologies.

p3q π is uniformly continuous for the d-metrics.

p4q If A is dense in B, then π is a homeomorphism for the logic topologies and a

surjective isometry for the d-metrics.

Proof. (1). Let p P SnpTAq. The set of LpAq-formulas p� is �nitely satis�able in
pM, bqbPB. Hence, using compactness theorem 1.2.11, p is realized in some elementary
extension of pM, bqbPB. If pe1, . . . , enq realize p in such elementary extension, then
p � πptppe1, . . . , en{Bqq.

(2). If ϕpx1, . . . , xnq is an LpAq-formula and ε ¡ 0, it is clear that the preimage
of rϕ   εs as a basic neighborhood in SnpTAq is rϕ   εs as a basic neighborhood in
SnpTBq. Hence π is continuous.

(3). Any realization of p P SnpTBq is a realization of πppq. Hence, dpπppq, πpqqq ¤
dpp, qq, that means that π is a non-expansive function for the d-metrics, which implies
that is uniformly continuous.

(4) As A is dense in B, the uniform continuity of formulas implies that any LpBq-
formula can be approximated by a sequence of LpAq-formulas. Hence, if ϕ � r P p,
there exist a sequence ϕk � rk of LpAq-conditions in p with rk converging to r. This
implies that any realization of πppq is also a realization of p. As π is continuous for
the logic topology, is also closed since SnpTBq is compact and SnpTAq is Hausdor�.
Since we proved that π is inyective, then we have the properties required.

Remark 1.3.13. When T is not a complete theory, we consider types over the empty

set. In this case, all the results are exactly the same, excluding the ones about the

d-metric on types. The distance between types can be modi�ed to allow T not to be

complete by setting dpp, qq � 8 if p and q belong to di�erent completions of T .





CHAPTER 2

De�nability, algebraic and

de�nable closures

In this chapter we develop all the concepts related with de�nability in continuous
model theory. We start with predicates and construct the rest of the notions from
that one.

2.1. De�nability

2.1.1. Predicates

We say that an n-ary predicate P is de�nable in M over A if there exist a sequence
of LpAq-formulas pϕk : k ¥ 1q such that pϕM

k pxq : k ¥ 1q converges uniformly to P on
Mn. It is clear that de�nable predicates are uniformly continuous since they are the
uniform limit of a sequence of uniformly continuous functions.

Lemma 2.1.1. If P and Q are de�nable predicates in M over A, then infx P pxq is
also a de�nable predicate in M over A and so is upP,Qq for each connective u.

Proof. Let pϕk : k ¥ 1q be the sequence of formulas such that pϕM
k : k ¥ 1q converges

uniformly to P on Mn and let pψk : k ¥ 1q be the sequence of formulas such that
pϕM

k : k ¥ 1q converges uniformly to Q on Mm. Properties of uniform convergence
of uniformly continuous functions ensure that the sequence of uniformly continuous
function pinfx ϕ

M
k : k ¥ 1q converges uniformly to infx P pxq on Mn and that the

sequence pupϕk, ψkq
M : k ¥ 1q converges uniformly to upP,Qq on Mn�m.

Instead of working with uniform limits, one could broad the de�nition of connec-
tive. In order to do that, we consider the space r0, 1sN equipped with the distancerdppakq, pbkqq � 8°

k�0

2�k|ak � bk|. If we allow continuous functions u : r0, 1sN Ñ r0, 1s

to be connectives, we can reformulate our de�nition without causing any problem as
the following result shows.

29
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Proposition 2.1.2. Let M be an L-structure and let A �M . Suppose P is an n-ary
predicate. Then, P is de�nable in M over A if and only if there exist a continuous

function u : r0, 1sN Ñ r0, 1s and a sequence of LpAq-formulas pϕi : i P Nq such that

P pxq � upϕM
i pxq : i P Nq

for all x PMn.

Proof. Suppose P pxq has the form upϕM
i pxq : i P Nq. We need to show that for every

ε ¡ 0 there exists an LpAq-formula ϕε such that |PMpaq�ϕM
ε paq| ¤ ε for all a PMn.

Fixing ε ¡ 0, we are going to show that there exists an LpAq-formula ϕ such that
|PMpaq � ϕMpaq| ¤ ε for all a PMn.

The compacity of pr0, 1sN, ρq implies that u is uniformly continuous. Hence if the
sequences pak : k P Nq and pbk : k P Nq are such that ak � bk for all k � 0, . . . ,m for
a large enough m we have that

|uppakqkPNq � uppbkqkPNq| ¤ ε.

For that large enough m, let us de�ne um : r0, 1sm�1 Ñ r0, 1s as

umpa0, . . . , amq � upa0, . . . , am, 0, 0, . . . q

for all a0, . . . , am P r0, 1s. The continuity of u implies the continuity of um, hence um
is a connective. Let ϕpxq be the LpAq-formula de�ned by

ϕpxq � umpϕ0pxq, . . . , ϕmpxqq.

Then, it is clear that we have

|PMpaq � ϕMpaq| � |uppϕkpaqqkPNq � umpϕ0paq, . . . , ϕmpaqq| ¤ ε

for all a PMn. Hence P is de�nable in M over A.

For the converse, we note that pr0, 1sN, ρq is a normal topological space and hence
we have the Tietze extension theorem:

'If X is a normal topological space and A � X a closed subset. For every contin-
uous function f : A Ñ R, there exists a continuous function F : X Ñ R extending
f .'

Assuming that P : Mn Ñ r0, 1s is de�nable in M over A, for every k P N, let ϕk
be an LpAq-formula such that

|ϕM
k pxq � P pxq| ¤ 2�k

for all x PMn.

Consider the set C of all sequences pak : k P Nq in r0, 1s satisfying |ak � al| ¤ 2�N

whenever N P N and k, l ¥ N�1. We claim that set C is a closed subset of r0, 1sN and
also a subset of the Cauchy sequences in r0, 1s, the latter implies that every sequence
in C has a limit. To prove the claim, note that if pak : k ¥ 1q R C then there exists



2.1 De�nability 31

some N P N and some k, l ¥ N � 1 such that |ak � al| ¡ 2�N , taking δ ¡ 0 small
enough, it is easy to see that every pck : k ¥ 1q P Bδppakqq also satis�es |ck�cl| ¡ 2�N .
It is also easy to check that pϕM

k pxq : k P Nq P C for every x PMn. We also claim that
the function lim : C Ñ r0, 1s is a continuous function with respect to the subspace
topology of C. To prove this claim one can use that in sequences like the ones we
are considering, the distance between the n coordinate and the limit is bounded, also
noting that for δ small enough, if rdppakq, pckqq   δ then cn and an are close. Finally,
Tietze Extension Theorem yields a continuous function u : r0, 1sN Ñ r0, 1s that agrees
with lim on C. The latter u is the required connective.

We study now the relation between de�nable predicates and elementary extensions
or substructures.

Proposition 2.1.3. Let P1, . . . , Pm be n-ary de�nable predicates in M over A. Let

N ¤ M with A � N and let Qi be the restriction of Pi to N for each i. Then, the

following holds:

pN , Q1, . . . , Qmq ¤ pM, P1, . . . , Pmq.

Proof. We �rst note the following two properties of predicates related to uniform
convergence of formulas:

Firstly, if P is a de�nable predicate in M over A and Q is its restriction to N
we claim that infx P pxq � infxQpxq, where infx is taken over Mn in the left hand
side and over Nn on the right hand side. This is because if pϕk : k ¥ 1q is the set of
formulas whose interpretations converge to P in Mn we have

inf
x
P pxq � lim

kÑ8
inf
x
ϕM
k pxq � lim

kÑ8
inf
x
ϕN
k pxq � inf

x
Qpxq,

where the second equality holds because properties of uniform limits allow us to com-
mute the limit and the in�mum.

Secondly, if P1, . . . , Pm are de�nable predicates in M over A. Let pϕik : k ¥ 1q
the sequence of formulas whose interpretations converge to Pi on M

n and let u be an
m-ary connective. Using properties of uniform convergence we have

upP1px1q, . . . , Pmpxmqq � lim
kÑ8

upϕ1M
k px1q, . . . , ϕ

mM
k pxmqq.

From this two observations and from the fact that predicates can only be in the
scope of a quanti�er or in composition with a connective, it follows that given a
formula ϕMpP1px1q, . . . , Pmpxmq, xq we have that whenever a1, . . . , am, a are tuples of
elements in N

ϕMpP1pa1q, . . . , Pmpamq, aq � lim
kÑ8

ϕMpϕ1M
k pa1q, . . . , ϕ

mM
k pamq, aq �

� lim
kÑ8

ϕN pϕ1N
k pa1q, . . . , ϕ

mN
k pamq, aq � ϕN pQ1pa1q, . . . , Qmpamq, aq.
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De�nable predicates are well behaved when passing to elementary extensions or
substructures as the next results show.

Proposition 2.1.4. Let P be an n-ary predicate de�nable in M over A and let N be

such that M ¤ N . Then there exists an unique n-ary de�nable predicate in N over

A, Q, that extends P . Furthermore, pM, P q ¤ pN , Qq.

Proof. Before proving the existence, let us show that if such predicate Q exists, it
must be unique.

Suppose Q1, Q2 are predicates de�nable in N over A whose restrictions to Mn

is equal to P . Applying proposition 2.1.3, we get that pM, P, P q ¤ pN , Q1, Q2q and
hence

supt|Q1pxq �Q2pxq| : x P Nnu � supt|P pxq � P pxq| : x PMnu � 0.

Therefore, Q1 � Q2.

To prove the existence, let pϕk : k P Nq a sequence of LpAq-formulas converging
uniformly to P on Mn. Since M ¤ N , for any k, l P N we have

supt|ϕN
k pbq � ϕN

l pbq| : b P Nnu � supt|ϕM
k paq � ϕM

l paq| : a PMnu.

Hence pϕN
k : k P Nq is a Cauchy sequence of functions that converges uniformly on Nn

to some function Q : Nn Ñ r0, 1s. It is clear that Q extends P , and by construction is
de�nable in N over A. The statement pM, P q ¤ pN , Qq follows immediately applying
proposition 2.1.3.

The following result gives a characterization of de�nable predicates with respect
to continuous functions on the type space.

Theorem 2.1.5. Let P : Mn Ñ r0, 1s be a function. Then, P is a de�nable predicate

in M over A if and only if there exists a continuous function (with respect to the logic

topology) Φ : SnpThpMAqq Ñ r0, 1s satisfying P paq � ΦptpMpa{Aqq for all a PMn.

Proof. If there exists such continuous function Φ. We know by proposition 1.3.11
that there exists a sequence pϕk : k ¥ 1q of LpAq-formulas such that the sequence of
functions prϕM

k : k ¥ 1q (where each function is de�ned as in 1.3) converges uniformly
to Φ on SnpThpMAqq. Then, for any a P Mn let p � tpMpa{Aq. We have, by
de�nition of the function rϕk, the equality ϕM

k paq � rϕkppq for all k ¥ 1, and so

|ϕM
k paq � P paq| � |rϕkppq � Φppq|.

Hence, the functions pϕM
k : k ¥ 1q converge uniformly to P on Mn, that is, P is

de�nable in M over A.

For the converse, suppose that pϕk : k ¥ 1q is a sequence of LpAq-formulas such
that the functions pϕM

k : k ¥ 1q converge uniformly to P on Mn. Let N be a κ-
saturated elementary extension of M with |A|   κ. Since M ¤ N , for any k, l ¥ 1
we have

supt|ϕN
k pbq � ϕN

l pbq| : b P Nnu � supt|ϕM
k paq � ϕM

l paq| : a PMnu.
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Hence pϕN
k : k P Nq is a Cauchy sequence of functions that converges uniformly on

Nn to some function Q : Nn Ñ r0, 1s. The predicate Q extends P and is de�nable
in N over A since is the uniform limit of the same sequence of formulas as P . Let p
be any type in SnpTAq and de�ne Φppq � Qpbq, where b P Nn is any realization of p.
Since Qpbq is the limit of a sequence of LpAq-formulas, the value of Qpbq only depends
on tpN pb{Aq. We claim that Φ is the uniform limit of prϕk : k ¥ 1q on SnpTAq. To
prove this, we note that for any p P SnpTAq and all k ¥ 1 we have

|rϕkppq � Φppq| � |ϕN
k pbq �Qpbq|,

where b P Nn is any realization of p, by the saturation hypothesis on N always exists
at least one realization of p. Since prϕk : k ¥ 1q is a sequence of continuous functions,
Φ is continuous with respect to the logic topology (see 1.3.11). Finally for any a PMn

we have P paq � Qpaq � ΦptpN pa{Aqq � ΦptpMpa{Aqq as required.

We now give a characterization of de�nable predicates for saturated models.

Let M be an L-structure and A � M . A set S � Mn is called type-de�nable

in M over A if there exists a set of LpAq-formulas Σpx1, . . . , xnq (or a set of LpAq-
conditions E � tϕ � 0 : ϕ P Σqu) such that for any a PMn we have a P S if and only
if ϕMpaq � 0 for every ϕ P Σ.

Corollary 2.1.6. Let M be a κ-saturated structure and A � M with |A|   κ. Let

P : Mn Ñ r0, 1s be a function. Then P is a predicate de�nable in M over A if and

only if the sets ta P Mn : P paq ¤ ru and ta P Mn : P paq ¥ ru are type-de�nable in

M over A for every r P r0, 1s.

Proof. Suppose P is a de�nable predicate in M over A. Theorem 2.1.5 gives us
a continuous function Φ : SnpTAq Ñ r0, 1s such that P paq � ΦptpMpa{Aqq for all
a P Mn. Fix r P r0, 1s. The sets Φ�1pr0, rsq and Φ�1prr, 1sq are closed subsets of
SnpTAq for the logic topology. Due to lemma 1.3.4, we know that those sets have the
form

Φ�1pr0, rsq � tp P SnpTAq : Γ1px1, . . . , xnq � pu

and

Φ�1prr, 1sq � tp P SnpTAq : Γ2px1, . . . , xnq � pu,

where Γ1 and Γ2 are sets of LpAq-conditions. It follows that ta P Mn : P paq ¤ ru
is type-de�ned in M over A by the set of formulas Γ1 and ta P Mn : P paq ¥ ru is
type-de�ned in M over A by the set of formulas Γ2

For the converse, let P be a function such that the sets ta PMn : P paq ¤ ru and
ta P Mn : P paq ¥ ru are type-de�nable in M over A for every r P r0, 1s. This allows
us to de�ne Φ : SnpTAq Ñ r0, 1s by setting Φppq � P paq whenever p P SnpTAqand
a PMn realizes p. The existence of this element a is guaranteed by the saturation of
M. We claim that Φ is well de�ned and continuous for the logic topology. Indeed,
to prove continuity, we only need to check that the preimages of closed intervals are
closed sets. We note �rst that Φ�1prr1, r2sq � Φ�1pr0, r2sq X Φ�1prr1, 1sq and that
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the sets ta P Mn : P paq ¤ r2u and ta P M
n : P paq ¥ r1u are type-de�nable in M

over A by some sets of LpAq-conditions Γ1 and Γ2. Now let p P SnpTAq. We have
p P Φ�1pr0, r2sq if and only if any realization a PMn of p satis�es P paq ¤ r2, that is,
if and only if M |ù Γ2ras , it follows that Φ�1pr0, r2sq � tp P SnpTAq : Γ � pu which
is closed by lemma 1.3.4. An analogous argument applies to Φ�1prr1, 1sq. From what
we have proved it also follows that Φ is well de�ned since we can express Φ�1ptruq
as Φ�1pr0, rsq X Φ�1prr, 0sq. After Φ is constructed, we can apply theorem 2.1.5, this
ensures that P is de�nable in M over A.

The following corollary is the analogous to the Theorem of Svenonius from classical
model theory.

Corollary 2.1.7. Let M be an L-structure with A �M and let P : Mn Ñ r0, 1s be a

predicate. Then, P is de�nable in M over A if and only if whenever for any elementary

extension pM, P q ¤ pN , Qq, the predicate Q is invariant under all automorphisms of

N that leaves A �xed pointwise.

Proof. First, assume that P is de�nable in M over A. Let pϕk : k ¥ 1q be a sequence
of LpAq-formulas such that pϕM

k : k ¥ 1q converges uniformly to P in Mn. If pN , Qq
is an elementary extension of pM, P q, then the proof of proposition 2.1.4 implies that
the predicate Q is the uniform limit of pϕN

k : k ¥ 1q on Nn. Since each ϕN
k is invariant

under all automorphisms of N that �x A pointwise, the uniform limit of pϕN
k : k ¥ 1q

also is invariant under all automorphisms of N that �x A pointwise.

For the converse, let pN , Qq be an elementary extension of pM, P q such that
N is strongly κ-homogeneous and pN , Qq is κ-saturated with |A|   κ. We de�ne
Φ : SnpTAq Ñ r0, 1s by Φppq � Qpbq, where b is any element of Nn realizing p.
We are going to check that this function is well-de�ned and continuous in order to
apply theorem 2.1.5. Note �rst that our saturation hypothesis implies that every p P
SnpTAq is realized in NA and that the homogeneity hypothesis implies that AutApN q
acts transitively on the set of realizations of any p P SnpTAq. Hence, since Q is
AutApN q-invariant, the function Φ is well de�ned. Now we are going to check that
Φ is continuous for the logic topology on SnpTAq. Fix p P SnpTAq and let r � Φppq.
Since all realizations b of p in Nn satisfy Qpbq � r, the κ-saturation of pN , Qq implies
that for every ε ¡ 0 there exists a condition ϕ � 0 in p and δ ¡ 0 such that for any
b P Nn ϕN pbq   δ implies |Qpbq � r| ¤ ε

2 . Therefore for every p P Φ�1pr � ε, r � εq
there exists an open neighbourhood with respect to the logic topology rϕ   δs of p
contained in Φ�1pr � ε, r � εq. Hence Φ is continuous. Finally, by theorem 2.1.5 we
conclude that P is de�nable in M over A.

Now, we show that distance predicates can be axiomatized in continuous logic.

Theorem 2.1.8. Let pM, P q be an L-structure satisfying

sup
x

inf
y

maxpP pyq,|P pxq � dpx, yq|q � 0

and

sup
x
|P pxq � inf

y
minpP pyq � dpx, yq, 1q| � 0
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and let D � tx PMn : P pxq � 0u. Then, P pxq � distpx,Dq for all x PMn

Proof. Due to the second condition, we have that P pxq ¤ P pyq � dpx, yq for all y. In
particular, if y P D, we have that P pxq ¤ dpx, yq. Hence, P pxq ¤ distpx,Dq.

Now, we prove that for any ε ¡ 0 we have distpx,Dq ¤ P pxq � ε for all x P Mn.
Fix ε ¡ 0. We generate a sequence pykq of elements of M using the �rst condition.
Firstly, we set y1 � x, any �xed element of Mn. We take y2 to satisfy P py2q ¤

ε
8

and |P pxq � dpx, y2q| ¤ ε
8 . Inductively, we construct the rest of the sequence where

yk satisfy P pykq ¤
ε

2k�1 and |P pxq � dpyk�1, ykq| ¤ ε
2k�1 . Therefore,

dpyk, yk�1q ¤ P pykq � |P pxq � dpyk, yk�1q| ¤
ε

2k
.

This implies that pykq is a Cauchy sequence, and hence it has a limit y P Mn. As P
is continuous P pyq � 0. Moreover,

dpx, yq � lim
kÑ8

dpy1, ykq ¤
8̧

k�1

dpyk, yk�1q ¤ P pxq � ε.

Since y P D, we have distpx,Dq ¤ distpx, yq ¤ P pxq � ε as required.

2.1.2. Sets

Now we study the concept of de�nable sets, this concept is based on the concept of
de�nable predicate.

Let M be an L-structure and let D �Mn be a closed subset. We say that D is a
de�nable set in M over A if the predicate distpx,Dq is de�nable in M over A.

Lemma 2.1.9. Let X be a metric space and let f, g : X Ñ r0, 1s be functions such

that

@ε ¡ 0Dδ ¡ 0@x P Xpfpxq ¤ δ ùñ gpxq ¤ εq.

Then, there exist an increasing continuous function α : r0, 1s Ñ r0, 1s such that αp0q �
0 and

@x P Xpgpxq ¤ αpfpxqqq.

The importance of this concept of de�nability for sets is that in continuous �rst
order logic, we retain the de�nability of predicates if we quantify over de�nable sets
but not over arbitrary sets.

Theorem 2.1.10. Let M be an L-structure and D �Mn a closed subset. Then, the

following are equivalent:

1. D is de�nable in M over A.

2. For any de�nable predicate P : Mm �Mn Ñ r0, 1s in M over A, the predicate

Q : Mm Ñ r0, 1s de�ned by

Qpxq � inftP px, yq : y P Du

is de�nable in M over A.
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Proof. Assume D is de�nable in M over A. Let P : Mm � Mn Ñ r0, 1s be any
de�nable predicate in M over A. We know that P is uniformly continuous, hence
by lemma 2.1.9 for fpy, zq � |P px, yq � P px, zq| and gpy, zq � dpy, zq, there exists
an increasing continuous function α : r0, 1s Ñ r0, 1s with αp0q � 0 such that for all
x PMm and y, z PMn

|P px, yq � P px, zq| ¤ αpdpy, zqq.

Let Q : Mm Ñ r0, 1s be Qpxq � inftP px, yq : y P Du. To prove that Q is de�nable
we are going to show that Qpxq � inftP px, zq � αpdistpz,Dqq : z P Mnu. Hence if P
and distpz,Dq are de�nable in M over A, so is Q by lemma 2.1.1. Notice that the
in�mum is taken over Mn, so it is expressible in continuous logic.

We have P px, yq ¤ P px, zq � αpdpy, zqq for all x P Mm and y, z P Mn due to our
choice of α. Taking the in�mum over y P D and noting that since α is continuous and
increasing it satis�es inf

yPD
αpdpz, yqq � αpdistpz,Dqq, we get that

Qpxq ¤ P px, zq � αpdistpz,Dqq

for all x PMm and z PMn . Finally, we have

Qpxq ¤ inftP px, zq�αpdistpz,Dqq : z PMnu ¤ inftP px, zq�αpdistpz,Dqq : z P Du � Qpxq

for all x PMm.

For the converse, we set m � n and P px, yq � dpx, yq. This implies

Qpxq � inftP px, yq : y P Du � distpx,Dq

is de�nable in M over A. Hence D is de�nable in M over A.

The following result shows some properties that de�nable sets have with respect
to elementary substructures.

Proposition 2.1.11. Let N ,M be substructures such that N ¤M and let D �Mn

be de�nable in M over A, with A � N . Then, the following are satis�ed:

1. distpx,Dq � distpx,D XNnq for all x P Nn. Hence, D XNn is de�nible in N
over A.

2. pN , distp�, D XNnqq ¤ pM, distp�, Dqq.

3. If D � H then D XNn � H.

Proof. (1): Consider the function P : Nn Ñ r0, 1s de�ned by P pxq � distpx,Dq, the
zeroset of P is D X Nn and P satisfy the conditions in theorem 2.1.8. Hence, this
gives us distpx,Dq � distpx,D XNnq for any x P Nn and so D XNn is de�nable in
N over A.

Statement (2) follows from (1) by proposition 2.1.3.

To prove statement (3), note that if D � H, then infx distpx,Dq � 0. Hence, by
statement (2), infx distpx,D XNnq � 0 in N . This implies that there exists a P Nn

such that distpa,D XNnq   1. Therefore D XNn � H.
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If a closed D � Mn is a de�nable set, then it is the set of zeroes of a de�nable
predicate, but the converse is not true in general. The next result tries to illustrate
the di�erence between de�nable sets and zerosets of de�nable predicates.

Proposition 2.1.12. Let M be an L-structure and let D � Mn be a closed subset.

Then the following are equivalent:

p1q D is de�nable in M over A.

p2q There exists a sequence of LpAq-formulas pϕk : k ¥ 1q and a sequence of positive

real numbers pδk : k ¥ 1q such that all x P D satisfy ϕM
k pxq � 0 for all k ¥ 1

and

ϕM
k pxq ¤ δk ùñ distpx,Dq ¤

1

k
.

for all x PMn and k ¥ 1.

p3q There exist an n-ary predicate P de�nable in M over A such that all x P D
satisfy P pxq � 0 and

@ε ¡ 0Dδ ¡ 0@x PMnpP pxq ¤ δ ùñ distpx,Dq ¤ εq.

Proof. p1q ùñ p2q: Assume Qpxq � distpx,Dq is de�nable in M over A. So there
exists a sequence pψm : m ¥ 1q of LpAq-formulas such that for all x P Mn and all
m ¥ 1 we have

|Qpxq � ψM
m pxq| ¤ 1

3m
.

Hence if x P D, ψM
m pxq ¤ 1

3m . Also, by triangular inequality, if ψM
m pxq ¤ 2

3m we have

Qpxq ¤ ψM
m pxq � |Qpxq � ψM

m pxq| ¤ 1

m
.

Hence the LpAq-formulas ϕmpxq :� ψmpxq �
1

3m have the required properties with
δm ¤ 1

3m .

p2q ùñ p3q: The predicate P pxq �
°8
m�1 2�mϕM

m pxq is de�nable in M over
A since the partial sums converge to P pxq. The predicate P satis�es the required
properties since ϕM

m pxq � 0 for all x P D and all m ¥ 1 and for every ε ¡ 0, we can
�nd δ ¡ 0 such that P pxq ¤ δ implies ϕM

m pxqδm for an m big enough to satisfy 1
m ¤ ε.

p3q ùñ p1q: Proposition 2.1.9 gives us a continuous increasing function
α : r0, 1s Ñ r0, 1s such that αp0q � 0 and for all x P Mn, distpx,Dq ¤ αpP pxqq. Let
F be the predicate de�ned by

F pxq � inf
y

minpαpP pyqq � dpx, yq, 1q.

As P is de�nable in M over A, so is F since α is a connective. Notice that we have
F pxq ¤ distpx,Dq because P pyq � 0 if y P D. On the other hand,for all y P Mn, we
have distpy,Dq ¤ αpP pyqq and hence

F pxq ¥ inf
y

minpαpP pyqq � dpx, yq, 1q ¥ minpdistpy,Dq, 1q � distpy,Dq.

Therefore D is de�nable in M over A.

Finally, we introduce the concept of de�nable functions.
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2.1.3. Functions

Let M be an L-structure and A �M . We say that the function f is de�nable in M
over A if the predicate dpfpxq, yq is de�nable in M over A.

Proposition 2.1.13. Let f be a de�nable function in M over A, then f is uniformly

continuous.

Proof. We already know de�nable predicates are uniformly continuous functions. Let
∆ : p0, 1s Ñ p0, 1s be a modulus of uniform continuity for the de�nable predicate
dpfpxq, yq. We have that if dpx, x1q   ∆pεq and dpy, y1q   ∆pεq, then

|dpfpxq, yq � dpfpx1q, y1q| ¤ ε.

Taking y � y1 � fpx1q we get that dpx, x1q   ∆pεq implies dpfpxq, fpx1qq ¤ ε.

Proposition 2.1.14. Let κ be an uncountable cardinal, M be a κ-saturated structure

and A � M such that |A|   κ. Let f : Mn Ñ M be any function, the following are

equivalent:

p1q f is de�nable in M over A.

p2q Gf , the graph of f , is type-de�nable in M over A.

Proof. p1q ùñ p2q We claim that if f : Mn Ñ M is a de�nable function in M over
A, then Gf is a de�nable set in M over A. To prove the claim, note that since f is
a de�nable function in M over A, the predicate dpfpzq, yq is de�nable in M over A.
Then, the claim follows from the following equality

distppx, yq,Gf q � inf
z

maxpdpx, zq, dpfpzq, yqq.

Note that the saturation hypothesis is not needed.

To prove p2q ùñ p1q we make use of corollary 2.1.6. Hence, we need to check that
for the predicate P : Mn�1 Ñ r0, 1s de�ned by P px, yq � dpfpxq, yq for all x P Mn,
y P M the sets tpa, bq P Mn�1 : P pa, bq ¤ ru and tpa, bq P Mn�1 : P pa, bq ¥ ru
are type-de�nable in M over A for all r P r0, 1s. To do so, let Γpx, yq be the set of
LpAq-conditions that type-de�nes Gf in M. Note that for a �xed r P r0, 1s we have

P px, yq ¤ r ðñ Dzppx, zq P Gf ^ dpz, yq ¤ rq

and

P px, yq ¥ r ðñ Dzppx, zq P Gf ^ dpz, yq ¥ rq.

Hence the set tpa, bq P Mn�1 : P pa, bq ¤ ru is type-de�ned in M by the set of
LpAq-conditions of the form

inf
z

maxpϕpx, zq, dpz, yqq � 0,

where ϕ � 0 is any condition in Γ. The same argument applies to the set
tpa, bq P Mn�1 : P pa, bq ¥ ru, as r P r0, 1s was arbitrary, we can apply corollary
2.1.6.



2.1 De�nability 39

Proposition 2.1.15. Let M be an L-structure and A �M . Suppose that the function

f : Mn ÑM is de�nable in M over A. Then:

p1q If N ¤M and A � N , then f maps Nn into N and the restriction of f to Nn

is de�nable in N over A.

p2q If M ¤ N then there is a function g : Nn Ñ N such that g extends f and g is

de�nable in N over A.

Proof. p1q We show that f maps Nn to N , so that the restriction of f on N makes
sense. The de�nability of f in N over A will follow immediately. Fix any element
pa1, . . . , anq P N

n and let P be the predicate de�ned by P pyq � dpfpa1, . . . , anq, yq
for all y P M . This predicate is de�nable in M over A Y ta1, . . . , anu � N . Let the
predicate Q : N Ñ r0, 1s be the restriction of P to N . The same sequence of formulas
whose evaluation converge to P witness that Q is a de�nable predicate in N over
A Y ta1, . . . , anu. Then, applying proposition 2.1.3 we get pN , Qq ¤ pM, P q. Since,
for all x, y PMn we have infy P pyq � 0 and dpx, yq ¤ P pxq � P pyq, pN , Qq ¤ pM, P q
implies that Q satis�es infy Qpyq � 0 and dpx, yq � Qpxq � Qpyq for all x, y P Nn.
We can use this properties to construct a sequence pck : k ¥ 1q of elements of N that
satisfy Qpckq ¤

1
k and dpck, clq ¤

1
k �

1
l . This means that pck : k ¥ 1q is a convergent

sequence in N , since N is complete b � limkÑ8 ck is in N and P pbq � Qpbq � 0.
However, the only zero of P is fpa1, . . . , anq, hence fpa1, . . . , anq � b P N .

p2q Let M ¤ N . The statement p1q allows us to assume that N is ω1-saturated
without loss of generality. Let P px, yq be dpfpxq, yq, by proposition 2.1.4, there exists
Q : Nn�1 Ñ r0, 1s a de�nable predicate in N over A extending P and satisfying
pM, P q ¤ pN , Qq. Since f is a function we have supx infy P px, yq � 0 and hence the
same is true for Q.

We want to de�ne the extension g via Q. We �rst claim that for all x P Nn

there exists at least one y P N such that Qpx, yq � 0. To prove the claim, note �rst
that if pϕk : k ¥ 1q is the sequence of functions whose interpretations in N converge
uniformly to Q, then supx infy Qpx, yq � supx lim

kÑ8
pinfy ϕ

N
k px, yqq. Now, let x P N

n be

a �xed element the statement. We claim that the statement lim
kÑ8

pinfy ϕ
N
k px, yqq � 0 is

equivalent to a �nitely satis�able set of Lp rAq-conditions, where rA is the set of elements
of A that appears in at least one of the formulas ϕk. Let pck : k ¥ 1q be the sequence
pinfy ϕ

N
k px, yq : k ¥ 1q. Without loss of generality, we can assume that pck : k ¥ 1q is a

non increasing sequence of real numbers tending to 0. From the fact that pϕN
k : k ¥ 1q

is uniformly convergent, we get that for any j P N there exist εj ¡ 0 such that if
k, l ¥ j, then |ϕk � ϕl| ¤ εj . Hence, the set Γpyq � tϕN px, yq ¤ ck � εk : k ¥ 1u is
�nitely satis�able. Using now the ω1-saturation of N , we get that for each element
x P Nn there exists at least one y P N satisfying all the conditions in Γ, this implies
Qpx, yq � lim

kÑ8
ϕN
k px, yq � 0, as we claimed.

Now, to prove the uniqueness of the element y satisfying Qpx, yq � 0 for each
x P Nn, note that from the de�nition of P and the triangle inequality follows that P
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satis�es
sup
x

sup
y

sup
y1
p|dpy, y1q � P px, y1q|� P px, yqq � 0.

Since the same is true for Q, it follows that for each x P Nn there is at most one
y P Nn such that Qpx, yq � 0. Therefore, the zeroset of Q is the graph of some
function. It also follows that if Qpx, yq � 0 then Qpx, y1q � dpy, y1q for all y1 P N .
So we can de�ne the function g via Qpx, y1q � dpgpxq, y1q for all y1 P N . Hence g is
de�nable in N over A as required.

Corollary 2.1.16. Let f, g, f1, . . . , fn be de�nable functions in M over A and P be

a de�nable predicate in M over A. Then, f � g is a de�nable function in M over A
and P pf1, . . . , fnq is a de�nable predicate in M over A.

Proof. Using proposition 2.1.4 and proposition 2.1.15 we may work in a su�ciently
saturated extension M ¤ N .

Let f : Nn Ñ N and g : N Ñ N be two de�nable functions in N over A. First,
we are going to show that Gg�f is type-de�nable. We have

px, yq P Gg�f ðñ Dzppx, zq P Gf ^ pz, yq P Ggq.

If Γf and Γg are the sets of LpAq-formulas witnessing the type-de�nability of Gf and
Gg respectively, that is the conditions that type-de�ne Gf are of the form ϕ � 0 with
ϕ P Γf and the same for Γg. Then Gg�f is type-de�ned in N over A by the set of
conditions

inf
z

maxpϕpx, zq, ψpz, yqq � 0,

where ϕ is a formula from Γf and ψ is a formula from Γg. Hence, by proposition
2.1.14, g � f is a de�nable function in N over A.

For the second statement, we do the case of a de�nable predicate and two de�nable
functions, one can see that this proof is easy to generalize to the case of n de�nable
functions.

Let P : N2 Ñ r0, 1s be a de�nable predicate and let f : Nn Ñ N , g : Nm Ñ N
be de�nable functions. We claim that the predicate Q : Nn�m Ñ r0, 1s de�ned by
Qpx, yq � P pfpxq, gpyqq is de�nable in N over A. To prove it, we are going to check
that for any r P r0, 1s the sets tpx, yq P Nn�m : Qpx, yq ¤ ru and tpx, yq P Nn�m :
Qpx, yq ¥ ru are type-de�nable in N over A. We have that

Qpx, yq ¤ r ðñ Dz1Dz2ppx, z1q P Gf ^ px, z2q P Gg ^ P pz1, z2q ¤ rq.

Since the sets Gf , Gg and tpz1, z2q P N
2 : P pz1, z2q ¤ ru are type-de�nable in N over

A, let Γf , Γg and ΓP be the sets of LpAq-formulas witnessing the type-de�nability of
those sets. Then tpx, yq P Nn�m : Qpx, yq ¤ ru is type-de�ned in N over A by the set
of conditions

inf
z1

inf
z2

maxpϕpx, z1q, ψpy, z2q, σpz1, z2qq � 0,

where ϕ is a formula from Γf , ψ is a formula from Γg and σ is a maximum of a �nite set
of formulas from ΓP .An analogous argument applies to tpx, yq P Nn�m : Qpx, yq ¥ ru
and hence Qpx, yq is a de�nable predicate in N over A.
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2.2. Algebraic and de�nable elements

Let M be an L-structure, A � M a subset of M and a P Mn a tuple of M . We say
that a is de�nable in M over A if the set tau is de�nable in M over A. We say that
a is algebraic in M over A if there exists a compact set C �Mn such that a P C and
C is de�nable in M over A. The set of all de�nable points in M over A is called the
de�nable closure of A in M and it is denoted by dclMpAq. The set of all algebraic
points in M over A is called the algebraic closure of A in M and it is denoted by
aclMpAq.

As in classical �rst order model theory, the properties of the tuples reduce to the
properties of their coordinates.

Proposition 2.2.1. Let M be an L-structure and A �M . Let a PMn be any tuple.

Then, a is de�nable in M over A if and only if ai is de�nable in M over A for each

i � 1, . . . , n. The same is true if we substitute algebraic for de�nable in the previous

statement.

Proof. We begin with the de�nable case. Suppose that a P Mn is de�nable in M
over A. Note that the predicates Qi : M2n Ñ r0, 1s de�ned by Qipx, yq � dpxi, yiq are
de�nable predicates for i � 1, . . . , n. Hence, applying theorem 2.1.10, the predicates
Pi : Mn Ñ r0, 1s de�ned by Pipxq � dpxi, aiq � Pipxi, . . . , xiq are de�nable for all
i � 1, . . . , n. Thus, ai is de�nable in M over A for all i � 1, . . . , n. Conversely,
assume that ai is de�nable in M over A for all i � 1, . . . , n. Then, we have that

dpx, aq � maxpdpx1, a1q, . . . , dpxn, anqq.

Hence, a PMn is de�nable in M over A by lemma 2.1.1.

Now, for the algebraic case, we follow the same strategy. Suppose that a P Mn

is de�nable in M over A and C is the compact set witnessing this property. Note
that the projection Ci over the i-th coordinate is a compact set containing ai. Hence,
it su�ces to prove that Ci is de�nable for each i � 1, . . . , n. As in the de�nable
case, note that the predicates Qi : M2n Ñ r0, 1s de�ned by Qipx, yq � dpxi, yiq are
de�nable predicates for i � 1, . . . , n. Hence, applying theorem 2.1.10, the predicates
Pi : Mn Ñ r0, 1s de�ned by Pipxq � distpxi, Ciq � Pipxi, . . . , xiq are de�nable for
all i � 1, . . . , n. Therefore, the sets Ci for i � 1, . . . , n are de�nable in M over A.
For the converse, assume that C1, . . . , Cn are compact subsets of M witnessing that
a1, . . . , an are algebraic in M over A. The product C � C1 � � � � � Cn is a compact
subset of Mn containing a. We claim that C is also a de�nable subset of Mn. To
prove the claim, note that

distppx1, . . . , xnq, Cq � inf
y1PC1

. . . inf
ynPCn

maxpdpx1, y1q, . . . , dpxn, ynqq

and the right side is de�nable by lemma 2.1.1 and theorem 2.1.10.

The de�nable and algebraic closures depend only on A and not on the structure
in which they are de�ned.
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Proposition 2.2.2. Let M ¤ N and A � M . If C � Nn is de�nable in N over A
and C XMn is compact, then C �Mn.

Proof. Assume that the predicateQpxq � distpx,Cq is de�nable inM over A and let P
be the restriction of Q toMn. Proposition 2.1.11 implies that P pxq � distpx,CXMnq
for all x P Mn and proposition 2.1.3 implies pM, P q ¤ pN , Qq. Since C X Mn is
compact, there exists a �nite ε-net for each ε ¡ 0. Fix ε ¡ 0 and let c1, . . . cm be a
�nite ε-net in C XMn. This implies that if P pxq   ε, then dpx, cjq ¤ 2ε for some
j � 1, . . . ,m. We can write the last statement as a closed condition

sup
x

minpε� P pxq,minpdpx, c1q, . . . , dpx, cmq� 2εqq � 0,

this condition holds in pM, P q, hence the condition

sup
x

minpε� P pxq,minpdpx, c1q, . . . , dpx, cmq� 2εqq � 0

holds in pN , Qq. It follows that c1, . . . , cm is a �nite 2ε-net in C. Letting ε tend to
0, we see that every element in C is the limit of a sequence of elements in Mn, since
Mn is complete, this implies that C �Mn as required.

Corollary 2.2.3. For L-structures M, N such that M ¤ N we have the following

chain of inclusions

dclMpAq � dclN pAq � aclN pAq � aclMpAq.

Proof. It is clear that for any L-structure N , dclN pAq � aclN pAq since singletons are
compact sets.

First, we are going to show that dclMpAq � dclN pAq and aclMpAq � aclN pAq. To
do so, suppose that C �Mn is compact and de�nable in M over A. This means that
the predicate P pxq � distpx,Cq is de�nable in M over A and hence by proposition
2.1.4, there exist a predicate Q : Nn Ñ r0, 1s de�nable in N over A extending P such
that pM, P q ¤ pN , Qq. Let D � Nn be the zeroset of Q. It is easy to check that
P satis�es the conditions in theorem 2.1.8, and hence, so does Q. Thus, Q is the
predicate distpx,Dq for all x P Nn. Therefore, by proposition 2.2.2, it follows that
D � C. This implies that C is de�nable in N over A and hence dclMpAq � dclN pAq
and aclMpAq � aclN pAq.

For the converse, note that if C � Nn is a compact set, we have that C XMn

is also a compact set. Hence if C is also a de�nable set in N over A, by proposition
2.2.2 we have C � Mn. This implies that C is compact and de�nable in M over A.
Moreover, this shows dclN pAq � dclMpAq and aclN pAq � aclMpAq

The previous proof shows the following corollary.

Corollary 2.2.4. If C � Mn is compact and de�nable in M over A, then, it is

compact and de�nable over A in any elementary extension of M.

As long as we work in su�ciently saturated models, we can de�ne the algebraic
and de�nable closures in terms of compact zerosets instead of compact de�nable sets.
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Proposition 2.2.5. Let M be an ω1-saturated L-structure and A � M . If C is a

compact subset of Mn, the following are equivalent:

p1q C is de�nable in M over A.

p2q C is the zeroset of a de�nable predicate in M over A.

Proof. Let P : Mn Ñ r0, 1s be a de�nable predicate in M over A whose zeroset is
C. Giver ε ¡ 0, let F � C be a �nite ε

2 -net in C. We claim that there exists δ ¡ 0
such that any a satisfying P paq ¤ δ must be at distance within ε of some element of
F . To prove the claim, suppose that it is false. Hence, for any k ¥ 1 we can �nd an
element b satisfying P pbq ¤ 1

k and dpb, cq ¥ ε for all c P F . Then, the ω1-saturation
of M gives us an element a PMn satisfying P paq ¤ 1

k for every k ¥ 1 and dpa, cq ¥ ε
for all c P F which is a contradiction. The existence of such δ ¡ 0, for each ε ¡ 0,
implies that P satis�es the conditions in proposition 2.1.12(3). Hence C is de�nable
in M over A.

The converse is trivial since C is the zeroset of the de�nable predicate distpx,Cq.

Proposition 2.2.6. Let M be an L-structure, A � M , and a P Mn. The following

statements are equivalent:

p1q a is de�nable in M over A.

p2q For any N elementary extension of M the only realization of tpMpa{Aq in N
is a.

p3q For any ε ¡ 0 there is an LpAq-formula ϕpxq and δ ¡ 0 such that ϕMpaq � 0
and the diameter of tb PMn : ϕMpbq ¤ δu is less than ε.

Proof. p1q ùñ p2q. Let Q be the predicate de�nable in N over A extending dpx, aq
such that pM, dpx, aqq ¤ pN , Qq. Since dpx, aq satisfy

sup
x

sup
x1
p|dpx1, xq � dpx1, qa|� dpx, aqq � 0,

the same is true for Qpxq. This condition implies that Q has at most one zero in N .

p2q ùñ p3q. We may assume that M is κ-saturated with κ ¡ |A| due to corollary
2.2.3. Suppose that p3q does not hold. That is, there exists ε ¡ 0 such that for any
k ¥ 1 and any ϕ P tppa{Aq the set tb PMn : ϕMpbq ¤ 1

ku has diameter grater than ε.
That is, the set of LpAq-conditions

tppx{Aq� Y tppy{Aq� Y dpx, yq ¡ ε

is �nitely satis�able. Hence, the saturation ofM implies then that there exist elements
c, d PMn such that c and d satisfy tppa{Aq and dpc, dq ¡ ε. This contradicts p2q.

p3q ùñ p1q. Follows from proposition 2.1.12.
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We introduce some characterizations on being algebraic.

Lemma 2.2.7. Let M be an L-structure, A �M and let a PMn. Then, a P aclMpAq
if and only if there exists some predicate P de�nable in M over A such that P paq � 0
and tb P N : Qpbq � 0u is compact for all N and Q satisfying pM, P q ¤ pN , Qq.

Proof. Suppose that a is algebraic in M over A. This implies that there exists a
compact set C � Mn de�nable in M over A with a P C and so distpx,Cq is a
de�nable predicate inM overA. By corollary 2.2.4 and the uniqueness of the predicate
extending distpx,Cq, the zeroset of Q is C and hence is compact.

Now, suppose that there exists P : Mn Ñ r0, 1s de�nable in M over A such
that P paq � 0 and for all pN , Qq ¤pM, P q, the set CN � tb P Nn : Qpbq � 0u is
compact. In particular, let N to be ω1-saturated. Then, by proposition 2.2.5, CN
is de�nable in N over A. Finally, as CN XMn is compact, proposition 2.2.2 implies
that C � CN XMn is a compact set de�nable in M over A, and contains a.

Actually, the previous proof shows a stronger property.

Corollary 2.2.8. Let M be an L-structure, A � M and let a P Mn. Then, a P
aclMpAq if and only if there exists some predicate P de�nable in M over A such that

P paq � 0 and tb P N : Qpuq � 0u is compact for some ω1-saturated L-structure N
and some predicate Q satisfying pM, P q ¤ pN , Qq.

Now, we show a su�cient condition for being algebraic that will be useful in later
proofs.

Lemma 2.2.9. Let M be an ω1-saturated L-structure with A �M and a PM . If for

every n ¥ 1 there exists an LpAq-formula ϕn such that ϕM
n paq � 0 and the zeroset of

ϕn has a �nite 1
n -net, then a is algebraic in M over A.

Proof. Let Cn be the zeroset of ϕn in M, the set C �
8�
n�1

Cn is the zeroset of the

predicate P �
°
n¥1

2�nϕn in M. The set C has a �nite 1
n -net for every n ¥ 1 since we

can modify the original net on Cn to be a 1
n -net by adding �nitely many new points,

hence, C is a compact set. Proposition 2.2.5 then implies that the set C is de�nable
in M over A and contains a.

Let M be an L-structure and A � M . The bounded closure of A in M, denoted
bddMpAq, is the set of elements a P Mn for which there exists some cardinal τ such
that for any elementary extension N of M, the set of realizations of tppa{Aq in N
has cardinality less than τ .

Theorem 2.2.10. Let M be an L-structure with A �M . Then, aclMpAq � bddMpAq

Proof. Let a P aclMpAq and let P be as in lemma 2.2.7. Let pN , Qq ¤pM, P q and let
S be the set of realizations of tppa{Aq in N . It is clear that S � tb P N : Qpbq � 0u.
Since the set tb P N : Qpbq � 0u is compact, there exists a countable dense subset.
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This implies that any element of S can be identi�ed with the limit of a sequence of
elements in the dense subset. Hence, the following holds

|S| ¤ |tb P N : Qpbq � 0u| ¤ 2ℵ0 .

This implies that a P bddMpAq.

Now, we may assume M is ω1-saturated. Let a P MzaclMpAq. The auxiliary
lemma 2.2.9 implies that there exists some n ¥ 1 such that given any cardinal τ the
set of conditions

Σ � t0 � ϕpxαq : α   τ ;ϕMpaq � 0u Y t0 �
1

n
� dpxα, xβq : α   β   τu

is �nitely satis�able in M. Let M1 be a κ-saturated elementary extension of M with
κ ¡ τ . Then Σ is realized in M1 by paα : α   τq. However, since any aα is a
realization of tppa{Aq in M, the set of realizations of tppa{Aq in M has cardinality
grater than τ . hence a R bddMpAq.

Corollary 2.2.11. Let M be a κ saturated L-structure with κ ¡ 2ℵ0. Let S be the

set of realizations of any type tppa{Aq with |A|   κ. Then, either |S| ¤ 2ℵ0 and so

every element of S is algebraic, or |S| ¥ κ.

We prove some properties of the algebraic closure.

Proposition 2.2.12. For any L-structure M such that A,B � M the following

statements hold:

p1q A � aclMpAq;

p2q if A � aclMpBq then aclMpAq � aclMpBq;

p3q if a P aclMpAq then there exists a countable A0 � A such that a P aclMpA0q;

p4q if A is a dense subset of B, then aclMpAq � aclMpBq.

Proof. p1q For any a P A, the set tau is compact and dpx, aq is de�nable in M over A.

p2qWe may assume that M is strongly κ-homogeneous, with κ ¡ |B|. Let a be an
element of aclMpAq. The homogeneity of M implies that for any b P Mn satisfying
tppa{Bq there exists σ P AutBpMq with σpaq � b. We �x an isomorphism σb for each
b satisfying tppa{Bq. Let S be the set of realizations of tppa{Bq in M. We de�ne
the following equivalence relation in S: b1 � b2 if σb1pxq � σb2pxq for all x P A. Note
that if b1 � b2 then tppb1{σb1pAqq � tppb2{σb2pAqq. Hence, |S{ �| is less than the
number of possible images of A under B-isomorphism. However, since every element
of A is algebraic over B, by corollary 2.2.11, every element can only have 2ℵ0 images,
hence |S{ �| ¤ p2ℵ0q|A|. Note also that for any given b P S, the equivalence class rbs�
is a subset of the realizations of tppσbpaq{σbpAqq. Since the latter set is in bijection
with the set of realizations of tppa{Aq, and a is algebraic over A, corollary 2.2.11
implies that |rbs�| ¤ 2ℵ0 . Thus |S| ¤ p2ℵ0q|A|2ℵ0 � p2ℵ0q|A|. Since S is bounded,
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corollary 2.2.11 implies |S| ¤ 2ℵ0 and so a P bddpAq. Finally, lemma 2.2.10 gives us
a P aclMpBq.

p3q Let C be the compact subset witnessing a P aclMpAq, the de�nability of C
only depends in a countable set of LpAq-functions, since the length of each formula is
�nite, it only depends in a countable A0 � A. Hence, a P aclMpA0q.

p4q Statement p2q implies aclMpAq � aclMpBq. Now, we are going to prove
aclMpBq � aclMpAq. Let a P aclMpBq and let C � M be a compact set de�nable
in M over B containing a. Hence, the de�nable predicate distpx,Cq is the limit of
the interpretations of a sequence of LpBq-formulas pϕn : n ¥ 1q. Let an be the tuple
of elements of B that occur in ϕn. Since A is dense in B, for every n there exists a

sequence of tuples of elements in A pa
pkq
n : k ¥ 1q converging to an. Taking a subse-

quence if necessary, we may assume that for every n ¥ 1, |ϕM
n px, anq�distpx,Cq|   1

2n
for all tuples x of elements in M . Let ∆n be the modulus of uniform continuity of
ϕM
n . Taking a subsequence if necessary, we may assume that for any each n ¥ 1,

dpan, a
pkq
n q   ∆np

1
2nq for k ¥ n. This implies that |ϕM

n px, anq � ϕ
M
n px, a

pnq
n q|   1

2n for
all tuples x of elements in M . Hence, applying the triangular inequality,

|distpx,Cq�ϕM
n px, apnqn q| ¤ |ϕM

n px, anq�distpx,Cq|� |ϕM
n px, anq�ϕ

M
n px, apnqn q| ¤ 1

n

for every tuple x of elements inM . This imply that the interpretations of the sequence

of LpAq-formulas pϕnpx, a
pnq
n q : n ¥ 1q converge uniformly to distpx,Cq on M and

hence C is de�nable in M over A.

Proposition 2.2.13. Let M be an L-structures with A,B �M . Then, any elemen-

tary map α : A Ñ B extends to an elementary map α1 from aclMpAq into aclMpBq.
Moreover, if α is surjective, then so is α1

Proof. Let M1 be an elementary extension of M su�ciently saturated and strongly
homogeneous. The homogeneity of M1 implies that α extends to an automorphism
g of M1. Since automorphisms of metric structures are continuous functions (they
are Lipschitz with constant 1), if C � M is a compact set, so is gpCq � M .

Moreover, if pϕnpx, a
1
n, . . . , a

mpnq
n q : n ¥ 1q is the sequence of LpAq-formulas wit-

nessing the de�nability of distpx,Cq on M , then the sequence of LpBq-formulas

pϕpx, gpa1
nq, . . . , gpa

mpnq
n qq : n ¥ 1q witness that gpCq is de�nable in M over A. Hence,

gpaclMpAqq � alcMpBq. Thus, taking the restriction of g to aclMpAq we get the re-
quired elementary map α1.

If αpAq � B, then for any compact set C de�nable in M over B, the de�nable
predicate can be written as the limit of the interpretations of a sequence of formulas
pψnpx, fpanqq : n ¥ 1q, where the an are tuples of elements of A not necessarily all of
the same length. This implies that C � gpKq for some set K de�nable in M over A.
Since g�1 is also an automorphism of M1, g�1 is a continuous function and hence K
is compact. Therefore, gpaclMpAqq � aclMpBq.



CHAPTER 3

Further work

In this chapter, we study applications of model theory for metric structures to Hilbert
spaces over R, that is, real vector spaces equipped with an inner product and complete
with respect to the corresponding norm. In continuous logic, we identify them with
many sorted metric structures structures. That is, we identify a HIlbert space H with

MpHq � ppBnpHq : n ¥ 1q, 0, tIn,mun m, tλrurPR,�,�, x�yq,

where BnpHq � tx P H : xx, xy ¤ n2u for all n ¥ 1, each sort with the metric induced
by the norm; 0 is the zero vector in B1pHq; for n   m In,m : Bm Ñ Bn is the
inclusion map; for r P R, n ¥ 1 and and the unique k ¥ 1 satisfying k � 1 ¤ |r|   k,
λr : Bn Ñ Bnk is the scalar multiplication by r; furthermore, x�y : BnpHq Ñ r�n2, n2s
is the inner product for each n ¥ 1 and the functions � : BnpHq �BnpHq Ñ B2npHq
and � : BnpHq �BnpHq Ñ B2npHq are vector addition and subtraction respectively.

It is easy to construct a signature L for which each many sorted structure MpHq
as above is an L-structure since the bounds on the metric spaces are trivial and the
moduli ∆ of uniform continuity are easy to specify.

By proposition 1.2.14 it can be proved that the class of Hilbert spaces is axioma-
tizable (see [5, page 90])

Let IHS be the L-theory obtained by adding to the theory of Hilbert spaces the
L-conditions

inf
x1
. . . inf

xn
max

1¤i,j¤n
p|xxi, xjy � δi,j |q � 0

for all n ¥ 1, where the variables range over the sort B1pHq. Then it is clear that any
model of IHS is isomorphic to MpHq for some in�nite dimensional Hilbert space H.

If A is a subset of a Hilbert space H, we denote A to the norm closure of the
linear span of A and AK to the orthogonal complement of A. A well known property
of Hilbert spaces is the orthogonal decomposition H � A`AK. We denote PApxq the
projection on the subspace A of the element x.

We are going to prove that A coincides with the de�nable closure of A, to do so,
we need �rst a lemma.

47
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Lemma 3.0.1. Let H be an in�nite dimensional Hilbert space, and let c1, . . . , cn,
d1, . . . , dn P H. Then, pc1, . . . , d1q and pd1, . . . , dnq realize the same type over A � H
if and only if PApciq � PApdiq � and xci, cjy � xdi, djy for al 1 ¤ i, j ¤ n.

Proof. Assume that tppc1, . . . , cn{Aq � tppd1, . . . , dn{Aq. Then, xci, cjy � xdi, djy for
1 ¤ i, j ¤ n. Furthermore, for every a, b P A xci�b, ay � xdi�b, ay since xxi�b, ay � r
belongs to tppc1, . . . , cn{Aq for some r P r0, 1s. This implies PApciq � PApdiq for all
i � 1, . . . , n.

Assume now that PApciq � PApdiq and xci, cjy � xdi, djy for all 1 ¤ i, j ¤ n. Then
we have that ci � PApciq and di � PApdiq belongs to A

K, hence di � ci P A
K for all

i � 1, . . . , n. Furthermore,

xci � PApciq, cj � PApcjqy � xdi � PApdiq, dj � PApdjqy,

for any 1 ¤ i, j ¤ n. This means that we can construct an A-isomorphism between
the subspace generated by c1, . . . , cn and the subspace generated by d1, . . . , dn sending
ci to di for i � 1, . . . , n. Using Gram-Schmidt (which in arbitrary cardinalities is
obtained using Zorn's Lemma) we can extend this isomorphism between the respective
subspaces to an A-automorphism of H taking ci to di for all i � 1, . . . , n.

Proposition 3.0.2. Let H be an in�nite dimensional Hilbert Space and let A � H.

Then, dclpAq � A.

Proof. We may assume that A is a proper subspace of H, passing to an elementary
extension if needed. Note that by lemma 2.2.3, passing to an elementary extension
does not change dclpAq.

Assume that c P A. Then, there exists a Cauchy sequence pcn : n ¥ 1q of elements
in spanpAq such that lim

nÑ8
cn � c. Taking a subsequence if necessary we may assume

‖c � cn‖ ¤ 1
2n for all n ¥ 1. Finally, by proposition 2.1.12 or proposition 2.2.6, the

family of formulas ϕn :� ‖x� cn‖� 1
2n and numbers tδn �

1
2nu witness that tcu is a

de�nable set over A.

Assume now that c R A. Then, c� PApcq � 0. Let y P AK be such that
‖y‖ � ‖c � PApcq‖. Then, by lemma 3.0.1, tppc{Aq � tpppPApcq � yq{Aq. Since AK

is nonempty by assumption, this shows that there exists at least one realization of
tppc{Aq in H that is di�erent from c and hence by proposition 2.2.6, c R dlcpAq.

We give a result relating explicitly the distance in the type space with the norm
of the realizations.

Proposition 3.0.3. Let H be an in�nite dimensional Hilbert Space. For each x, y P H
and A � H the following equality holds:

dptppx{Aq, tppy{Aqq2 � ‖PApxq � PApyq‖
2 � |‖x� PApxq‖� ‖y � PApyq‖|

2.
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Proof. Let x, y, x1, y1 P H and let A � H be such that tppx{Aq � tppx1{Aq and
tppy{Aq � tppy1{Aq. Then,

‖x1 � y1‖ � ‖PApx
1q � PApy

1q‖2 � ‖px1 � PApx
1qq � py1 � PApy

1qq‖ ¥
‖PApx

1q � PApy
1q‖2 � |‖x1 � PApx

1q‖� ‖y1 � PApy
1q‖|2 �

‖PApxq � PApyq‖
2 � |‖x� PApxq‖� ‖y � PApyq‖|

2,

where the last equality follows from 3.0.1. Since dptppx{Aq, tppy{Aqq is realized at
some pair of elements, the inequality above implies

dptppx{Aq, tppy{Aqq2 ¥ ‖PApxq � PApyq‖
2 � |‖x� PApxq‖� ‖y � PApyq‖|

2.

For the other inequality, we denote xK � x�PApxq and yK � y�PApyq. We may

assume xK � 0 since for xK � 0 the result is trivial. Let α � ‖yK‖
‖xK‖ and let z � αxK.

From lemma 3.0.1 it follows that tppy{Aq � tpppPApyq � zq{Aq. Hence,

dptppx{Aq, tppy{Aqq2 ¤ ‖x� pPApyq � zq‖2 �

‖PApxq � PApyq‖
2 � ‖zK � αxK‖2 � ‖PApxq � PApyq‖

2 � |‖xK‖� ‖yK‖|2

We also introduce some results that are out of the scope of this memoir.

Proposition 3.0.4. [5, page 90] IHS is a complete theory.

We say that an L-formula ϕpx1, . . . , xnq is approximable in T by quanti�er-free

formulas if for every ε ¡ 0 there is a quanti�er-free L-formula ψpx1, . . . , xnq such that
for all M |ù T and all a1, . . . , an PM , we have

|ϕMpa1, . . . , anq � ψMpa1, . . . , anq| ¤ ε.

We say that an L-theory T admits quanti�er elimination if every L-formula is ap-
proximable in T by quanti�er-free formulas.

Corollary 3.0.5. [5, corollary 15.2] The theory IHS admits quanti�er elimination.

We say that an L-theory T is λ-stable if for any M |ù T and A �M with |A| ¤ λ,
there exists a dense subset in S1pTAq (with respect to the d-metric) of cardinality less
or equal than λ.

Proposition 3.0.6. [5, proposition 15.5] The theory IHS is ω-stable.
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