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Abstract

This work is an introduction to the theory of graded manifolds with particular empha-
sis on its relation with generalized geometry and the study of Courant algebroids. First we
present graded manifolds and extend many constructions from ordinary differential geom-
etry to this setting. Then we provide an overview of the main examples of graded manifolds
appearing in the literature. We prove Vaintrob’s Theorem characterizing Lie algebroids as
N Q-manifolds of degree 1 and Severa-Roytenberg’s Theorem characterizing Poisson man-
ifolds as symplectic N O-manifolds of degree 1 and Courant algebroids as symplectic N Q-
manifolds of degree 2. We also show that the deformation theory of a Courant algebroid is
naturally described by the Q-cohomology of its corresponding O-manifold. Finally, a new
construction of a graded Poisson N Q-manifold associated to a Courant algebroid is pre-
sented. As an application, we obtain a Bianchi identity for the curvature of a generalized
connection.
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CHAPTER 1

Introduction

1.1. Courant Algebroids and c-Models

The main motivation for the study of Courant algebroids comes from two-dimensional
variational problems. Of particular importance are those that appear in physics under the
language of o-models for string field theories. We devote this section to make a brief in-
troduction to the terminology of this area because it will give us intuition and motivation
through the whole work.

A general problem in physics is to predict the value of a field in terms of the forces that
is is subject to. A field here is simply an assignment of a physical magnitude to each point
of some space. The Lagrangian approach to this problem consists on considering the set
F of all possible fields and defining an action functional S : F — R representing some
kind of energy involved in the actual realization of each particular field. The least action
principle asserts that the fields that are physically realized are the ones that, at least locally,
minimize S; hence, the problem is reduced to obtaining the critical points of S.

In classical mechanics the problem of interest is to predict the movement of a particle,
modelled as a point, subject to some forces in spacetime. The resulting field theories are
called c-models. Here F = Map (I, M) for I = [a,b] C R a time interval — the source
or worldline — and M a manifold representing spacetime — the target — and the action
functional S : Map (I, M) — R usually takes the form

S(@) = / Ct.0.0 gy dt, @€ Map(I, M),
I

where the Lagrangian density L is a function of ¢, ¢ and its derivatives up to order r; that
is, L : I X J"M — R, where J"M is the rth jet bundle of M. For example, a choice of
Riemannian metric g on M can be used to define

1
L. @) =319/, +V(9)

for V' : M — R a potential; in this case we can think of S(¢) as the total energy (kinetic
plus potential) consumed along the trajectory ¢. Performing an integration by parts we see
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I Introduction

that the critical points of a general .S are given, at least formally, by the Euler-Lagrange
equation

0L 0 0L 0> oL , 0" 0L

— =+ = -+ (D)= =0

op 0tdg’ 912 0" ot e
If oy € Map (I, M) satisfies this equation, then it is still not true that ¢ minimizes .S locally.
What is true is that the variation of .S along a family {¢, }. starting at ¢, depends exclu-
sively on the variation of ¢, at dI; hence, imposing appropriate boundary conditions on the
solutions this variation is zero and we can conclude that solutions to the Euler-Lagrange
equation give critical points of S.

We can rephrase this in a more geometric language as follows (see [25] for a very com-
plete exposition of calculus of variations in terms of differential forms). The general form
of an action functional S : Map(I,M) - R s

S(p) = /(p*f
T

for r = L(t,q,v4,...,0,)dt a one-form on N = I X J"M, where we are making a small
abuse of notation when writing ¢ for the map t = (¢, @(t), @'(?), ..., "”(t)). Let us consider
then the abstract problem of minimizing /| ; @*tovermaps @ : I — N for afixed one-form
7 € Q(N). We can identify T,Map(I,N) = I'(¢*T N) and compute the variation of S at
@ along the direction p* X € I'(p*T N) as

8S(9"X) = Ly x(S)(e) = /I(/)*(LXT) = [p"ix7l2) + /Ico*lxdf,
where Ly stands for the Lie derivative. Fixing boundary conditions amounts precisely to
considering only X € I'(T'N) such that ¢*1y7 = 0 at 0I; hence, the Euler-Lagrange equa-
tionis @*1ydz = Ofor all such X € I'(T'N). Assume that ¢ is such that, in fact, p*1ydz =0
for all X € I'(T'N) and suppose that we have a pair (X, f) € [(T'N) X C*®(N) satisfying
Lyt —df =0. Then it follows from Cartan’s formula for Ly that de*(iy7 — f) = 0; that
is, the quantity 1y 7 — f is conserved along these solutions of the variational problem.

Noether’s Theorem is a general principle in physics that states that conserved quantities are
usually a consequence of an invariance of the Lagrangian density £ under a group action on
the space of possible Lagrangian densities (here, this is Q' (V)), so it would be interesting to
describe this action in a geometric way. By this we mean that we want to describe an action
of (X, f) € (T N)XC®(N) — written in what follows as X + f € (T N ®@R) — on Q' (M)
leaving invariant those forms € Q!(M) such that Ly —d f = 0. One way to do this is to
represent each 7 € Q! (M) as the subbundle D, :={Y+1y,7€eI'(TN@R) : Y €eI'(TN)}
and define the following bracket on I'(T N @ R):

(X + .Y +g] :=[X, Y]+ (X(g) - Y(f).

It is easy to check that [-, -] is a skew-symmetric bracket such that [X + f, ] leaves D_ in-
variant if and only if Ly 7 —d f = 0. This bracket is quite natural: X actsvia Ly on Y and g
and Y acts via —Ly on X and f. One can easily check that [, -] satisfies the Jacobi identity
and the same Leibniz rule as the Lie bracket of vector fields, showing that (TN @ R) is



1.1 Courant Algebroids and o-Models III

a Lie algebroid — we will define these in Section 3.5. As we have seen, a good geomet-
ric understanding of this structure can help in the study of solutions to variational problems.

Now in string theory particles are no longer modelled as points, but as strings. This means
that trajectories are described in this setting by elements of Map (£, M) for £ — the world-
sheet — a smooth compact oriented surface with a Riemannian metric # representing the
string and its internal time. The usual form of an action functional is now S(¢) = /2 QT
for 7 a 2-formon N = £ X J"M, and the same computations as before show that, for a pair
X+a€l(TN@T*N)such that Ly7 — da = 0, the one-form 147 — & is conserved (i.e.,
closed) along solutions of the Euler-Lagrange equation.

Courant algebroids appear when studying the pairs X + « € (TN @ T*M) from a geo-
metric point of view analogous to what we have done above for I'(T'N @ R). If we associate
to 7 € Q*(M) the subbundle D, = {Y +1,7 € (TN @ T*N) : Y € (T N)} and define

(X +a,Y + 8] :=[X,Y]+ Lyf —1yda,

then [X + a, -] preserves D, if and only if L y7 —da = 0. After performing some computa-
tions one can show that this (non-skew) bracket has many interesting properties: it satisfies
the Jacobi identity and a Leibniz rule and it is equivariant with respect to the canonical pair-
ingon TN @T*N. A good geometric understanding of this structure helps understand the
properties of the solutions to the Euler-Lagrange equations of the given problem and the
global structure of the whole space of such solutions. For example, notice that the Euler-
Lagrange equation ¢*1yd7z = 0 does not change if we substitute 7 by 7 + f, for f a closed
2-form. This is reflected in TN @ T*N by the fact that X + a = X + a + 14 f is an auto-
morphism of TN @ T*N preserving the bracket [-, -], the pairing (-, -) and the projection
X+a — X. Of course, one can also go on and define similar brackets on each T N DAKT*N,
which will describe the structure of (k + 1)-dimensional variational problems.

A vector bundle E — N with a non-degenerate pairing (-,-), an anchora : E - TN
(for E=TN @ T*N this is the projection X + @ — X) and a bracket [-,-] : EX E — E
satisfying the same properties as those in TN @T* N is called a Courant algebroid. Asides
from TN @ T* N with the above structure, other more exotic Courant algebroids appear
naturally in two-dimensional 6-models in which some symmetries or twists are to be taken
into account.

Most of classical differential geometry is concerned with the study of a manifold N by means
of some additional structure defined on its tangent bundle T N (say, a pseudo-Riemannian
metric, a symplectic form, a complex structure, etc.), and the Lie bracket of vector fields
on T' N usually plays an important role on describing some notion of integrability of these
structures. In generalized geometry T' N is substituted by TN @ T*N with the bracket
[-, -] or, more generally, by any Courant algebroid over N. This allows to characterize the
geometry of N in terms of new structures: generalized metrics, generalized complex
structures, Dirac structures, etc. For example, generalized complex structures interpolate
symplectic and complex structures on N and Dirac structures on TN @ T*N interpolate
presymplectic and Poisson structures on N.
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The bracket [, -]on TN @T* N and its skew-symmetrization appeared first in [14] and [11]
as a tool for studying from a unifying point of view the equations da = 0 for & € ['(A’T*N)
(responsible for presymplectic structures on M) and [z, #] = 0 for 7 € (A>T N) (respon-
sible for Poisson structures on M), where [, -] is the Schouten bracket. It was later noticed
in [37], where Courant algebroids were baptised, that the natural analog for Lie bialgebroids
of the Drinfeld double of a Lie bialgebra is a Courant algebroid. Then Severa became in-
terested in them [50] as a model for Poisson-Lie T-duality and pointed out their relation
with two-dimensional variational problems and string theory. Generalized complex geom-
etry was introduced by Hitchin in [26] while studying special geometry in low dimension
and is now a very active field of research; a good survey on the basics of this area can be
found in [22].

1.2. Graded Geometry

Let us briefly describe what a graded manifold is. One way to define ordinary differen-
tiable manifolds is through their sheaf of functions: namely, a C* manifold (M, C*(M))
is a Hausdorff, second countable topological space M with a sheaf C*®(M) of commuta-
tive algebras whose localization at every p € M is a local ring and such that there exists an
open cover {U, }, of M and isomorphisms of locally ringed spaces ¢, : (U,, C*(M)y ) —
V,, C=(V,)) for some open sets V,, C R". A graded manifold M = (M, C*®(M)) can be
defined in the same way, but now C*(M) is a sheaf over M of graded (say, in Z X Z/27)
supercommutative algebras, the local model is C®(V,) ® R[], ..., &9] for &1, ..., &7 super-
commuting variables of non-zero degrees, and the maps ¢, are required to preserve the
degrees. If p(f) € Z/2Z denotes the parity of f € C*(M), by supercommutativity we
mean that fg = (—1)?)P®g f With this language, one can also define in a natural way
vector fields, differential forms, vector bundles, connections, etc. for graded manifolds.

The simplest examples of graded manifolds are vector bundles: if E — M is a vector bundle
of rank r, the transition maps of E are maps C®(U,)QR" — C°°(Uﬁ)® R’ which can be ex-
tended to isomorphisms of graded algebras C°°(Ua)®IR[§1 R C"°(U/;)<§Z)R[é‘1 y e &7,
where the coordinates & are all assigned a fixed degree (k,e) € Z x Z/2Z \ {(0,0)},
and these isomorphisms can be seen as the coordinate changes of a graded manifold M
over M. If ¢ = 1, then C®(M) = I'(A*E™); if ¢ = 0, then C®(M) = I'(S*E*). This
graded manifold is quite simple because the graded coordinates &' transform linearly be-
tween themselves. In general graded manifolds, other transformations are allowed, such
as x, — x; + &gy for variables of degrees deg(x,) = deg(xy) = (0,0) and deg(§y) =
—deg(ng) € Zx Z/2Z\ {(0,0)}.

The idea of grading in algebra has been around for a long time now; originally it was just a
way of organizing the information either for performing inductive arguments or for estab-
lishing sign rules for commutativity relations. First appearances of a Z-grading in geometric
structures can be traced back to the BRST formalism, an attempt of quantizing field theo-
ries with symmetries which involved the introduction of ghost fields not representing any
physical magnitude as a technical requirement for the theory to work. In the modern lan-
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guage of graded geometry, ghost fields are simply functions of non-zero degree on a graded
manifold.

On the other hand, Z/27Z-grading appeared in physics as a way of distinguishing between
bosons and fermions. Bosons are particles with integer spin, while fermions are parti-
cles with half-integer spin, and the spin of the composite of two particles is the sum of the
original spins. Thus, composing an even number of fermions gives a boson but compos-
ing any number of bosons gives a boson. This is naturally modelled as a Z/2Z-grading,
where bosons have parity 0 and fermions have parity 1. This Z/2Z-grading is particularly
important when modelling supersymmetry. Field theories of interest in physics are usu-
ally required to be invariant in some way or another by the Poincaré group, which is the
group of transformations preserving the Minkowski metric of spacetime; i.e., the semidi-
rect product of SO(3, 1) and the group of R*-translations. It was then noticed that many
of the two-dimensional o-models appearing in string theory were in fact invariant by the
super-Poincaré group, an extension of the Poincaré group including a new type of sym-
metry based on the interaction between bosons and fermions, and it was conjectured that
supersymmetry was a general phenomenon in physics.

In any case, graded manifolds seemed to appear naturally in field theories. In the origins
of this theory the difference between Z-grading and Z/2Z-grading was not very clear, but
now the literature usually distinguishes between super-structures — those with a Z/27-
grading — and graded structures — those with a Z-grading —, each form of grading playing
a different role. Of particular importance is Berezin’s program on defining the Z /2Z-graded
versions of every object in mathematics, including the theory of integration on super-vector
spaces which is later extended to supermanifolds [36]. In recent years the theory of graded
manifolds has attracted attention because it models complicated structures in a handy ge-
ometric language revealing new facets of these objects. Let us discuss two examples of this
idea.

As we have seen in Section 1.1, the Lagrangian approach to classical mechanics consists on
describing the trajectories of a particle moving in spacetime M as solutionsp € Map (I, M)
to a differential equation described by a lagrangian density £ : I X J'M — R. In
many situations, for each fixed time #, € I, L is only a function of TM (for example,
L= %l(p’ |§ + V(¢)) and we can then say that the phase space of the system is T M, mean-
ing that the state of the physical system at each 7, € I is completely described by an element
of T M. The Legendre transform induced by £ € C®(T M) is the isomorphism

FL:TM —>T*M
0

auﬁ(”")>

.0 (.
which allows us to see T*M as the phase space; in the case of £ = %lgo’ |§ + V(@) this is
just the identification of T M and T*M through the metric g. The appearance of symplec-
tic manifolds as models for the phase space is a general and very useful feature of classical
mechanics. These are not always cotangent bundles, but usually they do appear naturally
as reductions of these. For example, if the target manifold is R* with the Minkowski metric,
many field theories are required to be SO(3)-invariant; this means that the angular momen-
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tum u : T*R* — 80(3) is preserved and so for a fixed value v € 80(3) the mechanics are
really happening on the symplectic reduction u~!(v)//SO(3) = S? rather than on T*R*.
In some cases, however, a symplectic reduction is not possible and similar reduction pro-
ceedings give Poisson manifolds instead, which satisfy less useful properties.

Let us move to the context of string theory. Now trajectories are describedby ¢ € Map (£, M)
for £ a Riemann surface describing a string .S! moving in time. If the Lagrangian £ :
¥ X J"M only depends at each fixed time on T'M, we can say that the phase space of the
system is Map (S, T M) and we can use again the Legendre transform to identify this with
Map (S', T*M). This is an infinite-dimensional manifold but it is still symplectic: the tan-
gent space of Map (S',T*M) at ¢ can be identified with ['(¢*T(T*M)) and so we can
define the symplectic form Q at T, M ap (S L T*M) as

Qo™ X, 9"Y) 1= /1 o(X(9(0)), Y (9(0))) d0,

S

for df a measure on S' and w the symplectic form on T*M. An interesting remark is that
sections of TM @ T*M can be naturally identified with functions over Map (S', T*M).
Indeed, for ¢ € Map(S', T*M)and X + « e (T M & T*M) we can define

X +a)p) := /S1 (,0(9)(X)610+/S1 o .

As seen in Section 1.1, TM @ T*M is a Courant algebroid, and this structure is strongly
related to two-dimensional variational problems. Hence, if the infinite-dimensionality of
Map (S', T* M) constitutes a problem for its study as a phase space, it makes sense to turn
our attention to TM @T*M at least as a toy model. A good understanding of the geometry
of TM @T*M that takes its Courant algebroid structure into account can give us first ideas
on how to study Map (S1, T*M).

The theorem that gives name to this work is Rotenberg’s result [42] on the characterization
of Poisson manifolds and Courant algebroids as symplectic N O-manifolds of degree 1
and 2, respectively. A symplectic N O-manifold of degree k is a triple (M, @, ®) where M is
anon-negatively graded manifold, w is a symplectic form of degree k on M and @ is a func-
tion of degree k + 1 satisfying {®, ®} = 0 under the Poisson bracket of M. This suggests a
direction in which methods for performing reduction or quantization of Poisson manifolds
and Courant algebroids can be attempted: by extending the ideas of symplectic reduction
and geometric quantization from ordinary symplectic manifolds to graded symplectic man-
ifolds. There is indeed some work done from this perspective, related to multisymplectic
geometry and higher Chern-Simmons theory: see for example [8], [40], [16] .

A method for performing a (graded analog of a) deformation quantization of the symplec-
tic NQ-manifold (M, o, ®) associated to a Courant algebroid E is presented in [21]. In-
terestingly, this method reveals some links [19], [52] with constructions arising from the
generalized Riemannian geometry of E: the quantization of the function ® € C*(M) is
an operator on a spinor bundle of E, called the canonical Dirac operator, and which can
be defined in terms of torsion-free generalized connections on E. It would be interesting
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to study the interplay of this relation with generalized metrics and, in particular, the ap-
pearance of the (generalized) Riemannian, Ricci and scalar curvature tensors of E on this
method for quantizing M.

The language of graded geometry also allows to define AKSZ o-models (see [27], [9] for
detailed expositions of this subject and [48], [43] for some original articles, here we will
just give a brief description of the philosophy of this formalism). The AKSZ ¢-model with
target an N Q-manifold (M, @, ®) of degree k is a field theory for mechanics with source
a (k + 1)-dimensional ordinary manifold X. The space of fields of this theory is the set of
morphisms of graded manifolds M or(T[1]%, M), where T'[1]X is the shifted tangent bundle
of X (functions on T[1]Z are differential forms on X). If {x?}, are local coordinates on M
such that w = %a)abdx“ A dxb for @, € R, afield p € Mor(T[1]X, M) is described by the
differential forms @*x? € Q(X), which satisfy p*x? € QP(X) whenever deg(x?) = p. The
action functional of the theory can be described in these coordinates as .S = .S + 5} with

1 * ES *
So(@) = / 3Pas® x? A de*xP, S, (@) = / kp*®.
> >

Note that the degrees of @ and ® have been chosen so that S(¢) is the integral of a k+1-form
on the k + 1-dimensional manifold X. If we consider the space of fields Mor(T[1]%, M) as
a graded manifold itself, then it has a natural structure of symplectic graded manifold and
the action functional S satisfies {.S,.S} = 0. As we will see in Section 3.4, this means that
{S, -} is a differential on the sheaf of functions of Mor(T[1]Z, M), giving rise to cohomol-
ogy groups. The cohomology in degree 0 can be identified with the space of functions over
solutions to the Euler-Lagrange equation of the field theory, so we obtain a resolution of
this space.

The main reason why the AKSZ formalism is used in the literature is that the fact that
Mor(T[1]Z, M) can be seen as a symplectic graded manifold where the action functional
S satisfies {5, S} = 0 is extremely useful for the quantization of this model. Namely,
this equation allows for a precise treatment of the path integral approach [9], which is a
non-precise method for quantizing a field theory stating that the expectation of the mea-
surement of f € C*(F) for F the space of fields should be its expectation with respect
to a measure pg defined on F as pg(p) = exp (%S((p))y for u a previously fixed measure

on F. If F = Mor(T[1]Z, M), the expression exp(%S(-))u makes sense as a differential
form on F and {5, S} = 0 implies that it is an integrable differential form in the sense of
integration on graded manifolds; hence, the path integral is well-defined.

As abstract as this language may seem, many important — and apparently distant at first
sight — models are covered by this general theory, which also works particularly well for
quantizing classical one-dimensional field theories with gauge symmetries. For example,
topological Yang-Mills theory, the A-model, the B-model and the Courant o-model arise
as AKSZ models. The graded geometry of the N Q-manifold M plays an important role:
symplectic submanifolds give higher analogs of metrics, the image under the fields ¢ of the
boundary of £ must lie on Lagrangian submanifolds of M, etc.

In general, it can be said that a graded manifold is a generalization of an ordinary man-
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ifold which, using a familiar language, organizes the information of a complicated geomet-
ric structure at different levels, revealing itself as a powerful model for controlling differ-
ent notions of symmetry (fermions interacting with bosons or physical fields interacting
with ghost fields as transformations between coordinates of different parities or degrees) or
morphism (homotopies as maps of degree 1, higher homotopies as maps of higher degree)
between such objects.

1.3. Outline of this Work

This work is an introduction to the language of graded geometry with an eye toward
its applications in generalized Riemannian geometry. We present the language of graded
manifolds and we study the most important classes of examples of these. Then we prove
Vaintrob’s [53] and Roytenberg’s [42] Theorems on classification of, respectively, Lie al-
gebroids and Poisson manifolds and Courant algebroids as particular instances of graded
manifolds. Finally, we apply this correspondence to the study of generalized geometry from
the perspective of graded manifolds.

Chapter 2 serves as an introduction to graded geometry. We establish here once and for
all the sign conventions that we shall use in this work, which we forewarn differ between
authors. We present our definition of graded manifold and of all auxiliary objects such as
vector bundles, vector fields or differential forms over graded manifolds, extending Cartan
calculus to this setting. We also show some important examples which will be used in the
rest of the work and we sketch some of the problems that arise when studying the space of
morphisms between graded manifolds as a graded manifold itself.

Chapter 3 is an exposition of the different classes of graded manifolds that appear in the
literature. Graded manifolds are usually a geometric model for complicated algebraic struc-
tures on what we can see as their sheaf of functions, and one common way in which these
algebraic operations appear is through derived brackets. We study these in a purely al-
gebraic way and then present a geometric definition of L -algebras which relates to the
algebraic one via derived brackets. L -algebras are the local model for the so-called Q-
manifolds which we define next; these appear in different ways in physical theories. We
also discuss the extension of symplectic geometry to the graded setting, which seems to
be crucial for quantizing o-models based on graded manifolds. Finally, we study the struc-
ture of non-negatively graded manifolds; most of our examples belong to this class and here
some of the complications of the graded world can be avoided. In particular, we prove Vain-
trob’s Theorem characterizing Lie algebroids as N Q-manifolds of degree 1.

Chapter 4 is devoted to the study of Courant algebroids as graded manifolds. First we intro-
duce Courant algebroids and we show some important examples. Then we prove Severa-
Roytenberg’s Theorem in two steps: first we characterize symplectic N-manifolds of de-
gree 1 and 2 as, respectively, ordinary manifolds and pseudo-Euclidean vector bundles and
then we characterize symplectic N O-manifolds of degree 1 and 2 as, respectively, Pois-
son manifolds and Courant algebroids. By studying a Courant algebroid E in terms of its
corresponding symplectic N O-manifold M we show that deformations of E are encoded
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in the Q-cohomology of M, we show how Dirac structures on E can be thought of as O-
Lagrangian submanifolds of M and we characterize these for the double of a Lie bialgebroid.
Then we present the basic objects of generalized Riemannian geometry and we study them
from the perspective of graded geometry. For this we construct, using a a generalized con-
nection D on E, a graded Poisson manifold MP? witha ® € C®(M?P) satisfying {©,0} = 0
which is only isomorphic to M when F is transitive. This way we show how the equation
{®, 0} = 0 gives a Bianchi identity for the curvature of D and we construct a graded analog
of a Morita equivalence from a generalized metric.

We have tried to present this theory as clearly as possible by introducing many examples
in every section. Most of the results are given with very detailed proofs, and we give refer-
ences for those that we do not prove. We have decided to avoid some of the technicalities of
the graded setting which were not strictly required for the rest of the work or which we did
not consider particularly meaningful for our purposes; namely, we do not review here the
theory of integration on supermanifolds [36] or the more intricate sheaf-theoretic issues on
the definition of graded manifolds [15], and we will not prove the classification theorem for
smooth graded manifolds [3], [58].






CHAPTER 2
Graded Manifolds

In this chapter we present the basic definitions of graded geometry. In Section 2.1 we
define graded algebraic structures and establish the sign conventions that will be used
throughout the whole work. Then, in Section 2.2, we define graded manifolds and present
the first examples of these. Section 2.3 is devoted to defining vector fields and differential
forms on graded manifolds, and to extending Cartan calculus to this setting. Finally, in
Section 2.4, we make some remarks on how to view the space of morphisms of graded
manifolds as a graded manifold itself.

2.1. Graded Algebra

As it is always done in geometry, one must first begin by considering the algebraic
notions underlying our objects of study. In this section we establish the sign conventions
for many graded algebraic structures that will be extensively used in what follows. In
general, we will study manifolds with a Z X Z/2Z-grading, but all the sign conventions
and commutativity relations will depend exclusively on the Z/2Z-grading, which means
that for these conventions it is enough to focus our attention on Z/2Z-graded algebraic
structures.

| Definition 2.1.  For any abelian group G, a G-graded ring is a ring R such that R =
ngG R, as groups and the subgroups R, satisfy R;R;, C R,j,. Elements from R, are called
homogeneous of degree g. If R is a Z/27Z-graded ring, elements of R, are called even
and elements of R, are called odd, and the function assigning either O or 1 to homogeneous
elements is the parity function, which we denote by p. A morphism of G-graded rings is
a morphism of rings preserving the grading. A supercommutative ring is a Z/27Z-graded
ring R with unit and such that rs = (—1)*"P®)sr for homogeneous elementsr, s € R.

If A is a graded ring, we will often write formulas involving the degrees of the elements
Vx € A when we mean for every homogeneous element in A. Since every element is a sum of
homogeneous elements, these formulas can be applied to general elements by decomposing
them in their homogeneous components. We will present the sign conventions from [29],
which stick to the following general principle as much as possible: in any supercommuta-
tive algebraic structure, two adjacent homogeneous elements x, y can be interchanged if
an additional term of (—1)?™?®) is introduced. Thus, for a permutation ¢ € S « We have
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Xy Xg = (=17 @x ). x4, Wwhere (—=1)7() is the Koszul sign obtained by writing ¢ as a
composition of transpositions and applying the above rule for each of them.

Given a supercommutative ring R and a left R-module E, a Z/27-grading on E is simply a
splitting E = E, @ E,. For such a grading, we can define a compatible right module struc-
ture on E by setting, for homogeneous elements r € Rand e € E, r- e := (=1)P"P¢ . p,
Unless otherwise stated, we will simply write R-module for Z /27-graded R-modules with
these left and right compatible actions. For example, the tensor product of two R-modules
E,, E, can be defined as usual, but noting that in this case we must require

(_l)p(r)p(el)r ei®e,=e; - r@ey=e, @r-e, = (_I)P(V)P(ez)el ®e,-r.

It follows that E; @ E, is also an R-module, with p(e; ® e,) = p(e;) + p(e,). Thus we can
also define the tensor algebra of an R-module as the R-module T'(E) = @, E®* which
has an additional N-grading which we call homological degree and denote by d. Clearly,
T(E) is a ring and we can consider the double-sided ideals I, generated by {e; ® e, +
(=1)Peree, Qe : ey,e, € E}. The quotients S*(E) :=T(E)/I_and A*E :=T(E)/I,
are, respectively, the symmetric algebra and the exterior algebra of E and the induced
products are denoted by © and A. While S*(E) is a supercommutative ring with the induced
parity from the tensor product, elements of A*E satisfy the relation

aAf= (_1)p(a)p(ﬁ)+d(a)d(ﬂ)ﬂ Aa,

which means that A*E enters into a new category in which the sign rule is the one above,
in the same way the exterior algebra of an (ordinary) commutative module is a supercom-
mutative module.

| Definition 2.2. IfE, F are R-modules, a mapl : E — F islinear ifl(e-r) = I(e) - r,
Ve € E,Vr € R. We say that | is of parity € if p(I(e)) = p(e) + €, Ve € E. In this case, note
thatI(r - e) = (=1)P"PDr . I(e). IfE,, ..., Ey, F are R-modules, a mapm : E\X..X E, > F
is multilinear if
m(el,...,ej A ej+1,...ek) = m(el,...,ej,r . ej+1,...ek) j=1.,k—-1
m(ey,....e, - r)=mle,....ep) - r.

A multilinear mapm : E X ...E — F is symmetric if
miey,...ej, € 1, .€) = (—l)p(ef)p(efﬂ)m(el, s €415 €y s e-Cp)
and it is skew-symmetric if

miey,...ej, € 1, -€) = —(—l)p(ef)"(ef“)m(el, s €415 €y s nnCl)-

If E is an R-module, then the set of linear maps / : E — R is the dual of E, which we
denote by E* := Hompg(E, R). It is also an R-module with the grading from Definition 2.2
and the following action of R: (r-1)(e) = r-I(e), (I-r)(e) = (—=1)P"P©[(e)-r. More generally,
elements of E; ® ... ®g E} can be identified with multilinear mapsm : E; X...X Ex —> R
via

L ®...® (e, ....ep) = 1,(e))...L (e, ) (= 1)1t HFterly
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where we have omitted writing the p to simplify the notation. Two important relations are

2.1)
ll ® ® lk(el, veey ek) = l] ® ® lj(el, veey ej)lj+1 ® ® lk(ej+1, ceey ek)(—l)(el+"'+ej)(lj+l+"‘+lk)

and

®1_y(ej_yse)) = (el (e) (=111 = 1;_y (el j(e;_)(=1)smlmtlire-nite)

(2.2) = 1/._1(ej)lj(ej_l)(_1)’j<’j—1+e/)+e/—1ej = (_1)’j’j—1+e/e/—11j_l ® (e e;_y).

Elements of S*(E*) and A*E* can be identified with symmetric and skew-symmetric
multilinear maps by summing over all their equivalence class. That is, we define

ll 0.0 lk(el, weey ek) = Z (_1)}’(0’) lo‘(l) ® ® lo_(k)(el, veesy ek),

cES)

LA ALy, ney) = Z (=17 5gn(0) Iy @ ... ® lyy(eys v ),

cES)

where sgn(c) is the sign of the permutation ¢ and (—1)7® is the Koszul sign subject to ¢
and the parities of the /;’s. The fact that these are in fact symmetric and skew-symmetric
linear maps follows from Equations (2.1) and (2.2), which imply that the above formulas can
also be written as

L0 0Ll me)= D (=1L & .. ® ey, s Cop):

cES)

LA ALy, ney) = Z (=17 5gn(0) 1} @ ... ® i (€5(1)» s €qii)-

cES)

where the Koszul sign (—1)"® now depends on ¢ and the parities of the e ;’s. For the sake
of completeness we note that the above remarks imply that, for « € APE* and f € AYE",

anpleg,...ey,) = Z a(€g(1ys s o) P(C(pi1)s -+ ea(p+q))(—1)ﬂ(ea<l>+--~+ea<p))(_1)1’(") sgn(o)
O'ESp,q

(23) :(—l)aﬂ z ﬂ(a(eo_(l),...,eo.(p))eo.(p+1),...,eo.(p_'_q))(_l)y(o-)Sgn(o-).

6ES,,

where S)q 18 the set of p + g-permutations such that 6(1) < ... < o(p) and o(p + 1) <
... < o(p+ q), and similarly for the symmetric product. Finally, we remark that an element
a € SK(E*) can also be thought of as a degree k homogeneous polynomial « : E — R,

acting as
1
ale) 1= Ea(e,...,e).
This definition makes sense at least for e € Ej because |.S, | = (p:;q) and so, fora € SP(E*)

and f € SY(E*), we have

a(e)fle) = ~ate, ... )L ple, ... e) = —— <” + ") ale, ..., e)f(e, ....e) = (=1)PPPa@p(e).
p! q! P+!'\ ¢

Thus when p(e) = 0 this definition does indeed reflect the evaluation of a polynomial.
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| Definition2.3. Givena supercommutative ring R, a function X : R - Risaderivation

of Rif X(fg) = X(f)g + (=1)!VP& X (g)f. We say that p(X) = e if p(X(f)) = € + p([),
Vf € R. In this case, note that X (fg) = X (f)g+(=1)PXP) £ X (g). The set of derivations of
R is denoted by Der R. The commutator of two derivations X,Y € Der R is the derivation
[X,Y] = XY — (—1)XrMy x.

| Remark 2.4. Der R, is an R-module with the above grading and the action (- X)(s) =
r- X(s)and (X - r)(s) = (=1)PPS X (s) - r. For X € Der R, a quick computation shows

X(fy o f0) = XD S fr+ DX D [yt e A (=D F D X (£ F1 L f

In particular, for any R-module E we can consider the supercommutative ring S*(E*). An
element e € E induces a canonical derivation 1, € Der S*(E*) acting on elements / € E*
as1,() = (—=1)PDP@](e). Tt extends to the whole of S*(E*) as

(11 ©..0 1) = (=D"l(e), 0 ...01,+ (=)=l (e), 0..01,
+ o4 (DD e ool
Notice
(Dt (ool e, .., )
=11(e)], @ ... @ L(ey, ..., e, )(—1)2++)
+ 150 0 .. O 1y O .. O L(ey, oy e, (=D H et yhla 4
+ 1)) © ... 01, (e}, ..., (=11 HpD) ()l lrttlp-n)
=/,0..0 lp(e,el, ...,ep_l),

(as usual, [, means that /, does not appear in the corresponding term) so we can write
1,00 = (—DHP@r@g(e, -, ...,-) in general. When F is a purely odd vector space, this means
1,0 = a(,..., -, e).

| Definition 2.5. A Lie superalgebra of parity ¢ (or even/odd Lie superalgebra) is a
Z/27Z-graded vector space V' with a bilinear operation [-,-] : V @ V' — V satisfying:

L p(X,YD=pX)+pY)+e forX,YeV,
2. [X,Y] = ~(=1)PEHCMHIY X]  for X,Y €V,

3. [X,[Y,Z]] = [[X,Y], Z] + (=1)eX+aeM+eary (X, Z]] for X, Y,Z € V.

If [, -] fails to satisfy Property 2, we say that V is a Loday superalgebra. If, in addition to
Properties 1, 2 and 3, V' has a super commutative product satisfying

[X,YZ]=[X,Y]Z + (-1 DOy[x, 7],

we say that V is an even/odd Poisson superalgebra. Odd Poisson superalgebras are also
called Gerstenhaber algebras.

Since we have defined a Lie superalgebra as a vector space and not just an R-module, it
is assumed in Proposition 2.6 that R contains R as a subring, which will be the case in all
the rings that we shall consider in this work.
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| Proposition 2.6. The commutator [-, -] endows Der R with a structure of even Lie su-
peralgebra structure which also satisfies

(X, fY]=X(f)Y — (=D)POX+UD) r1x y] for X,Y € DerR and f € R

Proof.
A direct computation analogous to the ordinary one but using the appropriate sign
rules. O

We emphasize again that we will consider Z X Z /2Z-graded structures (rings, modules,
Lie algebras, ...) but the Z-grading will not play any role in the sign rules, as it will essentially
be just a way of classifying elements in the pertinent set. Notice moreover that, if E is a
ZxZ/2Z-graded R-module, then E*, S*(E), A*E,... are also ZX Z /27Z-graded R-modules
for the same reasons as in the plain Z/2Z-grading. We finish this section by introducing a
notation that will be extensively used: If E is a Z X Z/2Z-graded R-module, then E[k, €]
is the Z X Z /2Z-graded R-module with the same underlying set as E and grading given by

Weke(€) = wg(e) —k  pppe(e) =pple) —e,

where wgy . denotes the Z-grading on E[k, €], Pruy denotes the Z/27Z-grading on E[k, €]
and similarly for wy, pg. In particular, notice that a linear map / : E — F with w(l(e)) =
w(e) + k and p(l(e)) = p(e) + € is the same as a morphism of graded R-modules (which is
required to respect the grading) I : E — F[k,€]. This means that (E[k, e])* = E*[—k, €].
We also write [1E := E[0,1] and, if ¢ = k mod 2, Elk,e] = E[k]. This way, [1E[k] =
El[k,e]whene =k + 1 mod 2.

| Remark 2.7. Given an R-module E, the décalage isomorphism is the map

S"(E[-1]) = (A"E)[-n]
e,0..0¢e,~ ()¢, A...A¢e,

with ¢ = 2?21(” — i)(deg(e;)), where deg(e;) denotes the original grading of e; on E. This
map is an isomorphism of graded vector spaces [28], which shows that changing the parity
of an R-module we may think of skew-symmetric maps as symmetric maps, and viceversa.
This allows to define a super-commutative algebra structure on €, . (A" E)[—n] through
the one in S*(E[—1]). That is, the vector space A* E admits two non-i_somorphic structures
of algebra:

1. The one that we defined above, in which A* E has the Z/2Z-grading p that is obtained
by summing the parities of the components and an additional Z-grading d called
homological degree; it satisfies @ A f = (—1)POPEO+I@IB) g A ¢

2. The one induced from the décalage isomorphism, which essentially accounts for defin-
ing a grading as w(a) = p(a) + d(a) and imposing super-commutativity with respect
to w; it satisfies @ A f = (=1)P@O+I@PE+IE) g A o,

Some authors (as in [10]) prefer working with this second structure in order to remain in
the super commutative framework. However, we prefer to stick with the structure arising
from the tensor product because it allows us to think of elements in A* E as skew-symmetric
forms in a natural way, which the other convention does not.
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2.2. Graded Manifolds

In this section we define graded manifolds and present some basic examples. We will
give a sheaf-theoretic definition of graded manifolds, completely analogous to the sheaf-
theoretic construction of ordinary manifolds. The language of graded manifolds may seem
at first sight like a pedantic way of approaching already known objects but, as we will see
throughout this work, this approach allows for an intuitive geometric language which re-
veals new facets of the object of study and is usually powerful for unifying distant theories.
We start with a motivating idea.

Consider the tangent space T M of an ordinary differentiable manifold M but assume that
we want to see it as a geometric object — call it [IT'M — in which the fibers T, M are purely
odd vector spaces. What should we call then functions on IIT M? In the ordinary setting,
at each fiber T, M functions are defined as (a completion of) the space S*(T,M*) of poly-
nomials on T, M, so the natural way to proceed is to define the structure of IIT'M in such
a way that the space of functions at each fiber I17,M is S*(IIT,M*) = A*T,M* (this iso-
morphism is the décalage isomorphism from Remark 2.7). That is, the sheaf of functions
on [IT' M should be Q(M), the sheaf of differential forms on M. A way to see [IT M as an
object similar to a manifold but in which the right notion of function is an element of Q(M)
is the following:

Suppose {(U,,@,)}, is an atlas on M, so ¢, : U, — V, C R" are diffeomorphisms.
Consider the algebras C*(V,) := C*(V,) @ A*R", which can be identified with Q(U,)
via ¢@,. The transition morphisms goaoqa/;1 of M with Jacobian matrix Da,ﬂ give transi-
tion morphisms for TM as ‘Pao(P/;] ®D,; 1 C®°(V,) ®R" - C*(V,) ® R". These
extend in a unique way to morphisms of algebras y, ; : C*(V;) — C®(V,) and in fact
QM) = {{fole € [I.CW,) & fo = Wq S5} This construction of (M) is identical
to the construction of the sheaf of C* functions on M (not on T'M), except that we are
pulling back the algebras C*(V,) instead of just C*(V,). The pair (M, (M)) can be seen
through this construction as an object which is similar to a manifold and which we can call
I[rm.

The above example shows that the kind of objects that we want to study should have graded
domains, as defined below, as their local model. The most common and elegant way to then
glue the local pieces together involves the use of locally ringed spaces. In what follows
graded means Z X Z [2Z-graded unless otherwise stated, and all imposed commutativity
relations are considered with respect to the Z/2Z-grading, called parity and denoted by p
as in Section 2.1. The Z-grading is called weight and it is denoted by w.

| Definition 2.8. A graded domain is a pair ¥, = (V,, C®(V,)), where V, C R"00 is some
open subset and C®(V,) = C®(V,) @ A for A a free Z X Z /2Z-graded supercommutative R-
algebra finitely generated by elements of non-zero degree. The dimension on degree (k, ¢)
€ZXZ[2Z for (k,e) # (0,0) is the number of algebraically independent generators of A of
that degree, and the dimension on degree (0,0) is n (.

In particular, a graded domain is a ringed space. Moreover, there is an analog of Hadamard’s
Lemma for graded manifolds implying that graded domains are in fact locally ringed
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spaces; that is, the localization

Coo(va)pc =_11I_I)ICOO(V) ® A
14

at each point x € V,, where V runs over {V C V,, : V open, x € V'} and the direct limit is
taken with respect to the restriction morphisms of C®(V,), is a local ring. See for example

[15].

| Definition2.9. A morphism of graded domains is a morphism of locally ringed spaces
Wap - Vo = Vp such that the underlying morphisms of algebras W:,/; 1 C®(Vp) = C2(V,)
preserve the grading.

I Definition 2.10. A graded manifold is a locally ringed space M = (M, C*®(M)), where
M is a Hausdorff, second countable topological space and C* (M) is a sheaf of graded algebras
over M such that

1. There exists a covering U, of M and isomorphisms of locally ringed spaces ¢, : U, =
(U, C¥(M)y,) = V, to some graded domains V,,.

2. The transition morphisms (Pa°(P;1 are isomorphisms of graded domains.

The dimension of M on each degree (k,€) € ZXZ /27 is the dimension of any of these graded
domains in the corresponding degree. We write Coo(M) for the (k, €)-degree part of C*®(M).
A morphism of graded manifolds is a morphism of locally ringed spaces whose pull-backs
preserve the grading. An open subset of M is a graded manifold U" = (U, C®(M),()) for an
open subset U C M, and we write U" C M.

We will sometimes use the word supermanifold for a graded manifold with trivial
Z-grading; this is Berezin-Kostant-Leite’s approach to supermanifolds as presented, for ex-
ample, in [36], [34]. This seems to be the most common way to proceed in recent work,
although some authors follow de Witt [13] and consider a different category of superman-
ifolds based on super-Euclidean space with super-functions of super-numbers as a local
model. See [4] for a proof that these two approaches are equivalent and [5] for a further
comparison with other similar notions of supermanifold.

fM = (M,C®(M)) is a graded manifold, then (M, C*®(M)) is an ordinary manifold,
where C®(M) = C®(M)/I, and I is the ideal generated by non-zero degree elements. On
coordinate domains U, functions of M can be locally written as

f=) f.8%

where « = (@, ...,a;) € N? runs over arbitrarily large multi-indices, f, € C®(U) are
ordinary C* functions, {&|,...,&;} is a set of algebraically independent generators of the
model algebra A and £* := 5?‘ ...ng". In principle, these are formal sums that can have an
infinite number of terms, so some care must be taken with constructions such as tensor
products. The following example shows why we need to consider formal power series.
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| Example 2.11 (Formal Power Series are Necessary). Consider two graded domains V,,
Vs with dimension 1 on degrees (0, 0), (1,0) and (—1, 0). Then, the following is an admissible
morphism

w;’ﬁ 1 CP(Vy) = C2(V,)
Xpg > Xo + EMla
éﬂ = ga
nﬂ = 710,,
where w(x,) = w(xg) =0, w(,) = wp) =1 and w(n,) = w(ng) = —1. Thus, we must

require that functions such as sin(x;) € C*(V;) have an image on C*(V,) which cannot
be anything different from the formal power series

> ﬂ 2n+1
Z‘)@nﬂ)!("ﬁfaﬂa) .

This example also shows that one cannot define a category of C¥ graded manifolds in this
way unless some additional assumptions on the degrees are included.

Despite anomalies as the one in Example 2.11, there are many situations in which formal
power series can be avoided. For example, if one is only interested on algebraic functions
(i.e., polynomials) on degree 0, these problems disappear. Also, if all §;’s are odd, then the
above sums will all be finite because every &% is idempotent. Finally, if there are no neg-
atively weighted (or no positively weighted) coordinates, requiring that the model algebra
A consist only on finite sums will not give any problems because we cannot obtain a de-
gree 0 coordinate from non-zero degree coordinates; most of our graded manifolds will fit
into this category, which will be studied in more detail in Section 3.5. However, grading in
both positive and negative degrees is important in the physics literature, as it appears in
the BRST formalism [9].

| Example 2.12 (Shifted Vector Bundles). If E — M is some vector bundle of rank d,
for each (k,e¢) € Z X Z/2Z we define the graded manifold E[k,e] = (M,C®(E[k,¢€]))
by assigning degree (k,¢€) to the fiber coordinates of E. This means that we construct
C®(E[k, €]) using a trivialization {U, }, of E over M and gluing the algebras C*(U,) ® A,
where A = R[&, ..., §,] for variables &, ..., &, of degree (k, €), with the transition morphisms
of E in the same way as we did for [IT M at the beginning of this section. The notation is
chosen so that, when E = M X V for a vector space V,

C®(Elk,€]) = C¥(M) @ S*((V[k,e)*) = CZ(M) Q@ S*(V*[—k,e)),

where V[k, €] is as defined in Section 2.1. In general, we obtain C*®(El[k, €]) = I'(S*E™)
ife = 0and C®(E[k,e]) = T(A*E*)if e = 1. If V is a vector space, we see it as a vector
bundle over a point and define the graded manifold V[k,e] = ({*}, S(V*[—k, €])). In the
special case of E = TM or E = T* M we write T'[k, €] M instead of T M [k, €], and similarly
for the cotangent bundle. This will avoid confusion when we consider the tangent bundle
of a graded manifold, as in Example 2.14 below.
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| Example 2.13 (Vector Bundles over Graded Manifolds). More generally, we can de-
fine vector bundles over a graded manifold M as graded manifolds £ with a morphism
of graded manifolds p : £ — M such that there exists an open covering {V,, }, of M and
isomorphisms of graded algebras

Py 1 P (COW)) = CO (V) @ S*W
for a graded vector space W (the typical fibre) satistying, for v € W/,

9,005 1 CX(Up) ® S*W = CX(V,) ® S*W
v A, p(0)

for R-linear maps A4, 5 : W — C*(V,) ® W preserving the grading.

For a vector bundle £ — M the sheaf of functions C*®(€) is a C*®°(M)-module, and the
above morphisms still preserve the grading if we shift the degree and parity of W, so we
can also define £[k, €] in the natural way. Constructions such as the direct sum, tensor prod-
uct or dual of these vector bundles are also well-defined. The sheaf of sections of the vector
bundle & — M is the subset I'(£) € C®(E*) of functions on £* that are C*(M)-linear on
the fibers. Then morphisms of vector bundles are morphisms of graded manifolds that are
required to preserve the linear structure; thatis, ¢ : £ — &, with qa*(l“((?;)) cI(& 1*). The
localization of the C*®(M)-module I'(£) at a point p € M is an A-module, for A the free
supercommutative algebra over which M is modelled. These objects will play an important
role when we discuss N-manifolds in Section 3.5 and thereafter.

If the R-linear maps A, ; : W — C®(V,) ® W do not preserve the original grading
but the vector space W is concentrated on a single degree (k, €), there is still a way to as-
sign a grading on the algebra C®(£). It consists simply on assigning weight zero to the
variables on the base M. In particular, this provides an additional Z-grading on &, for any
& constructed as above.

| Example 2.14 (Tangent and Cotangent Bundles of a Graded Manifold). If M is a
graded manifold, we shall define its tangent and cotangent bundles as follows. Let {U/, },
be an open cover of M with isomorphisms ¢, : C® (U, ) - C®(V,) ® Afor V,, Cc R" and
A =RI[&L, ..., £]. Then the changes of coordinates (paO(p CR(VH®A - C®(V,)R® A
have a Jacobian matrix (taking formal derivatives on the coordinates of non-zero degree)
D,; € C¥(Vy) ® A® GL(W), where W := span {v',...,0v",0",...,0™} with deg(t*) =
(0,0), deg(8') = deg(£)). If {y*}, denote coordinates on W of arbitrary degrees, it is
easy to see the (i, j)th entry of D, ; on these coordinates has degree deg(y') — deg(3/)
because q;aoq)l—il preserves the grading and taking d,; lowers the degree by deg(y’); this

implies that D, 4 preserves the grading of W' and that (D} )’ preserves the grading of
W™ = Span (py, e Pys P1s s ) With deg(py) = (0,0), deg(p, ) = —deg(&)).

The tangent bundle T M of M is the vector bundle over M with typical fibre W and
transition functions D, ; and the cotangent bundle 7 M of M is the vector bundle over
M with typical fibre W* and transition functions (D‘}i)’ This grading on T*M is known
in the physics literature as ghost number. According to the final remarks in Example 2.13,
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TM and T*M have an additional Z-grading assigning degree 0 to base coordinates and
degree 1 to fiber coordinates. In any case, these are vector bundles over a graded manifold
and, as such, we can also define their shifts, which we denote by T'[k, €] M and T*[k, e]M.

For example, given an ordinary vector bundle E — M we can consider the graded man-
ifold E[1] with coordinates {x?, &'} with p(x%) = w(x?%) = 0 and p(&) = w(&) = 1.
Its tangent bundle is T E[1] with coordinates {x4, &, v%,6'} with p(v?) = w(v®) = 0 and
p(0") = w(9") = 1, while T*E[1] has coordinates {x% &, p,,p,} with p(p,) = w(p,) = 0
and p(p;) = w(p;) = —1. The additional Z-grading mentioned above is (for example, for
T*E[1],) W' (x*) = w'(&") = 0, w'(p,) = w'(p,) = 1. The graded manifold T*[2] E[1], which
has the same coordinates as T* E[1] but with p(p,) = w(p,) = 2 and p(p;) = w(p;) = 1, will
play an important role in the Severa-Roytenberg correspondence.

| Example 2.15 (Multiple Vector Bundles). Let E — M be an ordinary vector bundle
and consider the graded manifold T*[2]E[1] with coordinates (x%, &, p,, p;), as in Exam-
ple 2.14. Furthermore, consider T*[2] E*[1] with coordinates (x9,#;, p,,0"). The Legen-
dre transformation is the canonical isomorphism of graded manifolds £ : T*[2]E[1] —
T*[2]E*[1] with pull-back x® = x%, 5, = p;, p* = p?, 6" — & It can also be described in
an invariant way as follows.

Foracurvey : I — E @ E*, y(t) = (x(1),e(t) + £(2)) we write yp(t) = (x(¥),e(?)) € E,
yp+(t) = (x(2),&(t)) € E* and ev(y (1)) = &(t)(e(?)) € R. Let y(0) = (xp,eg + &) € E D E*
and let [yg] € Ty ., E be the tangent vector determined by yg (and similarly for [yg.]).
For each (x(, ey, F) € T*E, we claim that there exists a unique (x(,&,,G) € T*E* such
that

Fllp) + GlreD =5 evgr@)

1t=0

foreveryy : I — E @ E* with y(0) = (xg.e9 + &) € E @ E*. To prove the claim,
we first note that taking y with [yz.] = 0 we obtain that §,(v) = F([e, + tv]) necessarily,
while taking y with [yg] = 0 shows G([, + ta]) = a(ey). It only remains to define G over
horizontal vector fields on T E*. For this we take a connection V on E with dual connection
V* on E*; these allow to lift a curve x(t) € M to parallel curves (x(t),FeO(x(t))) € E
and (x(t),on(x(t))) € E* and they satisfy %ltzorgo(x(t))(reo(x(t))) = 0. Hence, we are
forced to define G([on(x(t))]) = —F ([Feo(x(t))]). This completes the definition of G and,
in fact, this definition does not depend on V: if G has been defined through V while I', ,
Fé*o denote the parallel transport maps of V, then [T, (x(N] = [Fg (x(D)] + [eg + t0] and
[F;ﬁo(x(t))] = [F:;O(x(t))] + [§y +ta] for somev € E,, a € E;‘, )

G([I; (x())]) = —F ([T, (x())]) + a(eg) = —F (I, (x(1)]) + &o(v) + ax(ep)

and &,(v) + aley) = %|z=0f§0(x(t))(f€o(x(t))) = 0. Thus we can define the isomorphism

L : T*E — T*E* by (xg, ey, F) = (x¢, &y, G), which in local coordinates coincides with
the one defined above.
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In any case, what is important about L is that it induces a double vector bundle structure

T*[2]1E[1] 2 T*[2]E*[1] —— E*[1]

! !

Efl1] > M,

i.e., every arrow is a vector bundle projection. The projection of (x, ey, F) € T*E onto
E is (x(, eg) and its projection onto E* is (x(, &), as defined above. This structure gives
a Z X Z-grading on T*[2] E[1] by assigning degree 1 to fiber coordinates and degree 0 to
base coordinates with respect to each of the fibrations, and our original grading is the sum
of these two. Remarkably, T*E is not a vector bundle over M, so this is one example in
which the language of graded geometry helps us see T* E as a geometric object over M. In
general, one can define a k-fold vector bundle (or double, triple, etc. vector bundle) as a
Z*-graded manifold such that all coordinates have either weight 0 or weight 1 on each of
the gradings. As shown in [56], this gives multilinear changes of coordinates. See also [32]
for a detailed exposition of double vector bundles.

| Example 2.16 (Jet Bundle). If M is some ordinary manifold, the space of I-jets is the
following fibre bundle. We define an equivalence relation on C* paths y : (—e,e) = M
passing through p € M by

r r

hNyZ@Fh:ﬁh r=0,..,1,

where the derivative is taken in R” after using a coordinate chart around p. The quotient
of all paths by this relation is the space J zi M of [-jets of M at p, and the total space J' M

of I-jets is the bundle which has the same trivializations as M and fibers J Ii M. Of course,

J'M = TM is just the tangent space, but for / > 2 we do not obtain a vector bundle
structure; namely because the rth derivative of Ay is A" times the rth derivative of y. Thus,
the vector bundle structure is substituted by an R*-action on J/M. This bundle can also
be interpreted as a graded manifold, where coordinates representing rth derivatives have
degree (r,0). This R* action appears in every graded manifold through the Euler vector
field that we shall define in Section 2.3 and it is an interesting way of interpreting what the
grading means. Of course, one can also define the space of jets of a graded manifold and its
shifts with a similar construction as the one in Example 2.14.

These examples, and the definition itself of a graded manifold, may induce the idea that
graded manifolds are just bundles over the base space M. In fact, Batchelor’s Theorem
[3] and its generalization to the graded setting — sketched in [58] — state that any graded
manifold M is isomorphic (as a graded manifold) to a graded vector bundle over the base
space M. However, this isomorphism is non canonical, which reflects the main difference
between bundles and graded manifolds: morphisms of graded manifolds are way less re-
strictive than those of bundles, giving rise to a very different category. The reason for this
is illustrated by the following Example, which is based on the same idea as Example 2.11.

| Example 2.17 (Graded Manifolds Are Not Bundles). Let A = R[£', £?] for variables
&L, &2 of degree (0,1) € Z X Z/27 and consider M = (R,C®(R) ® A). Although M
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is clearly isomorphic to I1E, for E a trivial vector bundle of rank 2 over R, the following
morphism ¢ : M — M does not correspond to any vector bundle morphism E — E.

@* 1 C®(M) - C®(M)
x> x4 &2
g
£ré
The above formula does not produce a morphism in the vector bundle interpretation because
it mixes base and fiber coordinates, but it does in the graded context because &!£2 is even.

Notice that the same happens if we perform the same construction with &' of degree (1, 0)

and &2 of degree (—1,0).

2.3. Vector Fields and Differential Forms

In this section we construct vector fields and differential forms on graded manifolds
in a purely algebraic way, which is the way in which we will see them in this work. We also
develop the useful tools of Cartan calculus for graded manifolds.

| Definition 2.18.  Given a graded manifold M, we consider the sheaf of C®(M)-modules
(M, Der C®(M)). A vector field on U" C M is an element of Der C*(U"), and a differ-
ential p-form on U" C M is an element of QP(U") := AP(Der C®(U"))*.

| Remark 2.19. As usual, vector fields on M can be identified with T(T' M) and 1-forms
on M can be identified with I'(T* M), where the tangent and cotangent bundles of M are
as defined in Example 2.14.

As we did in Section 2.1, we can define a Z X Z/2Z-grading for vector fields which
makes Der C*(M) a sheaf of Lie superalgebras. Differential forms have, in addition to the
Z X Z [2Z-grading induced by the one on Der C*(M), an additional Z-grading given by
the homological degree and denoted by d. Recall that, for a, f € QM) = [] N QP(M),
we have a A ff = (=1)P@PO+d@dB) g A ¢ € QIO+BD N If {£] };’zl are local coordinates
(with arbitrary weights and parities) on V" C N, any vector field X € Der C®(U") can be
written as

Ny, 0
X‘Z{ffaz:/

for some functions f ;= (—l)p(‘fj)X (&) € C®(U), where the derivations 0%/. are defined by

%(f") = (—1)1’(5])6[ ; and extended through Leibniz’s rule. Similarly, a differential p-form
a € QP(V) can be written as
a= D g (dEVT AL AEED
i+..+i,=p
for some functions
o 0 i 0
o

8., = (D a2,

9 )
Lt ,
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where the 1-forms d&’ are defined by dfj(a%) = ¢;; and (d&N :=d&l A YA dél. We will
often write this as

d
a= I% Z g jpdéjl...dfjp,
" Jtseedp=1
In particular, notice that
. I

w(a_éf) = —w(¢), p(afj) = p(&),
w(dé’) = w&), pdg’) = p(&),
w(f;) = w(X) + w(&), p(f) = p(X) + p(&),

d d
w(g;, ;)= w@ - Y iweE), p(g;, ;) =pla)+ Y i;p).

Jj=1 j=1

| Remark 2.20. Recall Remark 2.7. If Q(M) = A*(Der C*®(M))* is considered with the
algebra structure arising from the décalage isomorphism, then there exists an isomorphism
of algebras Q(M) = C®(T[1]M) (see Example 2.14), just as in the ordinary case. However,
we will always consider (M) with the algebra structure coming from the tensor product
because otherwise we would not be able to interpret differential forms as skew-symmetric
maps in any natural way.

In Section 2.1 we defined derivations of supercommutative rings, but Q(M) is not su-
percommutative. However, it satisfies a similar property and, accordingly, we can de-
fine a derivation of Q(M) as an operator X : QM) — Q(M) satisfying X(a A f) =
X(a) A B+ (=1)P@pB+d@dB) x gy A a. If w(X(a)) = k + w(a), p(X (@) = € + p(a) and
d(X(a)) = p+d(a) for every a € Q(M), we say that X is homogeneous of degree (k, €, p).
Notice that, in this case, X(a A f) = X (@) A f + (=1)P@pO+d(@dX) g A X (f). With the
commutator [X,Y] = XoY — (=1)PXPWN+d(XdXV)y o X  Der Q(M) satisfies Lie algebra
properties as the ones in Definition 2.5, but changing p(X)p(Y) by p(X)p(Y) + d(X)d(Y).

| Definition 2.21. The differential of a function f € C®(M) is the 1-formd f acting
asd f(X) = (=1)PXPU) X (f). Notice that w(d f) = w(f) and p(d f) = p(f). The exterior
derivative d is the only degree (0,0, 1) derivation of Q(M) satisfying d(f) = d f for f €
QM) = C®(M) and d* = 0. Given a vector field X, the contraction by X is the operator
Iy @ QM) - QM) defined by iya(Xy,... X, ) = (1)XPOu(X, X, ... X, ) for
a € QP(M). 1t is a derivation of degree (w(X), p(X), —1). The Lie derivative with respect to
X isLy :=1[d,ix] =diy +1xd, which is a derivation of Q(M) of degree (w(X), p(X), 0).

| Proposition 2.22. The above objects are well-defined. Moreover, the following proper-
ties are satisfied.

[

Lxf=i1xdf)=X(f).
. [d. Ly]=0.

[\

w

. [lx, lY] = 0

b

l[X,Y] = [ﬁx, ly].
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6. da(Xg, ..., X,) = X; Xj(@(Xgy oo X, ooy X )= 1) 5@ Xob 48]
Ty @, X1, Xy s Xy oty Ry XY= DX K0t X)X Kbt Xt X418
Proof.
Q(M) is locally generated as an algebra by functions f € C®(U’) and exact forms
df € Q). Since derivations of Q(M) are required to satisfy Leibniz’s rule, they are

determined by their action on these generators. In particular, d is well-defined. The com-
putation that shows that 1 is indeed a derivation is the same as in Remark 2.4.

Now 1 and 2 are immediate and 3 means simply that forms are skew-symmetric. To see
4, it suffices to prove it for exact forms and in that case

(L, 1y)df) = (xd + diy)yd f — (=D)PXPD (10 d + diy)d f
= 1xd(yd ) — (~1)PXPV 1 dGyd ) = 1xd(Y (f)) — (= 1P d(X(f))
= XY (f) - (-DPFPOYX(f) = [X,YI(f) = 11x.y\df-

Then 5 follows from the Jacobi identity
[Lx.[d,1y]] = [[Lx.d]1y] + (=DPXPONd Ly, 1] = (= 1)PXPOUd, 1y ] = =Ly x
The way to prove 6 is by noting that this formula does indeed define a C*(M)-linear form:

X (@(X gy oo [ X oo Xy ooy X)) (= D)X O XA XA T A XG4

= (X;(Na(Xgs oo Xps oo X s X)) + DY X (X, o X0 X0 X))
% (_1)Xj(a+X0+..‘+Xj_1)+f(a+X0+...+X,._l)+Xjf+j

a([in, Xj]’ XO’ . X[’ — X L X )(_1)(f+Xi)(XO+...+X,-_1)+Xj(XO+...+)2i+...+Xj_1)+i+j
X,

— Xj(f)a(X()7~-'7Xi’ - X )( 1)X (f+X )+1+(X +f)a+f(X0+ +X, 1)+X (X0+ +X+ +X 1)+j

+ fOl([X,-, XJ]’ XO’ . Xh . X Xn)(_1)fa+(f+X,~)(X0+...+X,-,1)+Xj(X0+...+Xi+...+Xj,1)+l+J;

oo
the first term of each sum cancels with each other and we obtain linearity. Then it suffices to
prove the formula for commuting vector fields, so write « = Y. f;d&! in local coordinates

{£9}, and notice that da = Z(—l)p(fl)p(fa)%df"d.ﬁ’, o)

0 a0 fr
— =) = /¥ == dgtde (—,
da(5gr 53 = 2D (: S 5
F)
— e —— sy —— 1 fré? 1 &£l i; 1 i+t )+
Eaia )f(ag,, T ag,x e (=1 (=1

=Y O (faer 2.9 _> DY\ 1+EDE ittty )+
Zaé,f <f1§(a§,0 a g ) CDIE e

0 0 (= 1)1 latigh..+ij_ |)+j

agt 510 "’E’ 65‘

which is precisely what we wanted to show. O
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| Definition 2.23. The Euler vector field on a graded manifold is the vector field E :
C®(M) - C®(M) defined by E(f) = w(f)f on homogeneous elements. If{x’}i are local
coordinates,

E = 2 LU(X’)X’E.
1

I Lemma 2.24. Let X € Der C®(M), a € Q(M) be homogeneous. Then, [E, X] =
w(X)X and Lpa = w(a)a.

Proof.
We can directly compute, for f € C®(M),

[E, X1(f) = E(X(f)) = X(E(f)) = wX(fNX(f) = Xw(f)f)
= (W(X) + w(fNX(f) —w(HX() = wX)X(f)

and

Lpf=E)=wNf
Lp(df)=dagdf) =d(E()) =dw(f)f) =w(f)df.

Since Q(M) is locally generated as an algebra by functions f € C®(U’) and exact forms
df € QI(U), the above suffices to conclude the Lemma by Leibniz’s rule for £ . O

It is also possible to develop an integration theory for graded manifolds, and it involves
some non-trivial considerations regarding the super analog of the determinant, which is
called the Berezinian. This can be found in the context of supermanifolds, as well as a
whole theory of principal bundles, connections and parallel transport, in [29] or [13].

2.4. Morphisms of Graded Manifolds

In this section we present some heuristic arguments aiming to study a structure of
graded manifold on the set Mor(M, N') of morphisms between two graded manifolds.
A proper understanding of Mor(M, N') is desirable because this is the space of fields of
o-models based on graded manifolds, such as the AKSZ formalism. However, morphisms of
graded manifolds are a bit more hard to understand than what it might seem at first sight,
as shown in Example 2.17. One of the difficulties is that there is no clear notion of points,
since the points of the underlying topological space do not have a clear relation with the
whole sheaf of functions. The most appropriate way to deal with this problem is to borrow
the notion of functor of points from algebraic geometry.

| Definition 2.25. Given two graded manifolds Z, M, a Z-point of M is a morphism of
graded manifolds ¢ : Z — M.

The idea behind Definition 2.25 is that M is determined by the assignment
Z — {Z-points of M},

as we will see in some basic examples below. This is one of the most important results from
category theory and is called Yoneda’s Lemma [35]. However, we do not wish to discuss
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this in detail here. We just intend to introduce this language to have an intuitive picture of
the sort of objects that we can call points because it will allow us to define a structure of
graded manifold on complicated objects.

Given two graded manifolds M, N, write M or(M, N') for the set of morphisms of graded
manifolds between M and N'. We wish to consider this object as a graded manifold itself,
so let us work backwards and write Mor(M, N') for its graded manifold structure. The
least we can require is that, for any other graded manifold Z,

(2.4) Mor(Z, Mor(M, N)) = Mor(Z X M, N).

Keeping in mind the idea that Z-points determine graded manifolds, Equation (2.4) can
be used in some cases to decide what the structure of Mor(M, N') must be. Of course, this
procedure requires a more careful formalization which goes beyond the scope of this work,
but we can treat here some simple cases. An approach to these issues through category
theory has been proved fruitful to define graded manifolds of infinite dimension in [44],
while a different approach based on considering graded manifolds as fiber products is used
in [29].

| Example 2.26 (Points in Ordinary Manifolds). If M is an ordinary manifold and
Spec R = ({*},R) is a singleton considered as a manifold, then there is a bijection between
Mor(Spec R, M) and the set M itself: it is an easy consequence of Hadamard’s Lemma that
any morphism of algebras C*®(M) — R is an evaluation at some point of M. In principle
this is just a bijection of sets, but the adjunction formula tells us that the natural manifold
structure Mor(Spec R, M) on Mor(Spec R, M) is such that, for any other manifold Z,

Mor(Z, Mor(SpecR,M)) = Mor(Z X SpecR, M) = Mor(Z, M).

This identity tells us that Z-points of M are in bijection with Z-points of Mor(Spec R, M)
and thus we can identify them not just as sets, but also as manifolds. Although this example
might seem vacuous, the point is that, although Mor(Spec R, M) and M are equal as sets,
we still need to know the fact that they have the same Z-points in order to identify them
as manifolds. This appreciation is crucial in the context of graded manifolds.

| Example 2.27 (Points in Graded Manifolds). Let M be a graded manifold and let V
be a graded vector space with the same graded dimension as M. Let ¥V = ({x}, S*V™)
be the corresponding graded manifold, then points in M can be though of as elements
P € Mor(V, M) in the sense that for F,G € C®(M) we have F # G & 3P €
Mor(V,M) : P*F # P*G. To see this note that each P € Mor(V, M) is given by a
point in the underlying topological space, p € M, and compatible (with the restrictions of
the sheaf) morphisms of algebras C®(U") — S*V* for each U" C M with p € U. Thus we
can assume that we are in a coordinate neighborhood around p, and choose P given by

P C(U)Q S*V* - S*V*
f®ve= fpv.

If F # G € C*®(M), there exists some open neighborhood U" C M in which F, G can be
written in local coordinates with some different coeflicient f U(;l LU # gu‘f1 ...Uy". Taking
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p € M such that f(p) # g(p) and defining P as above will detect the difference between F
and G. Note that there are other elements in M or(V, M) acting non-trivially on the S*V'*
component, so this object is already quite complicated as a set.

| Example 2.28 (Graded Paths). The following is an example in which the structure of
graded manifold on M or(M, N') can be explicitly computed. If M is a graded manifold, let
us study Mor(R[k, €], M) for any (k,e) € ZX Z/2Z. An element in Mor(R[k, €], M) can
be thought of as a graded path on M because it pulls back functions on M to functions
defined over a single variable ¢ with w(t) = k, p(t) = €. Because these must preserve the
grading, for coordinates {x?}, on M an element of Mor(R[k, €], M) can only take the form

COM) - S*(R[k, e]")

X, At

for w(x,) = nk and p(x,) = p(e). On the contrary, for Z any other graded manifold, the
Z-points of Mor(R[k, €], M) are, by Equation 2.4, morphisms that locally look like

@ C¥(M) = C*(2) ® S*"(Rlk, e]")

1
X, Z H(pa’nt”.
n>0
with ¢,, € C*(Z) such that w(x,) = w(g,,) + kn and p(x,) = p(¢,,) + ne. Notice
that, if ¢ = 1, then 2 = 0 and the above sum only has two terms. We should see the
functions ¢, , as coordinates on the graded manifold Mor(R[k, €], M); in particular, those
@, With w(e, ) = p(p,,) = 0 recover the original points of the set Mor(R[k, €], M).
Under a coordinate change on M of the form x, = f(y) for some other coordinates {y,},
on M with ¢(y,) = Y, %u/a’nt", by equating f (3 %u/a,nt”) =Y %(pa,nt” we see that the
coordinates ¢, , must transform as

(pa,O = f(ll/())a
= w1 L ()
(pa,l - Wa,laya Yo)>
02 of
Par = Vai¥p1 55— W) + weo—— W), -
a,2 a,l ﬂ,layﬂa ya 0 6{,2aya 0

We recognize these as the coordinate changes of jets on M. If ¢ = 1, only the first two
terms are nonzero, and the second one is assigned parity 1, so we see Mor(R[k, 1], M) =
Tk, 1]M, as in Example 2.14. On the other hand, when k = 0 we obtain an infinite number
of coordinates and we can think of Mor(R[k, 0], M) as the inverse limit as n — co of the
manifolds of n-jets on M, where an n-jet on the direction of x,, is assigned weight w(x,)—nk
and parity p(x,) — ne. This construction is analogous to the construction of the tangent (or
jet) space of an ordinary manifold as classes of curves on the manifold.

What we see in Example 2.28 is that that the graded manifold M or(M, N') has M or(M, N')
as underlying topological set, but it also has coordinates of nonzero degree representing
morphisms that depend on parameters of these degrees. Such morphisms can appear in a
relatively natural way, as it is the case of the flow of a non-zero degree vector field, which
we proceed to define.



18 Graded Manifolds

| Definition 2.29. Let X € Der C*(M) be a vector field with w(X) = —k and p(X) = e.
A flow for X is a morphism of graded manifolds ¢ : M X R[k, €] = M satisfying

L 0@y )= f VfeC=(m,
2. 205 f = @i X(f) Vf €C®(M)

Heret is the variable on R[k, €] and 0* : C®(M)Q S*(R[k, e]*) — C®(M) is the morphism
of algebras that setst = 0.

Notice that the time parameter must be assigned weight and parity so that the two
sides of the equality in 2 have the same degree because @y respects the grading. Thus,
using Equation 2.4, the flow of X can be seen either as an M-point on the graded manifold
Mor(R[k, €], M) studied in Example 2.28 or, more naturally, as a graded path on the graded
manifold Mor(M, M).

Iterating the relations defining the flow of X we see that

k
0*%@1‘ = 0" X () = X (f) .Vf eC¥WM.

Thus, if we write ¢% f = Y, f,1", we obtain:

1. If e = 0, then @y exists (and is unique) always; it is given by @3 f = X, %t”.
There is no need for studying convergence of this series because our functions are
formal power series

2. If e = 1, then > = 0 and so @ exists (and is unique) if and only if X? = 0, in which
case ¢ f = f —tX(f).

Odd vector fields squaring to zero are the basis of Q-manifolds, which we study in detail in
Section 3.3 and thereafter. These are central objects in graded geometry which unify very
different geometric constructions.



CHAPTER 3
Classes of Graded Manifolds

In this chapter we show how the language of graded manifolds can be used to treat
many different geometric objects from a unifying point of view. In Section 3.1 we define
derived brackets, which are a way of obtaining new interesting algebraic operations on
a differential Lie algebra which will be extensively used throughout this work. In particu-
lar, the structure of L -algebras presented in Section 3.2 can be understood in terms of
(higher) derived brackets. In Section 3.3 we define a class of graded manifolds known as
Q-manifolds, which are the non-linear version of L -algebras and unify objects such as
Lie algebroids, Poisson manifolds or Courant algebroids and their cohomology theories. In
Section 3.4 we show how to extend the basics of symplectic geometry to the graded setting.
Finally, in Section 3.5, we study non-negatively graded manifolds and prove Vaintrob’s
Theorem on the characterization of Lie algebroids as a particular class of graded manifolds.

3.1. Derived Brackets

In this section we introduce the concept of a derived bracket. This is an algebraic
operation that can be defined in any differential Lie algebra and which satisfies interesting
properties; mainly, it verifies the Jacobi identity. As we will see throughout this work,
derived brackets appear naturally in different contexts and are the underlying idea behind
complicated geometric structures, such as Courant algebroids. We also show here that the
structure itself of a differential Lie algebra can always be encoded in terms of a derived
bracket, which will motivate the study of L -algebras in Section 3.2.

| Definition3.1. Fore € Z/2Z, adifferential Lie superalgebra of parity ¢ (or even/odd
differential Lie superalgebra) is a Lie superalgebra of parity € as in Definition 2.5 with an
odd linear operation d : g — g satisfying:

1. d*u=0.

2. dlu,v] = [du, v] + (=1)P@*¢[y, dv].
The derived bracket on a differential Lie superalgebra is the operation
[, v]4 := (=1)"[du, v]

19
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and the skew-symmetrized derived bracket is the operation

fu,v],; =

% ([, v, — (= )P+ DEOHDL 4] )

| Proposition 3.2. The following properties are satisfied.

1. [u, [v,w],],; = [, vl wl, + (=1)PWrerDe@+erDrE, 1y 0] 1,
2. d([u, vly) = [du, v]; + (=1)PW+erl [y do],.
3. [u,0lg = fu, 0] 4 + 3(=1)d[u, v].

Proof.
All these properties follow from a direct computation.

[, [V, w1y = (=D POLdu, [dv, w]]
- (_1)P(u)+P(U) ([[du, dv], w] + (_1)(p(u)+€+1)(p(v)+€+1)[dv’ [du, w]])
— (_I)P(U)+€+1 [d[du, v], w] + (_1)(p(u)+1)(17(v)+1)[v, [u, w]d]d)
= [[u, v],, w], + (_1)(p(u)+e+1)(p(v)+e+l)[U’ [, wl, 1,
d([u,v],) = (=1)PPd[du, v] = (=) [du, dv] = (=1)PWTH [y, v],
= [du, v], + (= 1Y@+, o],
2fu, vl ; + (=1Y’“d[u, v] = (=1)P“[du, v] + (=1)POFFIRWrIre 47, 4] 4 (—1)PWd[u, v]
= (=1)"“[du, v] + (=) u, dv] + (=1)’“[du, v] + (=1)°[u, dv]
=2[u, v],.

(]

The way to read Proposition 3.2 is that a differential Lie superalgebra (g, [:, -], d) of par-
ity € induces a structure (g, [+, -];, d) of differential Loday superalgebra on g of parity 1 + €
whose bilinear bracket [-, -], fails to satisfy skew-symmetry by a d-coboundary. Alterna-
tively, one can see the skew-symmetric bracket [, [, as the fundamental object failing to
satisfy the Jacobi identity by a homotopy term.

| Corollary 3.3. Let(g,[, ], d) be a differential Lie superalgebra of parity ¢ andlet ) C g
be an abelian subalgebra closed under [-, -],;. Then (§, [+, -],) is a Lie superalgebra of parity
1 + €. If, moreover, § is closed under d, then (), [-,-];,d) is a differential Lie superalgebra
of parity 1 + €.

| Example 3.4 (Poisson Bracket as a Derived Bracket). Given an ordinary manifold M,
consider the odd Lie algebra I'(A*T M) of its multivector fields with the Schouten bracket

(X1 A AX, Y A AY] = D (DX YIAX A AR A LAX,AY AL AY AL AY,
L.

(see for example [38]). A Poisson bivector is a 7 € I'(A’T M) such that [z, z] = 0; in
this case we see that d, := ad, = [x, -] is a differential on ['(A*T M). Thus, it gives rise to
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a derived bracket which, restricted to the abelian subalgebra C*°(M), induces an ordinary
Lie algebra structure {-, -} on C*®(M) by

{f.g} == flegl

This is precisely the Poisson bracket that the bivector x is well-known to induce on C*(M).

Many examples of differentials (and thus, of derived brackets) on a Lie superalgebra g
of parity e are constructed, as in Example 3.4, by choosing an element A € g of parity 1 + ¢
such that [A, A] = 0 and considering d = ad,. The rest of this chapter will provide many
examples of these.

| Example 3.5 (Every Lie Bracket is a Derived Bracket). Let (V,[-,-];) be an ordinary
Lie algebra, we claim that its Lie bracket can always be seen as the restriction of the de-
rived bracket of a differential Lie superalgebra (g, [-, -], d) to an abelian subalgebra §) C g,
as in Corollary 3.3. Indeed, consider the graded manifold V[1] = ({*}, S*(V'[1]*)) and
take ¢ = Der C*®(V'[1]) with the commutator as Lie bracket. The Chevalley-Eilenberg
differential is d - € g, (the degree 1 part of g) defined on I1¢ € V[1]* as

depME) € SAVIT), dep(TIE)IMu, o) = &([u, vly)
(IT denotes the parity shift ' — V[1]) and extended by Leibniz. If {e;}]_, is a basis of V'

such that[e;, e;],, = c;‘jek with dual basis {&' Y, € V¥, we canwrite d¢ as (see Section 2.1
for sign conventions, we also write in what follows & =1 € V[1]* and e; = Ile; € V[1]
to simplify notation)

n

k=1

ijk=1
where ’ek(“) = a(-, ..., ey), as in Remark 2.4. Notice that

[deg, depl€) = dgp(&) = éé"([-, ) -1, (Ey) = é:"([-, 1y - €0 ey,
which is an element in S3(V[1]*_) acting on u, v, w € V[1] as )
dg (&), v, w) = 2 (& ([u, vly) - E(w, e ]y) = E(lw, wly) - E((v. e ]y) + EX(v, wly) - E(u. ;1))
= gz[lw [u, v]yly = [v, [u, wly 1y + [u, [v, W]y 1)) = 0.

So d-p € g, satisfiees [dp,dcg] = 0 and thus it induces a derived bracket on g as
[Dy, Dylg,., = (=1)?PV[[d, D,], D,]. In particular, g_; is an abelian subalgebra closed
under [, -], . so this induces a structure of odd Lie superalgebra on g_;. Now, as a vec-
tor space, g_; = V[1] canonically, since degree —1 derivations of S*(V'[1]*) are R-linear
maps V[1]* — R extended through Leibniz’s rule and so g_; = V[1]** = V[1] by 1, < v.
Thus we have an odd Lie superalgebra structure [, -] dep ON V'[1], which is the same as an
ordinary Lie algebra structure on V'; we claim that [-,-]; = [-,-];,. To see this consider
any

CE

Q=-) Ak de, eg,

i.j,k
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and notice that, for,,1, € g_,;

(10, 1,1,1,1(6") = =1,,0(&5) = Y A¥ & W& v).

ij=1

This proves that [-, -] dep = [-, -], but it also shows something more interesting: For any Q
defined as above, the expression {u, v}, = —[[Q, D,], D,] determines a skew-symmetric
bracket on V' and the above computations imply that this bracket satisfies the Jacobi identity
if and only if Q% = 0.

| Example 3.6 (Differential Lie Algebras as Derived Brackets). Considering Example
3.5, a natural question is whether we can also obtain the whole structure of a differen-
tial Lie superalgebra (V,[-, -]y, d} ) from a derived bracket of a different differential Lie
superalgebra (g, [, ], d-g). Indeed, this can be done, and the construction is very simi-
lar. Consider as before ¢ = Der C*®(V[1]) and define now, for II¢ € V[1]*, d-p(I1&) =
dl (&) +df (g € STV 11 & S*(V[1]") as

dd METw) = Edu),  di. (&) [Iu, TIv) = (=1)"“&((u, v]).

As before, we write in what follows I1€ = £ and Ilu = u to simplify notation. If {e;}?_ isa
basis of V' with de; = c{‘ek and (—1)"¢)[e,, e;]l= c;fjek, then dy can be written as
n
deg = 2 cféilek + % 2 c:fjéjfilek.
ik irj k=1

Then
g (&) = dg p(€") -1, d2 (&) + (déE(«f") 1, dop (&) + dQp(E) - zekdéE@) +dg () -1, dip(©),
which is déE(é) = J! + J? + J3 for r-linear maps J" acting on V as

T (W) = &(du).
T2 (u, v) = (=1)PYE (d[u, v] = [du, v] + (~1)"PO[dv,u])
T, v, w) = (=1PD¢ ([[u, v], w] = [u, [v, w]] + (= DPPO[o, [u, w]])
SO dé £ = O precisely when all the axioms in Definition 2.5 are satisfied. In order to recover
dy and [, ]y from d-p we write D(0) € g_, for the degree —1 component of any D € g

(the notation is chosen so that D(0) equals D after setting & = 0, Vi) and we recall that
g_; = V[1]; it is then easy to see that

d, (u) = [0, D,)0),  T[u,0vl, = (-1Y“*![[Q, D,], D,] = (-1)"*[[Q, D,], D,](0).

3.2. L_-algebras

In this section we present L -algebras as a natural generalization of differential Lie
algebras. They can be understood as Lie algebras which fail to satisfy the Jacobi identity by
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a homotopy term measured by a 3-bracket. This 3-bracket fails to satisfy a higher analog
of the Jacobi identity by a further homotopy term measured by a 4-bracket, and this idea
continues indefinitely. We will present a non-trivial example and discuss some of their
applications.

| Definition3.7. An L_-(super)algebra or strongly homotopy (super)algebraisaZ /27 -
graded vector space V' with an odd vector field d- € Der C*®(V[1]) such that déE =0.Itis
a Lie n-algebra if V =V, & .. @ V_,,, is Z-graded with parity equal to weight mod 2 and
w(dcg) = 1 with respect to the corresponding grading on V[1]. The Chevalley-Eilenberg
algebra of an L -algebra is the differential graded algebra (C*®(V[1]),d ).

The structure of an L -algebra can be described in terms of an infinite number of mul-
tilinear operations {-,...,-},, : V ® ... ® V' — V satistying certain axioms and which are
constructed from d through higher derived brackets [55], in a similar way as in Exam-
ples 3.5 and 3.6. Specifically, if {e;}; is a basis of V with dual basis {£'}; and we write for
simplicity & = I1&" on V[1],

n oo 1

— 2 z k i i

dCE - | Ai cesl glgm lek’

m! . . Lot
k=1 m=0 [ S -

&L Em e S™(V[1]%) with a super skew-symmetric mul-

..... i

tilinear map of parity m mod 2 via the décalage isomorphism (Remark 2.7):

then we identify each map Affl

1
{ef, ey} = (—1)€MA§<M

with € = Z;":l(n — i)p(e;). Alternatively, using the identification Der_; C®(V[1]) = V1],
we can define the bracket {-,...,-},, as

1{vs s 0y }) 1= (EDMQ, v, (0], .., (0, 1(0).

In the case of a Lie n-algebra, the m-bracket has weight m — 2. The 0-bracket is a distin-
guished element Q(0) = ® € V, called the curvature of the L -algebra. The condition
that dé g = 0is then equivalent to the vanishing of the following multilinear maps on V'
which appear as the coefficients of dé £

T @1 a ) = D Y U Op(1ys oo Vo) s Vgt 1y -2 Ui (= DY sgn(o) (=1,

prq=rcES,,

where (—1)7 is the Koszul sign and S, , are the permutations of {1,...,r} with o(1) < ... <
o(p)and (p + 1) < ... < o(q) (compare with Equation 2.3). The maps J" are called Jaco-
biators, they represent higher Jacobi identities up to homotopy, meaning that the failure of
each bracket to satisfy a Jacobi identity is measured by the next bracket. The first relations
are

0= {D},

0= {{u}} +{D,u},

0= {{u,v}} - {{u}, v} + (D" {{v},u} + {®,u, v}

0= {{uv.w}} = {{u.v}, w} + (D" {{u, w}, v} = (D" {{v, w0}, u}

= {{uh v} + (D" {v}w w) = (D {{w)u, v} + (@00, w)
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In particular, when ® = 0 and all m-brackets vanish for m > 3, we obtain a differential
Lie superalgebra where {-,-} is the Lie bracket and {-} is the differential. The converse
construction is the following: given a Z/2Z-graded vector space V' with a family of super
skew-symmetric m-brackets of parity m mod 2 and satisfying J” = 0 for all » > 0, we define
the Chevalley-Filenbeg differential of V" as the vector field on V' [1] acting on & € V[1]* as

dep(@ =Y & D).
m=0

The notation here has to be interpreted through the décalage isomorphism in Remark 2.7,
which identifies £({-, ..., -}) € (A"V*)[—m + 2] with an element in S"(V[1]*).

| Example3.8 (String Lie2-algebra). Let g be a quadratic Lie algebra. This is an ordinary
Lie algebra with an additional nondegenerate bilinear form (-,-) : g X g — R that is
invariant under the adjoint action. In other words, ([u,u,], u3) + (uy, [uy,u3]) = 0. The
canonical example is the Killing form on the Lie algebra of a compact simple Lie group.
Then we can define u € A*g* as u(uy,uy, u3) = ([uy,uy],u3) and we claim that depu =
0, where d. is the Chevalley-Eilenberg differential from Example 3.5. Indeed, we will
show in Example 3.17 below that, under the usual identification of A*g* with left-invariant
differential forms on a Lie group G, d coincides with the exterior derivative, so we can
compute

dCEM(ul, Uy, Uz, u4) = —u([uy, uy], us, 144) + p([uy, 143], Uy, Uy) — M([uza U3], U, u4) +..=0,

where we have used the Jacobi identity in the last step. Consider then V' = ¢ @ R[1] and
denote by b a generator of R[1] with dual element § € R[1]*. The Lie bracket of g can be
extended to V by letting b belong to its center; here we denote it by {-,-} : VXV — V.
We also construct a super skew-symmetric 3-bracket {-,-,:} : VXV XV — V by letting
b belong to its center and defining, for u;,u,, u; € g,

{ug, uy,uzt = p(uy, uy, u3)b.

We claim that these brackets endow V' with the structure of an L _-algebra. As we have
seen, we only need to check that, for dp € Der S*(V[1])* defined by Q(&) = &({-,-}) +
E({-,-,-}) on & € V[1]*, we have Q% = 0. Since the image of the 3-bracket belongs to
span{b}, for & € g[1]* Q acts as the Chevalley-Eilenberg differential and we already now
that Q?(£) = 0. For f € R[2]*, we see that Q(f) = f({,-,-}) = pand so Q*(f) = dcpu =0
by the preceeding remarks. By linearity and Leibniz’s rule we can conclude that Q> = 0
and that V' is an L -algebra, which is called the string Lie 2-algebra of g.

| Remark 3.9. The above construction works in much more generality. Given an L -
algebra V' with null n-brackets for n > k and u € S*(V[1])* with d-g(u) = 0 we can
construct a new L -algebra as V, =V & span {b}, where p(b) = p(u). This is done
by defining a k-bracket {v,,...,v;} = u(vy,...,v)b for vy, ...,v;, € V and extending the
brackets of V' to V), by letting b belong to all the centers, including the k-bracket’s one.

This is called a central extension of V' by the cocycle u.

| Definition 3.10. A Maurer-Cartan element on a Z-graded L, -algebra V' is an element
a € V; such that )} %{a, .al =0.
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If there is an infinite number of non-zero brackets, some notion of convergence has to be
introduced to make sense of the above sum, but we will not work in that framework. One
of the main reasons why L _ -algebras were introduced is that they can be used to study
deformations of, essentially, any object.

| Example 3.11 (Lie Algebra-Valued Differential Forms). Consider an ordinary man-
ifold M and a Lie group G with Lie algebra g. The space Q(M) ® g of Lie algebra-valued
differential forms on M has a natural structure of differential graded Lie algebra with differ-
ential the de Rham differential and Lie bracket given by a combination of the wedge product
and the Lie bracket on g, as usual. The Maurer-Cartan elements of Q(M) ® g are precisely
Lie algebra-valued 1-forms on M representing Cartan-Ehresmann connections on the triv-
ial principal bundle M X G whose curvature 2-form vanishes.

For V an L -algebra, V'-valued differential forms on M are elements of Q(M) ® V', which
is an L -algebra. The analog of Cartan-Ehresmann connections for L -algebras is defined
in such a way that Maurer Cartan Elements of Q(M) ® V' represent flat connections. The
underlying reason for this is that Maurer-Cartan elements of A ® V, for A any differen-
tial graded algebra and V any L -algebra, correspond to morphisms of differential graded
algebras between (C*®(V[1]),df) and A. [23]

| Example 3.12 (Deformations of Complex Structures). Consider an holomorphic vec-
tor bundle over a complex manifold E — M. Then the space ['(Q%?(End E)) is a differen-
tial graded Lie algebra with differential given by the Dolbeault operator 0 and Lie bracket
[ae;, Be;] := a A Ple;,e,] for local sections with e;,e, € I'(End E), a,f € Q% (M)
and [e;, e;] the commutator of e,e,. It is a classical result (see for example [31]) that
families {(E,,0,)},c; of deformations of (E,0) are in bijection with families {B,},c; C
[(QY!(End E)) such that 9B, + 3[B,, B,] = O forall € I.

In general, deformations of any structure .S are usually codified in terms of a functor
assigning to every space of parameters I (usually the maximal ideal of a local Artin ring)
the space deformations of S over I. These functors are always equivalent (in an appropriate
sense, see [17]) to the deformation functor of a differential graded Lie algebra g, which
is the functor assigning to each I the space of Maurer-Cartan elements of ¢ ® 1. Moreover,
gauge equivalences on the original problem can also be codified as gauge actions of g on
each set of Maurer-Cartan elements in a purely algebraic way. The advantage of introducing
L -algebras is that, if we see g as an L -algebra, then its deformation functor is preserved
by quasi-isomoprhisms with other L -algebras, which reveals a great flexibility on the way
this functor can be presented.

L -algebras (and L -algebroids, which we will define in Section 3.5) are of great impor-
tance in different areas of geometry and physics. To name a few examples of their applica-
tions,

 The cornerstone of Kontsevich’s proof of his Formality Theorem [33] on deforma-
tion quantization of Poisson manifolds is the above mentioned result on preserva-
tion of deformation functors between quasi-isomorphic L -algebras. In his proof he
treats L -algebras as Q-manifolds, which we shall define in Section 3.3.
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« L -algebras can be integrated to objects called co-groups [24]. These are higher
analogs of groups in the sense that they can be thought of as a group in which asso-
ciativity fails by a homotopy term, which fails itself to satisfy a higher associativity
relation by a higher homotopy term, and this continues indefinitely in a similar way
as the Jacobiators of the L -algebra. These co-groups can be used to describe notions
of equivalence between objects that are less restrictive than the idea of isomorphism,
which is sometimes interesting because it can give rise to moduli spaces with a richer
geometric structure.

+ BV — BRST formalism constructs an L -algebroid A which models the reduced
phase space of a Lagrangian field theory with gauge symmetries [9]. The quantization
of such model is then performed in terms of the Feynmann path integral, which is
interpreted here as the map sending each closed element in the Chevalley-Eilenberg
algebra of A to its cohomology class.

+ There is a well-developed theory of principal bundles, Cartan-Ehresmann connec-
tions and invariant polynomials for L -algebras which can be used to define higher
Chern-Simmons theories [45]. Field theories as diverse as topological Yang-Mills
theory, the D’Auria-Fré formalism for supergravity and all AKSZ models, such as the
Poisson and Courant o-models, are particular instances of this general framework;
see [27] for a complete review of these models or [1], [48], [43] for some of the origi-
nal ideas.

3.3. QO-manifolds

In this section we present Q-manifolds, which are one of the most useful classes of
graded manifolds. Essentially, a Q-manifold is a graded manifold whose sheaf of functions
is a sheaf of differential graded algebras, the differential being given by a vector field Q.
This provides a unifying language for many different cohomology theories. Moreover, the
vector field Q induces on the Lie algebra Der C*(M) new algebraic operations via the
derived brackets studied in Section 3.1. In particular, a Q-manifold over a point is an L -
algebra, so Q-manifolds can be seen as their non-linear version. Many examples, such as
Poisson manifolds, Lie algebroids or Courant algebroids will appear throughout this work.

| Definition 3.13. A Q-manifold or dg-manifold is a graded manifold M equipped with
an homological vector field; that is, an odd vector field O with [Q,Q] = 20% = 0. If
the Z-grading on M is non-trivial we will also require w(Q) = 1 unless otherwise specified.
The Q-cohomology of M is the cohomology HE(M) of the complex defined by C* (M) and
0. A morphism of Q-manifolds or O-morphism is a morphism of graded manifolds
® : M — N such that Q 00" = ¢*00 .

We note that the condition Q% = 0 can be understood as an integrability condition on
O, following the final discussion in Section 2.4.

| Example 3.14 (L, -algebras as OQ-manifolds). It follows directly from our Definition
3.7 that a Q-manifold over a point ({s}, S*V*) is precisely an L -algebra structure on
V[-1]. L -algebras were originally defined in terms of the multilinear brackets presented
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in Section 3.1, but seeing them as Q-manifolds has some advantages. For example, it is
not very clear what a morphism between L -algebras in the infinite-number-of-brackets
definition is, because requiring that a map preserves all the brackets fails to capture the
homotopy nature of these objects. It turns out that considering Q-morphisms between
them is the appropriate notion at least when treating deformation problems, as it is done in
[33].

| Example 3.15 (De Rham Differential). Let M be an ordinary manifold and consider
M =T[1IM = (M,Q(M)). The exterior derivative of M, d;z = Y. dx* aia’ is a homo-
logical vector field of weight 1 on M. The Q-cohomology of M is precisely the de Rahm
cohomology of M. A O-morphism with another Q-manifold of this form is simply a mor-
phism of the underlying manifolds because Q(M) is locally generated as an algebra by
functions and exact forms, so graded algebra homomorphisms Q(M) — Q(N) preserving

d ;g are determined by their restriction C*(M) — C®(N).

More generally, note that for any graded manifold M with coordinates {x?}, and for any
k € Z the tangent bundle T'[k, 1]M with coordinates {x“, v*}, in the sense of Example 2.14
is a @-manifold with homological vector field given by

3]
0= Zvaax“'
a

As it has been previously mentioned (see Remark 2.20), C*®(T [k, 1] M) equals Q(M) as a
vector space but not as an algebra unless we consider the algebra structure arising from
the décalage isomorphism. Thus, the above Q does not equal the exterior derivative as we
defined it in Definition 2.21. Instead, it is the unique extension to an odd, degree k derivation
of C®(T[k, 1]M) (with the décalage grading) coinciding with the exterior derivative on
C*®(M). As before, O-morphisms in this case are just morphisms of the original graded
manifolds.

| Example 3.16 (Flat Connections). Let E — M be a vector bundle, and let V be a flat
connection on E. This means that it is a degree 1 derivation of Q(M; E) = QM) Q I'(E)
squaring to 0 with a local expression of the form

_ i 0 b o iza O
V=) dx P > Tt dx &
In particular, it is a homological vector field on the graded manifold £ :=T[1]M @ E[1] =
(M, QM) @ A*T'(E™)).

| Example 3.17 (Quotients of Q-manifolds). Consider a Lie group G acting on a Q-
manifold M in such a way that Q is preserved. That is, suppose we have a group homo-
morphism

@ :G-> Dif f(M)
g+ @,

where Di f f(M) is the group of invertible morphisms of graded manifolds M — M, and
that (p;(Q( )= Q(go; f),VgeG,Vf e C®(M). Then, under sufficient regularity condi-
tions, M /G = (M /G, C*®(M)/G) is again a Q-manifold.
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Take for example M = T[1]G = (G, (G)) with the homological vector field given by
the exterior derivative, as in Example 3.15. Then G acts on M by pulling back the differen-
tial forms by L,, the left multiplication by g € G. The quotient consists on a single point
where we consider left-invariant differential forms on G as functions. In other words, the
quotientis g[1] = ({*}, A*g*). Since d g = Y, dx' = a - commutes with pull-back, g[1] inher-
its a homological vector field Q. To compute it we notice that for a left-invariant one-form
a and left-invariant vector fields X, X| we have da(X, X|) = —a([ X, X;]), which means
that for & € g* we have Q(&) € A?g* acting as Q(&)(u, v) = —&([u, v]). That is, Q is (up to
a sign) the Chevalley-Eilenberg differential presented in Example 3.5.

| Example 3.18 (Action Lie Algebroid). Suppose G is a Lie group acting on some ordi-
nary manifold M. Then we have a Lie algebra homomorphism
p:g— D(TM)
ur- X,

sending each u € g to its fundamental vector vield X,. The above map has dual
pr i I(T*M) - ¢" ® C*(M)
a > p(a),

where p*(a)(4) = a(X,) for u € g. Consider M X g[1] = (M,C®(M)® A*g*). This graded
manifold is a Q-manifold if we define Q as the Chevalley-Eilenberg differential on elements
of A*g* and as p*(d f) for elements f € C®(M). Thatis, for f ® £ € C®(M) ® g* we
define O(f ® &) € A’g* ® C®(M) acting on u, v € g as

O(f ®&)u,v) = (Q(f)E + FOE)u, v) = =X, (f)E() + X,(/)Ew) + fE([u, v]).

In coordinates, if {e;}; is a basis of g with fundamental vector fields X; = X !“ﬁ and dual

basis {&'};, we have

Q———Z "5:/ +Z:'

i.j,k

= dCE + 2 éiXi = dCE + Z p*(dx
i a
where c = &k ([e;, e; ;1) are the structure constants of g. Thus,

Q*(f)(u,v) = 2 O(X(NENW, v) = =X (X, (fNE ) + X (X, (NNE W) + X, (NHE([u, v])

==X, (X,(/) + X, (X, () + X,y () =0,

which implies Q% = 0 in general, since Q*(¢) = dé (&) = 0for & € g*. This is an example
of a Lie algebroid, which we will study in Section 3.5 below.

| Example 3.19 (Equivariant Cohomology). Let M be an ordinary manifold endowed
with the action

@ : G — Dif f(M)
g @,
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of a compact, connected Lie group G. Consider M = g[2] X T[1]M, which has C®(M) =
S*g* ® Q(M). We think of elements = p® a € C*®(M) as polynomials on g with values
on Q(M) and say that they are equivariant if p(Ad,") @ a =p® %ltzo(p;;a. Equivalently,
we call equivariant those elements of C*(M) that are invariant under the action

d *
R (pa

g (p@®w=pAd)® T o

We have an odd vector field Q of weight 1 on M
O@)(v) = (d ~ 1y Yo (v),
where X, is the fundamental vector field generated by v. Notice
Q*(@)(v) = (d — 1y )(d — 1y Jo(v) = =Ly @(v),

which means precisely that Q*(w) = 0 for equivariant forms. In particular, we see that
N 1= (M, (S*g* @ Q(M))) is a Q-manifold, whose QO-cohomology is the Cartan model
for the equivariant cohomology of M.

| Example 3.20 (O-structure on Mor(N', M)). If (M, 0 ,,), (N, Q ) are Q-manifolds,
then the infinite-dimensional graded manifold M or(N', M) has a natural structure of Q-
manifold. As in Section 2.4, we cannot present this in a strictly precise way because we have
not defined infinite-dimensional graded manifolds, but we can give an intuitive idea of the
construction (details in [57]). If we see vector fields on M, N and Mor(N', M) as sections
of their tangent bundles instead of derivations of the sheaves of functions and we identify
the tangent bundle of Mor(N', M) at ¢ € Mor(N', M) with ¢*T M, then we define

0V (@) = 0" 04— 0.0,

where as usual the pull-back is defined as ¢*Q ,, = O ,,0¢ and the push-forward is defined
as @,0 v = d@ (Q ). Both pull-back and push-forward preserve the Lie bracket and thus
Q“\N/l is a homological vector field. The importance of this construction is that, for N' =
T[1]% and M a symplectic N Q-manifold, the graded manifold M or(N', M) is the space of
fields of AKSZ formalism [27], [9], as explained in Section 1.2.

As explained in Section 3.2, Maurer-Cartan elements on L —algebras usually represent
deformations of a structure of interest. In the language of O-manifolds we can interpret
Maurer-Cartan elements, at least formally, as zeroes of d-. Indeed, for an L  —algebra V,
a Maurer-Cartan element a € V] is precisely a point in V'[1] (meaning that a € (V'[1]),)
where the homological vector field d.; vanishes, because d¢ (&) = Y.~ &({-, ...,-},,) and
E({-s .t} € S™(V[1]*) canbe seen as a polynomial on (V'[1]), acting as a %5({@ G} ),
as in Section 2.1. For general O-manifolds, one should expect that the set of zeroes of O is
an appropriate model for some kind of non-linear theory of deformations. We do not delve
into this idea, which as of now has only been sketched in some places [47], [1]. In particu-
lar, notice that in Example 3.20 the set of zeroes of Qj\\//l is precisely the set of O-morphisms

@ N > M.

In all our examples O serves on M a role very similar to that of the exterior derivative
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on an ordinary manifold M: it sends a function f of degree 0 to something which resem-
bles a differential 1-form in that it can be evaluated at elements v of some space giving a
function that represents the variation of f along the Q-direction given by v. We will see
many other examples of Q-manifolds throughout this work, and this will still be the case,
so one can think of the homological vector field Q as a tool for measuring variations along
graded directions.

3.4. Graded Symplectic Manifolds

In this section we study symplectic forms in graded manifolds and the structure that
they give rise to. Ordinary symplectic manifolds are used to model phase spaces in classical
mechanics, while the first examples of graded symplectic manifolds appeared in the BRST
formalism as an attempt to generalize some of the nice properties of these models to more
complicated gauge theories by introducing ghost fields, which in our language are nothing
but functions of non-zero degree.

| Definition 3.21. A symplectic form in a graded manifold is a 2-form w of weight k and
parity e such that:

1. The map Der C®(M) — QI (M)[k, €] sending X to 1y is an isomorphism of graded
C®(M)-modules.

2. do=0.

As in the ordinary case, the existence of a symplectic form presents some restrictions on
the dimension of M. For each coordinate x’ of degree (/,7), the vector field % has degree
(=1,7), and the 1-form dx' has degree (I, ). Since these generate Der C®(M) and Q' (M),
respectively, the above isomorphism means that the dimension on each degree (/,#) must
coincide with the dimension on degree (—!/ + k, 1 + €). In particular, if @ is odd, the number
of even coordinates coincides with the number of odd coordinates. If  is even, the above
isomorphism restricts to the even parts of each module, so it induces an ordinary symplectic
form and thus the dimension on even coordinates must be an even integer.

Another consequence of the isomorphism in Definition 3.21 is that for every H € C*(M)
there exists some vector field X ;; with: x,® = —d H. Notice that w(X ) = wo(H) — k and
p(X ) = p(H) + €. This allows us to consider the following definition.

| Definition 3.22. A symplectic vector field is a vector field X such that Lyw = 0.
Equivalently, X is symplectic if diyw = 0. It is a Hamiltonian vector field if X = X for
some H € C®(M).

| Proposition 3.23. A symplectic form w of weight k # 0 is always exact. A symplectic
vector field X of weight /, with k + / # 0, is always Hamiltonian.

Proof.
Let E denote the Euler vector field from Definition 2.23. Then by Proposition 2.24,

ko =Lrw=1gdo+digw=digw
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and
(k + l)lXa) = £ElXa) = dlElXCl) + lElea) = dlElXa).

Thus, = d(k~'1zw) and 1y0 = —d(—(k + )7 i1y o). O

| Proposition 3.24. Let X,Y be symplectic vector fields. Then [X,Y] is a Hamiltonian
vector field with Hamiltonian function (—1)*?CO+r(Mgp(X | Y) .

Proof.
We use Proposition 2.22, 4 to see that

xy @ = [Lx.tylo = (ixd + diy)yo + (1P 4 d + diy)o
=diyiyo = d(o(Y, X))(_I)P(Y)€+P(X)(P(Y)+€) = —d(w(X, Y)(_l)e(P(XHP(Y))).

]
| Definition 3.25. Given f,g € C®(M) we define their Poisson bracket as the function

{f.8} = (=D)PIPOD(X . X,) = X ;(g) € C¥(M).

| Proposition 3.26. The Poisson bracket satisfies the following properties.

L w({f,g}) =w(f)+w(g —kand p({f,g}) = p(f) + p(g) +e.
2. [X; X=X/

3. {f,g} = —(=1)erPINetrel e £},

4. {f.gh) = {f,gth+ (=1)P@CPDg(f h}.

5. {f.{g-h}} = {{f. g}, b} + (=1)P+IPE&H+) g { f h}).

6. {f,g} =0Vg € C®(M) & f locally constant.

In particular, (C®(M), {-,-}) is a Poisson superalgebra if @ is even and a Gerstenhaber
algebra if w is odd, and part of parity ¢ of C*®(M) is an ordinary Lie algebra under the
Poisson bracket.

Proof.
1 is immediate, 2 follows from Proposition 3.24 and 3 follows from skew-symmetry of
o. For 4, note that d(gh) = (dg)h + g(dh) implies X,;, = (—l)ep(h)Xgh +gX,, so
{f.gh} = (_1)6(1)(f)+p(g)+P(h))w(Xf’ Xgh)
=(- 1)€(P(f)+p(g))w(Xf’ Xg)h + (_1)6(p(f)+p(g)+p(h))+p(g)p(f)gw(Xf, X,)
= {f.glh+ (=)@ Dg(f, h).
To prove 5, we extend 0 = dw(X s, X,, X}) using Proposition 2.22 6:

0= (=DY* X (0(X,, X)) + (=DETHX (0(X f, X)) + (=) (w(X 1, X))
—o([X 1, X1, X)) + (=D ([ X, X1, X ) + (- DEPUHOH (X, X1 X )
= (=) FsHrOe £ fe Y}y + (=) TR g {f R} ) + (=DM O 1 e))
+ (=D rEHhrOetl g ey Yy + (=D)L f R, g) + (=) EFhrOrerl e py )
= 2(-D)VrEthrae (£ Lg h}} — {{f. g}, h} — ()M &+ (g (£ h}Y),
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which gives the desired result. Finally, 6 follows from X ;(g) =0Vg € C®(M) & —d f =
leCl) = 0 D

| Remark 3.27. Proposition 3.23 implies that when k # O the space C,‘C’f’e(./\/l) describes all
infinitesimal symplectic transformations of (M, @), which are given by symplectic vector
fields preserving weight and parity. Moreover, Proposition 3.26 implies that the Poisson
bracket restricts to C,‘:’E(M) and represents the commutator of the corresponding vector
fields. This means that (C]‘:’E(M), {-,-}) is the Lie algebra of the group of automorphisms of
M preserving w.

| Remark 3.28. If {&'}; U {p;}; are coordinates on M such that w = Y, dp;d&', then a
quick computation shows that

(.8 =pp) =0, {pp &) = 5y(= 1P,

For the sake of completeness, we also include the following definition.

| Definition 3.29. A graded manifold M is a Poisson (graded) manifold if C®(M) is
a sheaf of Poisson algebras. A morphism between Poisson manifolds is a Poisson map if it
preserves the Poisson bracket.

If (M, w) is a symplectic graded manifold and i : N' — M is a submanifold, then we
can pull-back TM and @ € A?T(T*M) along i to obtain i*w € A?T'(i*T*M) , where
the exterior product is as C ©(N)-module, see Section 2.1, and the sheaf of sections of a
graded vector bundle is as defined in Example 2.13. There is also an injection of vector
bundles TN — i*T M, so we may see [(TN) C I'(i*TM). If N is modelled on the
free supercommutative algebra A and has N as underlying manifold, the localization of
i*(T*M) at each p € N is an A-module where j*®,, is a non-degenerate super skew-
symmetric bilinear map. Thus, we can write ['(T,N)® C I'(i*T,M) for the orthogonal
complement with respect to i*w.

| Definition 3.30.  With the notation from the previous paragraph, a submanifoldi : N' —
M of a graded symplectic manifold (M, w) is

1. isotropic if T(T,N) c (T,N)” Vp € N,
2. coisotropic if T(TN)? cI(TN) Vp€E N,
3. Lagrangian if T(TN)=T(TN)® ¥p€&€ N,

4. symplectic if T(TN)NT(TN)” =0 Vp € N.

The combination of symplectic manifolds and O-manifolds seems to be a powerful tool
in applications to field theories. If we have a graded symplectic manifold M and we con-
sider an odd Hamiltonian vector field O with Q2 = 0 and w(Q) = 1, let S € C®(M)
be its Hamiltonian function. This means that Q(g) = {5, g}, so we have w(S) = 1 + k,
p(S) = € + 1, and we see that [Q, O] = 0 is equivalent to {.5,.S} being locally constant
by Proposition 3.26. But constants have weight and parity zero, and w({.S,S}) = k + 2,
p({S,S}) = €. Thus, when € # 0 or k # —2, .S must solve the Classical master equation
{S,S} = 0. In any case, {S,} is a differential on C*®(M), so it gives rise to a derived
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bracket as in Section 3.1.

If such Q = {S, -} exists, we say that a submanifold i : N' = M is Q-isotropic (resp., Q-
coisotropic, Q-Lagrangian, Q-symplectic) if N is isotropic (resp., coisotropic, etc.), N
is a Q-manifold and i is a Q-morphism. OQ-Lagrangian submanifolds are called A-structures
in [48], where their role in o-models having M as target space is studied.

| Example 3.31 (Poisson Manifolds). Let M be an ordinary manifold and consider the
graded manifold M = T*[1]M = (M,I'(A*T M)). We can define an odd symplectic form
of weight 1 which in local coordinates (x', p;) can be written as w = dp,dx’, where x' are
the base coordinates and p; are the fiber coordinates of T* M. This means that {x',x/} =
{p;»p;} = 0and {p;,x'} = §;;. Thus, if X,Y € C*(M) = I(TM) and f € C(M) =
C*® (M), we obtain

{(X.f1=X(f) X Y}Lf}=[X.Y](D.

This shows that the Poisson bracket in this example coincides with the Schouten bracket
for multivector fields, since it is the only possible extension of the above relations mak-
ing C*(M) a Gerstenhaber algebra. Recall that in Example 3.4 we said that an element
7 € T(A*’T M) induces via derived brackets a Poisson bracket on C®(M) if and only if
{z,z} =0, for {-, -} the Schouten bracket. With this new persepective, we can say that a
degree 2 solution to the classical master equation on T*[1]1M is equivalent to a Poisson tensor
on M.

Note that isotropic (resp. coisotropic, etc.) submanifolds of T*[1]M are not in bijection
with ordinary isotropic (resp. coisotropic, etc.) submanifolds of T* M because morphisms
of graded manifoldsi : N' — M are required to preserve the grading; we will study this in
more detail in Remark 4.12. It is also interesting to notice that 1-forms @ on M correspond
to odd vector fields 1, of weight —1 on M with 1, being symplectic whenever « is closed
and Hamiltonian whenever « is exact (compare with Proposition 3.23).

| Example 3.32 (Cotangent Bundles are Symplectic). Example 3.31 admits the follow-
ing generalization. If M is any graded manifold, then T*[k, ] M is a symplectic graded
manifold, with w of degree k and parity e. If {£'}; are coordinates on M of arbitrary pari-
ties and weights, then T*[k, €] M has coordinates {&, p;}; with deg(p,) = k — deg(£") and
p(p;) = € —deg(&;) and we can write w as

w=dpdE'.

This is globally well-defined because the computations are the same as for ordinary cotan-
gent bundles. Notice C®(T*[k, e]M) = S*(Der C*®(M)[—k, €]) as C*(M )-modules but
with the algebra structure coming from the décalage isomorphism (see Remarks 2.7 and
2.20), and the Poisson bracket on T*[k, €] M extends the relations { X, f} = X(f), {{X, Y}, f} =
[X, Y](f) through Leibniz’s rule with respect to this algebra structure.

As in ordinary symplectic geometry, for X = f"(‘f)a%‘ a vector field on M we can define
its Hamiltonian lift as the vector field X on T*[k, €] M defined by XL = {+f.(&)p;, -},

with the appropriate signs so that X L coincides with X on C®(M) C C®(T*[k, e]M).
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Note w(Xt) = w(X) and p(XT) = p(X). As usual, one can easily check using the Pois-
son bracket that [X©, Y] = [X, Y] so, in particular, if M has a homological vector field
O then its Hamiltonian lift QL is also Hamiltonian. In conclusion, for M a Q-manifold,
the graded manifold T*[k, €] M is canonically a symplectic Q-manifold. Moreover, any
H € C®(M) with p(H) = ¢ + 1 and Q(H) = 0 defines a new homological vector field on
T*[k,elM as QL + {H, -}.

| Example 3.33 (BRST Formalism). As a particular case of Example 3.32 and recalling
Example 3.18, consider an ordinary manifold M with the action of a Lie group G. Let
E = M x g with coordinates {x%, &'} and define M = T*[2, 1]E[1] with coordinates
{x?, &, p,, p;}, which is a graded manifold with an odd symplectic form of degree 2. Because
E is a trivial vector bundle, C®(T*[2,1]E[1]) = A*¢* ® S*g ® A*I'(T' M) in a canonical
way (otherwise we would need a connection to define a horizontal distribution on T'E). The
non-zero relations defining the Poisson bracket are, for f € C*(M), X e I'TM), & € ¢g*
and v € g,

(X, f}=-{f.X}=X(f), {v.¢} =—{&, v} = &)

Now E[1] has a homological vector field (see Example 3.18) which lifts to M as explained
in Example 3.32. That is, its lift is the homological vector field with Hamiltonian

_1 k gigj iya
S'_Ezci’jgfpk-i-;g)(ipa‘

i.j.k

In an invariant form, S = S, + .5, € (A’g* ® g) ® (g* @ [(TM)) acts on A’g @ g* as
S, v,8) = &([u,v]) and acts on ¢ @ T*M as S,(v, @) = +a(X,). The parities have been
assigned in such a way that S is even and so, forany H € C®*(M), Sy := S+ H is
again an even function giving rise to an odd Hamiltonian vector field. .S;; solves the master
equation and thus induces a homological vector field on M precisely when {S, H} = 0;
that is, when H is invariant under the action of G.

If M was originally the space of fields of some field theory with an action functional H
invariant by the action of a Lie group with Lie algebra g, then BRST formalism substi-
tutes M by the data (T*[2, 1]E[1], w, S} ), thought of as a model for the reduced space
of fields. This is an example of a BV manifold [9]; that is, a supermanifold with an odd
symplectic form and a Hamiltonia homological vector field. BV manifolds constitute the
classical data of Batalin-Vilkovsky formalism. As explained in Section 1.2, AKSZ formalism
is a field theory whose space of fields is the graded manifold M or(T[1]Z, M), for Z an ordi-
nary (k + 1)-dimensional manifold and (M, w, Q) a symplectic O-manifold with w(w) = k;
in this formalism, M or(T[1]Z, M) is also a BV manifold with homological vector field con-
structed as in Example 3.20.

I Example 3.34 (T*[2] ® (E & E*)[1]). Let E - M be an ordinary vector bundle with a
connection V : I'(E) —» I'(T*M ® E) and consider the graded manifold

MY =T*[2]1 @ (E ® E")[1] = (M,[(A*(E ® E") ® S*TM)).

This is similar to Example 3.33, but in a non-trivial vector bundle and with different parities
on the momenta. The connection V (which we have not used yet) induces a metric con-
nection still denoted by V on E @ E* with its canonical pairing (which we denote in the
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following by (-, -)) as
d(&(e)) = c(Vxe) + (Vxo)(e)

for e € I'(E) and & € T'(E*). This allows us to define the following relations on C®(MY):
For f € C*(M), s;,s, eI(E@® E*)and X,Y € I'(TM),

{515} = (51, 52), {X,f}=X(),
{X,s1} =Vysy, {X,Y} =[X,Y]-Q(X.,Y),

where Q(X,Y) € I'(A2(E @ E*)) is the curvature of the metric connection V. These re-
lations extend in a unique way to a non-degenerate even Poisson bracket of degree —2 on
C®(MYV), so this is also a symplectic graded manifold. We do not present here the proof
because we will perform it in Proposition 4.13 below in a slightly more general context.

3.5. N-manifolds and Lie Algebroids

In this section we study a particular class of graded manifolds called N-manifolds.
Their structure is such that phenomena as the one in Example 2.17 cannot happen and so
they can indeed be thought as fiber bundles in some sense. However, in general they are not
vector bundles and the best way to understand their structure is a combination of the graded
approach and the fiber bundle one. We will also prove Vaintrob’s Theorem characterizing
Lie algebroids as N Q-manifolds of degree 1.

| Definition 3.35.  An N-manifold M is a graded manifold in which there is only nonzero
dimension on positive weights, and where parity equals weight mod 2. An N Q-manifold
is an N -manifold with a homological vector field Q. A symplectic N QO-manifold is an
N Q-manifold with a symplectic structure such that Q is Hamiltonian.

In the context of N-manifolds we use the word degree for the weight of each element,
which also identifies its parity, and we say that the degree of M is d if this is the maximum
degree on which the dimension of M is nonzero. We denote by A* = C (M) the space of
degree k functions on M and by A, the graded algebra that A,....A* generate.

The main observation is that on an N-manifold one can only obtain degree k functions
by operating with functions of degree less than or equal to k. Thus, for example, a degree
1 N-manifold M = (M, C®(M)) is always isomorphic as a graded manifold to E[1] for a
canonical vector bundle E — M. To see this we can go back to Definition 2.10 and see that
we have a covering {U,}, of M and morphisms ¢, : C®(V,) = C®(V,) ® A*R™ (where
v, =,C °°(M)|Ua)) such that the coordinate changes induce isomorphisms of graded
algebras

Pup : CO(Vp) @ AR™ = CX(V,) ® A*R".

Now such an isomorphism must respect the degrees, and the only way to do this is by send-
ing C*(V}) functions to C*(V,) functions and applying a linear transformation (possibly
depending on the degree O-part) to the degree 1 coordinates, which defines precisely the
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transition morphisms of a vector bundle E with M = E[1], as claimed. If the degree of an
N -manifold M is 2, then the coordinate transformations

Pap  C¥(Vp) ® A'R™ @ S*R™ — C¥(V,) @ A*R™ @ S*R™.

must respect the preceeding remarks in degree 0 and 1, but have slightly more freedom in
degree 2. Namely, one can obtain a degree 2 function by multiplying two degree 1 functions.
This translates to the fact that M, := (M, .A,) is an N-manifold of degree 1, and M
can be seen as an affine bundle over M, in a similar way as in Example 2.13 but with
affine coordinate changes A, R R™ — C*(V,) @ A*R™ @ R™ sending each coordinate
z' € R™ to A’r’sérfs + ,u;.zJ for some 4, ;, y;; € C*(V,), where {{"}, are coordinates on
R™ . If E — M is the vector bundle such that A! = I'(E*), we can also see .42 as sections of
an affine bundle over the ordinary manifold A E*. For a general N-manifold M of degree
d, what we have is a tower of fibrations

M=Md_>Md_1_)..._)Mz_)Ml_)M():M,

where M, := (M, A,;) and each arrow represents an affine bundle projection; except for
the last one, which is a vector bundle projection. Thus, M — M is a polynomial bundle.
Notice A* = A,/ A,_,, and the above tower corresponds to the filtering

COO(M) = Ad D) Ad—] D...D Az D A] ) AO = COO(M)

We also notice that these .A* and A, are locally free sheaves of C*(M )-modules and thus
they correspond to the sheaf of sections of some vector bundle over M in a non-canonical
way.

In [59], Voronov constructs a canonical linear model for M. This is a vector bundle
E — M containing in some sense all the information of M. Its sections can be canonically
identified with Der 5 C*(M) (note Der_y S*V * is finite-dimensional as an R-vector space
for V' non-negatively graded). This can be used to interpret a homological vector field on
M via the algebraic operations that it defines on E through higher derived brackets, as in
the construction of the brackets on an L -algebra in Section 3.2. Recall that one of the key
ideas in that construction was that V[1] = Der_; S*(V[1])* for non-graded V, so this is
a natural generalization. The main motivation for this study is Vaintrob’s Theorem 3.37,
which we prove below. Before that we need Definition 3.36.

| Definition 3.36. A Lie algebroid is a vector bundle E — M over an ordinary manifold
M endowed with a C®(M)-linear anchor a : I'(E) - I'(T M) and a R-linear bracket
[-,-] : T(E)®T'(E) = I'(E) such that:

1. ('(E),[-,]) is pointwise a Lie algebra.
2. le, fesl = ale))(fles + fley,ey] for f € C®(M) and ey, e, € I'(E).
An important consequence of this definition is that a([e|, e,]) = [a(e), a(e,)] fore;, e, €

I'(E), which follows easily from the Jacobi identity and Leibniz’s rule (we present this com-
putation in a similar context in Proposition 4.3 below).
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Trivial examples of Lie algebroids are TM (or any integrable distribution on T M) with
the identity as anchor and the ordinary bracket of vector fields or bundles of Lie algebras
with null anchor. For g a Lie algebra, T M @ (M X g) is also a Lie algebroid with anchor the
projection onto T M and bracket

(X®v,Y®u] :=[X,Y]B (X —-Y@)+[v,w)]), X, Y el TM), u,veI'(M Xg).

More interestingly, if G is a Lie group acting on a manifold M, then the trivial vector bundle
M X g is a Lie algebroid with anchor the map sending each v € g to its fundamental
vector field X,. As we saw in Example 3.18, this structure can be interpreted in terms of a
homological vector field. It turns out that this is always the case:

| Theorem 3.37 (Vaintrob, [53]). For any vector bundle E — M, there is a one-to-one
correspondence between the following objects.

1. Lie algebroid structures on E.
2. Homological vector fields of degree 1 on E[1].

3. Poisson structures of degree —1 on E*[1].

In particular,there is a one-to-one correspondence between Lie algebroids, N Q-manifolds of
degree 1 and Poisson N -manifolds of degree 1 with Poisson bracket of degree —1.

Proof.

The last part will follow from the rest because we already know that an N-manifold of
degree 1 corresponds to a vector bundle E — M in such a way that C*(M) = I'(A*E™);
that is, M = E[1]. In particular, derivations of C®(M) of degree —1 are determined by
their restrictions X : ['(E*) - C*(M), which must satisfy X(fe) = fX(e) for f €
C®(M), e € I'(E*). In other words, as it was the case with L -algebras, Der_; C*(M) =
I[IT(E)** =IIT(E) is an abelian subalgebra of Der C*(M).

A homological vector field Q on E[1] induces a derived bracket [-, ], on DerI'(A*E™)
which leaves III'(E) invariant if deg O = 1. Applying Proposition 3.2, we obtain an ordi-
nary Lie algebra structure [, -], on I'(E) via

lej, ez]Q =—[[0,e;], e;].

The anchor is similarly defined: notice that for e € I'(E) we have —[Q, e] € Dery C®(M)
and thus —[Q, e] restricts to an ordinary derivation of C*(M), which we call aj(e). Leib-
niz’s rule for Lie algebroids is now immediate from the properties of the Lie bracket:

[el,fez]Q = —[[Q,eﬂ,fez] = —[Q,e1](f)ez - f[[Q,el],ez] = aQ(el)(f)eZ + f[el,ez]Q-

Conversely, given a Lie algebroid structure ([-, -], ag) on E, we definea Q € DerI'(A*E™)
of degree 1 by

O(f)e) = —ag(e)(f),
0(&)(ey,ey) = E(leg,ex]p) —ap(e))(&(ey)) + ag(ey)(E(ey)),
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for f € C*(M) and & € I'(E*). It is quickly verified that Q(f¢&) = Q(f)E + fQO(€), so this

is indeed a well-defined derivation. Moreover,

ag(e)(f) = —[Q, el(f) = —e(Q(f)) = —Q(f)(e) = ag(e)(f).

And, for any & € T'(E™),

S(ler, e2l) = —E([1Q; €], e2]) = —[[Q, €], €,1(8) = —(Qe; + €,Q)es(8) + ex(Qe; + e,0)(E)
= —0(&(ex))(ey) + Q(&(er))(er) + ey(e1(Q(S)))
= ag(e)(&(er)) —agp(er)(E(er)) + Q(6)(ey, er) = &([ey, e2] ).

This shows that the constructions we have given are inverse to each other. If {e;}; are a
local basis of sections of E with dual basis {£'}, the way to write Q in coordinates is

1 iej 0 :
0=-3 %cﬁ,é gt Zé agle,),

where [e;, e;]p = cl.kjek. Notice the similarity with Examples 3.18 and 3.33. Thus, we see
that Q% = 0 because, for f € C*(M),

Q*(f)(ey,e5) = Q(f )ley, €2l p) — ap(e(Q(S)(er)) + ap(e)(Q(f)ey))
= —ag([er, e2]p)(f) + ap(e)ap(er)(f)) — ag(ey)(ag(e)(f)) =0

and Q acts on each element of the dual basis {£'}; as the pointwise Chevalley-Eilenberg dif-
ferential, so it squares to zero on these. This implies 0?=0in general because Q satisfies
Leibniz’s rule and I'(A* E*) is locally generated as an algebra by C®(M) ® span{&'}..

In order to complete the proof, we simply notice that Poisson brackets of degree —1 on
E*[1] are determined by a Lie algebra structure on I'(E) and an action of I'(E) on C*(M)
satisfying

{er, fey} ={ey, flep + fleg, e},

which is then extended to all of I'(A* E) through Leibniz’s rule. This is precisely the data of
a Lie algebroid structure on E if we define a(e|)f = {e;, f} and {e|,e,} = [e}, e,]. O

Theorem 3.37 suggests different ways in which Lie algebroids can be generalized:

1. An L -algebroid or Lie n-algebroid [46] is a vector bundle E — M with a ho-
mological vector field of arbitrary degree on E[1]. This amounts to a fiberwise L, -
algebra structure and a sequence of multilinear anchors EQ...® E — T'M satisfying
Leibniz rules on each argument with appropriate signs.

2. A non-linear Lie algebroid [59] is an N Q-manifold M of arbitrary degree. As pre-
viously stated, these can be interpreted through the canonically associated vector
bundle Der_yC*®(M) — M, where Q defines algebraic operations satisfying a com-
plicated list of axioms through derived brackets.
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3. A k-fold Lie algebroid (or double, triple, etc. Lie algebroid) [56] is a k-fold vec-
tor bundle £ as in Example 2.15 with k different vector fields Qy, ..., O, such that
wi(Qj) =6 for w; the weights on £ and [0;.0;] = 0,fori,j=1,..,k. Fork =2
this is equivalent to a commuting square of vector bundles with Lie algebroid struc-
tures on the top and left arows that are compatible in a sense that will be discussed
in detail in Examples 4.8 and 4.25.

These three notions are closely related. A k-fold Lie algebroid is a particular case of a
non-linear Lie algebroid, since £ is an N Q-manifold with grading w, + ... + w,; and ho-
mological vector field Q, + ... + O, (in fact, one may take any other linear combination).
Moreover, as we know, an N Q-manifold M — M can be identified in a non canonical
way with a vector bundle E — M, as it happens with every graded manifold by Batch-
elor’s Theorem. It turns out that the homological vector field O induces a non canonical
L -algebroid strucure on E, only defined up to L -morphism [59]. In some sense which is
still not clearly understood, non-linear Lie algebroids and L -algebroids contain the same
information.

In the next chapter we will present Courant algebroids and prove Roytenberg’s Theorem
characterizing them as symplectic N Q-manifolds of degree 2. Their relation with L -
algebras is described in Remark 4.2, and Courant algebroids arising as double Lie algebroids
are studied in Examples 4.8 and 4.25. In any case, Courant algebroids can be seen as a
higher analog of Lie algebroids, and this point of view seems to be useful in order to extend
some of the work on Lie algebroids to Courant algebroids, such as representation theory
[7], Chern-Simmons theory [49] or integration to Lie groupoids [51].






CHAPTER 4

The Severa-Roytenberg
correspondence

In this chapter we prove Roytenberg’s Theorem on the correspondence between Courant
algebroids and symplectic N O-manifolds of degree 2 and we interpret some objects from
generalized Riemannian geometry in terms of this correspondence. In Section 4.1 we intro-
duce Courant algebroids and present the first examples. In Section 4.2 we start the proof of
the Severa-Roytenberg correspondence by characterizing symplectic N -manifolds of de-
gree 1 and 2 as ordinary manifolds M and pseudo-Eculidean vector bundles E, respectively.
The proof is concluded in Section 4.3, where it is shown that an additional Hamiltonia ho-
mological vector field on the corresponding graded manifolds is equivalent to a structure
of, respectively, Poisson manifold on M and Courant algebroid on E. In Section 4.4 we show
how the language of graded geometry uncovers some properties of Courant algebroids by
studying the concrete examples of exact Courant algebroids and Drinfeld doubles of Lie
bialgebroids. Section 4.5 serves as an introduction to the basic tools of generalized Rie-
mannian geometry as introduced by Hitchin [26] and in Section 4.6 we construct a graded
Poisson manifold which allows to interpret notions of generalized Riemannian geometry
from a new perspective. In particular, we obtain Bianchi identities for the curvature of a
generalized connection in this way.

4.1. Courant Algebroids

In this section we introduce the notion of Courant algebroid and we present the main
examples of such objects. Courant algebroids are the central object in generalized geometry:
if differential geometry studies differentiable manifolds M primarily through constructions
on its tangent space T'M, generalized geometry uses the bundle TM @ T*M instead, the
motivation being second-dimensional variational problems, as explained in Section 1.1. This
vector bundle has a rich structure which is encoded in the axioms of Courant algebroids.

| Definition4.1. A Courant algebroid is a vector bundle E — M endowed with C*(M)-
linear operationsa : I'(E) - I'(T M) (the anchor) and (-,-) : T(E) @T'(E) » C®(M) (the
pairing) and an R-linear operation [-,-] : T'(E) @ I'(E) — I'(E) (the Dorfman bracket)
such that, fore,e,,e; €I'(E) and f € C*(M),

41
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~

. {+,-) is symmetric and non-degenerate,

NS

. a(e))({ey, e3)) = (ley, eyl e3) + (e, [eg, e3]),

SN

. [eq.[en, e5]] = [[eg, eyl e3] + [es, [eg, 511,
4. [e, fey]l = ale))(f)ey + fley,e,l,

5. [el, ez] + [ez, e]] = dE<el’ e2>’

where d, := koa*d for d the exterior derivative, a* the dual map of a andx : E — E*
the isomorphism induced by (-,-). A morphism of Courant algebroids E, — M, and
E, > M, isapair(f,p) withf : M > M, aC® mapand ¢ : E; - f*E, an orthogonal
C*®(M)-linear map preserving [-,-] and a.

In the following we shall identify I'(E) and I'(E*) through (-, -) without explicitely men-
tioning the isomorphism «.

| Remark 4.2. In some early works such as [11], [37], [41], Courant algebroids were de-
fined in terms of the skew-symmetrization of the Dorfman bracket [-, -]

fei,ex] = % (Ler.ex] — [eg.€1) = [ey. €3] — %dﬂel’ez)’

which is called the Courant bracket. It is now generally accepted that the Dorfman bracket
[-,-] is more fundamental: it satisfies the Jacobi identity and a Leibniz rule, the pairing
on E is [-,-]-invariant in the sense of 2 and it appears naturally in the Severa-Roytenberg
correspondence. However, it is interesting to note that the defect of the Courant bracket
[, -] on satisfying the Jacobi identity is

[fei.exl.es] — [ley ezl ex] + [ ey, es],ei] = _%dE (<Ze]’3219 e3) —(ley,e3l.ex) + ([’ez,eﬂ,el)) ,

which is obtained by writing

1
[le.ex),es] =[[eg,ex),e3] — EdE<Zel’e21’e3>

and using the Jacobi identity for [-, -]. If we consider the graded vector space V' = C*(M)[1]6®
I'(E) and define superskew-symmetric R-linear maps /, : ve S Vfork = 1,23,
fEeEC®(M)and e, ey, e; €I'(E)as

L(f)=dg(f),
lr(ey, f) = ale)(f),

ly(ey,ex) = [ey, er],
1
13(91, €2, 63) = __CYC1<lel’ 6215 e3>
6123
and zero otherwise, then we claim that /,, /5, /5 are the brackets of an L -algebra structure

on V. If J" is the rth jacobiator of the brackets /;, the computation above says precisely that
J3(e;, ey, e3) = 0. The fact that J! = 0 is simply di_ = 0, which is obvious, while J = 0
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and J3(f,, ey, e;) = 0 follow easily from Property 3 in Lemma 4.3 below. Then J* = 0 is
obtained by writing the above measurement of the Jacobi identity for [-, -] as

13(12(e1, ez), es, 94) - 13(12(815 83)5 €, 94) + 13(12(e2, e3), e, e4) = —12(13(e1, e, 93), 94)

and J° = 0 is a bit more technical; the proof can be found in [41]. Recall that for finite-
dimensional L -algebras we constructed a corresponding Q-manifold over a point; the
analog for this infinite-dimensional L -algebra is the Q-manifold over M that is given by
Roytenberg’s Theorem 4.21.

| Lemma 4.3. Let E - M be a Courant algebroid. Then, the following properties are
satisfied for e, e, €I'(E), f,g € C*(M)and v;,v, e [(T*M):

1. [a(e;), a(ey)] = a([ey, e5]).

2. aa*v; = 0. In particular, (a*v,,a*v,) = [a*v;,a*v,] = 0.

3. [ep,a*vi] = a"Lye v

4. [a*v, e\l = =a"1,,yd v,

5. [fer,ges] = feler, ex] + fale))(@)es — gale)(fley + (e, gen)d i f,

where L y is the Lie derivative along X and 7y is the contraction with Y.

Proof.
From 4 and 3 of Definition 4.1 we obtain

a([el, ez])(f)e3 = [[ey, e,], f€3] - f[[ep e, 63]
= [91, [ez, fe3]] - [ez, [31, fe3]] - f[ep [ez, e3]] + f[ez, [31, 93]]

= [ey, aler)(f)es + fley, e3]] — ey, ale))(fes + fley, e3]] — fley, [ex, e3]] + fley, [e, €3]]

= la(ey), a(ex))(fe; + alex)(Nley, e3]+ [ey, flep, el]
—a(e)(f)ley.e3] = ey, fley, es] = fley. ey, esl + fley. ey, e3]
= [a(el), a(ez)](f)e?)‘

Now in a local frame {&'}; with dual frame {&'}; (that is, (¢/,&/) = §, ;) we use 5 to obtain,
for any f € C®(M),

ad*df = a(dg(f&, &) = a(f&. & D +a(), f&D =0,

which implies aa* = 0 in general by C*® (M )-linearity of the anchor. Then isotropy of a* is
immediate because (a*v,, a*v,) = v,(a(a*v,)). Notice then that

a([ey, a*v,]) = [a(e,), aa*v,] = 0, a([a*vy, e;]) = [aa”vy,a(ey)] =0
and so, using 2 from Definition 4.1,

([a*vy,a* vyl e5) = a(a@*v))((a* vy, e5)) — (a*v,, [a* vy, e,]) = —vy(a([a™vy, e,]) = 0,
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which implies [a*v;, a*v,] = 0. Using 2 again,

<[e1, a*V1]a €2> = 0(31)(<0*V1, ez)) - <a*V1, ley, e2]> = a(e))(vi(aley))) — vi(a(ley, e3]))

= ,Ca(el)vl(a(ez))
And then using 5,

([a*vi, el ep) = —(leg, a*vi],e) + ale))((a* vy, e))) = _Ea(el)vl(a(ez)) +ate)(v(aley)))
= —d\/l (a(e] )9 a(ez))'

The last property follows directly from 4 and 5 in Definition 4.1. O

| Example 4.4 (Quadratic Lie Algebras). If M = {«} isapoint, then a Courant algebroid
over M is a vector space V with a pseudo-Euclidean metric (-, -) and a Lie bracket [-, -] such
that

0 = (luy, upl, uz) + (uy, [uy, uzl).

This is a quadratic Lie algebra, as in Example 3.8. The pairing (-, -) can be seen as a
symplectic form of degree 2 on V[1]; its corresponding Poisson bracket is the extension
of {-,-) to A*V* through Leibniz’s rule. Recall the Cartan 3-form y € A3V* defined by
u(uy, uy, u3) = ([uy,uy], us). It is interesting to notice that

{/4,“3}(’41,”2) = M(ul,uz,u3) = ([”15”2],143) = dCEu3(ul,u2),

so the Chevalley-Eilenberg differential is Hamiltonian with respect to this symplectic struc-
ture and u is its Hamiltonian function. In Example 3.8 we saw that dppu = 0, which now
takes the form {u, u} = 0. Finally, notice that [u;,u,] = u(u;,u,, -), which means that the
Lie bracket can be expressed in terms of y as

[y up] = {{pup },uy b

Roytenberg’s Theorem generalizes these ideas to arbitrary Courant algebroids. Note that
the L -algebra constructed in Remark 4.2 coincides in this case with the string Lie 2-algebra
from Example 3.8.

| Example 4.5 (Dorfman Bracket). For M any C*® manifold, consider the vector bundle
E :=TM @®T*M — M. There is a canonical non-degenerate pairing on E; namely, for
X, Yel'TM)anda,p €eI(T*M),

(X +a,Y+p) :=aY)+ p(X).
Moreover, there is a canonical choice for an anchor:

a:T(TM)®T(T*M) - (T M)
X+a- X.

The Dorfman bracket is the following operation on I'(E):

(X +a,Y+plp=[X.Y]+Lyf—1yda,
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where [, -] is the Lie bracket of vector fields. This bracket is suggested by relations 3 and
4 from Lemma 4.3 and motivated by the discussion in Section 1.1. We claim that these
operations endow E with the structure of a Courant algebroid. First, recall that 1y y; =
[Ly.1y] and compute

([ X+a, Y+l Z+7)+ Y +p,[X+a,Z+ylg) =
=yxy)y tiz(Lxf—iyda)+ix B+ i1y(Lxy —i1zda)
=Lyiyy + Lxizf=1xd(y(Y) + p(2)).

For the Jacobi identity we also recall £y y; = [Lx, Ly] and we see

[([X+a,Y + Bl Z+ylg+ Y+ 0. [X+a,Z +ylplg =
=[[X, Y]+ Lyf—1yda, Z+ylg+[Y +0,[X,Z]+Lyy —1,dalg
=[[X,YLZ]l+ Lixyy —12d(Lxf —1yda)

+ Y X, ZN + Ly(Lxy —1zda) —1x 7)dP

=[X,[Y,Z]]+ LxLyy — Lxizdp — Lyizda +1,diyda
=[X,[Y,Z]l+ Lx(Lyy —1df) — 1y 7z da
=[X+a[Y+0.Z+y]lE.

Then

(X +a, [+ =X, Y1+ Lx(fP)—1yyda= fIX+a, Y + Blg+ X(NY + X(f)B
=aX+a)Y +p)+ fIX+a,Y +plg.

and finally
[X+a,Y+Plp+[Y+B, X+algp=Lyp—1yda+ Lya—i1ydf =d(f(X)+ a(Y)),

which concludes the proof because in this case it is clear that d; = d.

This example (or, more precisely, its skew-symmetrization) is the structure that Courant
studied in [11] for a unified treatment of closed 2-forms (presymplectic forms) and Pois-
son tensors on M which eventually gave Courant algebroids their name, although previous
work by Dorfman [14] had already dealt with these same ideas. Almost Dirac structures
were defined as isotropic subbundles L C TM @ T*M with rank(L) = dim M and Dirac
structures as almost Dirac structures that are closed under the Dorfman bracket. Bivectors
« and two-forms @ have naturally associated almost Dirac structures L, = {a+1,7 : @ €
T*M}and L, = {X +1yw : X € TM}, and it is not hard to see that L and L, are in
fact Dirac structures if and only if [z, 7] = 0 or dw = 0, respectively.

| Definition 4.6. A Courant algebroid E is transitive if its anchor is surjective. It is exact
if the canonical sequence
a* a
0-T"M - E—->TM -0
is exact. An almost Dirac structure on E is a maximal isotropic subbundle L C E and a

Dirac structure on E is an almost Dirac structure that is closed under the Dorfman bracket.
Equivalently, a Dirac structure is a subbundle L C E such that (L, a,[-,-]g) is a Lie algebroid.
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| Example4.7 (Exact Courant Algebroids). Asit is clear from the definition, any Courant
algebroid structure over T M @ T* M with its canonical pairing and anchor is exact. In fact,
the following argument shows that any exact Courant algebroid E over M is isomorphic
to one of this form:

Choose a splitting s, : TM — E of the above exact sequence, consider p € S*(I'(T* M))
given by p(X,Y) = (5¢(X), so(Y)) and define s : TM — E by s(X) = s5¢(X) — %a*p(X, 2.
Then s is isotropic because so is a*:

(X0, 50)) = (360X, 59(V)) = 39X, asy(V) = 2p(Y asy(X)) + 3 (@p(X, )" p(¥ )
= (50(X), 59(Y)) = (50(X), 50(Y)) = 0.

This means that we can define an isomorphism of vector bundles

0: TM®TM - E
X+a s(X)+ad'a

which preserves the metric an the anchor of the canonical Courant algebroid structure on
TM @T*M. In particular, ¢ relates the Courant algebroid structure [, -]z on E with some
Courant algebroid structure [, -], on TM @& T*M. Let us compute it explicitly:

P(X +a,Y + Bl,) = [s(X), s + [s(X), a*flg + [a*a, s(V)g + [a*a, a" Bl g
= [s(X), s(V)lg + @(Lxp —1yda),

where we have used 3 and 4 from Lemma 4.3. Finally, the relations

a(@™ ' ([s(X), s(Np)) = ¢~ @([s(X), s ) = ¢~ ([as(X),as(YV)]g) = [X,Y],
(@ [s(X), s ), Z) = ([s(X), s(Y)] g, 5(Z))

tell us that the induced bracketon TM @ T*M is
[X +a,Y +ﬂ](p = [X,Y] +£Xﬂ - lyda + lYlXH,

for H(X,Y,Z) :=([s(X),s(Y)]g, s(Z)) (see the similarity with the Cartan 3-form in Ex-
ample 4.4). It is not hard to prove that H is a totally skew-symmetric tensor; ie, H €
Q3(M). In fact, d H = 0 and it can also be shown that any closed 3-form H defines a struc-
ture of Courant algebroid via the above formula. Although this can be shown directly, we
will prove it in Example 4.24 with the language of graded manifolds, which will give us a
nice interpretation of this result which generalizes to non-exact Courant algebroids.

Moreover, a famous result by Severa [50] asserts that, if we define two Courant algebroids
E,, E, to be in the same small isomorphism class whenever there exists an isomor-
phism (f,@) : E; — E, such that f € Dif f,(M) (identity component of Dif f(M)),
then the small isomorphism classes of exact Courant algebroids are classified by the co-
homology classes of the corresponding three-forms [H] € H3(M,R). The ordinary iso-
morphism classes of exact Courant algebroids are parameterized by H*(M,R)/T", where
I'=Dif f(M)/Dif fo(M) is the mapping class group of M [20].
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| Example 4.8 (The Double of a Lie Bialgebroid). Consider a Lie algebroid A — M, as
in Definition 3.36. From Theorem 3.37 we see that this gives a derivation d, of I'(A*A¥)
and a Poisson structure [-,-], of degree —1 on I'(A*A) (for A = TM, d, is simply the
exterior derivative). The derivation d 4, also allows to define Lie derivatives El’j‘ forv e I'(A)
on I'(A*A*) as [12‘(;‘ = (1,d4 +d1,)E & € T(A*). A direct computation analogous to the
ordinary one shows that this Lie derivative satisfies all desired properties such as 1, ,,; =
[D:l , le] and Ll[’t) ol = [ﬁfl,lvz], which where the key in Example 4.5 to prove that the
Dorfman bracket is a Courant algebroid structure on T M @ T* M. Hence, we see that there
is a Courant algebroid structure on £ = A @ A* defined by

ap(vy + &) = ay(vy),
(U1 +&1,0 + &) = &1(1y) + &(vy),
[y + &, 0, + & = [V, 0,04 + ﬁl;lgz - ’uszé:l,

forv, + & € I'(A @ A*), i = 1,2. Assume now that we have an additional Lie algebroid
structure on A*; then we have a derivation d 4. of '(A* A) and a Poisson structure [, -] 4« of
degree —1 on I'(A*A*). A Lie bialgebroid is a pair (A, A*) of Lie algebroids in duality as
vector spaces such that d 4 is a derivation of [-, -] 4«; that is,

daly,ml = [dy.nl+ (=D y,dynl, v €T(APAY), n € ATT(A*).

For example, (A, A*) is always a Lie bialgebroid if A* is considered as a Lie algebroid with
zero anchor and bracket. The (Drinfeld) double of a Lie bialgebroid is a Courant alge-
broid structure on £ := A @ A" — M defined by:

ap(V+&) = a,(v) +ay (o),
(U] + &1, 0y + &) =§1(vy) + & (vy),
[0, + &, 0y + &g =[], )], + 1:;‘1*02 —15,d 40y +[E.E] 4 + E;‘l & — 1,,d 48,

The fact that this indeed defines a Courant algebroid structure will be proved in a simple
way using the language of graded geometry in Example 4.25; this perspective will also allow
for a simple proof that (A, A*) is a Lie bialgebroid if and only if so is (A*, A), it will show
how we can twist this structure in a similar way as in Example 4.7 and it will give a simple
characterization of Dirac structures on A @ A*.

After Dorfman and Courant’s study of Dirac structures Courant algebroids began to
appear in different contexts. The study of Lie bialgebroids (A, A*) led naturally to the above
Courant algebroid structure on A @ A* in [39] and a explicit general definition was first
given in [37]. As explained in Section 1.1, Courant algebroids arise in the study of two-
dimensional variational problems, which was first noted by Severa as explained in his letters
to Alan Weinstein [50]. In these same letters he sketches many ideas that have later been
developed in greater detail, such as Roytenberg’s Theorem 4.21 or the relation between
Courant algebroids and Poisson-Lie T-duality, which is a very active field of research in
these days [19], [52], [49].
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4.2. Symplectic N-manifolds of Degree 1 and 2

In this section we start the proof of the Severa-Roytenberg correspondence between
symplectic N O-manifolds of degree 2 and Courant algebroids. Namely, we will study sym-
plectic N-manifolds of degree 1 and 2 in detail and we will prove that they are equivalent,
respectively, to ordinary manifolds and pseudo-Euclidean vector bundles.

Consider an N-manifold M with a symplectic form @ of degree k. We recall the remarks
succeeding Definition 3.21, which state that the dimension of M on degree / equals its di-
mension on degree —/ + k. In particular, since there are no coordinates of negative degree,
the degree of M cannot exceed d. We also remind that @ induces a non-degenerate Poisson
bracket on C*®(M) of degree —k. If k = 0, we immediately see that M is a symplectic
manifold in the ordinary sense.

| Lemma 4.9 (Darboux Coordinates). Let (M, ®)be a symplectic N-manifold of degree
k € {1,2}. Then,

« If k = 1, then every p € M admits an open neighborhood U, C M and coordinates
{x, p;}; with deg(x") = 0, deg(p;) = 1 such that o)y, = dp;dx'.

« If k = 2, then every p € M admits an open neighborhood U, C M and coordinates
{x9, &, p,}; o with deg(x?) =0, deg(&') = 1, deg(p,) = 2 such that oy, = dp,dx* +

gi;d E'dEI for an invertible constant matrix (g; Dije

Proof.

When k = 1, take local coordinates {)’, p;} with deg(y') = 0 and deg(p,) = 1. Any
2-form w of degree 1 can be locally written as w = f; ;(y)dp;d /. Closedness of w implies
that for each fixed i the one-form f; ;(y)d)’ is closed and so, using Poincaré’s Lemma, in a
sufficiently small neighborhood f; ;(y)dy’/ = dx' for a function x', giving the desired result.

When k = 2, any closed 2-form of degree 2 can be written in local coordinates {y*, &', p,};
with deg(y*) = 0, deg(&') = 1 and deg(p,) = 2 as w = f,,(Vdndy® + g, ;dE'd&/ +
h,;(»)§'dy*d&" but the non-degeneracy condition implies that h,; = 0 because the odd
variables &' are not invertible. It also implies that (g; ;), ; is invertible and, as before, in a
sufficiently small neighborhood we have f, ,(y)d y? = dx?, which concludes the proof. []

| Remark 4.10. Darboux’s Theorem for symplectic graded manifolds is true in greater
generality — see [6] — but a complete proofis too tedious and not necessary for our interests.

We proceed to study symplectic N-manifolds (M, w) with deg(w) = 1. An example of
such manifolds has been presented in Example 3.31, and we claim that every other example
is isomorphic to this one. Indeed, we know that M = E*[1] = (M,['(A*E)) for some
vector bundle E — M, and the existence of w implies rank(E) = dim(M). This symplectic
structure gives a degree —1 Poisson bracket so, according to Vaintrob’s Theorem 3.37, E
has a Lie algebroid structure with anchor

a:T(E)— T(TM)

e {e,-}.
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Since M is symplectic, the Poisson bracket is non-degenerate. This implies that the anchor
is an isomorphism of vector bundles. Indeed, {e, f} =0V f € C®(M) implies {H, f} =0
VH € C*(M) because this algebra is locally generated by functions of degree 0 and 1 (and
{A°% A%} = 0), and this means that the anchor is surjective. Since both vector bundles
have the same dimension, a is an isomorphism of vector bundles. The Jacobi identity for
the Poisson bracket implies that a is in fact an isomorphism of Lie algebras. Using Leib-
niz’s rule it can be extended in a unique way to an isomorphism of Gerstenhaber algebras
I'(A*E) — I'(A*T M) and so we obtain a canonical isomorphism of graded manifolds pre-
serving the symplectic structure between M and T*[1]M (as in Example 3.31). In terms of
local Darboux coordinates {x', p;}; on M such that

= dp;dx’,

the above isomorphism sends x; — x; and p; = 0, , as can be seen from Remark 3.28. It is
also clear that any symplectomorphism T*[1]M — T*[1]N is uniquely determined by its
restriction to M — N. So we have proved:

| Proposition 4.11. If (M, w) is a symplectic N-manifold with deg(w) = 1, then M is
canonically symplectomorphic to T*[1]M, for M the underlying topological space of M.
In particular, the category of symplectic N-manifolds of degree 1 with symplectomorphisms
is equivalent to the category of ordinary manifolds with diffeomorphisms.

| Remark 4.12. Now that we have a better understanding of symplectic N -manifolds we
can study the isotropic (resp. coisotropic, etc.) submanifolds of (T*[1]M, ), as anticipated
in Example 3.31. Any submanifold i : N — T*[1]M must be an N-manifold of degree 0
or 1; hence, an ordinary manifold N or E[1] for a vector bundle E — N over an ordinary
manifold N. Moreover, since i : N' = T*[1]M must preserve the degrees, j : N - M is
a submanifold of M and F is a subbundle of T* M.

The property of being isotropic (resp. coisotropic, etc.) is local, so for p € N we may take
Darboux coordinates on T*[1]M in j(p) € U C M and we can think of T*[I]M|U as R%"
with its canonical symplectic structure; hence identifying T}, T*[1]1M with T;,[11M &
Tj"EP)[I]M (the notation is meant to indicate that these are A*R"-modules), T,E[1] with
T,[1IN & E,[1] and w|;, with the canonical pairing. Thus the symplectic complement of
T, E[1] consists on (the pull-back of) vectors tangent to M which annihilate E and covectors
on M vanishing on T N. To sum up, this shows that for every submanifold N' - T*[11M
there exists a submanifold N — M such that (write Fy, := j*T*M /T*N for the conor-
mal bundle of N):

1. If NV isisotropic, then N' = E[1] for E - N avector bundle with E C Fy (including
E = {0}).

2. If NV is coisotropic, then N' = E[1] for E — N a vector bundle with Fy C E.
3. If V is Lagrangian, then N' = Fy[1].
4. If N is symplectic, then N' = T*[1]N.

Let us now consider symplectic N-manifolds (M, w) with deg(w) = 2. We have an
example of such graded manifolds in Example 3.34, and although this is not the only possible
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example, it will be useful to keep it in mind during the following argument. The Poisson
bracket on M satisfies the relations

(A%, A% = (A, A% =0, {Al, Ay cA®, (A* Al}cA forj=0,1,2.

Since A! = T'(E*) and A° = C®(M) for some vector bundle E — M, we can think of the
Poisson bracket in .A! as a fiberwise symmetric bilinear form (-, -) on E* which is moreover
non-degenerate (in local Darboux coordinates {x“,¢', p,} with @ = dp,dx* + g; ;d&'d¢&/,
the matrix g;; defines this pairing) and so it lets us identify E and E*. It extends to the
whole of A through Leibniz’s rule and so M; = E[1] = (M, A,) is a Poisson N -manifold,
with M, — M, a Poisson map. We claim that the whole structure of M is given by the
data (E, (-, -)). To see this, we consider the anchor a : A> - I'(T M), D — {D,-}, which
is surjective by non-degeneracy as before and has .A'.A! as its kernel. This is easily seen by
noting that, in local Darboux coordinates, this map is

0

x4’

D fi G + Y R x)p, = Y RO(x)

i,

as can be seen from Remark 3.28. On the other hand, elements D € A2 also act on A! =
I'(E) through the Poisson bracket as first-oder differential operators satisfying

a(D){e;,e,) = (Dey, e;) + (e, Dey)

by the Jacobi identity. It follows from the non-degeneracy of the Poisson bracket that D €
A? is determined by its action on A =T(E) and A° = C®(M), so it can be identified with
a covariant first-order differential operator on E. Conversely, we claim that all covariant
differential operators on E preserving the inner product are represented by functions of
AZ2. To see this, note that the preceeding remarks imply that there is an exact sequence

0> [(A’E*) » A> > T(TM) — 0,

Now I'(A? E*) is the space of skew-symmetric endomorphisms of E, which can be thought
of as sections of the vector bundle OF(E) Xy, 80(k), where OF (E) is the principal O(k)-
bundle of orthogonal frames of E, k = rank(E) and we are considering the adjoint action of
O(k) in 8o(k) for the fibre product. In particular, by identifying .A with differential opera-
tors on E we see that the above sequence is the Atiyah exact sequence ' of the principal
bundle OF(E). Thus .A? coincides with the space of sections of the Atiyah Lie algebroid
A = TOF(E)/G, which represents precisely covariant differential operators on E preserv-
ing (-,-). We conclude that C®*(M) = I'(A*E* @ S*A)/I, where I is the homogeneous
ideal generatedby t® 1 — 1 ® 7, for 7 € [(A2E®).

It also follows that, for N another symplectic N-manifold of degree 2, a morphism ¢ :
M — N preserving the symplectic structure is determined by its restriction e
M, — N, because the action of the CDO’s on degree 2 must be preserved. Moreover,

'The Atiyah exact sequence of a principal bundle 7 : P — M with structure group G is the following exact
sequence of Lie algebroids:
0> PX;6->TP/G->TM — 0,

which can be obtained as the quotient by G of the exact sequence 0 - Kerdn - TP — z*TM — 0.
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if M, = E\[1] and N| = E,/[1], then ®|uq, is determined by a metric-preserving map
I'(E,) = I'(E ). So there is a contravariant functor sending each pseudo-Euclidean vec-
tor bundle to its corresponding graded manifold.

We now want to construct, for a given pseudo-Euclidean vector bundle (E, (-, -)), a sym-
plectic N-manifold M of degree 2 such that A' = T'(E*) and that the Poisson bracket on
A! coincides with the pairing (-, -). From the preceeding discussion, it will automatically
follow that A2 can be identified with sections of the Atiyah algebroid of E. Recall Example
3.34. The same idea can be applied here: Take a metric connection on E with curvature
form Q € T(A’T*M @ A*E*) given by Q(X, Y)(e;, e)) = (VxVye, —Vy Vx =V x yie1.€)),
consider MY =T*[2]M @ E[1] = (M,T(A*E ® S*T M)) and define

{ep.en} = (e}, e;), {X,f}=X(),
(X,e;} =Vye,, {X,Y)}=[X,Y]-QX.Y)

for f € C*(M), e|,e, €eI'(E)and X, Y e (T M).

| Proposition 4.13. The relations above extend to a non-degenerate Poisson bracket of
degree —2 on M". Hence, M" is a symplectic N-manifold of degree 2.

Proof.

Non-degeneracy of {-, -} is immediate from non-degeneracy of (-, -), because for fixed
fEeEC®M)X(f)=0VX € [(TM) implies f € R and for fixed X e (TM) X(f)=0
Vf € C®°(M) implies X = 0. Let us check that Leibniz’s rule is satisfied:

{X,fgl=X(fe)=X(f)g+ X ={X,flg+ f{X.g}
{X,fe}=Vx(fe)=X(fle+ [Vxe={X, fle+ f{X, e},

(X, Y} =X, /Y] -QX, fY) = fIX. Y]+ X(/)Y — fQX,Y)= f{X, Y} +{X, f}Y,
{fX. g} =rX@=r{Xgl+{f.8}X,

{fX,e} =V xe=[fVye=f{X,e}+{f,e}X.

We note that these relations extend through Leibniz’s rule as {a,e} = a(,...,-,e) and

{X,a} = Vyafor a € I'(APE*). Now {e|,e,} = {ey,e;} and {X,Y} = —{Y, X} are
clear, so we proceed to prove the Jacobi identity. First,

{X,{e,er}) = X({eg,e0)) =(Vyep,en) +(e;,Vyer) = {{X,e;},er} +{e), {X,e}},
{X, YL =X Y]()=-YX()+ XX () ={X, /1Y +{X{Y,[f}}
{{X,Y}, e} = V[X’Y]e—Q(X,Y)(-,e) =—-VyVye+VyVye={{X,e}, Y} +{X,{Y,e}}

Finally, noticethat {{X, Y}, Z} = [[X, Y], Z]+V ,Q(X, Y), so the Jacobiidentity {{X,Y }, Z} =
{X.{Y,Z}} + {{X, Z},Y} follows from the Jacobi identity for the Lie bracket of vector
fields and from the second Bianchi identity for V. O

The above construction has the disadvantage of depending on a connection V. There
is a construction of a canonical graded manifold M associated to the pseudo-Euclidean
vector bundle (E, (-, -)) whose Poisson brackets are less explicit but which is useful because
(when E has more structure; for example, that of a Courant algebroid) there exist invariants
of E that can be expressed in terms of functions of M [21], [52], and it is desirable that we
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have a closed form for these invariants that does not depend on any connection. We pro-
ceed to describe this canonical construction.

Consider the graded manifold T*[2] E[1] with coordinates (g%, &', p,, p;). and consider also
T*[2]E*[1]. It follows from Example 3.32 that these graded manifolds are canonically sym-
plectic and it is easy to see that the Legendre transformation presented in Example 2.15
is a canonical symplectomorphism between them. The double vector bundle structure on
T*[2]E[1] gives a canonical map = : T*[2]E[1] — (E @ E*)[1]. Consider now the isomet-
ric embedding

i:E->E®E"
1

e+ (e, ),

e e 2(e>

where the metric on E @ E* is the canonical pairing (e, + &', e, + £2) = £l(e,) + &%(e)).
The graded manifold M that we are looking for is the one that completes the diagram

M —2 S TR]1EN]

lﬂM lﬂ

E[1] — (E® EM)[1].

So we may choose M as the pull-back of T*[2] E[1] alongi : E — E@® E*. If the symplectic
form on T*[2]E[1] is given in local coordinates by dp,dq® + dp,d&', its pull-back to M is

1 i e
w=dp,dq" - Egijdé: dg’,

where (e;,e;) = g;; for a local basis {e;}; of I'(E) with dual basis (¢}, e T(E*) = A
This concludes the proof that M is a canonical symplectic graded manifold of degree 2
having E[1] as its degree 1 part, as we wanted. For U C M such that E\;, = U XV
we have M, = T*[2]U X V[1], with infinitesimal transformations given by H € A2,
H = v"(q)p, + Mi,j(‘])éigj as

i ov’ 190M;; . .
(Hog'y =o' (H.E) =My @g"e (Hop)==50p = 5#5’4"-
These correspond to changes of coordinates of the form
k
(4.1) "=g'@ & =TI@E P P
. 9 =q91q), =17, Pa—aqal’a 2aqa8k1; :

with Tifgk,Tlf = gjj an orthogonal bundle transformation of E. The affine term in the ex-
pression for p, means that, unlike in the previous construction with an affine connection,
we cannot think of elements of C*(M) as sections of a vector bundle anymore. The only
global description that we get is C*®(M) = I'(A?E®S*A)/1, as it was previously observed.
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The graded manifolds MV and M are symplectomorphic, as we proceed to show. The con-
nection V determines a horizontal distribution on T E and hence a surjective submersion
wy : T*[2]E[1] —» T*[2]M. So we have maps

7yoip : M — T*[2]M, Ty - M= E[1]
and assembling these we obtain a map
By : M= MY =T*2]M & E[1]

by By = (wyoi,,) @ m,, which we claim is a symplectomorphism of graded manifolds.
Indeed, the diagram

M v S T*[2]E[1]

I [

T*[21M & E[1] &% T*[21M & (E @ E)[11.

is commutative (in the first component it is immediate and in the second component it fol-
lows from the definition of M) and the horizontal maps are symplectic embeddings, where
we are using the symplectic structure from Example 3.34 on T*[2]M @& (E @ E*)[1], so it
suffices to show that 7y @ 7 is a symplectomorphism, and for this we just need to prove that
the Poisson bracket is preserved for f € C®(M), e € I'(E), § € ['(E*) and X € ['(TM).
It is clear that z* f and n*e are constant functions in the fibers of T*[2] E[1] representing
the same f € C®(M) and e € I'(E), while 7*& and ﬂ@X are fiberwise linear functions
representing : and V y, by definition of 7y and z (through the Legendre transformation).
Using the relations from Example 3.34 we see that the Poisson bracket coincides with the
canonical one in T*[2]E[1].

A common way to work with these manifolds is to work on MY with a choice of con-

nection V and then use the map Ey, to obtain canonical results. For example, if L C E is

a subbundle, then there is a canonical embedding iy : L[1] — MY = T*[2]M & E[1];
—_1 .

hence, the composition By oiy @ L[] » Misa canonical embedding. In any case, we
have proven:

| Proposition 4.14. The category of symplectic N -manifolds (M, w) such that deg(w) =
2 with morphisms of graded manifolds preserving the symplectic structure is equivalent to
the opposite category of pseudo-Euclidean vector bundles (E, (-, -}) with orthogonal bundle
morphisms. Under this identification, functions of degree 2 on M correspond to covariant
differential operators of degree 1 (as differential operators) on E preserving (-, -).

| Remark 4.15. For E — M a pseudo-Euclidean vector bundle with corresponding sym-
plectic N-manifold M, let us study isotropic and Lagrangian submanifolds i : N' - M
having the same underlying manifold M. As in Remark 4.12, these are local properties, so
we may think of M as T*[2]R" @ V'[1] for V' — R" a vector bundle with a non-degenerate
pairing (-, ) and T,M as R" @ (R")* & V,, @ V,,, with w restricting to the canonical pairing
plus (-, -). Since we are imposing N to have R” as underlying manifold, its tangent space at
pisR"@W @ L,® L, for W C (R")" responsible for the degree 2 part of M and L,cV,
Then isotropy of N implies W = {0} and in fact it is easy to see that
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1. Ifi : N' > M is an isotropic submanifold with M as underlying manifold, then
N = L[1] for L C E isotropic.

2. Ifi : N' > M is a coisotropic submanifold with M as underlying manifold, then
N, 1 = L[1] for L C E coisotropic (but N’ can have coordinates in degree 2).

3. Ifi : N = M is a Lagrangian submanifold with M as underlying manifold, then
N = L[1] for L C E a maximally isotropic subbundle.

4. Ifi : N > M is a symplectic submanifold with M as underlying manifold, then
N =V[l]for V C E such that (-, -) is non-degenerate on V.

4.3. Symplectic NO-manifolds of Degree 1 and 2

In this section we conclude the proof of the Severa-Roytenberg Theorem characteriz-
ing Courant algebroids as symplectic N O-manifolds of degree 2. This will be done by
studying the derived bracket induced by a Hamiltonian vector field on the sheaf of functions
of the symplectic N-manifolds studied in Section 3.4. This study will also show that sym-
plectic N Q-manifolds of degree 1 are in one-to-one correspondence with ordinary Poisson
manifolds.

| Theorem 4.16 (Roytenberg, [42]). The category of symplectic N Q-manifolds (M, w, Q)
such that deg(w) = 1 with Q-symplectomorphisms is equivalent to the category of ordinary
Poisson manifolds.

Proof.

Consider a symplectic N Q-manifold (M, w, Q) with deg(w) = 1. It follows from Propo-
sition 4.11 that M = T*[1]M for M the base manifold of M. From Example 3.31, it follows
that a Hamiltonia homological vector field QO on M is equivalent to a Poisson tensor on
M. 1t is clear that for amap F : T*[1]M — T*[1]N arising fromamap f : M - N
preserves hamiltonian vector fields Q,,, O if and only if it preserves the corersponding
derived brackets; i.e., if and only if f is a Poisson map. O

It follows from Theorem 3.37 that each Poisson manifold (M, z) has a corresponding
Lie algebroid structure on T*M; this is sometimes called the Poisson Lie algebroid of
(M, n).

| Remark 4.17. Recall Remark 4.12 and the definition of Q-isotropy (resp. Q-coisotropy,
etc.) from Section 3.4. Let (M, 7) be a Poisson manifold and consider a submanifold E[1] —
T*[1IM of the symplectic N Q-manifold (T*[1]M,w, z), with E — N a subbundle of
J¥T*M for a submanifold j : N — M. By Theorem 3.37, E[1] is a Q-manifold if and
only if E is a Lie algebroid, and it is clear that i : E[1] — T*[1]M is a Q-morphism if and
only if the Lie algebroid structure on FE is the restriction of the one in T* M, which happens
precisely when (j*7)(E) C T N. In particular,

1. Q-Lagrangian submanifolds of (T*[1]M, ) are in bijection with submanifolds N —
M such that #(Fy) C TN, for Fy the conormal bundle of N. These are called
coisotropic submanifolds in ordinary Poisson geometry.
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2. O-symplectic submanifolds of (T*[1]M, ) are in bijection with Poisson submani-
folds N - M.

We are finally prepared for proving the result that motivated this whole work, which
we present in Theorems 4.18 and 4.20 and in Corollary 4.21.

| Theorem 4.18. Let (M, w, Q) be a symplectic N Q-manifold, with Q = {0, -} and let
(E,{-,-)) be its corresponding pseudo-Euclidean vector bundle. Then, the relations

ale))f :={{S,e}. f} ler.ex] :={{S.e;}, e}

for f € C*(M) = A° and e, e, € T'(E) .y I(EY) = A! define a structure of Courant
algebroid on E.

Proof.
First notice that we can express the map dj from Definition 4.1 as dp f = {O, f}, since
dpf € I'(E) is determined by

{dEf’e} = df(a(e)) = a(e)f = {{898}9 f} = {{97 f},e},

which implies d; f = {©, f} by non-degeneracy. Now {5, -} is a differential on the Lie
superalgebra (C®(M), {-,-}), which has C®(M) @ I'(E) = A" @ A! as a (non-abelian)
subalgebra stable under the derived bracket induced by ®. Then Proposition 3.2 gives us
Properties 3 and 5 from Definition 4.1. Property 4 is an immediate consequence of Leibniz’s
rule for the Poisson bracket:

le;. feal = {{S.er}. fep} = {{S.er). flep + f{{S.e1}er} = ale))(fley + fley. er],

while Property 2 follows from the Jacobi identity:

a(e))({ey.e3)) = {{S,e;}. {ey.e5}} = {{{{S.e1}.ep},e3} + {e5, {{S. e}, e5}}
= ([e;, ep].e3) + (e, [e, e3]).

(]

| Remark 4.19. By taking a look at the proof of Proposition 3.2 we see that {®,0} = 0
is only required for Property 3 of Courant algebroids. Thus, any H € A3 induces in the
same way as © an almost Courant algebroid structure on E which satisfies everything in
Definition 4.1 except for the Jacobi identity for the Dorfman bracket.

| Theorem 4.20. Let E be a Courant algebroid and for a metric connection V on E consider
its corresponding graded symplectic manifold MV = (M,T(A*E ® S*TM)). Then, there
exists a unique ® € C;"(MV) such that

(4.2) O, e}, f} =ale)(f), {{O.e1},ex} =[ey,e0], {0, f}=dgf.

It is given by ® = a + T, where a € T(E* @ T M) is the anchor of E and T € T'(A*E*) is
defined by T(eq, e,, e3) = <Va(e1)e2 - Va(ez)el — ey, epl e3) + (Va(e3)e1, e,). Moreover,

(0,0} = 0.
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Proof.

Uniqueness follows directly from non-degeneracy of the Poisson bracket. We leave the
proof that T € T'(A*E*) indeed for Proposition 4.27 below, where it is shown in a broader
context. In order to obtain the identities (4.2) we choose a local frame {&'}; of E with dual
frame {&'}, (that is, (&', &) = 8; ;) so that we can write a = Ela(&"). Then

{Ha,e ), [} = {E(epal&), [} +{& - Vyayer. £} = {ale)), [} = ale)(f),
{{aer}, e} = (E'epal€h), ex} + {8 - Ve e} = Vo yer + E(Vyener, ) = Ve, e
=Tl(e;,e,, ")+ [eg,e];

the second equation and the fact that {{T,e;},e,} = T(-,ey,e;) = —=T(ey,e,,-) imply
{{©,e,},e,} =[ey,e,]. Thus {®, f} € ['(E) is such that

{0, f}.e1} = {{O, e}, [} = ale))(f),

which is precisely what {®, f} = d f means. Finally, these relations imply {®,0} = 0:

{{{e,0}, 7/}, g} ={{6,{06,f}}.8} +{{©,/},0},8}
={0,{{0, f}.g}} +2{{0,8}.{O, f}} + {{{O, f}. g}, 0}
=2(a*dg,a*df) =0,
{{{{0,6},e1},6,}, f1 = {{{0O,{0,e;}},e,}, [} = {{{{O,¢,},0},e,}, f}
={{0,{{0,e,},e5}}, f} + {{{O,e,},{O, e, }}, f}
—{{{0,¢;}.{0,e,}}, [} + {{{{O,e,},e,},0}, f}
= 2a([ey, e, )(f) — 2la(ey), alex)l(f) = 0,
{{{{0,0},¢,},e:},e3} = {{{0, {0, ¢} }, ey}, e3} — {{{{O,¢,},0}, 5}, 3}
={{0,{{0,e,},e}},e3} + {{{O,e,},{O,e;}}, 3}
—{{{0,¢,},{0,e,}},e5} + {{{{O,e,},e,},0}, €5}
=2[le, er],e31 = 2{{0, e, }, {{O®, e}, e3}} = 2{{{O, e}, €3}, {0, e, }}
=2[[e;, e5], e3] — 2[ey, [ey. e3]] — 2[e;, [e1,e3]] = 0.

andany H € CX(MY) =T(S’TM @ TM ® A*E* @ A*E*) satisfying
{{H’f}9g}:07 {{{Hvel}’eZ}’f}:09 {{{{H9e1}’ez}7e3}9e4}=0

forany f,g € C*®(M) and e}, e,, e3,¢, € '(E) must be H = 0 by non-degeneracy. O

=-1
=v
0 € C®(M). If {¢%, &, p,} are coordinates on M such that w = dp,dq® — %gijdf"d!jj, then

Composing with the map : MV — M gives the canonical form of the Hamiltonian
. 1 .
© = Eale)qp, — ¢(les e/l e )¢’ e

for {e;}; the dual basis of {&'},.

| Corollary4.21 (Roytenberg, [42]). The category of symplectic N Q-manifolds (M, o, Q)
such that deg(w) = 2 is equivalent to the opposite category of Courant algebroids.
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Proof.

Theorems 4.18 and 4.20 imply that there is a canonical bijection between both sets of
objects. The discussion in Section 4.2 implies that morphisms of graded manifolds preserv-
ing the symplectic structure correspond to orthogonal maps of the corresponding pseudo-
Euclidean bundles. These preserve the Courant algebroid structure if and only if they pre-
serve the Hamiltonian ©, by non-degeneracy of the Poisson bracket. O

| Remark 4.22. For E — M a Courant algebroid with corresponding symplectic N Q-
manifold M, recall Remark 4.15. It is then clear that Q-isotropic submanifolds of M having
M as underlying manifold are in one-to-one correspondence with isotropic subbundles of
E that are closed under the Dorfman bracket. In particular, Lagrangian submanifolds hav-
ing M as underlying manifold are almost Dirac structures and Q-Lagrangian submanifolds
having M as underlying manifold are Dirac structures. A study of higher analogs of Dirac
structures in terms of Q-Lagrangian submanifolds on symplectic N Q-manifolds has been
carried out in [12].

4.4. Courant Algebroids & Graded Geometry

In this section we show how to interpret the structure of Courant algebroids from the
perspective of graded geometry. We begin with a general remark on the relation between
Courant algebroids and L -algebras. Then we discuss two important examples in detail:
exact Courant algebroids and Lie bialgebroids, as presented in Examples 4.7 and 4.8. In
particular, we will show how the Q-cohomology of the graded manifold associated to a
Courant algebroid encodes its deformations and we will characterize Dirac structures ap-
pearing as the graph of a skew-symmetric tensor on the double of a Lie bialgebroid.

| Remark 4.23.  As we mentioned at the ending of Section 3.5, N Q-manifolds are re-
lated to L -algebroids. For M the symplectic N Q-manifold corresponding to a Courant
algebroid (E, a,(:,), [, -]), we saw in Remark 4.2 that there is an L -structure on V' :=
C®(M)[1] & I'(E) which we can now describe as the projection onto V[-1] C C*®(M) of
the following higher derived brackets determined by ©:

L(F) =1{0, F},
1
lZ(Fl’Fz) = Eclygl{{Ga Fl}’FZ},

1

for Fy, F,, F; € V[—1]. This is the same way in which the brackets of a finite-dimensional
L -algebra L are constructed from a homological vector field on ({x*}, S*(L[1])*), since we
can identify each section e € I'(E) with its Hamiltonian vector field :;, and then {®,e} =

[0,1,] for O = {0, }.

| Example 4.24 (Exact Courant algebroids Revisited). Given an ordinary manifold M,
we consider the symplectic N-manifold M = T*[2]T[1]M (see Example 3.32) with local
coordinates {¢%, &%, p,,0,}, deg(q?) = 0, deg((?) = deg(8,) = 1,deg(p,) = 2 and its canon-
ical symplectic structure w = dp,dq® + d0,d&?. There is an isomorphism of graded mani-
folds T*[2T[11M = TIIT*[11M: if {q% p,. 1%, v, }. deg(q®) = 0, deg(p,) = deg(n®) = 1,
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deg(v,) = 2 are coordinates on T[1]T*[1]M, the isomorphism is simply ¢ — g%, &% — 1,
P, & v, 0, = p,. Thus, there is a canonical choice for a homological vector field on
T*[2]T[1]M, which is the de Rahm differential (or, more precisely, the pull-back of the de
Rahm differential from T[1]T*[1]M, see Example 3.15)

0 0
=djp=¢"—+p,—.
Q dR = ¢ g Paaga

Moreover, this is a Hamiltonian vector field and its Hamiltonian function is ® = p, &% €
A'2_In fact, d,  can also be interpreted in a canonical way as the Hamiltonian lift of the
exterior derivative d € Der C®(T[1]M) to T*[2]T[1]M, as in Example 3.32. Treating M
as T*[2]T[11M we see that Q(M) = C®(T[1]1M) C C*®(M) and treating itas T[1]T*[1]1M
we see that [(A*T M) = C®(T*[1]M) C C®(M). Because d, is the Hamiltonian lift of
the exterior derivative, for « € Q(M) we have d,;ra = da in the usual sense. On the other
hand, for X = Y £, € (T M),

df°

{Pa&% FP0,} = P{E% 0} F + E4por £71605 = [ P, + P

gaeb’
so we obtain the anchor

df°
dq°

aX+a)f = {0, X+a}, f} = {fp,+—= & O+da, [} = [pe. [} = X(f) [ e€C™M)

and the Dorfman bracket

o L 0f
(X+a,Y+pl={{0,X+a},Y+p}={fp, +

9g°
Jfb
= Fp Y= S0V o)+

&9, +da,Y + p}

dfb
dq°

§40,. } + {da, Y}

Let us study which other Courant algebroid structures with the same anchor and metric are
thereon TM @T* M. Any such structure will be given by {®+ H , -} for some H € C;" (M)
satisfying {©@, H} = {H,H} = {{H, X +a},f} =0foral X +a €e I'TM & T*M)
and f € C®(M). In particular, H determines a degree 3 cohomology class on the O-
cohomology of M. Given H|, H, like those, if 3G € C5°(M) such that H, — H, = {©, G}
then {G, -} is a symplectic vector field preserving d, z; if it can be integrated to a symplectic
diffeomorphism it will relate the Courant algebroid structures arising from H; and H,. In
other words, the third Q-cohomology group of M represents the infinitesimal deformations
of the Courant algebroid structure.

In order to describe this space in a more precise way, we first notice that the Legendre
transformation studied in Section 4.2 induces a Z X Z-grading on M, described by the
Euler vector fields (see 2.23)

a Haa E2=Pai+§aa

E = — + S0 s
P PRRRFTT op, T oge
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and our original grading is E = E; + E,. We write A for functions of degree p with
respect to E; and degree ¢ with respect to E,. Notice A% = Q(M), while A" are deriva-
tions of Q(M) and, in general, the space .A”" can be thought of as the space of symbols of
differential operators of order p on T[1]M. Interestingly, d,z has weight 0 with respect to
the grading E|, so d;p is, for each r > 0, a differential on the complex .A™". We claim that
all the complexes with » > 1 are acyclic. To prove this claim, it suffices to show that there
exists 1 € Der C*(M) such that [Q, 1] = E, (that is, E, is a coboundary for [Q, -]) because
in that case, for f € A" r > 1 with Q(f) = 0, we will have f = E|(f/r) = Qu(f/r). Itis
an easy check that: = 0,-0% does the deal.

This means that the whole Q-cohomology of this Courant algebroid is given by the com-
plex (A%, Q), which is nothing but the ordinary de Rahm complex of M. We proceed to
describe the way differential forms act on M. If we have a 1-form ¢ € Q'(M) C Al we see
that [o,Y + /] = —1ydo, which determines an action on TM @ T*M given by the bundle
morphism

¢,  TMO®TM > TMOT*M
Y+ Y +p+i1ydo

which is trivial if o is closed. For a 2-form 7 € Q*(M) C A%, we have {z7,Y + f} = -1yt
and we can similarly define the automorphism

o,  TMOT'M - TM ST*M
Y+ Y+ P+t

which always preserves (-, -) and the anchor, but
[X+atiyt, Y+p+iy7] = [X+a, Y+F]+Lyiyt—1ydiyt = [X+a, Y + ]+ x y)T+iyixdT,

which means that [-, -] is preserved precisely when dr = 0. If 7 = do, then ¢, = ¢,.
Finally, for a three-form € Q3*(M) we know that ® + # is a Hamiltonian function that
induces a homological vector field if and only if {®,n} = dy = 0 ({n,n} = O for every
n € Q3(M) since the Poisson bracket is an extension of the metric on TM @ T* M). In this
case, since {{n, X + a},Y + f} = iyiyn, we will obtain a new bracket given by

(X +a,Y+pl,=[X.Y]+Lxf—1ya+iyixn.

If ¥ = dz, the Courant algebroid structure that we obtain is isomorphic to the canonical
one, meaning that the vector bundle automorphism ¢, defined above preserves (-, -) and
the anchor, and it relates both brackets. This proves the claims that we made in Example
4.7.

Example 4.24 shows the kind of information presented in the Q-cohomology groups of
the graded manifold M associated to a Courant algebroid E. A systematic treatment is the
following: For f € A" = C®(M), we have already seen that {®, f} = df € I'(E); that
is,

{(©,f}1=0 & (Df,e) =df(a(e)) =0 VeeI(E).
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So H g(./\/l) is the space of functions on M that are constant along the image of the an-
chor. Now for e € A' = I'(E) we see that {®,e} € A? is the Hamiltonian of a degree
0 symplectic vector field; that is, a CDO on E preserving (-, -). Then we see that H é)(./\/l)
is the space of sections e € I'(E) such that their corresponding action is trivial modulo
those of the form dj f for f € C®(M). Now elements D € A are CDO’s on E pre-
serving (-, -) which act as {D, -}, and they preserve the Dorfman bracket (that is, {®, -})
precisely when {®, D} = 0, so H Z)(M) gives structure-preserving infinitesimal transfor-
mations modulo those of the form {®, e} = [e, -] fore € ['(E). Forany H € A3 we see that
(0,H} =0 {(O0+tH,0+tH)} = O(t?), so Hg(M) is the space of infinitesimal defor-
mations of the Courant algebroid structure modulo the trivial ones that appear as {®, D},
for D € A?. Each of these H € A3 gives a new Courant algebroid structure if and only if
{H,H} = 0; otherwise, { H, H } defines a non-trivial cohomology class on H é)(M).

This discussion shows that the analog of a Severa class for non-exact Courant algebroids
is the third Q-cohomology group of M, at least at the infinitesimal level. In fact, this is
true for any symplectic NQ-manifold M of degree d > 1: It follows from Proposition 3.24
that all symplectic vector fields of degree 0 are given by Hamiltonian functions of degree d.
That is, the Lie algebra of the symplectomorphism group of M is .A“. These Hamiltonians
preserve the O-structure precisely when they define a cohomology class, so Hg(M) repre-
sents infinitesimal symplectomorphisms preserving Q modulo the trivial ones that appear
as Q(f) for f € C[‘;"_l(M) and, as before, HgH(M) determines infinitesimal deformations
of the Q-structure on M.

| Example 4.25 (The Double of a Lie Bialgebroid Revisited). Consider two Lie alge-
broids (A, ay, [+, 14) and (A*, a4, [+, ]4+) Which are in duality as vector bundles. Then it
follows from Vaintrob’s Theorem 3.37 that we have Q-manifolds (A[1], d 4) and (A*[1], d 4).
Moreover, it follows from Example 3.32 that these homological vector fields lift in a Hamil-
tonian way to the cotangent spaces T*[2]A[1] and T*[2]A*[1]; call their Hamiltonian func-
tions ® 4 and © 4.. Again, the Legendre transformation from Section 4.2 shows that these
two symplectic graded manifolds of degree 2 are canonically isomorphic, so we may regard
{®,,-} and {® 4., -} as two different homological vector fields on a single graded manifold
M. If{q% &, p,, e;} are local coordinates, then

1 o , 1 i :

Oy =5 2 et Y are)qVEp,  Op = =5 D e 4} ay @)aep,
ijk ia ijk ia

for le;,e;]q = cf‘.ek and (&, &1ae = Ezj.f". As before, each fibration M — A[l] and

M — A*[1] has an associated grading w4, w 4+ such that the original grading is w4 + w 4«;

if we write AP for functions of degree p with respect to w, and degree g with respect to

W 4+, then
0,4, 0, A,

and the Poisson bracket has bidegree (—1, —1). It has also been shown in Section 3.4 that the
canonical pseudo-Euclidean vector bundle corresponding to M is A @ A* with its obvious
pairing, so it follows from Theorem 4.18 that we have two Courant algebroid structures on
E = A@® A*. The same computations as in Example 4.24 show that the Courant anchor ag
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and the Dorfman bracket [-, -]®A determined by ® 4 are, for v; + & € ['(A @ A¥),

ag, (v +8) = a,(v),
[V +&, 0+ &le, =V 0], + ﬁfﬁz —1,,d 481,

where L, is the Lie derivative determined by d4 as [135 = 1,d,& + d41,£. Moreover,
dy=1{0,, -} onI'(A*A) and the odd Poisson bracket [-, -], is the derived bracket [a, f]4 =
(=1)P*{{©,,a}, B} for @ € [(APA) and f € T'(A?A). Of course, similar formulas hold for
the Courant algebroid structure determined by © 4.. Notice that the converse is also true:
given any ©, € A'? (resp. ©,. € A>") such that {®,,0,} = 0 (resp. {0,.,0,.} = 0),
then {@ ,, -} (resp. {© 4., -}) projects to a homological vector field on A[1] (resp. A*[1]) and
so it induces a Lie algebroid structure on A (resp. A*[1]).

Now © := O, + O,. is a function of degree 3 on M which commutes with itself (and
thus induces a new Courant algebroid structure) if and only if {®4,® 4.} = 0; in this case
we will obtain the Courant algebroid structure from Example 4.8. We claim that the con-
dition {® 4,0 .} = 0 is equivalent to (A, A*) being a Lie bialgebroid. To see this, we first
note that H := {®,, ® 4. } has bidegree (2, 2). This means that H = 0 if and only if, for all
f.g €C®(M),ej,e; ET(A) and &}, &, € T'(AY),

{{H.f}.g} =0, HU{H.&1}.6) e}, 01 =0, {{{H.e;}.er},61}.6} = 0.

Infact, {{H, f},g} =0,YVf,g € C®(M)implies H € A’T'(A)Q@A’T'(A*) and so in this case
the latter two conditions above are equivalent. Notice then that, fory € I'(A?A*) C C®(M)
andn € I'(A4*) Cc C®(M),

[day.mlae + (D" [y dgnl g = (1P {0 4. {O 4.7} )1} + {{O 4. 7). {O 4.7} )
= (1P {{O®4.O4 ). 7} .0} + (=P {{O 4, {O 4.7} 1)
+ {04, 7}, 0, ).} + (=DP{O 4, {{O 4,7} 1))
= {{{04.0, 4}, vhn} +dly.nly

which shows that (A, A*) is a Lie bialgebroid if and only if {®4,0,.} = 0. In partic-
ular, (A, A¥) is a Lie bialgebroid if and only if so is (A*, A). In conclusion, Courant al-
gebroid structures on T*[2]A[1] given by some ® =06 4+ e 4 € A2 @ A% with
{0,,0,} ={6,4,0,.} = {6,.,0,.} = 0 are in bijection with Lie bialgebroid structures
(A, A™).

This framework also shows in a clean way how to twist this Courant algebroid structure:
infinitesimal deformations of the Courant algebroid structure given by ® are parameterized
by the third d 4, + d 4-—cohomology group of M. For the same reasons as in Example 4.24,
d, is a differential on each complex A" and d,- is a differential on each complex A"9.
Thus, for example, H € A" @ A% is d, + d 4.-closed if and only if it is both d ,— and
d 4«—closed, and in this case ® + H will give a Courant algebroid structure if and only if
{H*, H*3} = 0. Moreover, in this case H is d, + d ,.-exact if and only if it is both d ,—
and d ,.—exact. However, for general H € A?, the interplay between d, and d 4. must be
taken into account.
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We finish this example by noting an interesting fact about Dirac structures on A @ A*
which was first proved in [37] without graded geometry. For each S € I'(A2A*), there is
a corresponding almost Dirac structure given by Ly = {e + {S,e} : e € ['(A)} (notice
{S,e} € I'(A*)) because this is isotropic:

{el + {S,el},ez + {S,ez}} = {el,{S,ez}} + {{S,el},ez} = {S,{el,ez}} :O

and r = rank(A) = rank(Lg), so Lg is maximal because the metric on A @ A* has
signature (r,r). Let us study when Ly is in fact a Dirac structure. We can compute the
Dorfman bracket with ©:

{{©,e+{S.e;}}. e, +{S,e2}}
={{0,e1},e} +{{O,e,},{S,ex}} +{{O,{S,e;}}, e, + {S,e5}}
={{0,e1},e} +{S.{{O,e1},e,}} + {{O,e,},5}, e} — {{O.{e, S}} e, +{S,e,}}
={{0,e;},e,} +{S.{{O,e;},e,}} + {{O, S}, e} en} + {{O, {S,¢1}}. {S,es}}.

By studying the bidegree of each of these terms we see that the above expression belongs
to Lg if and only if

{S.{{{O4, S}e be}) = {{{0O4, S} e} e} + {04, {S,e11}{S, e2}}

and we can compute

{04, {5, ¢1}1}.{S,e0}} = {{{O4. {S,e1}}. 5 er} + {5, {{O4. {5, ¢1}}. €2} )
= {{{04.5}.{S,e;}}. e} + {{O4, {{S,e;}. 5 e} +{S. {04, {S,e1}}, €01}
= {{{04, 5}, S}he}, e} + {{S, {{O4, S} e}, e}
+ {04 {{S,e1}, 5 e} +{S, {0y, {S,e1}}.e2})
= {{{{O4, 5}, Sherh el — {04, {S,e}},{S,er}}
+ {04, {{S,e;}, S}, e} +2{S, {0, {S.e1}}, 2} ).

Now {{S,e;}, 8} =0, so this relation can be written as

{04+, {S,e1}},{S,ex}} = %{{{{G)A*’S},S},ﬁ}’ez} + {S, {{O4. {S.e;}}en1 )

Substituting above we obtain that L is a Dirac structure if and only if
1

The way to interpet this equation is the following: ['(A* A*) is an abelian subalgebra of the
differential Lie superalgebra (C®°(M), {-, -}, {© 4+, - }); hence, by Corollary 3.3, ('(AA*), [-, Jlo,.)
is a Lie superalgebra, where [, -lg . is the derived bracket induced by © 4.. Moreover, since

(A, A*) is a Lie bialgebroid, (I'(AA*), [-, lo > {®,,-}) is a differential Lie superalgebra
and the above equation is its Maurer Cartan equation. When A = T'M with its obvious

Lie algebroid structure and A* = T*M with zero anchor and bracket, this equation reads

dw = 0 for € T(A2T*M) and if we invert the roles of TM and T*M it reads [z, 7] = 0

for 7 € T(A*T M).
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4.5. Generalized Riemannian Geometry

In this section we introduce the main tools of generalized Riemannian geometry. As
explained in Section 1.1, two-dimensional o-models show that a full geometric understand-
ing of the bundle TM @T* M is helpful in physics. Generalized Riemannian geometry is the
study of analogs of (pseudo)-Riemannian metrics, connections and curvature for Courant
algebroids, such as TM @ T* M. It was initiated by Hitchin in [26], who wanted to charac-
terize special geometry in low dimensions by means of invariant polynomials on differential
forms.

| Definition 4.26. A generalized connection D on a Courant algebroid E is a map D :
I'(E) - I'(E* @ E) such that, fore,,e,,es € '(E) and f € C®(M),

a(e;){ey, e3) = (D, e, e3) + (ey, D, e3),
(4.3) D, (fey) =ale))f - ey + fD, (ep),

where D, :=1,D. The torsion of D is
T(ey,e;,e3) 1= (D, e; — D, e; = [e],e;],e3) + (D, ey, €3),
its curvature is
Q, o (e3,€4) :=(D, D, e3— D, D, e3— D, , e3,¢€y4).

and its divergence is
div(e) :=Tr D(e),

where T'r D(e) denotes the trace of the operator s — D (e).

Note that the Dorfman bracket is not involved in the definition of generalized connec-
tions and so the same D is a generalized connection for different structures of Courant al-
gebroid with the same anchor and pairing. Generalized connections always exist. Namely,
it V.: I'(E) » I'T"M ® E) is a metric connection, then D, = V., always defines a
generalized connection. Any two generalized connections D, D’ are related by D— D’ = 4,
for y € I'(E* ® o(E)). For a fixed e € I'(E), it is also convenient to define the covariant
derivative of any a € I'(A? E*) with respect to e as

D,a(ey, ..., ep) 1= a(e)(aley, ...,ep)) - cycla(D,e;, e,, ..., ep);

_1
(P - 1)' 1,...p
that is, D, is the unique derivation of I'(A* E) extending the action of D, on I'(E) and such

that D,(f) = a(e)(f) for f € C*®(M). Here we are using the following notation for sums
over a set of permutations which will be useful throughout the rest of the chapter:

cycl A(1,...,n) := Z (D" A(e(1), ..., o(n)),

1,...n cES,

where .S, is the set of permutations of {1, ...,n} and (—=1)" = sgn(o) is the signature of the
permutation o.
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| Proposition 4.27. The following properties are satisfied by the torsion, curvature and
divergence of a generalized connection D.

1. T e T(A3E™).

2. For fixed e, e, Q, , € A’T(E*).

e.e

3. For fixed e3, e4, Q(es, e,) satisfies

Qel,ez(eS’ 64) = _Q‘ez,el(e3’ 64) - <DdE(el,e2)e3’e4>’
Q,, re,(€3:€4) = fQ, , (e3,¢4),
(44) Qfelaez(e3’ e4) = erl’ez(e3, 64) - <el, 62><DdEfe3, e4>.

4. div(fe) = ale)(f) + fdiv(e).

Proof.

First, T'(e, e,, e3) is clearly C®°(M )-linear on e5. For ey, e,, it follows easily from [e|, fe,] =
fley, el + ale))(f)e, and D, (fey) = fD, e, + a(e;)(f)e,. Skew-symmetry on ey, e, fol-
lows from [e, e,] + [e5,e;] = dg (e, e,). Now

T(ey, ey, e3) +T(e,e3,6)) = (D, e; — [e), €3], €3) + (D, e3 — [}, e3],€,) =0,
where the last step follows from (4.3) and 2 in Definition 4.1. Now €, , is clearly C*(M)-
linear on e, and so is on e; because of (4.3) and [a(e,), a(e,)] = a([e, e,]):

Qel,ez(feS’ 84) = <De1Dez(fe3) - DezDel(fe3) - D[el,ez](fe3)’ e4>
= (Dela(ez)(f)e3 - Deza(el)(f)e3 —a(ley, e;D(fes, e4)
+ <Del fDez(eS) - Dez.fDe1 (63) - fD[e],ez](e:i)’ e4>
= (a(e))aler)(fe3 — aley)ale)(fez — alle;, ex1)(fes, e4)
+ (a(e;)(f)D,, e3 — ale})(f) D, e3 + ale)(/)D,e3 — alex)()D, e, e5)
+ <fDelDe2(e3) - fDezDel(e3) - fD[el,ez](e3)7 e4>
= f‘Qel,ez(e3’ 64).

To prove that Q, . (e3,e4) is skew-symmetric on e3, e, we first notice that (4.3) implies

4.5) (D, D,es e;) —(es3, D, D, e;) = ale))(D,,e3, e4)) — a(er)(( D, ey, €3))
and then we compute, using (4.5) and (4.3),
Q, e, (€3.€4) +Q, , (e4,€3) = ((DelDe2e3’ e4) — {e3, DezDe1e4>) - ((DezDe|e3’ ey) — (es, DelDeze4>)
- ((D[e,,ez]e& ey) + (es, D[el,ez]e4>)
= a(e))((D,,e3,e4)) — a(er)(( D, ey, €3)) — ale)((D,, e3,e4)) + ale))((D,, ey, €3))
—a([ey, ex])(es, e4)
= a(e))ale,)(es, e,) — aley)ale;){ey, e3) — a([ey, es]){es, e4) = 0.

Properties (4.4), as well as the formula for the divergence, follow easily from (4.3) and Def-
inition 4.1. O
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| Remark 4.28. If E is a Courant algebroid and V is an ordinary metric connection on E
with curvature FV € T(A’T*M ® A’E*), then D, := V4 1s @ generalized connection
with curvature

Q, ., (e3.€4) = F(aley), ale,), e3, ¢y),

which follows directly by definition and the fact that a([e;, e,]) = [a(e;), a(e,)]. In particu-
lar, Q € I'(A2E* ® A2E*) in this case.

| Example 4.29 (Generalized Connections on Exact Courant Algebroids). Consider
E=TM ®T*M as a Courant algebroid with the twisted Dorfman bracket from Example
4.7:

for H € Q3(M) withdH = 0. LetV : T(TM) - I'(T*M ® T M) be a connection on
T M it induces a connection V* : I'(T*M) - I'(T*M Q T*M) as

X)) = a(VyY) + (Via)Y).

By construction, V @ V* is a metric connectiononTM @T*M andso D, := (V@ V*)a(e)
is a generalized connection. Let Ty, be the torsion of V, then

Tpley, ey, e3) = —(a"H)(ey, ey, e3) + cycl (s(a*Ty(e;, ey)), e3),
123
where s : TM — TM @ T*M is s(X) = X. Let us show the computation: write e; =
X, + a;, then
T(ej,er,e3) = (Vy, Xy — Vi, Xy = [X1, X5l a3) + (Vx, Xy, @0)
+ <V§(I a — V}zal — Ly oy +iyday —iy1x H, X3) + (V}3a1,X2>
=(T(X}, Xp), a3) + (V3 X ) + X (a5(X3)) — 0p(V x X3) — Xp(a;(X3)) + o (Vx, X3)
—day(Xy, X3) — X3(ap(X1)) + day(X;, X3) — H(X, X5, X3) + X3(a (X)) — al(VX3X2)
=(T(X, Xp), a3) = (T(X}, X3), a3) +(T(X5, X3), @) — H(X,, X5, X3).
Let FV e (A2T*M @T*M QT M) be the curvature of V; that is, FV(XI, X,) = VX1 VXQ—
Vx,Vx, = Vix,.x,)- Then the curvature of D is
Q,, o, (€3 €4) = (s(@"FY (e, e)e3). e4) = (s(a” F ey, e2)ey). e3)
because for e; = X; + @;, i = 1, ..., 4 we see clearly that
Q, o, (e5,e4) = (FY(X{, X2) X5, 00) + (FV (X, Xz, Xy)
and so the above equation is obtained by noticing that
(Vi Vi, @3, Xa) = X (Xp(@3(Xg))) = X (a5(V y, Xg) = Xo(a3(Vx, X)) + 03(V x, Vi, Xy,

The divergence is simply
divp(X +a) =Tr(VX).

When V is torsion-free, Tr(VX) = Tr(Vy — L) and so for any density y € I'(|det T*|)
that is parallel with respect to V we have

divp(X +a)p=Lyu,

which is the usual definition of the divergence of X with respect to u.
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| Definition 4.30. A generalized metric on a Courant algebroid E is an orthogonal de-
composition E = V., @ V_ such that the restriction of (:,-) to V., is non-degenerate. A
generalized connection D on E is compatible with a generalized metric E = V, @ V_ if
D(I'(V,)) CT(E* ® V). Its torsion T is of pure type if T € A*(T(V,)*) & AT (V_)").

Notice that generalized metrics do not depend on the anchor or the Dorfman bracket,
they can be defined in any pseudo-Euclidean vector bundle. In the presence of a generalized
connection, for e € ['(E) we will write et and e~ for the orthogonal projections of e onto V'*
and V' 7, respectively. Notice that Proposition 4.27 implies that, for a compatible generalized
connection,

Qere; = e Lrerg =S ey
| Definition 4.31. The Riemannian curvature tensors of a generalized connection D
compatible with a generalized metric D =V, @ V_ are R* € F(Vf ® V; ® A2V+*) defined

by
R+(eT,e;,e;,eI) = Qerje;(e;',ez), R_(el_,e;',e;,eg) 1= Qel—’e;(e;,eZ).
The Ricci tensors Ric* € I“(VJ_:k ® Vif‘) are defined by
Ric*(e;,e3) :=Tr (e+ > Qeﬁe;(e;,‘ ) , Ric™(ey,e3) :=Tr (e_ — Qe_’e;(e;ry ) ,

where, as usual, we are identifying Q
on E.

;(e;—’, -) with an element in I'(V,.) through the pairing

et e

| Lemma4.32. LetE = V, @V_ a generalized metric on a Courant algebroid with torsion
T € T(A’E*) and let D be a compatible generalized connection. Then

« If D' is any other generalized connection compatible with ¥+ and with the same
torsion, then D e = D, et for any e, e, € I'(E).
! T

+]'

» T is of pure type if and only if D,- ey =le],e]

Proof.
Both statements follow directly from noticing that

- Lt oty — + _ o= ot ot
T(el,ez,e3)—<De;e2 le].e5].e3).

(]

I Proposition 4.33. Given a generalized metric E = V, @ V_, there exists a torsion-free
generalized connection D compatible with V.

Proof.
Choose ordinary metric connections V¥ and V™ on V,, V_ and set

N VES
De;_rezi = Va(eli)e

it



4.5 Generalized Riemannian Geometry 67

and define De;: e, so that the torsion of D is of pure type using Lemma 4.32. Then D is
clearly compatible (and it is easy to see that it is indeed a generalized connection). If T is
the torsion of D, we define a new connection D by killing T as

1
<D21 €, e3> = <Delez, e3> - gT(el, €, 33).

Because T is of pure type, D is still a compatible connection and it is easy to check that it
is torsion-free. U

| Remark4.34. Unlike in pseudo-Riemannian geometry, there are many torsion-free gen-
eralized connections compatible with a generalized metric. Namely, if D is one such con-
nection, the any y € F(T3Vf @ T3V *) such that y(e;, e, e;) = —y(e;,e3,e,) and

CYCI X(el’ €, 63) =0
1,23

determines another torsion-free compatible connection D¥ as
<Dé{1 €, €3> = <De1e29 eS) + X(ela €, 63)'

| Example 4.35 (Generalized Metrics on Exact Courant Algebroids). Let V. be a gen-
eralized metric on the exact Courant algebroid E such that the restriction of the pairing
to V, has positive-definite signature. Then for 0 # e € I'(V,) we have (e,e) # 0, so
V., NnT*M = {0} and thus by exactness the restricted anchor a, : V, — TM is an iso-
morphisms; let 57 = a;' : TM — V,. Then p,(X,Y) := (st X, s7Y) is a non-degenerate
pairing on T M and, as in Example 4.7, the splitting s:)r : TM — V,_ C E induces an

isotropic splitting s*(X) = sar(X ) — %a* p(X,-) and an isometry

9,  TM®TM - E
X +am st(X)+a*a.

Thus V, @ V_ induces canonically the data (g, H), where g = p, is a Riemannian metric on
M and H € T(N’T*M), H(X,Y, Z) = ([st(X),s*(Y)],s*(Z)) is a preferred representa-
tive of the Severa class of E. Note that (p:rl(Vi) ={X+g(X,): Xe€TM]}. Itisnot true
that any pair (g, H) determines a generalized metric because g and H must be compatible
in an appropriate way. What is true is that, if we fix an isotropic splitting s : TM — E,
then any pair (g, b) with b € ['(A?T* M) does determine a generalized metric of signature
(n,0)onV,asV, = {s(X)+a*(b+ g)X,-) : X €TM}, which is an easy computation.

For (g, H) corresponding to a generalized metric on E, we use the isomorphism ¢, to
identify E @ TM @ T*M. Let V8 be the Levi-Civita connection of g and define V* =
VE + % g~ H; these are connections on T M compatible with g but with non-trivial torsion.

Then we claim that, for X, Y e (T M), [ XF,Y*]* = iZ(ViY}J—“. Indeed,

([X = e(X),Y +g(Y)], Z + &(2)) = ([X, Y]+ Lxg(Y) + 1ydg(X) + 1yix H, Z + g(Z))
=g(VSY + VEX +[X, Y], Z)+g(V$,Z =V, X = [X, Z),Y) + (V5 Z - V3Y - [Y, Z], X)+ H(X,Y, Z)

=2g(V4Y.Z)+ H(X,Y,Z) =2(V5Y + %g_lH, Z +g(2))
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which shows [X~, Y]t = Z(V}Y)ﬂ and the other one is similar. It follows from Lemma
4.32 that any connection D on E with torsion of pure type must satisfy

DY Yt =2(ViV)*, DY Y™ =-2(VyY)~
A natural way to complete the definition of D8 is then
DR.Y*=2ViV)*, DY Y™ =-2VyY);

that is, Df =2Vt @ —V‘)a(e), which is known in the literature as the Gaultieri-Bismut
connection [19]. It has torsion Tps = @y H — a* H, for a, : V. — T M the isomorphisms
obtained by restricting the anchor, and its curvature can be identified with the curvatures of
V* as in Remark 4.28. As in the proof of Proposition 4.33, D° := DB— %TDB is a torsion-free
generalized connection compatible with V. Its pure-type operators are

1/3

0 _ +1/3 0 - - _
DS Yt =2vy "V, DY YT =20V, "Y),

for Vt1/3 1= ve & ég_lH and its Riemannian curvature tensor R is [18]

RY (XY, Y ,Z",) = iRg(X, Y)Z +g7! <%(V§(H)(Y, Z,)— é(Vf,H)(X, Z,)

L1
12

1

H(X,g'H(Y,Z,"),") - B

H(V g HX, 2,9, = H(Z,g HX Y, ), ->>,
where RS is the curvature of V8. What is interesting about this is that, as we will see

in Corollary 4.38 below, this complicated expression satisfies a very simple first Bianchi

identity.

4.6. Generalized Riemannian Geometry & Graded Geometry

In this section we construct a graded Poisson manifold from a Courant algebroid E with
a generalized connection D and we interpret some of the objects from generalized Rieman-
nian geometry presented in Section 4.5 by means of this graded manifold. In particular, we
interpret the master equation as a first Bianchi identity for the curvature of a generalized
connection and we construct a Morita equivalence of graded Poisson manifolds from a
generalized metric.

Consider a generalized connection D on a Courant algebroid E and write A = {D, :
e € I['(E)} for the vector bundle of covariant derivatives with respect to D. We define the
graded manifold

MP = (M, T(A*E ® S*A)/1),

where elements of I'(E) have degree 1, elements of A have degree 2 and I is the ideal
generated by {1® D, — D, ® 1 : e € Kera}, taking into account that for e such that
a(e) = 0 condition (4.3) means that we can identify D, with a skew-symmetric operator on
E acting as

D,(s1,55) 1= —=(D,s, 55).
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The reason why we write this minus sign will become apparent later. This is indeed a well-
defined graded manifold at least when the anchor has constant rank because we can think
of it as E[1] @ (E/Ker a)[2], where we identify each e € ['(E/Ker a) with the covariant
derivative D,. The torsion T of D is an element of (A3 E*); hence, a function of degree
3 on MP. For fixed e, e, € I'(E), the curvature Qel’EZ € I'(A’E*) is a function of degree
2. Finally, the connection itself is an element of ['(E* @ A); hence, it defines a function
D e CP(MP).

| Theorem 4.36.  The following relations can be extended using Leibniz’s rule to a degree
—2 Poisson bracket on MP: For e;,e, €EI(E) and f € C®(M),

{ef, e} = (e, e2), {D,,, [} =ale))),
{Del’ez} = Delez’ {Del’Dez} = D[el’ez] -Q

€1,y

This bracket is non-degenerate if and only if the Courant algebroid E is transitive. Moreover,
fore|,e, ET(E) and f € C®(M),

46) {{D+T,e},f}=ale)(f), {{D+T,e} e} =lej,e)], {D+T,f}=dgpf

and

{(D+T,D+T} =0.

Proof.

This proof is analogous to those of Proposition 4.13 and Theorem 4.20, just paying at-
tention to some peculiarities of generalized connections. Let us check first that Leibniz’s
rule is satisfied:

{D,,.fg} = ale))(fg) = ale)(f)g + fale))(g) = {D,,. f}g + f(D,.g}.
(D, fes} = D, (fey) = ale))fey + [ D, e; = (D, . fYes + f{D, e},
{De,s fDe,} = Die, pes = Qe fe, = S Dpeyeyy + 4e)N)D,, = [Q, o) = f{D,s Do)} +{De, [} D,
{fD,.g} = a(fe)g) = fa(e)(g) = f{D,.g} + {f.g}D..
{fD,.e;} = Dy, €= [fD, e, =f{D,,e;} +{f,e;} D, .

These relations extend through Leibniz’s rule as {e;, a} = lo, @ fore; € I'(E), a € I'(A*E™)
simply because 1, and {e,, -} are both derivations of degree —1 of the algebra I'(A* E) co-
inciding on I'(E), which generates the whole algebra, and similarly {D, ,a} = D, a. In
particular, for « € T(A2E*), we have {{a,e,},e,} = —a(e,e,), while {{D,,s,},s,} =
(D,s;,5,). This is the reason why we used a minus sign to define the action of D, € I'(A*E)
when a(e) = 0, so that this bracket is well-defined on elements of the ideal I.

It is clear from the definition that, for a fixed f € C®(M), {H, f} = 0,VH € C®(MP)
if and only if f is constant along the image of the anchor. Hence, this bracket is degen-

erate for non-transitive Courant algebroids. However, for fixed F € 3 (MP) it is true

that {H,F} = 0, VH € C®(MP) implies F = 0. This is clear in degree 1 and, for
F € C(MP), F = D, + a for some e € I'(E) and a € [(A?E*), so {F, f} = a(e)(f) = 0
Vf € C®(M) implies that we can identify F with an element of '(A’E) and then { F,e} =
—1,F = 0 Ve € I'(E) would imply that F = 0. This shows that the Poisson bracket is
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non-degenerate for functions of degree 1 and 2 and it leads to its non-degeneracy in higher
degrees because these functions generate all of C®(M?P).

Now {e;,e,} = {ey,e;} is clear and {D, , D, } = —{D,,, D, } follows from Proposition
4.27, so we proceed to prove the Jacobi identity for this bracket. First,

{D,,,{er.e3}} = ale)){es, e3) = (D, ey, €3) + (€3, D, €3) = {{ D, e}, €3} + {es, {D, . e3}},
({D,,.D,,}. £} = alley. ex))(f) = [aley). ae))(f) = {{ Dy, f}. Dy} + {D, {D, . 1),
{{Del,Dez},e3} = D, o €3+ Qel,eQ(-,e3) =D, D,e;—D,D, e; = {{Del,e3},De2} + {Del, {Dez,e3}}
It only remains to prove the Jacobi identity for {{D,,.D,,}, D,, }. Notice that {D,,D,,}
is, by definition, the unique function H € C;"(MD) such that {H, f} = a([e;, e;])(f)

and {{H,s;},s,} = ([D,,, D,,ls;,5,), where [D, , D, ] denotes the commutator of the
operators D, , D, and s, s, € I'(E). Thus,

({D¢,: De,}. Do} = (Dygy e Doy} = (R4 02 Do)

el er,e?

is the unique H € A? such that

{H,f}=a(le,e;],esD(f) and {{H,s},5,}= ([D[el,ez],De3]51a52>—{{{Qe1,32,De3},sl},52}-

We claim that the last term is ([[D, , D,, 1, D, 1s;, s,) (this is essentially a second Bianchi
identity for D), which will conclude the proof because both the Dorfman bracket and the
commutator satisfy the Jacobi identity. Indeed,

[D[el’ Deg]z [[Del7D32]’De3]+[Q De3]’

el eq,ey°

where we are simply interpreting Q,
such, we see that

([, 0, Do, 151, 52) = Q, o (52, Dy, 51) = (D, (g, 0, 51))s 52)
= Qel,ez(SZ’ De3sl) - a(e3)(Qel,ez(S2’ sP) + Qel,ez(De352’ 51)
= (De3Qel,e2)(S19 S2) = { { {QelvEZ’ De3 }’ Sl }’ 52}’

which proves the claim. In order to obtain the identities (4.6) we choose a local frame {&'},
of E with dual frame {&'}, (that is, (¢/, /) = 8; ;) so that we can write D = &Dgi. Then

{{D.e }, [} = {E'(e))Dy, f} + {&' Daey, f} = (D, , [} = ale))(f),
{{D,e 1} ex} = {E'(e))Dsi, ey} + {E'Diey, ey} = D, ey +E(Dgiey, e3) — D e = T(ey,e5,7) + [eg, e

¢, @s an operator sending s; to Q, . (-,s;) and, as

the second equation and the fact that {{T, e, },e,} = T(-, e5,e;) = =T(e;, e, -) imply {{ D+
T,e;}, ey} =[e;,e,] Thus {D+T, f} €I(E)is such that

{D+T,f}e1} = ({D+T,e}, f} = ale))(f),

which is precisely what {D + T, f} = dgf means. Finally, these relations imply that
{D+T,D+T} = 0 in the same way as in Theorem 4.20; we just need to check that any
H e C:"(MD ) satisfying

{{H.f}.g} =0, {{H,e 1}, e}, [} =0, {{{H,e },er},e5}. 64} =0
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forall f,g € C®(M)ande|,e,,e3, e, € '(E) must be H = 0. This can be seen by writing
H =D, D, +D, a+pwitha € ['(A2E*)and g € T(A*E*). Then {{H, f},g} =0Vf,g €
C*(M) implies precisely that D, D, € I and so we can identify H with something in
I'(A’E ®@ A @ A*E), but then {{{H,e,},e,}, f} = 0 implies that H can be identified with
something in [(A*E) and finally {{{{H,e,},e,},e3},e4} = 0 means H = 0. O

The relation between MP and the canonical symplectic graded manifold M constructed
in Section 4.3 is the following. For a generalized connection D and an ordinary metric
connection V related by D, = V 4(e)» We can define amap MY = E[1] @ T[2]IM - MP =~
E[1] ® (E/Ker a)[2] with pull-back

C®(MP) - (M)
f= 17,
e e,
D, + a(ey).
It is clear from the way the Poisson bracket is defined on each graded manifold that this is a
Poisson map. In fact, E/Ker a = I'ma, and so for transitive Courant algebroids (those with
Ima =T M) this is a symplectomorphism of graded manifolds. However, for non-transitive

Courant algebroids this is a surjective submersion, showing that MV is a symplectic re-
alization of MP.

The advantage of working with MP is that some of the objects from generalized Rie-
mannian geometry have a nice interpretation here. For example, recall that the curva-
ture Q, . (e3,e,) of a generalized connection D on a Courant algebroid E is not a skew-
symmetric tensor on e, e,. Instead, it satisfies the relations in Proposition 4.27. We can
interpret these in MP as follows: For each fixed e;, e, there exists a unique function
Q(es,e4) € C2°°(MD) such that

{{Q(e;3,e4),€1}, 65} = _981,82(33’ ey),
{Q(es,e4), f} = <DdEfe3, ey).
In a local frame {£}; with dual frame {&'}; we can write this function as
Q(es,ey) = %S'Ef (Qgi si(es. eq) — (Dgcez, e (D', E)) + (Dyies, e4) Dsi.
Thus, we may see the curvature of D as a C®(M)-linear map Q : I'(A’E) — C;°(MD),
(e3,e4) = Q(es,ey). In other words, in general  is an element of C;"(MD) ® I'(A2E™)

instead of (A2E*) @ T'(A2E*), which is what happens when D, =V, for a metric con-
nection V (see Remark 4.28).

| Theorem 4.37 (First Bianchi Identity for Generalized Connections). The following
identity is satisfied by the curvature and torsion of a generalized connection:

cycl Q, . (e3,e4) =2 Z (=1)(Dgie; . e;,){Dgie; . e;,)

1,234 i<y, iz<iy

2 1
+ 3 cycl D, T(ey, e3,e4) + 5 cycl T(ey, ey, T(e3,e4,+)).
1234 21534
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Proof.
This identity can be obtained by expanding {{{{{D+T,D+T},e,},e,},e3},es} = 0.
In a local frame {&'}; with dual frame {&'},, we see

{D,D} =Dy - Dz +28 - Dy - Dy + & - & - (Dpai g1 — Q)
Now

{{{Dg - Dz,e;},er) e3) e} = Y (=17 (Dge; e, X Dze; e,

i<y ,i3<iy

({028 - D& Da,er),er) 5}, 4} = =2 3 (-1V(D,, &' e, )(Dze.e,).

We note that
(E'(e))E (ey) — E(ex)E (e)E, E]

= [e}, e2] — [eg, €11 + &'(e))d (£ () — E'(ex)d (£ (1)) + 2a(e;)(E (e))E — 2ale)(E (e2))E'
= 2[e;, e5] — 2&'(ex)d p(E'(e))) + 2(D, &', €1)&' + 2D, ) — 2(D, &', e5)&' — 2D, e,

= —2T (e, ey,") + 28(Dysiey, ) — 28 (ex)d p(E'(e))) + 2(D, &, ))& — 2D, &', e5)¢',

while

(Ei(ﬁ)gj(ez) - Ei(ez)gj(ﬁ))ggf,gj (e3,e4)
=Q, o, (e3:€4) + (Do, ei(e)€3 €4) = Lo,y o, (€35 €4) = (Deie, 1 (21(e,)) 230 €a)
= 2961,62(e3’ 84) + 2<D§i(€2)d5(§i(€1))e3’ e4>.

Hence,

{{{{El & (D[gf,gj] - ng,gj)’ erl.ex}, ez} eyl
== Y 1 (BB e — BB e) (Drganens ) + Quslene)

iy <in,iz<iy

=2 Z =1y <<DT(eil,ei2,-)ei3’ e;,) = (Dzie; ei2><D§iei3’ €,) = . (ei3’ei4))

. Pa— . rip
i1 <ip,iz<iy

+2 ) (=D/(D,, & e, )(Dyeivey,).

i3<iy
That is,

{{{{{D,D},e,},e,},e3}, €4} =
3 -y <2<DT(eil,ei2,.)e,.3, e,) = (Dge, e )(Dgerse,) =29, (e, e,.4)) :

iy <in,iz<iy
On the other hand,

(D.T} =& DyT +T(E.-)- Dy,
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SO

2{{UD.Th e} el esh e} =2 D) (DD, T)eyerner) =2 3, (“I'TE e e, Dgee)

i <iz<iy i1 <ip,iz<iy
=2 ) D, Dlerere) =2 Y D(Drg o ei.61,)
i <iz<iy i1 <ip,iz<iy

Finally, (T, T} = T(&',-,-) - T(-, -, ) implies
({HUT. TheLedeshesd = ), (“IVTE e .e)T (e, e, 8) = Y (=1 T(e; e, Tle ep,,0)).

i) <in.iz<iy i) <innis<iy
Thus,

{{{{D+T,D+T},e},e},e3},4}
= Y <‘29e,-1,e,-2 (e,se1) — (D e, )(Dgeye,) +T(e; e, e, ey, ~)))
i) <iniz<iy

+2 ) (=D,  Deie.e,

ip<iz<iy

e;,):

To conclude the proof notice that

Qel,ez (6’3, e4) - Qez,el (83, 64) - Qel,ez (e4, 63) + Qez,el (ey, 63) = 4Qel,e2(e3’ ey) + 2<Dd5(el,e2)e3’ e4>

and

(DdE(el,e2)e3’e4> - (D(Déiel,e2)§~"e3’e4> = (D(Déiez,el)f"eS’e4>'
(|

The Bianchi identity in Theorem 4.37 is analogous to the Bianchi identity for an ordi-
nary connection with non-vanishing torsion (see for example [30]) except for a term that
appears as a consequence of the non skew-symmetry of , , on ey, e,. In the presence of
a compatible generalized metric, it has the following much more elegant Corollary which
was proved in [19] for the case T = 0.

| Corollary4.38. Let D be a generalized connection on a Courant algebroid E compatible
with the metric E =V, @ V_ and with torsion T of pure type. Then,

*0,E T Lt LE e S + £ Lt
R(el,e+,e2,e3)—R(e2,e N )+R(e et er ey = De;T(el,ez,e3)
Proof.
This follows directly from Theorem 4.37, using the compatibility of D and the orthog-
onality of ¥ and V_. O

Generalized metrics admit a geometric interpretation on MV and MP. Namely, it
follows from Remark 4.15 that a generalized metric on a pseudo-Euclidean vector bun-
dle E > M is precisely a symplectic submanifold N, of its corresponding symplectic
N-manifold M having M as underlying manifold. If the generalized metric is given as
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E =V, ®V_, then N, is simply the symplectic N-manifold corresponding to the pseudo-
Euclidean vector bundle V, . If V is a metric connection on E compatible with E =V, @V_,
then we can present these manifolds as

MY = (M,T(S*TM @ A“E)), N =M, T(S*TM ® A*V,))

with the Poisson brackets from Section 4.2. Interestingly, we see that coordinates on MV
corresponding to I'(V_) transform linearly between themselves (independently of the coor-
dinates corresponding to ['(V, )). This means that MY — N +V is a vector bundle projection
with fiber the model vector space of V_, and similarly for MY — AN"Y. The global picture

1S

V. (1] V_[1]
\ ; /

where the middle arrows are affine bundle projections, the rest are vector bundle projections
and all maps are Poisson maps. Note that the fibres of the projection z_ are symplectically
orthogonal to the fibres of the projection z_. This kind of structure is usually called in or-
dinary Poisson geometry a Morita equivalence betwen N +V and N'V.

’

If E is a Courant algebroid and we want to work with a generalized connection D compatible
with E = V, @V_, we can construct the graded manifolds N f =M, TNV, QS*A)/I#),
where I+ is the ideal generated by {1® D, — D*® 1 : a(e) = 0} and D7 is the restriction
of D, € T(A*V @ A*V*) to I(A*V}) when a(e) = 0. Thatis, N.” = V_[1]®(E/Ker a)[2].
As before, these are graded Poisson manifolds and there are Poisson vector bundle projec-
tions , : MP - Nf.

Consider the injections i, : N'? - M?P induced from the orthogonal projections E — V,,
(these are injections along the zero section of MP). We emphasize that these are not Poisson
maps; for non-orthogonal e}, e € C*®(MP) we have {itel,ite]} =0#i"{e],e;}. For
any H € C®(MP)we write H* := # i H.Inparticular, for « € I'(APE*), a* € T'(APV)
is its re~s‘tri£:‘ti0n to V.. and, for {&, &’ }; ; alocal basis of I'(E) = I'(V) @ I'(V_) with dual
basis {&}, &7}, ;, we can write

C m T
ie, DT € [(V} ® A) is the restriction of D € T(E* ® A) to V...

| Proposition 4.39. Let E = V, @ V_ be a Courant algebroid with a generalized metric
and let D be a compatible generalized connection with torsion of pure type. Then, for
0® € C®(M?P) defined by ® = D + T we have

(©+,07} = 0.
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Proof.
Performing similar computations to those in the proof of Theorem 4.37 one can check
that

{{{{{D+’D_}’el}’eZ}’e3}9e4}
= Z (=1 ((DT(Q:,l T ’e;rz,,)eig, ei4) - Qea <, (e,»S, e,-4) - Qei—l o (el-3, e,-4)>

i) <in,iz<iy
and it is also easy to see that

{{{D*, D7}, f}.g} =0,
{{{{D+7 D_}7el}7e2}’ f} = a(T(erae;9')+T(e1_’e-2'_"))(f)'

When T is of pure type, we note that
{T*,T"}=0, (D*\T"}=¢& -DuT", (T*,D"}=¢& -D.TH,

implying

{{D*+T*,D”"+T"}, f}.g} = {{{D", D7}, f}.8} =0,
{{D"+T*. D™ +T e hhex}s f} = ({{{ID*, D7}, e her}, £} = 0.

Now using Corollary 4.38 we obtain in this case

{{{{{D+’D_}’el}’e2}’e3}’e4} = - Z (_1)}’ <De’_| T(e;’;’e-'i_’el-‘:) +De;T(el‘_2’ei_3’e;))

I3
iy <iz<iy

= _{{{{{D+’T_} + {T_aD+}se] }’62}963}364}a
which means precisely that {@*,©~} = 0 for ®* = D* + T*. O

The equation {®*,®~} = 0 holds a strong resemblance with the equation {@ 4,0 4.} =
0 from the study of Dirac structures on the double of a Lie bialgebroid in Example 4.25, but
its real significance remains a mistery to us.

Finally, we mention that some work has been carried out in [2], [54] trying to study gener-
alized connections as O-connections. These can be defined for any graded vector bundle
& — M over a Q-manifold (M, Q) as odd vector fields on £* of weight 1 preserving I'(£)
and restricting to Q on C®(M). For example, for M = T[1]M with the de Rham differ-
ential, one obtains ordinary connections. It would be interesting to study if it is possible
to define a notion of Q-principal bundles which unifies these ideas with those in [45] for
L -algebras.
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