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Máster Universitario en Investigación e Innovación

en Inteligencia Computacional y Sistemas

Interactivos

Autor: Sergio Alvarez Balanya

Tutor: Daniel Ramos Castro
Tutor: Juan Maroñas Molano
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Abstract

Abstract

In the last years Deep Neural Networks (DNNs) have gained popularity as
classification systems and are now applied to multiple tasks where they ob-
tain state-of-the-art accuracy. Some of this tasks benefit from confidence
scores associated to predictions. To this aim, a probabilistic classifier out-
puts confidence scores which are identified with the categorical distribution
over the set of possible classes. In this context, calibration is identified with
the validity of confidence scores as true probabilities.

Although DNNs report state-of-the-art accuracy in a plethora of tasks,
it has been pointed out recently that they present poor calibration. This
has motivated a growing body of literature on the calibration of DNNs. One
common approach, and the taken in this work, is that of training a separate
model to map uncalibrated outputs to better calibrated predictions, namely
re-calibration.

We extend the work in [1] where the authors propose to use Bayesian
Neural Networks (BNNs) as a decoupled stage from the main training of
a DNN. The Bayesian approach is appealing in the sense that it presents
proper uncertainty modeling. However, recent work [2] argues that cur-
rent approximations to the standard Bayesian approach fail to recognize
fundamental assumptions of the Bayesian paradigm. We apply the novel
framework of Generalized Variational Inference (GVI) to approximate the
posterior of the decoupled BNNs. In particular, we substitute the tradi-
tional KL divergence used in the standard Variational Inference method for
a robust divergence. We provide a comprehensive comparison between both
divergences. Moreover, since there is no much literature on the use of robust
divergences along GVI, we also contribute with a sensitivity study in which
we analyze the influence of the divergence parameters.

Key Words

Deep Neural Networks, Bayesian Neural Networks, Calibration, Uncertainty,
Variational Inference, Generalized Variational Inference, Robust Divergences.
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Resumen

Resumen

En los últimos años las Redes Neuronales han ganado mucha popularidad
como sistemas de clasificación aplicándose en multitud de ámbitos donde
consiguen unas medidas de precisión muy buenas. Algunas tareas pueden be-
neficiarse de clasificadores probabiĺısticos que reportan valores de confianza
asociados a sus predicciones. En este contexto, se entiende la calibración de
un clasificador como la validez de sus valores de confianza como verdaderas
probabilidades de cada clase.

A pesar de lo precisas que son las Redes Neuronales, trabajo reciente
ha señalado que presentan mala calibración. Esto ha motivado un creciente
interés por parte de la comunidad incrementando el número de publicaciones.
Un enfoque t́ıpico, y el tomado en este trabajo, es el de utilizar algoritmos
a posteriori para transformar la salida de clasificadores a predicciones con
mejor calibración, este método también se conoce como re-calibración.

Este trabajo extiende el realizado en [1], donde los autores proponen
usar Redes Neuronales Bayesianas como paso de post-procesado en el que
calibrar una Red Neuronal Profunda. El enfoque Bayesiano resulta adecua-
do ya que implica un buen modelado de la incertidumbre. Sin embargo,
trabajo reciente [2] argumenta que las aproximaciones actuales al enfoque
Bayesiano ignoran ciertas suposiciones fundamentales del paradigma Baye-
siano. En este trabajo se aplica el reciente método de Inferencia Variacional
Generalizada para aproximar la Red Neuronal Bayesiana utilizada para re-
calibración. En concreto, se sustituye la tradicional divergencia KL en el
método de Inferencia Variacional por una divergencia robusta. Se ha reali-
zado una comparativa entre la aplicación de las dos divergencias. Además,
se incluye un análisis de sensibilidad en el que se analiza la influencia de los
parámetros de la divergencia robusta.

Palabras Clave

Redes Neuronales, Redes Neuronales Bayesianas, Calibración, Incertidum-
bre, Inferencia Variacional, Inferencia Variacional Generalizada, Divergen-
cias Robustas.
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Chapter 1

Introduction

There is a growing interest in the application of machine learning algorithms
to multiple tasks. Deep Neural Networks (DNNs) achieve state-of-the-art
performance in a wide variety of applications including Image Recognition
[3], Image Captioning [4], and Speech Recognition [5] among others.

Decision making is one task prone to be automated by machine learning
algorithms. In this scenario it is desirable to account for probabilistic clas-
sifiers that report confidence scores. DNNs meet this condition, but it has
been recently pointed out that, although modern DNNs attain high accuracy
performance, they present poor calibration [6]. Calibration can be identi-
fied with the validity of confidence predictions as the true probability of the
classes. Calibration is, then, a very desirable property. If predictions can be
taken as actual probabilities, then the Bayesian decision framework can be
applied. This allows to minimize the expected cost of a decision problem and
to combine predictions with other sources of information. Moreover, mean-
ingful confidence estimates are of great value for auxiliary systems where the
final decisions are taken by a human expert like the diagnosis of a possible
melanoma or grating a loan.

The concern with obtaining reliable, i.e. well calibrated, probabilistic
classifiers is not new [7, 8]. But the recent success of DNNs on other areas
has motivated a growing body of literature on the calibration of DNNs [1, 9,
10, 11]. Some of these methods tackle related properties like robustness to
outliers and distribution shift; hence, improving calibration implicitly. Oth-
ers, target specifically calibration. Among these, the most popular approach
is that of re-calibration in which a calibration method learns a transforma-
tion that maps outputs of some uncalibrated classifier to better calibrated
predictions. Out method belongs to this latter category.

The main issue spoiling the calibration performance of modern DNNs is
that they generate over-confident predictions. They may present high accu-
racy, but when they fail the confidence values are completely out of place,
assigning most of the probability to a wrong class. This means that DNNs

1



2 CHAPTER 1. INTRODUCTION

consistently underestimate uncertainty. One way of introducing proper un-
certainty modeling is taking a Bayesian approach, but a proper Bayesian
modeling of DNNs is intractable and requires the use of approximate meth-
ods like Variational Inference. In addition, Bayesian Neural Networks of-
ten perform poorly when compared to their non-Bayesian counterparts and
rapidly turn unpractical as the complexity of the task scales [12]. Moreover,
recent work [2] argues that the Bayesian approximations taken to complex
models like Neural Networks and Gaussian Process violate fundamental as-
sumptions of the standard Bayesian paradigm and that this is the cause of
many of the problems that arise in real life scenarios.

In this work we try to reconcile the good discrimination properties of
DNNs, i.e. high accuracy, with the appealing uncertainty modeling of the
Bayesian approach. We do this by extending the work in [1]. There, authors
propose to use Decoupled Bayesian Neural Networks to calibrate DNNs.
This way the bulk of the task is taken by the DNN which obtains high
accuracy in complex tasks like Image Recognition. The BNN is left, then,
with the uncertainty estimation of predictions, which can be addressed as a
different and simpler task. We extend this work by incorporating the Gen-
eralized Variational Inference framework presented in [2] in order to address
the concerns with Bayesian approximations observed above. Specifically, we
substitute the traditional Kullback–Leibler divergence used in Variational
Inference for a robust divergence, the Rényi’s α-divergence.

We show that the novel framework of Generalized Variational Inference
can be applied to the task of training BNNs for calibration with promising
results. Our method provides a flexible way of incorporating uncertainty in
a post-processing step and improves previous results by reducing sensitivity
to hyperparameters.

Structure

The rest of the work is organized as follows. First we introduce some useful
background knowledge, in Chapter 2 we briefly review Neural Networks, give
an intuitive description of calibration, and summarize related work. Then,
in Chapter 3 we introduce the novel framework of Generalized Variational
Inference highlighting central aspects to our work. With the bases covered,
we present our method in Chapter 4 and show experiments in Chapter 5.
Finally, conclusions and future work are drawn in Chapter 6.



Chapter 2

State of the Art

2.1 Supervised Learning

Supervised Learning can be seen as the problem of learning input to output
relations from some empirical data D. Observed data consists on a collection
of N samples, each of which is a tuple (input, target), D = {(xn,yn)}Ni=1,
assumed to be i.i.d. Notice that both, xn and yn, may be vectors of any
dimension and not limited to scalars. The true function from X = {xn}Nn=1

to Y = {yn}Nn=1, which may not even exist, is approximated by a pattern
recognition model. The choice of model specifies a family of functions F
over which its possible to optimize some cost function L w.r.t. the empirical
data:

f∗ = arg min
f∈F

L
(
Y, f(X)

)
(2.1)

This process is called fitting or training the model. The trained model
can be use to make predictions ŷ = f∗(x). Ideally we would like it to
perform well on new unseen data (x∗,y∗) /∈ D, so that model predictions
closely resemble the targets ŷ∗ ' y∗. The ability of a model to meet this
condition is called generalization. In practice the observed data comprises
only a tiny fraction of all possible inputs, making generalization the main
objective in many practical scenarios. From now on and for the sake of
simplicity we will drop the ∗ from the notation of the trained model and
refer to this just as “the model”.

Regarding the form of the target Y , we can distinguish between regres-
sion problems and classification problems. In the regression setting the tar-
get consists of continuous variables. Whereas in classification the target is
one of a set of possible categories. In this work we focus on the classification
task.

3



4 CHAPTER 2. STATE OF THE ART

2.1.1 The Classification Setting

In particular we refer to probabilistic classification problems, where predic-
tions take the form of a probability vector over the possible classes:

ŷi = p(Ci|x),

where ŷi index the i-th dimension of the prediction vector ŷ and Ci is the
i-th class of the set of C possible classes. Targets, or labels, are one-hot
encoded vectors indexing the true category of the sample:

yi =

{
1 if i = j,

0 otherwise,

where Cj is the true category represented by y. This encoding arises natu-

rally from the assumption of a categorical likelihood, p(y|f,x) =
∏C
j=1 ŷj

yj .

The logit space

Regression models can be applied to the classification task by taking a Gen-
eralized Linear Model (GLM) approach [13]. Let’s have a regression model
making predictions ẑ in the whole real domain, ẑ ∈ RC . In GLM we assume
that the conditional probability of the classes p(y|f,x) follows a distribution
from the exponential family. In our setting we assume it follows a categorical
distribution:

p(y|f,x) = exp (ηηηTy), (2.2)

where ηηη are the natural parameters of the distribution which are subject to∑C
i=1 exp (ηi) = 1 and are obtained as some function of ẑ.
Intermediate predictions ẑ are related to the expected value of targets y

via a link function ψ:

E[y|x, f ] = ŷ = ψ−1(ẑ) (2.3)

As is common in the literature, we use the canonical link function, which
is the link function that identifies ẑ with the natural parameters of p(y|f,x),
i.e. ηηη ∝ ẑ. Notice that this choice is made for convenience and that other
link functions like the probit may be preferred depending on the application.
Particularizing to the categorical distribution, the canonical link function is
given by the Logit function:

ẑ = ψ(ŷ) = log ŷ + logZ, (2.4)

where Z ∈ R>0 is a normalization constant to ensure the constraint over
ηηη. Reversing the equation above and noting that

∑C
i=1 ŷ = 1 we obtain the

predictions as the softmax of ẑ:

ŷ =
exp ẑ

Z
=

exp ẑ∑C
j=1 exp (ẑj)

, (2.5)
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Because of the name of the link function, ẑ is called the logit vector.
In this work, we take directly logit predictions, this design choice allows
our method to be used independently of the link function. Moreover, the
application of the softmax may dismiss potential valuable information. Two
equivalent logit vectors zn, zm which differ only in a scalar constant,i.e.
zn = zm + k, k ∈ R, will yield the same probabilistic prediction yn = ym
despite the value of k.

2.2 Neural Networks

Neural Networks are a family of machine learning models with multiple
applications. Broadly speaking, the model learns a function f : X → Y
between an input space X ∈ Rd and an output space Y ∈ Rd′ . For instance,
X may be the set of melanoma images and Y the categorical distribution
over the possible classes of melanoma. Neural Networks are composed by
sequential stages or layers, each of which defines a map to an intermediate
vector space, f(x) = (fL ◦ fL−1 ◦ ... ◦ f1)(x), where L is the total number
of layers. Layers are, generally, parametrized. We denote the parameters of
layer l by θl, and the output of each layer as x(l):

x(0) = x,

x(1) = f1(x, θ1),

x(l) = f l(x(l−1), θl),

ŷ = x(L) = fL(x(L−1), θL),

Each dimension of intermediate mappings is called neuron or unit, so
if the output of layer l is of dimension h, x(l) ∈ Rh, it is said that layer l
has h neurons. The whole net is parametrized by θθθ = {θl}Ll=1. Parameters
are trained with the backpropagation algorithm [14], which propagates the
gradient of a cost function backwards throughout the net. Backpropagation
works by iteratively applying the chain rule. For a single observation (x,y) ∈
D:

∂L(θθθ)

∂θL
=
∂fL(x(L−1), θL)

∂θL
=
∂x(L)

∂θL

∂L(θθθ)

∂θL−1
=

∂x(L)

∂x(L−1)

∂x(L−1)

∂θL−1

∂L(θθθ)

∂θl
=

∂x(L)

∂x(L−1)

∂x(L−1)

∂x(L−2)
...
∂x(l)

∂θl
(2.6)

Notice that layers should be differentiable in order to apply Backpropa-
gation. Neural Networks provide very flexible models given the possibility
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of arbitrary big number of layers and high-dimensional intermediate spaces.
Moreover, different architectures of Neural Networks adapt better to differ-
ent domains regarding the kind of map that its layers define. For example,
Convolutional Neural Networks (CNNs) provide state of the art performance
on Computer Vision tasks and Recurrent Neural Networks (RNNs) are well
suited to model sequential data.

2.2.1 The Multi-Layer Perceptron (MLP)

MLPs are probably the most basic architecture of Neural Networks. Its
layers are typically known as Fully Connected (FC), each FC layer consists of
a linear mapping and a differentiable non-linearity which is applied element-
wise.

x(l) = g(W lx(l−1) + bl), (2.7)

where g() is the non-linearity, also known as activation function, and the
parameters of the layer are θl = (W l, bl) the weight matrix W l and the bias
vector bl.

MLPs can be seen as a direct extension of, either, linear or logistic re-
gression models depending on the task at hand. In this work we use this
architecture to learn a mapping from a set of uncalibrated logits to their
corresponding calibrated ones.

2.2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks allow to increase the dimensionality of the
network and, at the same time, reduce the number of parameters by sharing
weights. A smaller weight matrix is convoluted with the input:

x(l) = g(W l ∗ x(l−1) + bl), (2.8)

where ∗ denotes the convolution operator. This kind of layers results very
useful in situations where the same patterns may arise in different parts of
the input. For instance, a face in a photograph remains a face independently
of where in the photograph it appears.

AlexNet [15] is probably the most famous example of a CNN, it marked
an inflexion point when it won the ImagenetNet Large Scale Visual Recog-
nition Challenge [3]. Its major breakthrough was the depth of the network,
it has 5 convolutional layers followed by 3 fully connected. Computation on
GPU was essential to make the training feasible, but not sufficient. AlexNet
success is also due to the use of the Rectified Linear Unit or ReLU as acti-
vation function.
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2.2.3 Other architectures

So far we have given a brief description of MLPs and CNNs as they are
the most relevant architectures concerning this work. There are, however,
other architectures that are worth mentioning. Recurrent Neural Networks
(RNNs) introduce a temporal structure by feeding layers with their outputs
at the previous time-step. This networks are trained with an adapted version
of backpropagation called backpropagation through time [16]. To account for
long-term dependencies Long Short-Term Memory (LSTMs) extend RNNs
by introducing the hidden state, an internal variable that may, or may not,
be updated depending on the input, allowing layers to propagate information
between distant time-steps. Transformer Networks [17] avoid the sequential
computation inherent of RNNs by exploiting attention [18], a mechanism
that weights the elements of a sequence by their relative importance between
each other.

These architectures are state of the art in several applications like Ma-
chine Translation [17], Image Captioning [4], and Speech recognition [5]
among others.

2.2.4 Improvements on the learning process

As we mention before, Neural Networks are trained with backpropagation.
Although this method dates from the 60s, it hasn’t been until the last decade
that Neural Networks have become bigger and competitive. In part, because
only now computational power is enough to take the task. However, this is
only half of the story, improvements on the learning process has also been
central in the development of bigger models.

ReLU

One major leap was the use of the ReLU:

ReLU(x) =

{
x if x > 0,

0 otherwise,

This form divide the input space into 2 regions, the active, where inputs
are positive so the function propagates its values, and the inactive or dead
region, where inputs are negative and the function propagates no informa-
tion forward.

Previous implementations of Neural Networks usually used the hyper-
bolic tangent or the sigmoid function as non-linearities. These can be seen
as differentiable versions of the Heaviside step function used in traditional
perceptrons. The problem with this functions is that its derivative is far
from zero only in a small range of the input, for big or small values it comes
close to 0. Taking a look at the computation of gradients in Equation 2.6, it
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becomes clear that gradients propagating to deep layers can easily vanish as
the number of factors near zero increase. The gradient of the ReLU function
can only take values 1 or 0, so gradients can be potentially back-propagated
much deeper as long as enough units remain in the active region.

Skip Connections

Another important breakthrough is the use of skip connections. They were
introduced in [19] improving greatly the training of very deep CNNs and
pushing further the state of the art on many Computer Vision tasks. The
idea of skip connections is simple though. They can be seen as shortcuts
between non-contiguous layers. For instance, layer l + k with k > 1 may
take as input the outputs of the layers l + k − 1 and l:

x(l+k) = f l+k(x(l+k−1),x(l), θl+k)

Now, the gradients for layer l can be computed as follows:

∂L(θθθ)

∂θl
=

∂L(θθθ)

∂x(l+1)

∂x(l+1)

∂x(l)

∂x(l)

∂θl
+

∂L(θθθ)

∂x(l+k)

∂x(l+k)

∂x(l)

∂x(l)

∂θl

Since the layer l + k is much closer to the output, the second term
provides a less noisy gradient. The multiplicative nature of the gradients, in
combination with the stochasticity of the Monte Carlo methods used for the
gradient estimation, made unfeasible the training of deep layers. However,
skip connections introduce paths in the backpropagation step that allow
gradients to reach very deep into the network with very few steps.

Skip connections have been exploited since then by following state of the
art CNN architectures. In [20], for instance, the authors introduce dense
blocks, stages of contiguous layers in which each layer has a skip connection
with every subsequent layer.

2.2.5 The training of Neural Networks

Neural Networks are trained via backpropagation to minimize a cost func-
tion. The choice of the cost function specifies the optimization problem.

Point Estimate Techniques

The two most common approaches are probably Maximum Likelihood (ML)
and Maximum a Posteriori (MAP). These techniques are called point-estimate
methods since they learn fixed values of the Neural Network parameters.

Maximum Likelihood optimizes the likelihood of the parameters given
the empirical data. Since the logarithm is a monotonic increasing function,
setting the cost function to the Negative Log-Likelihood (NLL) is equivalent
to maximizing the likelihood:
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L(D |θθθ) = log p(Y |θθθ,X)

=
N∑
n=1

log p(yn |θθθ,xn)

=
N∑
n=1

C∑
j=1

ynj log ŷnj (2.9)

where we assume a categorical likelihood and the decomposition into a
sum results from the i.i.d. assumption of the empirical data. The notation
ynj index the j-th dimension of the n-th sample yn.

Maximum a Posteriori can be interpreted as adding a regularization term
to the ML criterion. Instead of maximizing the likelihood MAP maximizes
the posterior of the parameters:

L(D |θθθ) = log p(θθθ | D) =
N∑
n=1

log p(yn |θθθ,xn) + log p(θθθ) (2.10)

The log p(θθθ) acts as the aforementioned penalty term. For example, in
the case of an isotropic gaussian prior, this term is equivalent to a L2 penalty.

Bayesian Approach

Another approach, much less employed and the taken in this work, considers
making inference over the parameters posterior p(θθθ|D) so we can make new
predictions as:

p(y∗|x∗,D) =

∫
p(y∗|x∗, θθθ)p(θθθ|D)dθθθ (2.11)

However, the problem of inferring the parameters posterior is intractable,
so approximate solutions are required. Moreover, this approaches require
more computational cost and usually perform worse than the point-estimate
equivalents [12].

2.3 Calibration

In the scope of probabilistic classifiers, calibration refers to the quality of
estimates as true correctness likelihood —i.e. how closely confidence scores
resemble the probability of the class. For instance, in the case of a well
calibrated weather forecaster, around 80% of the times it announces rain
with an 80% of confidence, it actually rains. This notion can be easily
extended to the multi-class setting. Taking the set of predictions matching
an specific estimate, e.g. (0.4, 0.3, 0.3), the prevalence of each class on this
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set should be the same as the predicted confidence, (0.4, 0.3, 0.3), if the
model presents good calibration.

The concern with quality confidence predictions is not new and has been
widely investigated in applications like forecasting [7, 8] for decades. How-
ever, in the past years there has been a growing interest on the calibration
of Neural Networks. The reason might be that, as have been pointed re-
cently [6], accurate modern models exhibit poor calibration. In this section
we introduce the concept of calibration from an intuitive perspective and
describe how its measured in the literature. Then we review related work
regarding the calibration of Neural Networks, in particular post-processing
techniques.

2.3.1 Measures

Let P(X,Y ) be the joint probability of some input-class data collection D =
(X,Y ) where Y indicates the true class of inputs X. We say a classifier f is
perfectly calibrated on D if for every possible prediction ŷ the distribution
of the target given the prediction is exactly the prediction:

P
(
Y | ŷ

)
= ŷ (2.12)

Any deviation between both terms is called Calibration Error and most
calibration measures are based on this equation.

Expected Calibration Error

The Expected Calibration Error (ECE) as defined in [6] measures the abso-
lute difference between both terms in Equation 2.12, but considering only
top-label predictions, this is, the most probable class according to the esti-
mate:

E
[∣∣∣P(Y = arg max(ŷ) | ŷ

)
−max(ŷ)

∣∣∣] (2.13)

Computing this measure turns unfeasible in practice since ŷ is a contin-
uous variable and we account only for a finite number of samples. The ECE
is approximated in the following way:

First, the probability range is divided into M equally spaced intervals or
bins Im =

(
m−1
M , mM

]
, m = 1, 2, ..,M . Let Bm be the set of samples that its

prediction falls in the interval Im, i.e. Bm = {(x,y) ∈ D | max f(x) ∈ Im}.
Then, we compute the average accuracy and confidence for each interval:

acc(Bm) =
1

|Bm|
∑

(x,y)∈Bm

111(y = arg max f(x)),

conf(Bm) =
1

|Bm|
∑

(x,y)∈Bm

max f(x),
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where 111 is the indicator function and |Bm| the number of samples in
Bm. The acc(Bm) and the conf(Bm) approximate the left and right terms
of Equation 2.12 taking only top-label predictions.

Finally, the ECE is approximated by:

ECE =
M∑
m=1

|Bm|
N

∣∣∣acc(Bm)− conf(Bm)
∣∣∣, (2.14)

where N is the number of samples in D. When we report results or
discuss performance in terms of ECE we refer to the estimate given by
Equation 2.14.

Recent work argues that the ECE may not be enough to provide a com-
prehensive estimate of the model calibration [21] and that it is biased [22].
However, to the best of our knowledge the ECE is the most reported metric
in the literature on calibration of Neural Networks and has a desirable intu-
itive interpretation. For these reasons we use ECE in this work to evaluate
calibration.

Maximum Calibration Error

In some applications it may be of interest minimizing the worst-case devi-
ation. This is given by the Maximum Calibration Error (MCE), which is
estimated as:

MCE = max
m

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (2.15)

This measure is much less used in the literature than the ECE, although
it may be important in high risk applications.

Proper Scoring Rules

Proper scoring rules (PSR) are measures of a probabilistic model quality.
Proper scoring rules are minimized when the model recovers the ground
truth P(Y |X) making them appealing as cost functions. A model that mini-
mizes a PSR will also present perfect calibration by means of Equation 2.12
because, then, ŷ = y. The most commonly used PSRs are the logarithmic
scoring rule, which turns into the NLL in our setting, and the Brier scoring
rule, which resembles the mean square error.

However, proper scoring rules do not measure directly calibration, but
the sum of calibration and a discrepancy or refinement component, a prop-
erty related with the accuracy of the model [8, 23, 24]. Thus, minimizing a
PSR does not necessarily imply improving calibration because the refinement
component may be optimized instead; moreover, Neural Networks optimiz-
ing the NLL become overconfident, improving discrimination but yielding
poor calibration [6]. This means that these models minimize the NLL by
increasing the confidence scores of already correctly classified samples in
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such a way that outputs become more peaked, closer to one-hot vectors.
This might be due to the limitations of the training set, and can derive in
overfitting from the perspective of the calibration performance.

2.3.2 Methods

We can distinguish methods that improve calibration into two different
groups. First, those that involve the training step. Most of these meth-
ods target related properties like robustness to out-of-distribution samples
or random-noise; thus, they improve calibration implicitly. This group in-
cludes data augmentation techniques [25, 11], alternative objective functions
[26, 27], specific models that better capture uncertainty [28], and taking a
Bayesian approach [29] among others. These methods increase the overall
computational cost of the training procedure, and may even degrade per-
formance, like in the case of approximate methods for Bayesian modeling.
Furthermore, in case of input distribution shift, a common problem on real
life scenarios, the whole model may require retraining with all its associated
cost.

The other approach is to re-calibrate an already trained classifier. These
methods are model agnostic since re-calibration is a post-processing step.
They only require a set of ill-calibrated predictions Ŷ and their correspond-
ing ground-truth Y . A calibration model is fitted to approximate the condi-
tional distribution of the labels given the predictions P(Y |Ŷ ). This property
implies that the computational overhead to pay for calibrated predictions
is fixed despite the complexity of the problem. This can be very useful in
situations were very big models are needed or when the input distribution
is prone to change during time.

Our method belongs to this later category, so we review re-calibration
methods on more detail.

Calibration of Binary Classifiers

One common approach is to divide the problem into C one-vs-all binary
classification problems, train a calibrator in each one, and aggregate results.
Each calibrator hi outputs a confidence q̂i, stacking them together into a
vector and normalizing it we obtain the new prediction vector q̂. Calibrators
for binary classification problems fit a monotonically increasing function to
the ill-calibrated predictions. Histogram Binning [10], divides the input
range, [0, 1], into equal bins and assigns a score to each bin. The prediction
for a given sample is just the score of the bin on which it falls. The scores
are optimized according to the Brier rule but constrained to fulfil bin-wise
the monotonically increasing condition. Isotonic Regression [30] fits a piece-
wise constant function yielding the binning scheme, with variable size and
number of bins, that best fits the data. Bayesian Binning into Quantiles [31]
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extends the binning approach taking a Bayesian average over all possible
binning schemes. Platt Scaling [9] fits the parameters a ∈ R, b ∈ R of the
function

q̂i = σ(azi + b), (2.16)

to the NLL where ẑi is the logit associated to ŷi, and σ is the sigmoid
function.

Temperature Scaling

Platt Scaling can be extended to the multiclass setting by other means,
rather than one-vs-all, like matrix and vector scaling, where the function is
defined by:

q̂ = σSM (W ẑ + b), (2.17)

where ẑ is the logit vector associated to ŷ, σSM is the softmax function as
defined in Equation 2.5, b ∈ RC , and W ∈ RC×C for matrix scaling and
W ∈ RC for vector scaling.

However, is the simplest extension of Platt Scaling, Temperature Scaling,
which performs the best in practice [6]. Predictions take the form:

q̂ = σSM (
ẑ

T
) (2.18)

The temperature T ∈ R>0 is trained to optimize the NLL. A higher
temperature will attenuate differences between logits zi, resulting in a much
more uniform output and relaxing the confidence on predictions. On the
other hand a lower temperature will amplify them, turning into over-confident
predictions. Notice that the maximum is preserved independently of T , thus
this method does not change the accuracy of the base model.

Temperature Scaling improves calibration when evaluated under a test
set sampled from the same distribution as the train set, i.e. under no distri-
bution shift. It mitigates the flawed tendency of Neural Networks to output
overconfident predictions. This observation in conjunction with that that
more complex methods tend to over-fit led authors in [6] to the conclusion
that calibration is a low dimensional problem and inherently simple. How-
ever, recent work [1] argues with empirical evidence that this behaviour is
due to a bad uncertainty modeling and that calibration might be a much
more complex task, specially in high dimensional problems, i.e. with a high
number of classes C. Moreover, the simplicity of Temperature Scaling makes
it insufficient to model uncertainty under changes of data distribution and
rapidly loose performance under distribution shifts [32].
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Decoupled Bayesian Neural Networks

We extend the work done in [1] where the authors use Bayesian Neural
Networks (BNN) as a calibration method to approximate the conditional
distribution P(y|ẑ).

The inherent uncertainty modeling of the Bayesian approach makes it a
desirable option when seeking good calibration. To this aim, Bayesian Neu-
ral Networks specify a prior over its parameters p(θθθ) and infer the posterior
given a dataset D. But the need of aproximate methods to compute the
posterior and the difficulty of assigning meaningful priors to the parameters
renders them useless as soon as complexity scales. Besides, their implemen-
tation and computation are significantly slower than their point-estimate
equivalents.

Motivated by the success of Neural Networks and the appealing prop-
erties of the Bayesian approach, the authors propose to use BNNs as a
decoupled stage. A big DNN is trained on the classification task, which may
include very high dimensional inputs such as images and audio segments.
Then, the model is calibrated with a much smaller BNN, hence combining
the high discriminative performance of modern Neural Networks with the
desired uncertainty modeling of the Bayesian approach. The application
of the BNN is possible due to the simplification of the problem. Mapping
predictions to their calibrated counterparts requires a much more smaller
architecture than the required to fit the whole task.

The posterior is approximated using a Mean-field Variational Inference
approach. The variational distribution is a fully factorized Gaussian, and
the prior is the standard Gaussian. Authors test two implementations, one
based on the reparametrization trick [33] alone, which they call MFVI, and
the other, MFVILR, incorporating the local reparametrization trick [34] to
reduce the variance of the gradients estimations.

One well known drawback of the Variational Inference (VI) approxima-
tion is that it under-estimates the posterior variance [35]. To limit this
effect, authors introduce an hyperparameter K that represents the number
of Monte Carlo samples to draw from the posterior when making predic-
tions. This hyperparameter is selected on a validation set to minimize the
ECE.

In this work we propose to use the recent framework of Generalized Vari-
ational Inference to overcome this and other limitations of the standard VI
approach. In the next chapters we introduce this framework and describe
our method, stating more differences and similarities with the original pre-
sented in [1].



Chapter 3

Generalized Variational
Inference

In this chapter we introduce the novel framework of Generalized Variational
Inference (GVI) [2], a generalization of the well known Variational Infer-
ence method for approximate inference. We closely follow the lineup of the
main work in this chapter and refer the reader to it for proofs and more
in depth explanations. First, we establish the traditional Bayesian infer-
ence paradigm as an optimization problem. This allow us to, then, identify
three underlying assumptions behind the Bayesian approach which cannot
be fully met in practice but reasonably satisfied [36]. Modern machine learn-
ing techniques completely disregard these constraints [2] hindering the stan-
dard Bayesian approach. As a means to maintain the virtues of modern
models along the desirable properties of the Bayesian paradigm, authors
propose a generalization of the standard setting which can account for these
violations, the Rule of Three (RoT). Lastly, we introduce some divergences
that may be used instead of the Kullback–Leibler divergence (KL) to pro-
duce more robust approximations.

3.1 Bayesian Inference as an Optimization Prob-
lem

Let θθθ ∈ Θ be the vector parameter of interest, D a set of observations, and
p(D|θθθ) a likelihood function relating both. Given these, bayes rule allows us
to compute the posterior distribution p(θθθ|D), updating a prior distribution
p(θθθ) which accounts for previous beliefs over θθθ:

p(θθθ|D) ∝ p(D|θθθ)p(θθθ) (3.1)

Despite being this one of the most common representations, bayesian
posteriors can alternatively be defined as an optimization problem [37, 38].

15
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Let {on}Nn=1 = {(xn,yn)}Nn=1 = D be the set of i.i.d. samples in D. Then,
Equation 3.1 can be expressed as:

p(θθθ|D) ∝ p(θθθ)
N∏
n=1

exp log(on|θθθ)

In order to better grasp concepts in the following sections, we introduce
the following notation heavily inspired on that of the original work. We
represent the likelihood as a loss function l(θθθ, on) = − log(on|θθθ), i.e. the
logarithmic rule. We denote the prior and the posterior distributions as
π(θθθ) and q∗B(θθθ) respectively, where the B stands for the standard Bayesian
setting and the period ∗ implies that it is the solution of an optimization
problem. This problem can be formulated as:

q∗B(θθθ) = arg min
q∈P(Θ)

{
Eq

[
N∑
n=1

l(θθθ, on)

]
+DKL(q ||π)

}
, (3.2)

where P(ΘΘΘ) is the space of probability measures over ΘΘΘ and DKL is the
Kullback–Leibler divergence. Notice that this formulation ease the task of
identifying certain properties of the Bayesian approach. For instance, the
regularization effect of the prior, it can be readily checked that the KL term
is preventing q∗B(θθθ) from converging to the empiric risk minimizer, a delta
on the value of θθθ that minimizes the loss l , effectively resembling the point-
estimate approach. Although this behaviour may seem appealing at first
glance, we should notice that is the variance of the posterior which accounts
for the good uncertainty modeling that makes so appealing the Bayesian
paradigm. Moreover, is the expected value over the posterior, accounting
for every possible value of θθθ, which avoids making over-confident predictions
[39].

3.1.1 Variational Inference

Exact inference of the posterior q∗B(θθθ) turns to be intractable in many prac-
tical scenarios. Sometimes it can be evaluated up to a normalizing constant,
although this is not always the case neither particularly useful if we want to
make predictions over new data. There exits sampling methods that allow
for asymptotically exact computations, but they incur in a high compu-
tational cost that makes them unpractical for complex models like Neural
Networks.

Approximate methods recover a parametric distribution q ∈ Q supposed
to closely resemble the posterior q∗B(θθθ) ' q, here Q = {q(θθθ|κ) | κ ∈ K} is a
κ-parametrized family of distributions. In particular, Variational Inference
approximates the posterior q∗B(θθθ) ' q∗VI(θθθ) by minimizing the KL divergence:

q∗VI(θθθ) = arg min
q∈Q

DKL(q || q∗B) (3.3)
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It can be easily proved that this objective is equivalent to the one in 3.2
but restricting the space to the family Q.

Zero forcing behaviour

The form of the divergence in Equation 3.3 is also called the Reverse KL
since q∗B is the target distribution but we take the expected value over q.
Expressing the divergence in its integral form:

DKL(q || p) =

∫
q log

q

p
du,

where q and p are distributions over u, and taking that we want to approx-
imate p with q, we can easily observe the following behaviour. Whenever
q is big and p is small, the divergence would incur in a high penalty. On
the opposite case, big p and small q, this would not be necessarily the case,
in fact pushing q → 0 would minimize the divergence. This means that
when minimizing the Reverse KL q tends to over-concentrate avoiding re-
gions of low p. This behaviour is known as zero forcing and it is responsible
for the variance under-estimation we mention in Section 2.3.2 and that is
characteristic of the VI method.

Discrepancy VI

Although not recovered by the GVI framework, it is worth mentioning an-
other generalization of VI which authors call Discrepancy VI. Multiple works
generalize the objective in Equation 3.3 by taking other statistical diver-
gences rather than the KL. For instance, the well-known, Expectation Prop-
agation [40] minimizes the direct KL, i.e. DKL(q∗B || q). More recent work
includes BB-α [41], which minimizes α-divergences [42], a parametrized fam-
ily of divergences.

Even though these methods can be proven to yield sub-optimal poste-
riors in the KL sense (in contrast to standard VI), in practice, they often
rise better approximations. This is because, either the initial objective in
Equation 3.2 is incorrectly specified, e.g. a faulty likelihood, or the approx-
imating family Q is poorly chosen in the sense that q ' q∗B does not hold
for any q ∈ Q.

3.2 Violated Assumptions underlying the Bayesian
Paradigm

The theoretic properties of Bayesian posteriors makes them appealing for the
task of inference. As we implicitly introduce above, the Bayesian paradigm
builds upon three fundamental assumptions:
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(P) The prior π(θθθ) is correctly specified. This is, it reflects exactly any
prior beliefs, including previous observations or domain expertise.

(L) There exists some unique θθθ∗ such that the likelihood model recovers
the true data generating mechanism, i.e. on ∼ p(on|θθθ∗).

(C) The complexity of computing the posterior q∗B can be ignored, this is,
it assumes that the computational power is always enough.

The approach taken in many traditional applications can be closely out-
lined as follows. A simple model would be chosen as an informed guess of
the true data generating mechanism. The simplicity implies that the compu-
tational requirements rarely exceed the actual capacity, thus (C) is hardly
a constraint. The method of model selection ensures that both, the prior
and the likelihood, closely reflect beliefs about the distribution and the data
generating mechanism. Moreover, an iterative procedure is usually taken in
order to find a prior and a likelihood such that (P) and (L) are satisfied in
practice [36].

These assumptions are, however, consistently ignored in modern machine
learning models.

(P) First, priors are typically chosen for convenience. For instance, the use
of conjugate priors restricts the possible distributions. In addition, it
is common practice to use over-parametrized likelihoods models, e.g.
Neural Networks. Such high number of parameters prevent them to
be interpretable at all; hence, we cannot specify prior beliefs in a
meaningful way. Even more, priors are conventionally chosen for their
regularization effect.

(L) Modern machine learning methods usually specify highly parametrized
models that are capable of fitting any collection of samples, overlook-
ing completely the search of the true data generating mechanism. The
high number of parameters often results in un-identifiable functions of
θθθ∗, meaning that this is neither interpretable nor unique. Moreover,
complex models try to recover the typical behaviour of the data. Al-
though this may seem a subtlety, it implies that nuances of the data
have an exaggerated impact on the inference since, because of (L), the
posterior will try to recover all the data, but modern modeling treat
all samples as typical. Proper likelihood modeling accounts for every
aspect of the population; thus, its capable of discriminating outliers
and other discrepancies from the typical behaviour.

(C) The increasing complexity of modern statistical models results in in-
tractable posteriors impelling the use of approximations.
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3.3 The Rule of Three and Generalized Variational
Inference

In order to address the above observations, the authors propose the Rule of
Three (RoT). This framework allows to tackle issues concerning each of the
three conditions independently by generalizing the formulation in Equation
3.2. The posterior q∗ ∈ Π is obtained by solving an optimization problem
over some space Π ⊆ P(Θ) and which objective seeks to minimize two
independent criteria:

• The expected sample loss
∑N

n=1 l(θθθ, on) under q∗.

• The deviation from the prior π(θθθ) measured by some statistical diver-
gence D.

The RoT constructs, then, the posterior as the solution of an optimiza-
tion problem with three degrees of freedom, a space of possible posteriors
Π, a loss function linking the parameter of interest θθθ with the set of obser-
vations D, and a divergence D that imposes a cost for deviating from the
prior π(θθθ):

q∗ = arg min
q∈Π

{
Eq

[
N∑
n=1

l(θθθ, on)

]
+D(q ||π)

}
(3.4)

The RoT provides a flexible approach to building posteriors, its modular-
ity allows to address the issues regarding (P), (L), and (C) independently:

(P) Changing the divergence D allows to change the way the prior influ-
ences the posterior accounting for possible prior misspecification and
regularizing uncertainty quantification.

(L) To address model misspecification, this amounts to changing the loss
function l .

(C) The space Π can be chosen to address the problems with limited com-
putational power.

The method of GVI simply amounts to applying the RoT constraining
the space of possible posteriors to a variational family like in VI. This is,
Π = Q, where Q = {q(θθθ|κ) | κ ∈ K}.

3.4 Robustness to Prior Misspecification through
Robust Divergence

In this work we focus on the selection of robust divergences for GVI. In
this setting, robust divergences are used as a penalty term quantifying de-
viation from the prior, this should not be confused with Discrepancy VI,
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in which robust divergences are also used, but they quantify, instead, the
deviation of the variational posterior from the standard Bayesian poste-
rior. The authors of the original work refer to an overview of robust di-
vergences given in [43]. This work introduces a comprehensive family of
parametrized divergences that recovers as special cases many well-known
divergences, the αβγ-divergence. Because of its apparent success on the ex-
periments in [2] we study the special case of the Rényi’s α-divergence [44].

Taking the parametrization of [43] the Rényi’s α-divergence D
(α)
AR is given

by:

D
(α)
AR

(
q(θθθ) ||π(θθθ)

)
=

1

α(α− 1)
log

(∫
q(θθθ)απ(θθθ)1−αdθθθ

)
, (3.5)

where α ∈ R \ {0, 1}, parametrizes the divergence. It can be readily seen
that for higher values of α we give low weight to the prior, favouring smaller
posterior variances towards the empiric risk minimizer; in contrast, lower
values of α will penalize more any deviations from the prior. This behavior
can be obtained too just by weighting the KL divergence, i.e. βDKL, and
varying β in the opposite direction of α for the same effect. However, the
weighted KL is not robust against prior misspecification, in which case it
imposes a trade-off between a large variance around an incorrect prior and
a low variance around the empiric risk minimizer. The α-divergence, on the
other hand, produce posteriors that are robust to the prior and account for
adequately large variances.

It is worth remarking that in the limit the D
(α)
AR recovers the KL and the

reverse KL:

lim
α→1

D
(α)
AR

(
q(θθθ) ||π(θθθ)

)
= DKL

(
q(θθθ) ||π(θθθ)

)
lim
α→0

D
(α)
AR

(
q(θθθ) ||π(θθθ)

)
= DKL

(
π(θθθ) || q(θθθ)

)



Chapter 4

Design

In this chapter we describe our method, an extension of the decoupled BNNs
proposed in [1], we explicitly remark the differences between our approach
and the original one. First, we describe the statistical model for calibration.
Then, we show how to obtain better posteriors of the model parameters
using GVI, the main contribution of this work. Lastly, we describe the
implementation of the optimization problem.

4.1 Model

Following the notation we introduce in Chapter 2, let {ẑn}Nn=1 be a set of un-
calibrated logits and {yn}Nn=1 their corresponding ground-truth labels. We
want to fit some model f which is θθθ-parametrized to make new predictions
q̂ that are well calibrated. In this work we limit our experiments to logit
vectors obtained from the output of DNNs, but the method does not impose
such restriction, ẑ may be the output of any probabilistic classifier.

As for the choice of model f , we use multilayer perceptrons. It may seem
excessive to use such an expressive model for a task that is typically carried
out by the softmax, this is mapping logits to probability vectors. However,
as is the main claim in the original work [1], calibration can be a complex
task, motivating the use of complex models. In order to avoid the typical
overconfident behavior of Neural Networks, we take a Bayesian approach.
This is, we do not train the weights θθθ to a point estimate, instead, we
infer the posterior q∗(θθθ). Ideally, we would compute the standard Bayesian
posterior with the Bayes rule:

q∗B(θθθ) =
π(θθθ)

∏N
n=1 p((ẑn,yn)|θθθ)∫

π(θθθ)
∏N
n=1 p((ẑn,yn)|θθθ)dθθθ

But there are two main problems with this approach. Most importantly,
the integral in the denominator is intractable; hence, exact computation is
impossible. Even if we were able to compute it, the inherent complexity of

21
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the model means that both, the likelihood and the prior, violate the fun-
damental assumptions of the Bayesian paradigm as remarked in Chapter 3.
These reasons motivate the application of Generalized Variational Inference.
First, it provides a framework to build posteriors in a tractable way, and
second, it does it accounting for possible misspecifications.

Making predictions

In order to make predictions, i.e. compute the calibrated probability vector
q̂ given its associated uncalibrated logit ẑ, we need to compute the expec-
tation:

q̂ =

∫
f(ẑ|θθθ)q∗(θθθ)dθθθ,

where f(ẑ|θθθ) is the output of the MLP setting its weights to θθθ. Thus, the
prediction can be seen as the average over all the possible outcomes of the
MLP weigthed by the posterior probability of each θθθ. Again, this integral
is, in general, intractable. So, we approximate it taking a Monte Carlo
estimator:

q̂ ' 1

K

K∑
k=1

f(ẑ|θθθk); θθθk ∼ q∗(θθθ),

where K is the number of Monte Carlo (MC) samples.

4.2 Approximating the Posterior with GVI

The GVI framework constructs an optimization problem which solution is
a, hopefully, useful posterior. To do so, GVI requires to specify a variational
family Π, a loss function l , and a divergence D as defined in the RoT (which
implies specifying the prior π too). For reasons that we explain bellow, we
maintain the traditional negative log-likelihood as loss function and focus
only on the variational family, the prior distribution, and the divergence.

Variational Family and Prior Distribution

We take a Mean Field approach and restrict the posterior to be a factorized
multivariate Gaussian, i.e. θθθ ∼ N (µµµ, diag(σσσ)), where µµµ and σσσ are the mean
and variance vectors of the posterior distribution and diag(σσσ) is the square
diagonal matrix whose non-zero entries are the elements of the vector σσσ.
Similarly we set the prior to the standard Gaussian. This is a convenient
choice in the computational sense, as it only doubles the number of param-
eters (a mean µ and a variance σ2 for each weight). Moreover, the DKL is
available in closed form solution, avoiding the need to estimate it via Monte
Carlo.
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Despite its popularity, this choice of distributions might be not so conve-
nient for computing useful posteriors. The prior is clearly misspecified, we
have observed that posteriors close to it output very uniform, thus uncertain,
class. predictions (which may be well calibrated but offer no discrimination
performance at all, i.e. very low accuracy, close to 1 over the number of
classes). On the other hand, this prior is the only source of uncertainty
for the posterior, which is an unimodal distribution, this means that down-
weighting the prior importance would lead to peaked posteriors around the
point-estimate solution, loosing the uncertainty modeling of the Bayesian
approach [2].

Divergence

Motivated by this and the theoretical properties of GVI, we propose to use a
robust divergence, specifically the α-Rényi divergence. We expect to obtain
posteriors that maintain an adequately big variance but deviate enough
from the prior so as to make useful predictions. This is, we expect that our
method yield predictions that are both, well calibrated and accurate.

The previous approach overcome this limitation by capping the number
of MC samples used when sampling from the posterior. This has the ef-
fect of virtually augmenting the variance of the posterior, and thus forcing
uncertainty modeling. Thus, the number of MC samples, K, had to be es-
timated in a validation set. We hypothesize that with GVI we will obtain
posteriors that already present an adequate variance without the need of
tuning the posterior by selecting an optimum K, i.e. posteriors will retain
good calibration properties as K →∞.

The α-Rényi divergence is available in closed form for the multivariate
Gaussian, although it is only guaranteed to exist for 0 < α < 1. For greater
values of α the variance of the prior must be much larger than the posterior
variance in order to be defined. Since this is a novel framework, there is no
much literature on the choice of the hyperparameter α. Therefore, in this
work we contribute with a sensitivity study of this parameter basing our
range of search on the results given in [2].

4.3 Implementation

The GVI give us a way to construct a posterior via an optimization problem,
taking the choices made in the previous Section, this is given by:

q∗(θθθ) = arg min
q∈Π

{
Eq

[
N∑
n=1

l(θθθ, ẑn,yn)

]
+D

(α)
AR

(
q(θθθ) ||π(θθθ)

)}
, (4.1)

where Π is the family of factorized multivariate Gaussians, and l(θθθ, ẑn,yn)
is the NLL. We refer to q and to q∗ as the posterior the same way we refer
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to f and f∗ as the model, regardless of whether it has already been fitted or
not. First, we initialize the posterior parameters, and the we optimize them
to approximate the “true” posterior.

The Reparametrization Trick

To solve this optimization problem we may use a gradient-based method
like stochastic gradient descent, but we need to make some tweaks before
we can actually apply it. To approximate the expectation of the first term
we use a Monte Carlo estimator sampling from the posterior and evaluating
the NLL for multiple samples:

Eq

[
N∑
n=1

l(θθθ, ẑn,yn)

]
' 1

K

K∑
k=1

[
N∑
n=1

l(θθθk, ẑn,yn)

]
; θθθk ∼ q(θθθ), (4.2)

where K is the number of MC samples.
Even after making this change, a gradient-based method cannot be di-

rectly applied since the gradient can not be propagated through weight
samples. Instead we use the reparametrization trick [33].

The reparametrization trick allows to detach the stochasticity of the sam-
pling from the distribution parameters. If one desires to propagate gradients
throughout the expected value of some function f(x) over some distribution
p(x), take for instance the following case:

∇µ Ep(x) [f(x)] ; x ∼ N (µ, 1),

one may find that there is no analytic solution, since µ is a parameter of
p(x). The reparametrization trick defines x as a function of a base distribu-
tion, which accounts for the randomness, and the distribution parameters.
In the example above:

∇µ Ep(z) [f(x)] = Ep(z) [∇µ f(x)] ; x = z + µ; z ∼ N (0, 1),

so the expectation does not depend on µ, and by linearity of the expecta-
tion and the differentiation, the gradient can be taken into the expectation.

More precisely, we use the local reparametrization trick [34], which rec-
ognizes that if the parameters θl = {W l, bl} of a FC layer follow a Gaussian
distribution, then the activations al = W lx(l−1) + bl also follow a Gaus-
sian distribution whose parameters can be obtained from those of θl. This
method reduces the variance of gradients by sampling directly from the ac-
tivations, instead of sampling from the weights, improving the convergence
rate. We always use the local reparametrization trick, in contrast to the
previous work where two different implementations are tested, one using
the local reparametrization trick and the other the plain reparametrization
trick.
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Mini-Batch Scaling

It is common practice to estimate gradients with just a subset, or mini-
batch, of the whole dataset. Training with mini-batches often improves the
convergence rate of the optimization problem and we use it in this work.
Notice that the magnitude of the loss estimation and the size of the mini-
batch M are directly proportional. If we were seeking to only optimize
the loss this would not be an issue since any constant scaling preserves the
gradient direction and the step size can be covered by the learning rate.
However, our optimization objective presents another term, the divergence,
which scale is invariant to the size of the mini-batch. To compensate for
this effect we need to rescale the estimate for the loss. Let MB be the set
of indexes of the samples in the mini-batch. We compute the loss estimate
as:

Eq

[
N∑
n=1

l(θθθ, ẑn,yn)

]
' 1

K

K∑
k=1

[
N

M

∑
m∈MB

l(θθθk, ẑm,ym)

]
; θθθk ∼ q(θθθ),

where the sampling from the posterior is done with the local reparametriza-
tion trick (sampling activations instead of weights), but we maintain this
notation for the sake of simplicity.

Finally, we implement the optimization problem as:

q∗ = arg min
q∈Π

{
1

K

K∑
k=1

[
N

M

∑
m∈MB

l(θθθk, ẑm,ym)

]
+D

(α)
AR

(
q ||π

)}
; θθθk ∼ q,

(4.3)
where we have omitted the dependence with θθθ to avoid confusion with de-
pendence with θθθk
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Chapter 5

Experiments

We extend the work in [1]. There, the authors provide a vast range of ex-
periments in which they calibrate multiple CNNs in different image classifi-
cation datasets. Because of the novelty of GVI, there is not much literature
in the application of robust divergences to the task. To this aim, we select
a small subset of the experiments in the previous work and make a com-
prehensive analysis on those. In particular we provide a sensitivity study
on the influence of the β and α hyperparameters in the performance of the
KL and Rényi’s α-divergence respectively. Then, we compare the Rényi’s
α-divergence with the traditional KL.

Throughout this section we show aggregated results in the form of ta-
bles and present some examples in the form of figures to help visualization.
These comprise the most relevant results and explain all the conclusions and
observations that we make. However, for the interested reader we include
the whole bulk of results in the form of tables arranged in the three appen-
dices of this work, but we remark that these are not necessary to follow this
work and that all necessary information is included on the main body.

5.1 Set-Up

We have restricted the experiments to the calibration of Densenet-121 [20]
in the CIFAR10 and CIFAR100 datasets [45], and the CARS dataset [46].
Each dataset is divided into a train/validation/test split. The Densenet-121
is trained on the train split and then it is used to compute predictions on
the three splits. Our training data is, then, composed by the output logits
of Densenet-121 for each of the three datasets and divided, in each case, into
the three splits train/validation/test.

Following the procedure of the original work, we train a BNN on the
train set, select K∗ on the validation set as the number of predictive samples
obtaining the lowest ECE score, and report results on the test set (see Figure
5.1). Additionally, we perform experiments ignoring the original train set

27
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Figure 5.1: Description of the training, validation, and testing stages. Figure
taken from [1].

and using the validation set for training. The outline of the two different
procedures is:

1. Train on the train set, select optimum K∗ on the validation test, and
report results on the test set.

2. Discard the training set, split the validation set randomly in a ratio
80/20, 80% for a new train set and 20% for new validation, then apply
the first procedure but with the new data splits.

We try different topologies, number of layers and hidden units, for the
BNNs and multiple values of β in the optimization objective:

q∗ = arg min
q∈Π

{
1

K

K∑
k=1

[
N

M

∑
m∈MB

l(θθθk, ẑm,ym)

]
+ βD

}
; θθθk ∼ q, (5.1)

where D originally was the KL divergence but we generalize in this work to
other divergences (KL and Rényi’s α). We use a different parametrization
than that in the original work since there the re-scaling of the loss estimator
(see Section 4.3) is subsumed by the β parameter. We, in contrast, scale
the estimator so as β = 1 corresponds to not scaling the divergence at all
recovering the original objective.

Initialization of parameters to be optimized

All the parameters, namely the means and logarithmic variances of the
weights, are initialized randomly from a standard normal distribution, ex-
cept when using the Rényi’s α-divergence. As we mention in Chapter 3, the
divergence is only guaranteed to exist in closed form for 0 < α < 1. For
greater values of α, the prior variance must be much larger than the pos-
terior variance. To this aim we initialize the log-variance of the weights to
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log σ2 = 1e−10. This initialization scheme is replicated from the one used
in [2] and ensures a stable training:

• When α > 1 more weight is placed on the posterior (see Equation
3.5). This favors the zero forcing property, i.e. the variance under-
estimation characteristic of standard VI (see Section 3.1.1), and keeps
posterior variances small enough.

• When 0 < α < 1 the divergence is guaranteed to exist regardless of
the relative size of the prior and posterior variances.

On the other hand, the variance under-estimation is one of the VI draw-
backs we want to avoid the in first place. However, the toy experiments in
[2] show that the best performing values of α lay in the range 1 < α ≤ 2.5;
hence, we contemplate values of α > 1 in this work as well as values of
0 < α < 1.

Training

We use the Adam optimizer [47] with a learning rate of 0.01 and a batch
size of 100, we train for 1000 epochs when using the KL divergence and
for 2000 epochs when using the Rényi’s α-divergence as it shows a slower
convergence rate. We use this configuration regardless of whether we train
on the train set or on the validation set.

Measuring Performance

We focus primarily on two different metrics. ECE as a measure of calibra-
tion, and accuracy to monitor discrimination. A BNN learning to predict
the empirical class prior, which in this case is uniform, would achieve an
almost-perfect ECE score, but the accuracy will drop to one over the num-
ber of classes. Conversely, the goal is to improve calibration without giving
away the good accuracy of Densenet-121. We report performance measures
taking K∗ predictive samples on the test set, where K∗ has been selected
in the validation set as described above. In addition, we also report results
using K = 20000 to observe the aforementioned ill behaviour of variance
under-estimation when K →∞.

Visualization

We use bar plots to visualize the accuracy and the ECE for multiple values
of β or α depending on divergence used in each experiment. We use different
bar colors to indicate the data split on which the model was trained, blue for
the train set (namely “trained on train”) and orange for the validation set
(namely “trained on train”)(see Figure 5.2, described bellow). We compare
with the uncalibrated network (blue dashed line) and with Temp-Scaling
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(red dashed line). Notice that Temp-Scaling does not change accuracy so
we only use Temp-Scaling as reference for performance results with accuracy.
We indicate the topology of a network between square brackets, for instance,
[32-32] refer to a model with 2 hidden layers of 32 units each and [128] to a
single hidden-layer net with 128 units.
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Figure 5.2: Test set performance of a single 32-unit (indicated between
brackets in the title) hidden-layer BNN calibrating CIFAR10. Accuracy(left)
and ECE(right) in the CIFAR10 test set after calibrating with multiple
values of β and different training sets.

In the last section, when comparing divergences, we change the color
scheme to avoid confusion because they will indicate the number of MC
predictive samples, purple means best K on validation and brown K =
20000. The comparison is done against Temp-Scaling and the KL divergence
based method (see Figure 5.5, described bellow).

5.2 Sensitivity Study

In this section we describe the experiments related to the sensitivity study
of the hyperparameters α and β using the Rényi’s α-divergence and the KL
divergence respectively. We refer to sensitivity study as the analysis of how
some hyperparameter impacts the test performance. First we train several
models with the KL divergence varying, in each case, the value of β. This
way we can relate changes in test performance to changes in β as we can
fix any of the tested configurations of topology and training set (train or
validation) and check results for different values of β. We, then, repeat a
similar procedure but training with the Rényi’s α-divergence and varying
the α parameter.
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5.2.1 KL divergence

We first try several configurations using the KL divergence, varying the
topology of the net and the β parameter in the range [0, 90000]. Due to
the differences in dimensionality between CIFAR10, on the one side, and
CIFAR100 and CARS, on the other, we use a different combination of ar-
chitectures in the smaller CIFAR10. We try the following configurations:

• CIFAR10: A 0-hidden layer model, a 1-hidden layer model with 32
units, and two 2-hidden layers models with 32 and 512 hidden units.

• CIFAR100 and CARS: A 0-hidden layer model, and models with 1
and 2 hidden layers with 128, 512, 1024, and 2048 units.

Influence of the dataset size

The first thing we notice when we compare the results after training on the
train set with those after training on the validation set is that the influence
of β is directly related to the size of the training set. This can be easily
observed in Figure 5.2, specially in the accuracy plot, where degradation
begins for higher values of β in the trained on train scenario; on the ECE
plot we can also note how results after training on the train set with high
values of β present a similar behaviour to those after training on the val-
idation set with low values of β. The difference in β values is about x10,
the same difference in size between the train and validation sets. This re-
sult is no surprise, the additive nature of the likelihood term in Equation
5.1 implies that its magnitude scales linearly with the number of samples.
This difference in magnitude is compensated with a change in value of β
since the divergence does not depend on the dataset size. Another way of
seeing this is that, as the number of samples increases so does the evidence
reinforcing the confidence of the model; hence, one must increase the weight
of the divergence in order to achieve the same level of uncertainty.

Dimensionality

It is also worth noting that calibrating CIFAR10 seems to be a much easier
task than calibrating CIFAR100 and CARS. In the first case almost all con-
figurations of topology and β manage to obtain high accuracy, i.e. succeeds
to minimize the NLL (see Table 5.1). Notice that we refer to succeded ex-
periments as those obtaining relatively high accuracy despite its ECE score;
hence, we do not mean that they report state-of-the-art calibration proper-
ties, just that this configuration recovers discrimination performance. In the
latter cases, we find more settings in which the BNN is not able to recover
any discrimination performance at all (see Table 5.2). Furthermore, almost
every configuration with 2-hidden gets the minimum of the cost by obtaining
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a posterior that outputs the prior distribution of the classes, obtaining vary
low ECE but also very low accuracy.

Table 5.1: Proportion of succeeded
experiments in CIFAR10 training
with the KL divergence.

Topology Succeed (%)

[-] 78.95
[32] 73.68

[32-32] 39.47
[512-512] 89.47

Table 5.2: Proportion of suc-
ceeded experiments in CIFAR100
and CARS training with the KL di-
vergence.

Topology Succeed (%)
CIFAR100 CARS

[-] 55.26 36.84
[128] 57.89 0.00

[128-128] 0.00 0.00
[512] 57.89 36.84

[512-512] 0.00 0.00
[1024] 57.89 47.37

[1024-1024] 42.11 0.00
[2048] 60.53 47.37

[2048-2048] 44.74 0.00

Proportion of succeeded experiments when training with the KL divergence.
We consider an experiment has succeed when accuracy degradation is no
more than 20% despite its ECE score. Proportions are computed by aver-
aging over all configurations of β and train set (on Train or on Validation).

Number of MC samples

We notice that the number of predictive MC samples K has, in general,
the conjectured behaviour. The higher the K the higher the ECE and the
accuracy. This is because as K → ∞ the Monte Carlo estimator converges
to the expected value over the posterior, which, as we state above, under-
estimates the variance and concentrates around a delta at a local optima.
This produces over-confident predictions degrading the ECE score. We show
some examples in Table 5.3, where we can see the differences between using
a high number of MC samples (K = 20000) and choosing the optimum value
in a validation set.

5.2.2 Rényi’s α-divergence

We perform similar experiments but using the Rényi’s α-divergence instead
of the KL and setting β = 1, this way we do not weight the robust diver-
gence and focus exclusively on the influence of they hyperparameter α. We
use the same configurations of topology and training set as in the previous
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Configuration Accuracy Accuracy ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

CIFAR100 Trained on Train, [512] 56.29 58.12 9.14 11.42
CIFAR100 Trained on Val, [512] 39.44 41.13 7.65 9.64

CIFAR100 Trained on Train, [2048] 56.81 59.08 9.47 12.37
CIFAR100 Trained on Val, [2048] 40.26 42.20 7.67 10.01
CARS Trained on Train, [1024] 51.57 54.27 5.84 9.12
CARS Trained on Val, [1024] 38.45 41.20 4.44 7.76

CIFAR10 Trained on Train, [32] 84.88 86.06 6.77 8.23
CIFAR10 Trained on Val, [32] 84.88 86.06 6.77 8.23

Table 5.3: Influence of the number of MC samples. Metrics are computed
averaging over all values of β, Train or Val refers to the set in which the
BNN was trained, and the topology is specified between square brackets.

section and vary the value of α in the range [0.1, 2.5], this choice of values
is motivated by the configurations used in [2].

The typical behaviour across experiments is that of using a low value of
β in the previous set of experiments, high accuracy and ECE. Most of the
experiments succeed in the sense that they recover discrimination perfor-
mance (see Table 5.4 and Table 5.5). However, in most settings the model
becomes even more over-confident after the calibration (see Figure 5.3 for
an example).
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Figure 5.3: Test set performance of a one 1024-unit hidden-layer (indicated
between brackets in the title) BNN calibrating CIFAR100. Accuracy(left)
and ECE(right) in the CIFAR100 test set after calibrating with multiple
values of α and different training sets.

Although this is not always the case, some configurations seem to per-
form reasonable well, for instance in Figure 5.4 all configurations trained
on the validation set present good performance. In general, it seems that
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Table 5.4: Proportion of succeeded
experiments in CIFAR10 training
with the Rényi’s α-divergence.

Topology Succeed (%)

[-] 100.00
[32] 100.00

[32-32] 100.00
[512-512] 100.00

Table 5.5: Proportion of suc-
ceeded experiments in CIFAR100
and CARS training with the Rényi’s
α-divergence.

Topology Succeed (%)
CIFAR100 CARS

[-] 100.00 100.00
[128] 91.67 58.33

[128-128] 66.67 0.00
[512] 100.00 100.00

[512-512] 83.33 83.33
[1024] 100.00 100.00

[1024-1024] 91.67 83.33
[2048] 100.00 100.00

[2048-2048] 91.67 83.33

Proportion of succeeded experiments when training with the Rényi’s α-
divergence. We consider an experiment has succeed when accuracy degrada-
tion is no more than 20% despite its ECE score. Proportions are computed
by averaging over all configurations of β and train set (on Train or on Vali-
dation).

α = 0.5 is the best performing setting across experiments.

The fact that most experiments yield high accuracy but overconfident
predictions means that we may not be introducing enough uncertainty with
the divergence term. To this aim a similar approach to the weighted KL
can be taken, properly addressing the prior misspecification with the intro-
duction of a robust divergence but also accounting for greater uncertainty
quantification, i.e. β > 1.

5.3 Comparison

One way of interpreting β is that of uncertainty quantifier. This is, we can
control how much uncertainty does the divergence introduce in the posterior
by changing the value of β. The results of the first round of experiments show
that careful tuning of this parameter allows for good uncertainty modeling
without high accuracy degradation. We can apply this balancing effect to
the Rényi’s α-divergence as well. The purpose of this set of experiments is
that of comparing both divergences, the KL and the Rényi’s α-divergence, in
a controlled set of configurations. In this case the configuration encompass
the topology, the training set (on train or on validation), and the uncertainty
quantifier β as well, so we can compare both divergences for the same level
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Figure 5.4: Test set performance of a one 1024-unit hidden-layer (indicated
between brackets in the title) BNN calibrating CARS. Accuracy(left) and
ECE(right) in the CARS test set after calibrating with multiple values of α
and different training sets.

of uncertainty quantification.

Representative Cases

Form the first round of experiments we select a subset of configurations in
which compare both divergences. To this aim we select experiments on the
three datasets, including configurations where the method in [1], i.e. train-
ing with the weighted KL, provides state-of-the-art calibration performance,
but also vicious configurations where it presents some performance degra-
dation, either in accuracy, in ECE, or in both. All selected configurations
where trained on the train set. We show these in Table 5.6, top-performing
configurations are displayed in the third row and vicious configurations in
the last row. In addition, to measure sensibility to the β hyperparameter
we select configurations with close values of β to those that report state-of-
the-art performance.

Results

In settings where the KL presents state-of-the-art performance we see that

the D
(α)
AR reports close performance (see Figure 5.5) and that this perfor-

mance presents low degradation with the increment of K (brown against
purple bars). In cases where the KL does not perform so well (vicious con-

figurations), the D
(α)
AR is able to improve performance. We can observe this

in Figure 5.6, where in most settings the robust divergence yields poste-
riors with both, lower accuracy degradation and better ECE. In this case



36 CHAPTER 5. EXPERIMENTS

CIFAR10 CIFAR100 CARS

Model Accuracy ECE Model Accuracy ECE Model Accuracy ECE

Uncalibrated 95.49 2.64 Uncalibrated 78.80 8.72 Uncalibrated 88.87 5.84
Temp-Scaling 95.49 1.01 Temp-Scaling 78.80 3.48 Temp-Scaling 88.87 1.67
β = 200, [32] 95.47 1.27 β = 100, [128] 77.36 3.47 β = 10, [512] 82.47 3.43
β = 450, [32] 95.32 0.42 β = 200, [128] 77.21 1.23 β = 20, [512] 82.34 1.66
β = 1000, [32] 95.3 1.80 β = 450, [128] 75.89 4.97 β = 40, [512] 82.06 2.20
β = 1000, [-] 95.07 3.66 β = 2000, [512] 72.21 19.38 β = 450, [2048] 73.79 14.57

Table 5.6: Selected configurations for divergence comparison, the topology
is specified between square brackets and all configurations were trained on
the train set. We include as reference the performance of the uncalibrated
network and after Temp-Scaling.

we notice some degradation in the ECE score as we use a high number of
MC samples, but the increment in accuracy performance greatly compen-
sates this supporting a higher value of K. Having that a higher value of K
is desired means that the constructed posterior is well suited since is this
posterior we want to achieve when increasing K.
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Figure 5.5: Performance of BNNs trained with D
(α)
AR in settings where KL

reports state-of-the-art results. Accuracy(left) and ECE(right) in the CI-
FAR10 test set after calibrating with multiple values of α.



38 CHAPTER 5. EXPERIMENTS

0.1 0.5 1.0 1.5 2.0 2.5
α

70

72

74

76

78

80

%

Accuracy β=2000
Temp-Scaling
βKL
K=best
K=20000

0.1 0.5 1.0 1.5 2.0 2.5
α

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
%

ECE β=2000

Temp-Scaling
βKL
K=best
K=20000

Accuracy and ECE for [512]
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AR in settings where KL
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Chapter 6

Conclusions and Future
Work

In this work we show that the novel framework of GVI can be applied to the
task of calibration with Bayesian Neural Networks in order to obtain better
posteriors.

We obtain an easier way to incorporate uncertainty in the posterior by
using a weighted robust divergence. When compared to the traditional
KL, the calibration performance is less sensitive to hyperparameter con-
figuration, providing good calibration properties for a wider range of β.
This reinforce the hypothesis that the prior misspecefication characteristic
of modern approximations vitiates the Bayesian approach and that such vi-
olations shall be taken into consideration. Moreover, the modularity of the
GVI seems to provide an effective way of building posteriors that account
for such violations.

Future Work

In this work, we only tackle prior misspecification and try just one robust
divergence obtaining promising results. This motivates as future work the
use of other robust divergences and addressing likelihood misspecification
via different loss functions, further exploiting the versatility of GVI.

Likelihood misspecification can also be addressed by assuming a different
posterior family. To this aim more flexible posteriors can be employed like
Rank-1 Factors BNNs [29] or Multiplicative Normalizing Flows [48].

Likewise we can revise the choice of prior. One way of doing this is by
learning useful prior distributions with the Empirical Bayes method [49].

In addition, it would be interesting to evaluate the performance of this
method, Decoupled Bayesian Neural Networks, on others datasets like BIRDS
[50] and ADIENCE [51], as the authors do in [1].
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Appendix A

Results Sensitivity Study KL
Divergence

In this appendix we show the results for the experiments with the KL in the
sensitivity study.

A.1 Results on CIFAR10

A.2 Results on CIFAR100

A.3 Results on CARS
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Results on CIFAR10, BNN trained on train set with topology: [] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 95.16 95.16 4.50 4.50 13.00
0.10 95.24 95.25 3.57 3.56 10000.00
0.50 95.35 95.32 3.17 3.19 42.00
1.00 95.42 95.31 2.95 3.03 31.00
2.00 95.40 95.35 2.81 2.84 23.00

10.00 95.43 95.40 2.41 2.26 42.00
20.00 95.40 95.47 2.01 1.97 562.00
40.00 95.36 95.46 1.88 1.66 13.00

100.00 95.48 95.49 1.11 1.17 749.00
200.00 95.34 95.48 0.45 0.77 23.00
450.00 95.18 95.46 1.33 1.77 13.00

1000.00 95.07 95.44 3.66 4.29 10.00
2000.00 94.97 95.51 7.74 8.57 10.00
4000.00 94.82 95.47 14.51 15.66 10.00
8000.00 94.46 95.48 25.55 27.07 10.00

10000.00 94.08 95.44 29.86 31.75 10.00
20000.00 88.71 95.40 40.85 48.64 10.00
45000.00 61.31 95.45 28.91 67.11 10.00
90000.00 34.36 95.45 7.04 76.52 10.00
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Results on CIFAR10, BNN trained on validation set with topology: [] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 95.15 95.15 1.23 1.23 237.00
0.10 95.11 95.14 1.11 1.15 42.00
0.50 95.04 95.10 1.00 1.07 13.00
1.00 95.04 95.13 0.97 0.94 23.00
2.00 95.14 95.16 0.87 0.97 31.00

10.00 95.11 95.21 0.45 0.66 13.00
20.00 95.11 95.24 0.61 1.12 10.00
40.00 95.14 95.30 1.38 1.95 10.00

100.00 95.06 95.40 4.35 4.98 10.00
200.00 94.89 95.41 8.57 9.43 10.00
450.00 94.62 95.43 17.67 18.85 10.00

1000.00 93.64 95.46 32.47 34.71 10.00
2000.00 85.16 95.46 40.79 52.45 10.00
4000.00 59.17 95.42 27.07 67.64 10.00
8000.00 33.18 95.38 6.28 76.72 10.00

10000.00 27.62 95.28 1.65 78.44 10.00
20000.00 20.57 95.20 1.98 81.90 17.00
45000.00 17.27 94.60 0.42 83.16 42.00
90000.00 14.76 88.80 0.40 78.08 100.00
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Results on CIFAR10, BNN trained on train set with topology: [32] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 95.22 95.22 4.57 4.57 1778.00
0.10 95.27 95.28 3.87 3.86 4216.00
0.50 95.26 95.25 3.58 3.58 177.00
1.00 95.18 95.25 3.59 3.49 31.00
2.00 95.26 95.30 3.34 3.29 42.00

10.00 95.30 95.29 2.90 2.89 237.00
20.00 95.33 95.32 2.64 2.65 7498.00
40.00 95.46 95.38 2.42 2.40 56.00

100.00 95.47 95.48 1.97 1.97 562.00
200.00 95.47 95.49 1.27 1.32 4216.00
450.00 95.32 95.46 0.42 1.05 31.00

1000.00 95.30 95.48 1.79 2.17 23.00
2000.00 95.19 95.44 4.56 5.05 17.00
4000.00 95.00 95.41 10.48 10.98 10.00
8000.00 94.66 95.40 21.57 22.94 10.00

10000.00 94.18 95.37 26.94 28.82 10.00
20000.00 69.32 88.56 31.67 54.54 10.00
45000.00 10.40 10.74 0.31 0.17 7498.00
90000.00 10.06 9.98 0.70 0.66 7498.00
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Results on CIFAR10, BNN trained on validation set with topology: [32] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 92.60 92.59 6.16 6.17 10.00
0.10 93.13 93.08 4.35 4.39 56.00
0.50 94.16 94.18 1.77 1.75 31.00
1.00 94.67 94.66 1.05 0.93 23.00
2.00 94.86 94.92 0.71 0.51 13.00

10.00 95.17 95.26 1.30 1.30 13.00
20.00 95.03 95.25 1.71 1.47 13.00
40.00 95.12 95.18 1.76 2.01 100.00

100.00 95.08 95.20 3.83 3.90 13.00
200.00 94.81 95.25 7.07 7.74 10.00
450.00 94.65 95.31 15.44 16.68 10.00

1000.00 92.94 95.26 32.87 36.07 10.00
2000.00 20.86 30.93 3.40 16.99 31.00
4000.00 9.47 10.21 1.53 0.47 4216.00
8000.00 9.61 9.85 1.33 0.78 4216.00

10000.00 9.66 10.09 1.27 0.52 4216.00
20000.00 9.77 9.98 0.87 0.55 10000.00
45000.00 9.51 10.24 1.21 0.22 5623.00
90000.00 9.84 10.22 0.81 0.32 10000.00
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Results on CIFAR10, BNN trained on train set with topology: [32-32] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 95.15 95.14 4.58 4.59 177.00
0.10 85.90 85.90 3.42 3.44 7498.00
0.50 86.25 86.24 3.07 3.08 1778.00
1.00 86.24 86.21 2.94 2.98 100.00
2.00 86.12 86.14 2.83 2.78 23.00

10.00 76.58 76.59 2.55 2.53 562.00
20.00 76.46 76.53 2.52 2.37 74.00
40.00 76.66 76.52 2.06 2.02 23.00

100.00 76.53 76.58 1.68 1.76 74.00
200.00 76.43 76.52 1.90 2.01 31.00
450.00 66.64 67.12 1.53 2.22 23.00

1000.00 66.87 67.14 1.96 3.17 31.00
2000.00 66.64 67.10 3.08 5.45 17.00
4000.00 48.10 48.44 4.43 6.62 42.00
8000.00 10.37 10.51 0.31 0.11 3162.00

10000.00 10.10 9.81 1.08 0.60 1000.00
20000.00 10.39 9.92 0.46 0.55 3162.00
45000.00 10.26 9.92 0.50 0.62 5623.00
90000.00 9.78 9.97 0.90 0.56 7498.00
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Results on CIFAR10, BNN trained on validation set with topology: [32-32]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 92.77 92.77 4.28 4.28 31.00
0.10 93.53 93.55 2.75 2.74 421.00
0.50 94.42 94.39 1.33 1.01 10.00
1.00 94.58 94.65 0.91 0.99 74.00
2.00 94.31 94.30 2.61 2.64 17.00

10.00 57.86 57.72 3.96 3.83 421.00
20.00 48.41 48.28 2.68 2.58 316.00
40.00 48.45 48.33 3.52 4.75 10.00

100.00 19.68 19.96 2.74 2.43 1333.00
200.00 10.64 10.46 0.92 0.11 177.00
450.00 10.25 9.99 0.28 0.44 5623.00

1000.00 10.39 10.22 0.54 0.19 1778.00
2000.00 10.07 9.86 0.95 0.66 2371.00
4000.00 10.02 10.07 1.07 0.63 3162.00
8000.00 9.95 9.84 1.33 0.93 2371.00

10000.00 10.05 10.18 1.24 0.61 2371.00
20000.00 9.96 10.00 1.11 0.78 4216.00
45000.00 10.08 9.99 1.28 0.69 1778.00
90000.00 10.28 9.66 0.82 0.86 2371.00
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Results on CIFAR10, BNN trained on train set with topology: [512-512]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 95.15 95.16 4.54 4.54 316.00
0.10 95.09 95.15 4.38 4.30 17.00
0.50 95.04 95.03 4.34 4.35 1778.00
1.00 95.13 95.12 4.21 4.22 5623.00
2.00 95.04 95.06 4.29 4.19 17.00

10.00 95.26 95.24 3.51 3.54 316.00
20.00 95.33 95.30 3.27 3.29 56.00
40.00 95.30 95.35 3.28 3.13 23.00

100.00 95.31 95.32 3.00 3.00 237.00
200.00 95.32 95.34 2.82 2.76 100.00
450.00 95.42 95.39 2.42 2.41 74.00

1000.00 95.30 95.29 2.11 2.11 4216.00
2000.00 95.39 95.42 1.44 1.46 56.00
4000.00 95.23 95.38 0.67 0.91 23.00
8000.00 95.18 95.44 0.77 1.65 17.00

10000.00 95.16 95.44 1.24 2.08 17.00
20000.00 95.19 95.41 4.48 4.64 23.00
45000.00 94.82 95.36 12.93 13.60 13.00
90000.00 93.39 95.34 29.76 32.39 10.00
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Results on CIFAR10, BNN trained on validation set with topology: [512-
512] and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 91.62 91.63 3.45 3.45 562.00
0.10 93.04 93.05 2.98 3.06 17.00
0.50 94.02 94.24 1.22 1.36 17.00
1.00 94.15 94.18 2.13 2.14 133.00
2.00 93.61 93.97 2.97 3.46 10.00

10.00 91.32 91.36 7.83 7.67 13.00
20.00 93.32 93.39 5.51 5.80 17.00
40.00 94.68 94.58 3.85 3.79 100.00

100.00 94.81 95.09 1.47 2.14 17.00
200.00 95.13 95.18 1.03 2.00 17.00
450.00 95.24 95.24 2.11 2.49 17.00

1000.00 95.09 95.23 4.22 4.38 17.00
2000.00 95.12 95.25 7.81 8.14 17.00
4000.00 94.63 95.35 15.74 16.46 10.00
8000.00 80.26 86.61 25.10 34.49 10.00

10000.00 9.67 9.78 2.23 1.48 1333.00
20000.00 10.14 10.05 1.19 1.17 5623.00
45000.00 9.86 10.07 1.45 1.21 10000.00
90000.00 10.11 10.02 1.21 1.21 5623.00
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Results on CIFAR100, BNN trained on train set with topology: [] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 75.36 75.35 23.46 23.45 17.00
0.10 78.00 78.02 12.45 12.42 7498.00
0.50 78.32 78.28 10.11 10.13 421.00
1.00 78.38 78.37 9.03 9.05 1333.00
2.00 78.47 78.43 7.67 7.67 421.00

10.00 78.18 78.26 4.32 4.27 1333.00
20.00 78.44 78.39 2.27 2.33 133.00
40.00 78.35 78.29 1.50 1.55 177.00

100.00 77.52 78.22 4.53 5.77 23.00
200.00 76.11 78.17 8.29 11.38 10.00
450.00 74.72 78.02 16.29 21.46 10.00

1000.00 71.30 77.90 27.51 36.51 10.00
2000.00 60.66 77.53 32.29 52.73 10.00
4000.00 33.71 76.83 15.87 65.46 10.00
8000.00 12.94 75.85 1.46 71.00 13.00

10000.00 10.27 75.32 2.20 71.51 17.00
20000.00 5.32 71.78 1.00 69.65 42.00
45000.00 3.41 60.22 0.22 58.77 133.00
90000.00 2.37 38.14 0.19 36.89 316.00
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Results on CIFAR100, BNN trained on validation set with topology: [] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 68.91 68.94 28.44 28.41 13.00
0.10 71.15 71.21 18.99 18.60 13.00
0.50 72.53 72.84 13.59 12.78 13.00
1.00 73.64 74.17 9.87 8.69 13.00
2.00 75.66 75.76 4.19 3.94 133.00

10.00 75.68 77.82 5.17 7.75 10.00
20.00 75.00 77.96 10.61 14.92 10.00
40.00 73.77 78.03 19.44 25.60 10.00

100.00 66.19 77.82 30.89 45.47 10.00
200.00 46.34 76.48 24.30 59.47 10.00
450.00 16.68 73.52 3.15 66.97 10.00

1000.00 7.55 69.45 1.95 66.59 23.00
2000.00 5.45 62.64 0.69 60.84 74.00
4000.00 4.18 49.36 1.59 47.96 316.00
8000.00 2.22 29.67 0.11 28.43 421.00

10000.00 1.87 22.35 0.45 21.14 421.00
20000.00 1.48 8.26 0.48 7.08 749.00
45000.00 1.27 2.67 0.33 1.50 1778.00
90000.00 1.09 1.73 0.51 0.56 1778.00
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Results on CIFAR100, BNN trained on train set with topology: [128] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 76.01 76.00 22.56 22.57 562.00
0.10 76.88 76.96 15.51 15.42 1000.00
0.50 76.84 76.83 14.23 14.23 7498.00
1.00 77.23 77.24 13.19 13.11 562.00
2.00 77.27 77.25 12.19 12.20 1333.00

10.00 77.30 77.36 9.74 9.66 3162.00
20.00 77.25 77.28 8.26 8.23 5623.00
40.00 77.42 77.45 6.41 6.37 7498.00

100.00 77.36 77.44 3.46 3.33 316.00
200.00 77.21 77.15 1.23 1.43 2371.00
450.00 75.89 76.87 4.97 5.50 13.00

1000.00 74.23 76.71 11.63 15.22 10.00
2000.00 70.78 76.11 22.84 29.83 10.00
4000.00 41.33 70.60 15.45 51.18 10.00
8000.00 1.23 1.00 0.70 0.63 1778.00

10000.00 1.18 0.96 0.54 0.61 4216.00
20000.00 1.16 1.06 0.71 0.48 1778.00
45000.00 1.15 1.18 0.54 0.30 3162.00
90000.00 1.17 1.06 0.54 0.36 2371.00
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Results on CIFAR100, BNN trained on validation set with topology: [128]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 71.72 71.69 26.23 26.20 31.00
0.10 72.82 72.79 15.77 15.79 316.00
0.50 72.70 72.81 13.73 13.47 74.00
1.00 72.38 72.46 12.43 12.31 421.00
2.00 72.52 72.55 9.06 9.03 5623.00

10.00 74.85 74.85 2.79 2.95 133.00
20.00 74.69 75.93 5.14 7.43 17.00
40.00 73.29 76.23 9.97 14.36 10.00

100.00 67.58 75.20 19.13 29.72 10.00
200.00 47.99 66.91 17.30 41.87 10.00
450.00 9.60 14.12 2.06 8.11 31.00

1000.00 0.98 0.98 0.82 0.77 7498.00
2000.00 1.10 1.02 0.57 0.61 10000.00
4000.00 1.05 0.94 0.56 0.63 10000.00
8000.00 1.07 0.85 0.60 0.62 3162.00

10000.00 0.98 0.88 0.60 0.54 4216.00
20000.00 0.99 1.02 0.49 0.34 5623.00
45000.00 1.13 1.02 0.33 0.26 4216.00
90000.00 1.01 1.02 0.41 0.20 4216.00
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Results on CIFAR100, BNN trained on train set with topology: [128-128]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.00 1.00 0.17 0.17 7498.00
0.10 1.00 1.00 0.17 0.17 10.00
0.50 1.05 1.00 0.12 0.17 10.00
1.00 0.98 1.00 0.20 0.17 42.00
2.00 0.95 1.00 0.23 0.17 42.00

10.00 1.06 1.00 0.16 0.17 74.00
20.00 1.13 1.01 0.14 0.15 74.00
40.00 1.08 0.95 0.37 0.21 23.00

100.00 1.03 0.97 0.16 0.18 749.00
200.00 0.98 0.97 0.21 0.17 1000.00
450.00 1.12 0.88 0.02 0.25 4216.00

1000.00 1.17 1.01 0.03 0.10 1778.00
2000.00 1.00 1.13 0.12 0.04 7498.00
4000.00 0.92 1.01 0.31 0.08 3162.00
8000.00 0.90 1.02 0.29 0.10 7498.00

10000.00 0.88 0.97 0.29 0.15 10000.00
20000.00 0.97 0.97 0.37 0.19 4216.00
45000.00 0.90 0.99 0.37 0.21 10000.00
90000.00 1.11 0.93 0.24 0.32 7498.00
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Results on CIFAR100, BNN trained on validation set with topology: [128-
128] and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.00 1.00 0.28 0.28 31.00
0.10 1.00 1.00 0.28 0.28 3162.00
0.50 0.97 1.00 0.33 0.28 133.00
1.00 0.93 1.00 0.39 0.27 100.00
2.00 0.98 1.00 0.40 0.27 56.00

10.00 0.97 1.00 0.26 0.22 7498.00
20.00 0.92 0.97 0.28 0.21 2371.00
40.00 0.93 1.11 0.22 0.03 5623.00

100.00 0.90 1.00 0.51 0.10 562.00
200.00 0.95 1.15 0.36 0.06 1333.00
450.00 0.88 0.94 0.68 0.16 749.00

1000.00 1.00 1.01 0.54 0.12 1333.00
2000.00 1.02 1.16 0.47 0.01 2371.00
4000.00 0.94 0.91 0.70 0.29 1778.00
8000.00 0.85 0.90 0.47 0.36 10000.00

10000.00 0.96 0.96 0.73 0.33 1778.00
20000.00 0.86 1.13 0.78 0.22 2371.00
45000.00 0.94 0.97 0.72 0.42 2371.00
90000.00 0.98 1.00 0.53 0.34 4216.00
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Results on CIFAR100, BNN trained on train set with topology: [512] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 75.79 75.78 22.68 22.70 316.00
0.10 77.06 77.03 16.12 16.10 74.00
0.50 77.25 77.30 14.77 14.70 1778.00
1.00 77.40 77.40 13.73 13.73 10000.00
2.00 77.38 77.45 12.77 12.68 316.00

10.00 77.72 77.76 9.95 9.89 4216.00
20.00 77.37 77.48 9.08 8.94 177.00
40.00 77.41 77.59 7.32 7.14 100.00

100.00 77.29 77.31 4.55 4.51 562.00
200.00 77.50 77.49 1.48 1.25 100.00
450.00 76.89 77.36 3.75 4.13 17.00

1000.00 74.82 77.23 9.62 12.73 10.00
2000.00 72.21 76.73 19.38 25.47 10.00
4000.00 57.77 75.06 24.76 45.77 10.00
8000.00 10.16 19.97 1.03 14.68 31.00

10000.00 2.40 2.34 0.21 0.21 5623.00
20000.00 1.13 1.02 0.72 0.79 10000.00
45000.00 0.99 1.00 0.88 0.85 10000.00
90000.00 0.97 1.02 0.91 0.78 4216.00
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Results on CIFAR100, BNN trained on validation set with topology: [512]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 72.63 72.62 25.45 25.44 42.00
0.10 73.57 73.60 16.50 16.47 1778.00
0.50 73.44 73.46 15.09 15.07 1000.00
1.00 73.57 73.55 13.88 13.90 10000.00
2.00 73.82 74.01 12.29 11.75 23.00

10.00 75.26 75.31 5.29 5.24 4216.00
20.00 76.29 76.29 2.14 2.20 1000.00
40.00 74.55 76.98 6.18 8.50 10.00

100.00 71.49 76.11 15.69 22.27 10.00
200.00 60.43 73.38 21.30 37.84 10.00
450.00 16.83 28.38 2.70 18.51 17.00

1000.00 0.90 0.93 1.39 0.98 1333.00
2000.00 1.09 1.08 1.05 0.88 2371.00
4000.00 0.92 0.99 0.98 0.87 7498.00
8000.00 0.90 0.94 1.81 0.77 421.00

10000.00 0.85 0.99 1.08 0.71 2371.00
20000.00 1.02 1.01 0.94 0.74 1778.00
45000.00 0.95 0.96 1.04 0.53 1000.00
90000.00 0.87 0.90 0.61 0.42 4216.00
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Results on CIFAR100, BNN trained on train set with topology: [512-512]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.00 1.00 0.17 0.17 749.00
0.10 1.00 1.00 0.17 0.17 7498.00
0.50 0.98 1.00 0.20 0.17 23.00
1.00 0.96 1.00 0.24 0.17 10.00
2.00 0.99 1.00 0.21 0.17 23.00

10.00 1.00 1.00 0.17 0.17 7498.00
20.00 0.95 1.00 0.23 0.17 1000.00
40.00 0.87 0.99 0.29 0.17 5623.00

100.00 0.92 0.94 0.25 0.22 3162.00
200.00 0.91 1.05 0.26 0.10 2371.00
450.00 1.14 1.02 0.03 0.11 3162.00

1000.00 1.16 1.06 0.02 0.04 7498.00
2000.00 1.16 1.26 0.02 0.15 5623.00
4000.00 1.11 1.00 0.07 0.13 10000.00
8000.00 1.05 0.96 0.17 0.20 10000.00

10000.00 1.02 0.92 0.22 0.25 10000.00
20000.00 0.97 1.02 0.30 0.18 10000.00
45000.00 0.93 1.16 0.50 0.15 5623.00
90000.00 1.01 0.86 0.57 0.65 5623.00
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Results on CIFAR100, BNN trained on validation set with topology: [512-
512] and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.00 1.00 0.28 0.28 1000.00
0.10 1.00 1.00 0.28 0.28 10000.00
0.50 1.06 1.00 0.29 0.28 56.00
1.00 1.07 1.00 0.33 0.27 56.00
2.00 1.02 1.01 0.25 0.26 1000.00

10.00 0.95 1.00 0.27 0.22 5623.00
20.00 0.99 0.93 0.21 0.26 5623.00
40.00 0.99 1.09 0.31 0.06 1000.00

100.00 1.02 0.92 0.26 0.19 1778.00
200.00 1.12 0.84 0.14 0.27 3162.00
450.00 0.89 1.08 0.34 0.06 7498.00

1000.00 0.86 1.09 0.39 0.09 10000.00
2000.00 0.87 0.93 0.41 0.27 10000.00
4000.00 0.95 0.96 0.39 0.32 10000.00
8000.00 0.89 1.20 0.63 0.24 7498.00

10000.00 0.99 0.98 0.56 0.52 10000.00
20000.00 0.90 1.16 0.79 0.48 10000.00
45000.00 1.02 1.01 0.98 0.81 2371.00
90000.00 1.03 1.11 0.88 0.65 3162.00
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Results on CIFAR100, BNN trained on train set with topology: [1024] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 76.36 76.38 22.09 22.06 562.00
0.10 76.57 76.57 17.47 17.47 4216.00
0.50 77.20 77.19 15.04 15.03 562.00
1.00 76.85 76.85 14.37 14.37 1778.00
2.00 77.00 77.01 13.62 13.61 7498.00

10.00 77.32 77.30 10.62 10.64 316.00
20.00 77.20 77.23 9.11 9.07 1778.00
40.00 77.45 77.44 7.31 7.31 10000.00

100.00 77.33 77.32 4.86 4.88 1778.00
200.00 77.60 77.57 1.87 1.79 5623.00
450.00 76.43 77.37 2.98 3.74 17.00

1000.00 74.87 77.24 8.91 11.67 10.00
2000.00 72.45 76.77 17.35 23.71 10.00
4000.00 60.80 75.52 25.39 43.61 10.00
8000.00 12.94 24.14 2.73 17.50 31.00

10000.00 4.65 5.51 0.54 2.58 237.00
20000.00 1.00 1.01 1.08 1.04 10000.00
45000.00 0.95 0.99 1.09 0.99 7498.00
90000.00 0.85 1.03 1.01 0.79 10000.00
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Results on CIFAR100, BNN trained on validation set with topology: [1024]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 72.65 72.61 25.38 25.35 23.00
0.10 73.82 73.73 16.54 16.60 562.00
0.50 74.00 74.09 14.29 14.19 1778.00
1.00 73.56 73.61 14.22 13.67 23.00
2.00 73.98 73.99 12.19 12.16 4216.00

10.00 75.22 75.21 5.42 5.43 2371.00
20.00 75.99 76.00 1.77 1.82 133.00
40.00 74.78 76.43 5.23 6.85 13.00

100.00 71.61 76.23 13.97 20.33 10.00
200.00 63.00 73.30 21.08 34.52 10.00
450.00 19.73 39.92 3.73 27.93 10.00

1000.00 2.16 2.06 0.66 0.70 2371.00
2000.00 1.09 1.02 1.37 1.38 3162.00
4000.00 1.02 0.96 1.35 1.33 3162.00
8000.00 1.07 0.98 1.15 1.16 4216.00

10000.00 1.02 0.97 1.22 1.22 4216.00
20000.00 1.11 1.01 1.28 1.16 1000.00
45000.00 1.04 0.99 0.85 0.77 2371.00
90000.00 1.05 1.05 0.42 0.37 10000.00
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Results on CIFAR100, BNN trained on train set with topology: [1024-1024]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 76.06 76.11 21.82 21.69 23.00
0.10 75.98 75.94 18.92 18.95 2371.00
0.50 76.09 76.07 18.10 18.11 749.00
1.00 76.24 76.29 17.03 16.97 2371.00
2.00 76.38 76.40 16.43 16.37 316.00

10.00 76.51 76.60 14.53 14.39 237.00
20.00 75.90 75.93 14.60 14.52 237.00
40.00 75.93 76.07 13.96 13.69 74.00

100.00 75.71 75.77 12.62 12.54 237.00
200.00 76.18 76.18 10.88 10.88 5623.00
450.00 75.81 75.99 8.75 8.53 316.00

1000.00 75.81 75.74 6.20 6.24 421.00
2000.00 74.88 75.03 4.49 4.35 4216.00
4000.00 74.76 74.79 2.25 2.22 562.00
8000.00 71.40 73.57 5.31 6.60 10.00

10000.00 71.10 73.61 7.32 9.97 10.00
20000.00 1.06 0.92 0.23 0.30 10000.00
45000.00 1.03 1.01 0.37 0.34 10000.00
90000.00 0.87 1.00 0.86 0.59 4216.00
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Results on CIFAR100, BNN trained on validation set with topology: [1024-
1024] and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.00 1.00 0.28 0.28 1000.00
0.10 1.04 1.00 0.24 0.28 1778.00
0.50 1.04 1.00 0.26 0.28 316.00
1.00 1.09 1.00 0.19 0.27 749.00
2.00 1.00 0.99 0.27 0.28 7498.00

10.00 1.01 1.04 0.22 0.18 10000.00
20.00 1.14 0.99 0.14 0.20 1333.00
40.00 1.05 0.96 0.11 0.19 10000.00

100.00 0.98 1.19 0.23 0.08 4216.00
200.00 0.87 0.96 0.33 0.16 7498.00
450.00 1.26 0.91 0.09 0.25 4216.00

1000.00 1.14 1.07 0.21 0.12 5623.00
2000.00 0.95 1.16 0.97 0.07 1000.00
4000.00 0.86 1.07 0.57 0.32 10000.00
8000.00 1.00 1.05 0.71 0.64 10000.00

10000.00 1.07 0.99 0.94 0.76 1778.00
20000.00 0.84 1.06 1.11 0.73 3162.00
45000.00 0.96 0.95 0.99 0.96 10000.00
90000.00 0.95 0.98 1.00 0.96 10000.00
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Results on CIFAR100, BNN trained on train set with topology: [2048] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 76.64 76.65 21.85 21.83 133.00
0.10 76.51 76.49 18.33 18.35 1778.00
0.50 76.53 76.53 17.13 17.13 562.00
1.00 76.67 76.66 15.01 15.02 3162.00
2.00 76.84 76.85 14.36 14.34 1778.00

10.00 77.10 77.19 11.07 10.97 749.00
20.00 77.42 77.35 9.32 9.36 1333.00
40.00 77.16 77.17 7.82 7.80 5623.00

100.00 77.31 77.51 5.08 4.85 562.00
200.00 77.22 77.25 2.23 2.21 562.00
450.00 76.71 77.29 2.46 3.16 31.00

1000.00 74.49 77.11 7.84 10.69 10.00
2000.00 72.57 76.76 15.98 22.45 10.00
4000.00 61.78 75.42 24.66 41.75 10.00
8000.00 14.94 30.26 2.00 22.72 23.00

10000.00 6.56 12.96 0.80 8.90 56.00
20000.00 0.96 0.95 1.44 1.36 4216.00
45000.00 0.96 1.08 1.30 1.12 7498.00
90000.00 0.96 1.09 1.24 1.07 7498.00
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Results on CIFAR100, BNN trained on validation set with topology: [2048]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 72.98 72.99 24.87 24.85 177.00
0.10 73.74 73.77 17.43 17.37 749.00
0.50 73.98 74.01 14.41 14.34 421.00
1.00 74.06 74.13 13.45 13.31 133.00
2.00 74.12 74.41 12.29 11.83 74.00

10.00 75.13 75.16 6.30 6.27 4216.00
20.00 75.71 76.02 2.01 1.70 100.00
40.00 76.32 76.53 5.60 5.89 100.00

100.00 72.35 76.37 13.35 18.85 10.00
200.00 63.94 73.86 20.11 33.26 10.00
450.00 23.02 44.98 4.56 31.28 10.00

1000.00 2.31 2.38 0.67 0.59 10000.00
2000.00 1.00 1.00 1.87 1.87 10000.00
4000.00 1.00 1.00 1.72 1.72 10000.00
8000.00 1.00 1.00 1.97 1.97 10000.00

10000.00 0.99 1.00 2.10 2.08 2371.00
20000.00 1.00 1.00 1.83 1.83 5623.00
45000.00 1.06 1.02 0.78 0.78 5623.00
90000.00 1.22 1.08 0.33 0.43 10000.00
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Results on CIFAR100, BNN trained on train set with topology: [2048-2048]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 75.94 75.94 22.04 22.03 133.00
0.10 76.09 76.08 19.59 19.59 3162.00
0.50 75.89 75.87 19.11 19.12 1333.00
1.00 76.30 76.30 17.83 17.83 1333.00
2.00 76.25 76.26 17.83 17.82 7498.00

10.00 75.81 75.77 16.58 16.61 3162.00
20.00 76.28 76.32 14.85 14.80 749.00
40.00 76.49 76.50 13.97 13.96 3162.00

100.00 75.93 75.89 13.23 13.26 1778.00
200.00 76.01 76.03 11.89 11.88 10000.00
450.00 76.12 76.13 10.06 10.05 1778.00

1000.00 75.82 75.72 8.08 8.15 133.00
2000.00 75.61 75.61 5.67 5.67 10000.00
4000.00 75.33 75.35 2.70 2.67 10000.00
8000.00 73.99 74.44 3.09 3.51 31.00

10000.00 73.94 74.30 4.61 5.20 31.00
20000.00 69.93 73.02 9.90 14.33 10.00
45000.00 0.97 0.98 0.55 0.51 10000.00
90000.00 1.00 1.00 0.97 0.95 5623.00
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Results on CIFAR100, BNN trained on validation set with topology: [2048-
2048] and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 1.89 1.90 0.33 0.31 23.00
0.10 0.95 1.00 0.34 0.28 316.00
0.50 1.07 1.00 0.21 0.28 1000.00
1.00 1.03 0.99 0.25 0.28 1333.00
2.00 1.07 0.96 0.22 0.31 749.00

10.00 0.94 1.01 0.33 0.22 1778.00
20.00 1.12 1.02 0.08 0.17 7498.00
40.00 1.04 0.99 0.17 0.16 4216.00

100.00 1.07 1.18 0.12 0.05 7498.00
200.00 1.09 1.19 0.22 0.05 4216.00
450.00 1.15 0.97 0.38 0.21 2371.00

1000.00 5.75 6.48 0.56 2.09 421.00
2000.00 0.97 0.83 0.46 0.47 5623.00
4000.00 1.03 1.01 0.59 0.59 10000.00
8000.00 0.97 1.01 1.04 0.98 5623.00

10000.00 1.08 1.05 0.97 0.99 10000.00
20000.00 0.84 1.06 1.34 1.07 7498.00
45000.00 0.99 1.04 1.45 1.20 3162.00
90000.00 0.94 1.07 1.40 1.24 10000.00
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Results on CARS, BNN trained on train set with topology: [] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 82.37 82.37 17.01 16.96 17.00
0.10 86.19 86.07 5.18 5.29 3162.00
0.50 86.47 86.47 2.27 2.38 4216.00
1.00 86.42 86.56 1.73 1.83 133.00
2.00 86.93 86.94 3.00 2.73 177.00

10.00 85.10 87.11 8.96 10.69 10.00
20.00 84.21 87.03 13.63 16.97 10.00
40.00 81.98 86.86 19.63 25.78 10.00

100.00 74.86 85.74 27.69 41.08 10.00
200.00 62.31 83.85 28.70 53.85 10.00
450.00 38.32 78.92 17.03 63.93 10.00

1000.00 16.33 65.15 2.41 58.70 13.00
2000.00 8.67 45.60 1.53 42.26 23.00
4000.00 5.59 27.48 0.44 25.48 56.00
8000.00 3.35 18.99 0.24 17.66 133.00

10000.00 2.99 15.16 0.30 13.96 177.00
20000.00 1.76 9.47 0.21 8.55 316.00
45000.00 1.05 7.17 0.47 6.42 562.00
90000.00 1.10 3.93 0.14 3.25 2371.00
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Results on CARS, BNN trained on validation set with topology: [] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 69.56 69.51 23.83 23.71 23.00
0.10 79.61 80.22 2.40 2.72 42.00
0.50 79.41 80.99 5.29 7.09 17.00
1.00 78.77 81.85 7.53 11.05 10.00
2.00 78.28 82.04 11.20 15.64 10.00

10.00 73.49 81.60 21.83 31.79 10.00
20.00 67.74 80.91 25.80 42.18 10.00
40.00 56.21 79.12 24.96 52.56 10.00

100.00 30.64 71.60 10.44 59.02 10.00
200.00 15.43 62.23 2.55 55.96 13.00
450.00 8.30 46.31 1.83 43.49 31.00

1000.00 5.11 32.17 1.30 30.65 100.00
2000.00 2.86 21.21 0.21 20.19 177.00
4000.00 1.53 11.99 0.67 11.17 237.00
8000.00 1.79 6.71 0.65 5.97 1333.00

10000.00 1.10 5.59 0.41 4.87 562.00
20000.00 0.64 2.68 0.86 2.01 562.00
45000.00 1.02 1.22 0.27 0.56 7498.00
90000.00 0.67 0.94 0.35 0.28 1778.00
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Results on CARS, BNN trained on train set with topology: [128] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 28.05 28.02 9.78 9.77 31.00
0.10 33.91 34.39 7.26 7.27 10.00
0.50 32.45 32.49 5.22 5.05 100.00
1.00 29.26 29.58 3.67 3.61 17.00
2.00 25.11 25.62 2.74 2.93 42.00

10.00 11.71 12.47 1.42 2.69 42.00
20.00 8.42 8.73 0.82 1.59 74.00
40.00 8.73 8.93 1.50 1.90 316.00

100.00 9.59 9.87 2.60 2.83 4216.00
200.00 7.60 8.63 3.77 3.22 56.00
450.00 3.98 3.96 2.46 2.35 10000.00

1000.00 1.28 1.12 1.58 1.69 7498.00
2000.00 0.58 0.58 1.26 1.13 7498.00
4000.00 0.69 0.61 0.80 0.81 5623.00
8000.00 0.72 0.71 0.59 0.55 7498.00

10000.00 0.67 0.77 0.57 0.44 10000.00
20000.00 0.64 0.59 0.49 0.49 5623.00
45000.00 0.62 0.53 0.28 0.34 10000.00
90000.00 0.58 0.56 0.28 0.26 10000.00
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Results on CARS, BNN trained on validation set with topology: [128] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 24.47 24.50 15.09 15.09 316.00
0.10 28.35 28.55 7.96 8.17 177.00
0.50 27.84 27.82 4.56 4.55 5623.00
1.00 27.04 27.76 3.31 3.13 23.00
2.00 26.64 27.40 1.78 1.96 42.00

10.00 21.72 23.88 3.48 4.89 13.00
20.00 16.61 16.71 4.91 4.74 133.00
40.00 12.93 13.62 5.24 5.07 100.00

100.00 6.02 6.28 3.64 3.44 7498.00
200.00 2.06 1.86 1.85 1.94 5623.00
450.00 0.64 0.56 0.72 0.75 7498.00

1000.00 0.62 0.56 0.61 0.65 10000.00
2000.00 0.54 0.48 0.52 0.52 7498.00
4000.00 0.33 0.43 0.57 0.43 10000.00
8000.00 0.59 0.53 0.69 0.25 1000.00

10000.00 0.56 0.53 0.70 0.23 1000.00
20000.00 0.49 0.38 0.28 0.34 10000.00
45000.00 0.39 0.46 0.37 0.25 10000.00
90000.00 0.56 0.33 0.66 0.36 1000.00
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Results on CARS, BNN trained on train set with topology: [128-128] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.95 0.95 0.11 0.11 10000.00
0.10 0.95 0.95 0.11 0.11 4216.00
0.50 0.95 0.95 0.11 0.11 10000.00
1.00 0.95 0.95 0.12 0.12 10000.00
2.00 0.95 0.95 0.12 0.12 10000.00

10.00 0.87 0.95 0.05 0.17 23.00
20.00 0.89 0.95 0.10 0.21 42.00
40.00 0.66 0.95 0.15 0.27 42.00

100.00 0.94 0.95 0.32 0.34 1778.00
200.00 0.87 0.97 0.30 0.40 7498.00
450.00 0.76 0.81 0.19 0.26 5623.00

1000.00 0.46 0.46 0.16 0.08 1778.00
2000.00 0.61 0.49 0.04 0.05 1778.00
4000.00 0.43 0.46 0.46 0.10 562.00
8000.00 0.53 0.62 0.09 0.05 7498.00

10000.00 0.53 0.56 0.15 0.02 4216.00
20000.00 0.61 0.67 0.07 0.06 7498.00
45000.00 0.69 0.74 0.08 0.08 5623.00
90000.00 0.69 0.79 0.22 0.10 3162.00
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Results on CARS, BNN trained on validation set with topology: [128-128]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.54 0.54 0.11 0.11 133.00
0.10 0.51 0.54 0.14 0.11 562.00
0.50 0.59 0.56 0.05 0.09 10000.00
1.00 0.56 0.54 0.08 0.10 10000.00
2.00 0.48 0.53 0.39 0.10 10.00

10.00 0.54 0.56 0.20 0.02 133.00
20.00 0.54 0.61 0.25 0.05 133.00
40.00 0.36 0.46 0.37 0.09 316.00

100.00 0.53 0.79 0.49 0.25 133.00
200.00 0.44 0.53 0.61 0.01 177.00
450.00 0.39 0.48 0.59 0.07 316.00

1000.00 0.69 0.43 0.03 0.14 1778.00
2000.00 0.66 0.66 0.09 0.07 2371.00
4000.00 0.58 0.90 0.20 0.29 3162.00
8000.00 0.67 0.46 0.05 0.18 7498.00

10000.00 0.72 0.76 0.14 0.10 3162.00
20000.00 0.49 0.66 0.31 0.02 5623.00
45000.00 0.69 0.53 0.08 0.16 7498.00
90000.00 0.66 0.38 0.26 0.30 3162.00
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Results on CARS, BNN trained on train set with topology: [512] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 82.29 82.31 16.28 16.26 421.00
0.10 82.52 82.49 9.65 9.63 177.00
0.50 83.23 83.26 7.28 7.27 1000.00
1.00 83.08 83.00 6.30 6.38 4216.00
2.00 82.93 83.14 6.02 5.78 237.00

10.00 82.47 82.54 3.43 3.36 2371.00
20.00 82.34 82.35 1.66 1.59 10000.00
40.00 82.06 82.40 2.20 2.34 56.00

100.00 79.99 82.54 5.69 8.59 10.00
200.00 76.55 81.02 9.94 16.11 10.00
450.00 65.52 74.94 15.41 28.03 10.00

1000.00 38.35 59.28 9.80 37.54 10.00
2000.00 6.63 8.24 2.72 3.59 74.00
4000.00 1.55 1.73 0.98 0.55 1000.00
8000.00 0.81 0.94 0.80 0.58 2371.00

10000.00 0.84 0.86 0.65 0.54 3162.00
20000.00 0.89 1.02 0.45 0.23 3162.00
45000.00 0.72 0.67 0.47 0.49 10000.00
90000.00 0.41 0.49 0.70 0.56 7498.00
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Results on CARS, BNN trained on validation set with topology: [512] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 69.81 69.96 19.53 19.38 1000.00
0.10 73.43 73.38 6.61 6.63 5623.00
0.50 74.36 74.18 3.88 3.69 177.00
1.00 73.33 73.97 3.69 2.71 56.00
2.00 72.01 73.06 4.20 2.29 13.00

10.00 70.99 72.36 2.69 3.67 17.00
20.00 69.77 72.26 4.00 7.27 10.00
40.00 67.23 71.98 7.20 13.43 10.00

100.00 58.48 68.44 12.53 26.39 10.00
200.00 34.71 53.38 6.86 30.70 10.00
450.00 8.37 11.73 3.62 6.87 100.00

1000.00 1.32 1.18 0.44 0.53 7498.00
2000.00 0.36 0.31 0.82 0.75 4216.00
4000.00 0.61 0.53 0.45 0.47 4216.00
8000.00 0.56 0.69 0.39 0.13 4216.00

10000.00 0.51 0.59 0.58 0.21 1778.00
20000.00 0.56 0.48 0.53 0.48 3162.00
45000.00 0.49 0.49 0.39 0.32 7498.00
90000.00 0.49 0.38 0.32 0.40 10000.00
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Results on CARS, BNN trained on train set with topology: [512-512] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.95 0.95 0.11 0.11 13.00
0.10 0.95 0.95 0.11 0.11 1778.00
0.50 0.95 0.95 0.11 0.11 5623.00
1.00 0.95 0.95 0.12 0.12 1333.00
2.00 0.95 0.95 0.12 0.12 1333.00

10.00 0.92 0.95 0.13 0.17 237.00
20.00 0.95 0.95 0.20 0.21 316.00
40.00 0.79 0.95 0.02 0.27 100.00

100.00 0.67 0.95 0.05 0.33 237.00
200.00 0.87 0.95 0.29 0.37 7498.00
450.00 0.43 0.69 0.29 0.13 562.00

1000.00 0.46 0.72 0.20 0.17 1333.00
2000.00 0.38 0.54 0.19 0.01 10000.00
4000.00 0.38 0.81 0.33 0.23 2371.00
8000.00 0.79 0.79 0.05 0.17 3162.00

10000.00 0.86 0.79 0.19 0.15 10000.00
20000.00 0.92 0.66 0.07 0.08 4216.00
45000.00 0.82 0.58 0.22 0.30 3162.00
90000.00 0.39 0.59 0.53 0.20 3162.00
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Results on CARS, BNN trained on validation set with topology: [512-512]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.54 0.54 0.11 0.11 13.00
0.10 0.61 0.54 0.04 0.11 10000.00
0.50 0.58 0.56 0.08 0.09 562.00
1.00 0.53 0.56 0.11 0.08 10000.00
2.00 0.56 0.56 0.07 0.07 10000.00

10.00 0.51 0.44 0.09 0.14 3162.00
20.00 0.43 0.51 0.36 0.05 177.00
40.00 0.38 0.53 0.34 0.02 421.00

100.00 0.51 0.53 0.09 0.02 2371.00
200.00 0.58 0.53 0.02 0.02 10000.00
450.00 0.41 0.54 0.65 0.01 316.00

1000.00 0.64 0.86 0.10 0.27 2371.00
2000.00 0.76 1.00 0.04 0.38 2371.00
4000.00 0.76 0.76 0.02 0.06 10000.00
8000.00 0.64 0.58 0.26 0.24 5623.00

10000.00 0.64 0.64 0.29 0.21 5623.00
20000.00 0.53 0.54 0.28 0.20 10000.00
45000.00 0.62 0.61 0.57 0.24 1333.00
90000.00 0.48 0.56 0.40 0.26 7498.00
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Results on CARS, BNN trained on train set with topology: [1024] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 81.93 81.96 16.67 16.63 100.00
0.10 83.88 83.95 9.16 9.08 316.00
0.50 82.62 82.90 7.98 7.59 56.00
1.00 82.96 83.11 7.42 7.20 100.00
2.00 83.49 83.49 5.90 5.88 749.00

10.00 83.37 83.41 3.34 3.45 562.00
20.00 83.70 83.88 1.75 1.67 562.00
40.00 83.51 83.70 2.14 2.45 74.00

100.00 81.96 83.85 4.80 7.24 17.00
200.00 78.51 82.26 8.76 13.15 10.00
450.00 72.49 79.74 15.84 25.31 10.00

1000.00 53.74 69.59 16.53 37.23 10.00
2000.00 21.33 42.74 4.71 31.28 13.00
4000.00 3.80 3.60 0.55 0.38 7498.00
8000.00 0.76 0.77 0.97 0.91 7498.00

10000.00 0.61 0.76 1.15 0.90 3162.00
20000.00 0.43 0.48 1.24 1.17 5623.00
45000.00 0.43 0.48 1.08 0.97 4216.00
90000.00 0.36 0.51 0.92 0.70 5623.00
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Results on CARS, BNN trained on validation set with topology: [1024] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 73.80 74.10 18.20 17.83 56.00
0.10 76.83 76.94 5.21 5.08 562.00
0.50 75.74 75.84 3.14 3.04 4216.00
1.00 75.22 75.22 2.39 2.28 5623.00
2.00 74.25 74.71 2.55 2.25 74.00

10.00 72.31 74.07 2.74 3.82 17.00
20.00 73.11 74.31 6.18 7.91 31.00
40.00 69.66 74.59 7.96 13.99 10.00

100.00 64.13 72.13 12.80 23.98 10.00
200.00 50.19 66.91 13.69 35.30 10.00
450.00 18.78 37.71 4.26 27.49 17.00

1000.00 2.93 2.93 0.66 0.73 5623.00
2000.00 0.56 0.58 0.65 0.52 4216.00
4000.00 0.43 0.44 0.59 0.50 5623.00
8000.00 0.59 0.46 0.50 0.50 3162.00

10000.00 0.56 0.49 0.60 0.55 3162.00
20000.00 0.44 0.48 0.83 0.78 5623.00
45000.00 0.41 0.38 0.59 0.54 5623.00
90000.00 0.59 0.48 0.74 0.41 1000.00
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Results on CARS, BNN trained on train set with topology: [1024-1024] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.95 0.95 0.11 0.11 23.00
0.10 0.95 0.95 0.11 0.11 2371.00
0.50 0.95 0.95 0.11 0.11 5623.00
1.00 0.95 0.95 0.12 0.12 5623.00
2.00 0.95 0.95 0.12 0.12 2371.00

10.00 0.97 0.95 0.18 0.17 749.00
20.00 0.64 0.95 0.36 0.21 10.00
40.00 0.95 0.95 0.27 0.27 1333.00

100.00 0.59 0.95 0.09 0.34 421.00
200.00 0.48 0.95 0.14 0.37 1333.00
450.00 0.51 0.56 0.19 0.00 749.00

1000.00 0.53 0.79 0.09 0.23 3162.00
2000.00 0.48 0.76 0.37 0.19 749.00
4000.00 0.61 0.82 0.41 0.21 562.00
8000.00 0.76 0.82 0.01 0.11 5623.00

10000.00 0.90 0.76 0.37 0.02 562.00
20000.00 1.04 0.59 0.24 0.38 1000.00
45000.00 0.66 0.56 1.23 0.57 421.00
90000.00 0.72 0.49 0.43 0.42 2371.00
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Results on CARS, BNN trained on validation set with topology: [1024-1024]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.54 0.54 0.11 0.11 7498.00
0.10 0.66 0.54 0.01 0.11 10000.00
0.50 0.56 0.59 0.08 0.05 10000.00
1.00 0.58 0.51 0.06 0.13 10000.00
2.00 0.46 0.61 0.17 0.02 10000.00

10.00 0.44 0.35 0.16 0.24 2371.00
20.00 0.77 0.54 0.20 0.02 7498.00
40.00 0.59 0.58 0.02 0.03 4216.00

100.00 0.64 0.54 0.16 0.00 421.00
200.00 0.59 0.74 0.02 0.19 7498.00
450.00 0.69 0.71 0.33 0.14 421.00

1000.00 0.66 1.10 0.35 0.50 749.00
2000.00 0.84 0.77 0.12 0.08 1333.00
4000.00 0.89 0.61 0.26 0.26 1333.00
8000.00 0.86 0.62 0.50 0.44 1333.00

10000.00 0.84 0.53 0.47 0.58 1778.00
20000.00 0.46 0.46 0.36 0.35 10000.00
45000.00 0.58 0.53 0.33 0.37 10000.00
90000.00 0.54 0.51 0.38 0.37 10000.00
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Results on CARS, BNN trained on train set with topology: [2048] and DKL
divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 82.55 82.57 16.11 16.00 23.00
0.10 84.25 84.20 9.30 9.33 562.00
0.50 83.39 83.34 7.99 8.04 177.00
1.00 83.46 83.64 6.92 6.73 133.00
2.00 83.52 83.62 6.45 6.35 1333.00

10.00 84.21 84.11 3.43 3.55 421.00
20.00 84.03 84.46 2.53 2.48 23.00
40.00 83.11 84.25 2.77 2.00 13.00

100.00 81.71 83.59 4.25 5.39 10.00
200.00 79.87 83.19 7.73 11.59 10.00
450.00 73.79 80.92 14.57 23.07 10.00

1000.00 59.58 74.08 18.60 36.64 10.00
2000.00 27.04 51.52 5.14 35.90 10.00
4000.00 6.82 8.57 0.74 3.74 100.00
8000.00 1.35 1.28 1.01 1.06 10000.00

10000.00 0.48 0.48 1.55 1.54 10000.00
20000.00 0.49 0.48 1.42 1.44 10000.00
45000.00 0.59 0.53 1.09 1.04 4216.00
90000.00 0.66 0.64 0.97 0.96 10000.00



A.3. RESULTS ON CARS 89

Results on CARS, BNN trained on validation set with topology: [2048] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 71.68 71.70 20.95 20.87 74.00
0.10 78.06 78.10 5.56 5.58 10000.00
0.50 76.30 76.34 3.77 3.68 2371.00
1.00 75.27 75.25 3.39 3.33 1333.00
2.00 74.71 75.28 2.79 1.78 42.00

10.00 72.36 74.77 2.94 3.53 10.00
20.00 72.13 74.71 3.97 6.86 13.00
40.00 69.89 73.84 5.69 11.47 10.00

100.00 66.80 73.87 13.24 23.22 10.00
200.00 55.78 70.42 16.26 34.94 10.00
450.00 23.94 48.00 5.67 34.64 13.00

1000.00 5.30 5.41 2.09 2.40 1333.00
2000.00 1.00 0.84 0.42 0.52 5623.00
4000.00 0.51 0.58 0.68 0.59 10000.00
8000.00 0.43 0.49 0.95 0.86 10000.00

10000.00 0.43 0.53 1.08 0.90 3162.00
20000.00 0.49 0.38 1.05 1.06 3162.00
45000.00 0.44 0.35 0.73 0.75 5623.00
90000.00 0.48 0.49 0.93 0.51 1000.00
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Results on CARS, BNN trained on train set with topology: [2048-2048] and
DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.95 0.95 0.11 0.11 17.00
0.10 0.97 0.95 0.13 0.11 7498.00
0.50 0.95 0.95 0.11 0.11 1333.00
1.00 0.95 0.95 0.10 0.12 74.00
2.00 0.90 0.95 0.07 0.12 316.00

10.00 0.87 0.95 0.05 0.17 133.00
20.00 0.94 0.95 0.19 0.21 2371.00
40.00 0.99 0.95 0.29 0.26 1000.00

100.00 0.71 0.95 0.07 0.33 1000.00
200.00 0.95 0.97 0.37 0.39 10000.00
450.00 0.53 0.79 0.12 0.23 1333.00

1000.00 0.62 1.12 0.15 0.55 749.00
2000.00 0.69 1.04 0.12 0.43 1000.00
4000.00 0.92 0.66 0.14 0.19 7498.00
8000.00 0.79 0.69 0.84 0.83 3162.00

10000.00 0.89 0.62 0.85 1.02 3162.00
20000.00 0.71 0.56 1.32 1.40 2371.00
45000.00 0.56 0.62 0.97 0.83 5623.00
90000.00 0.43 0.41 0.72 0.64 5623.00
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Results on CARS, BNN trained on validation set with topology: [2048-2048]
and DKL divergence

β Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.00 0.54 0.54 0.11 0.11 316.00
0.10 0.67 0.54 0.02 0.11 10000.00
0.50 0.44 0.51 0.24 0.13 316.00
1.00 0.54 0.39 0.11 0.24 1333.00
2.00 0.59 0.58 0.05 0.05 1778.00

10.00 0.46 0.48 0.30 0.10 237.00
20.00 0.67 0.44 0.39 0.12 74.00
40.00 0.58 0.53 0.18 0.03 421.00

100.00 0.56 0.62 0.00 0.08 10000.00
200.00 0.51 0.77 0.06 0.22 10000.00
450.00 0.97 0.87 0.36 0.29 10000.00

1000.00 0.81 0.89 0.09 0.21 7498.00
2000.00 1.02 0.59 0.41 0.33 562.00
4000.00 0.76 0.59 0.85 0.64 1000.00
8000.00 0.62 0.49 1.05 0.76 1000.00

10000.00 0.43 0.53 1.22 0.75 1000.00
20000.00 0.36 0.51 0.55 0.33 10000.00
45000.00 0.26 0.59 0.85 0.33 2371.00
90000.00 0.44 0.43 0.76 0.58 1778.00
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Appendix B

Results Sensitivity Study
Rényi’s α-divergence

In this appendix we show the results for the experiments with the Rényi’s
α-divergence in the sensitivity study.

B.1 Results on CIFAR10

B.2 Results on CIFAR100

B.3 Results on CARS

Results on CIFAR10, BNN trained on train set with topology: [] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.30 95.29 3.16 3.17 5623.00
0.50 95.39 95.33 2.85 2.88 23.00
1.00 95.42 95.31 2.95 3.03 31.00
1.50 95.37 95.33 3.06 3.13 42.00
2.00 95.35 95.31 3.14 3.17 42.00
2.50 95.35 95.33 3.23 3.22 31.00
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Results on CIFAR10, BNN trained on validation set with topology: [] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.17 95.15 0.56 0.56 100.00
0.50 94.99 95.17 0.98 0.91 10.00
1.00 95.04 95.12 0.97 0.98 23.00
1.50 95.11 95.11 1.01 1.01 31.00
2.00 95.04 95.10 1.00 1.08 13.00
2.50 95.05 95.11 1.08 1.01 10.00

Results on CIFAR10, BNN trained on train set with topology: [32] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.32 95.31 3.28 3.28 3162.00
0.50 95.31 95.34 3.28 3.24 133.00
1.00 95.33 95.31 3.32 3.37 1000.00
1.50 95.28 95.29 3.48 3.46 237.00
2.00 95.28 95.29 3.55 3.54 2371.00
2.50 95.28 95.24 3.62 3.59 42.00

Results on CIFAR10, BNN trained on validation set with topology: [32] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.20 95.18 1.88 1.90 7498.00
0.50 94.92 94.99 0.79 0.76 13.00
1.00 94.43 94.32 1.16 1.19 10.00
1.50 94.18 94.18 1.46 1.48 1333.00
2.00 93.78 93.82 2.42 2.35 23.00
2.50 93.52 93.54 2.94 2.93 1333.00
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Results on CIFAR10, BNN trained on train set with topology: [32-32] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.19 95.19 3.62 3.62 3162.00
0.50 95.21 95.21 3.61 3.61 316.00
1.00 95.21 95.21 3.87 3.84 749.00
1.50 95.33 95.33 3.77 3.77 562.00
2.00 95.11 95.12 4.06 4.04 10000.00
2.50 95.25 95.27 3.91 3.90 421.00

Results on CIFAR10, BNN trained on validation set with topology: [32-32]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 94.71 94.94 3.03 3.30 10.00
0.50 94.75 94.89 1.07 1.17 13.00
1.00 94.37 94.36 0.54 0.55 42.00
1.50 93.40 93.39 2.02 2.04 23.00
2.00 93.28 93.31 2.87 2.90 177.00
2.50 93.49 93.53 2.91 2.85 316.00

Results on CIFAR10, BNN trained on train set with topology: [512-512]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 95.15 95.16 4.01 3.99 31.00
0.50 95.29 95.28 3.80 3.82 1000.00
1.00 95.07 95.06 4.10 4.12 1778.00
1.50 95.21 95.21 3.86 3.85 10000.00
2.00 95.31 95.30 3.88 3.89 1333.00
2.50 95.29 95.28 3.84 3.86 1778.00
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Results on CIFAR10, BNN trained on validation set with topology: [512-
512] and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 90.34 90.68 8.17 8.75 10.00
0.50 94.36 94.64 4.70 5.02 10.00
1.00 93.88 93.91 1.85 1.89 42.00
1.50 93.59 93.72 1.34 1.58 13.00
2.00 93.89 93.89 1.13 1.07 5623.00
2.50 93.70 93.70 2.01 2.00 237.00

Results on CIFAR100, BNN trained on train set with topology: [] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 78.62 78.66 12.09 12.05 4216.00
0.50 78.35 78.33 10.09 10.10 2371.00
1.00 78.37 78.46 9.02 8.95 2371.00
1.50 78.38 78.41 9.40 9.33 2371.00
2.00 78.53 78.51 9.68 9.71 1333.00
2.50 78.37 78.34 10.09 10.11 1778.00

Results on CIFAR100, BNN trained on validation set with topology: [] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 75.72 75.70 3.43 3.45 4216.00
0.50 75.36 75.36 4.98 4.99 3162.00
1.00 73.94 74.07 9.03 8.78 133.00
1.50 73.33 73.29 11.14 11.16 237.00
2.00 72.72 72.72 12.80 12.80 5623.00
2.50 72.34 72.38 13.95 13.91 5623.00
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Results on CIFAR100, BNN trained on train set with topology: [128] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 77.50 77.54 14.19 14.11 316.00
0.50 76.86 76.89 12.01 11.98 10000.00
1.00 77.13 77.16 13.28 13.23 421.00
1.50 77.02 77.06 13.73 13.67 421.00
2.00 76.99 77.07 14.26 14.12 100.00
2.50 76.92 76.92 14.29 14.28 1333.00

Results on CIFAR100, BNN trained on validation set with topology: [128]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 50.28 53.56 11.57 16.13 10.00
0.50 71.77 71.76 2.67 2.55 74.00
1.00 72.74 72.77 11.93 11.90 10000.00
1.50 72.20 72.05 14.67 14.72 133.00
2.00 72.70 72.70 14.50 14.51 7498.00
2.50 72.46 72.40 15.17 15.22 237.00

Results on CIFAR100, BNN trained on train set with topology: [128-128]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 77.20 77.08 15.00 15.10 177.00
0.50 76.29 76.28 11.84 11.82 133.00
1.00 0.99 1.00 0.19 0.17 23.00
1.50 75.89 75.93 12.70 12.65 237.00
2.00 75.76 75.77 13.38 13.38 1333.00
2.50 76.23 76.15 13.90 13.88 177.00
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Results on CIFAR100, BNN trained on validation set with topology: [128-
128] and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 0.96 1.00 0.39 0.25 23.00
0.50 39.97 41.43 5.11 6.96 10.00
1.00 1.03 1.00 0.25 0.27 562.00
1.50 71.63 71.58 14.83 14.88 7498.00
2.00 71.79 71.89 15.51 15.35 100.00
2.50 71.75 71.87 16.28 15.84 31.00

Results on CIFAR100, BNN trained on train set with topology: [512] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 77.83 77.82 14.15 14.12 237.00
0.50 77.35 77.30 12.99 12.99 237.00
1.00 77.37 77.31 13.58 13.64 5623.00
1.50 76.81 76.80 14.82 14.83 5623.00
2.00 77.27 77.28 14.69 14.68 4216.00
2.50 77.51 77.52 13.68 13.65 1333.00

Results on CIFAR100, BNN trained on validation set with topology: [512]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.28 74.19 9.13 9.14 133.00
0.50 73.83 74.16 10.61 9.89 31.00
1.00 73.64 73.79 13.65 13.45 100.00
1.50 73.98 73.97 14.08 14.03 177.00
2.00 73.48 73.60 15.05 14.79 42.00
2.50 73.86 73.87 14.85 14.81 316.00
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Results on CIFAR100, BNN trained on train set with topology: [512-512]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 76.90 76.87 15.91 15.94 562.00
0.50 77.24 77.23 15.29 15.31 2371.00
1.00 0.91 1.00 0.28 0.17 23.00
1.50 76.28 76.29 16.66 16.64 562.00
2.00 76.30 76.30 15.88 15.81 100.00
2.50 76.31 76.33 15.51 15.49 562.00

Results on CIFAR100, BNN trained on validation set with topology: [512-
512] and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.02 73.99 11.30 11.09 56.00
0.50 73.08 73.12 12.46 12.40 421.00
1.00 1.08 1.00 0.33 0.27 42.00
1.50 72.52 72.52 15.95 15.91 316.00
2.00 73.01 73.03 15.97 15.95 2371.00
2.50 72.80 72.78 16.12 16.14 1778.00

Results on CIFAR100, BNN trained on train set with topology: [1024] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 77.77 77.76 14.42 14.42 749.00
0.50 77.91 77.88 13.58 13.59 562.00
1.00 76.93 76.91 14.75 14.75 1333.00
1.50 77.11 77.07 15.32 15.28 100.00
2.00 77.49 77.53 13.72 13.67 5623.00
2.50 77.55 77.54 13.98 14.00 10000.00
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Results on CIFAR100, BNN trained on validation set with topology: [1024]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.46 74.49 10.19 10.15 2371.00
0.50 74.07 74.21 10.60 10.38 177.00
1.00 73.94 73.94 13.27 13.26 5623.00
1.50 73.70 73.65 14.43 14.48 1000.00
2.00 73.95 73.94 14.43 14.39 562.00
2.50 73.74 73.76 15.51 15.17 23.00

Results on CIFAR100, BNN trained on train set with topology: [1024-1024]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 76.87 76.96 16.59 16.48 237.00
0.50 77.08 77.11 15.95 15.92 5623.00
1.00 76.26 76.30 17.80 17.72 100.00
1.50 76.28 76.35 16.24 16.18 237.00
2.00 76.58 76.67 15.88 15.76 74.00
2.50 76.86 76.88 15.08 15.06 749.00

Results on CIFAR100, BNN trained on validation set with topology: [1024-
1024] and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.02 74.02 12.98 12.95 316.00
0.50 73.38 73.38 13.08 13.09 4216.00
1.00 1.04 1.00 0.23 0.27 4216.00
1.50 72.83 72.81 16.04 16.06 7498.00
2.00 73.03 72.98 16.20 16.25 5623.00
2.50 72.99 73.08 16.39 16.08 42.00
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Results on CIFAR100, BNN trained on train set with topology: [2048] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 77.55 77.54 15.17 15.18 1000.00
0.50 77.41 77.35 15.25 15.31 562.00
1.00 77.10 77.09 15.30 15.30 421.00
1.50 76.61 76.71 16.03 15.87 133.00
2.00 77.12 77.17 14.41 14.38 10000.00
2.50 77.23 77.24 14.75 14.74 1778.00

Results on CIFAR100, BNN trained on validation set with topology: [2048]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.51 74.53 11.09 11.04 562.00
0.50 74.40 74.40 10.82 10.83 7498.00
1.00 73.93 73.89 13.60 13.63 316.00
1.50 74.17 74.21 13.80 13.75 562.00
2.00 73.90 73.92 14.71 14.68 5623.00
2.50 74.04 74.06 15.03 15.03 5623.00

Results on CIFAR100, BNN trained on train set with topology: [2048-2048]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 76.88 76.84 17.24 17.26 237.00
0.50 76.96 76.98 16.74 16.71 2371.00
1.00 76.15 76.11 18.76 18.67 56.00
1.50 76.79 76.75 16.37 16.40 421.00
2.00 76.78 76.78 16.37 16.35 177.00
2.50 76.61 76.62 15.62 15.60 10000.00
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Results on CIFAR100, BNN trained on validation set with topology: [2048-
2048] and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 73.70 73.70 14.05 14.03 1333.00
0.50 73.73 73.78 13.77 13.70 237.00
1.00 1.10 1.00 0.29 0.27 133.00
1.50 73.13 73.13 16.49 16.42 100.00
2.00 73.25 73.20 16.20 16.23 1333.00
2.50 73.23 73.19 16.32 16.36 2371.00

Results on CARS, BNN trained on train set with topology: [] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 87.63 87.83 1.89 1.36 133.00
0.50 87.70 87.75 1.92 1.83 4216.00
1.00 86.43 86.48 1.90 1.38 42.00
1.50 86.42 86.53 1.98 2.00 316.00
2.00 86.55 86.61 2.25 2.08 100.00
2.50 86.35 86.38 2.77 2.56 42.00

Results on CARS, BNN trained on validation set with topology: [] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 81.53 82.77 7.60 8.78 31.00
0.50 80.66 83.13 8.88 11.51 13.00
1.00 78.69 81.80 7.57 11.00 10.00
1.50 79.84 81.98 6.96 9.37 13.00
2.00 80.68 82.06 6.35 8.01 31.00
2.50 80.27 81.88 5.23 6.95 17.00
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Results on CARS, BNN trained on train set with topology: [128] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 84.16 84.25 3.33 3.24 421.00
0.50 82.09 82.04 5.69 5.74 1333.00
1.00 29.26 29.60 3.67 3.60 17.00
1.50 81.98 81.86 7.97 8.10 2371.00
2.00 82.59 82.50 7.72 7.79 749.00
2.50 81.96 81.96 8.53 8.50 421.00

Results on CARS, BNN trained on validation set with topology: [128] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 74.71 76.43 4.13 4.84 13.00
0.50 73.03 73.00 2.09 2.20 316.00
1.00 27.04 27.71 3.31 3.27 23.00
1.50 70.83 70.86 5.24 5.04 133.00
2.00 70.63 70.61 6.07 6.02 2371.00
2.50 70.20 70.33 6.89 6.73 562.00

Results on CARS, BNN trained on train set with topology: [128-128] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 0.97 0.95 0.16 0.14 13.00
0.50 0.95 0.95 0.12 0.12 10000.00
1.00 0.95 0.95 0.12 0.12 10000.00
1.50 0.95 0.95 0.11 0.11 10000.00
2.00 0.95 0.95 0.11 0.11 3162.00
2.50 0.95 0.95 0.11 0.11 10000.00
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Results on CARS, BNN trained on validation set with topology: [128-128]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 0.41 0.53 0.47 0.09 10.00
0.50 0.56 0.54 0.08 0.09 1333.00
1.00 0.56 0.53 0.08 0.11 10000.00
1.50 23.86 23.83 2.87 2.70 2371.00
2.00 27.91 28.79 3.81 4.16 23.00
2.50 33.50 33.94 4.89 5.12 42.00

Results on CARS, BNN trained on train set with topology: [512] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 86.47 86.47 3.00 2.63 100.00
0.50 84.15 84.18 4.64 4.60 1778.00
1.00 83.08 83.05 6.30 6.33 4216.00
1.50 83.62 83.52 6.84 6.93 421.00
2.00 83.47 83.52 7.80 7.75 1000.00
2.50 83.00 83.11 7.35 7.21 177.00

Results on CARS, BNN trained on validation set with topology: [512] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 78.59 79.00 4.07 4.09 56.00
0.50 76.09 76.09 2.12 2.68 562.00
1.00 73.33 73.92 3.69 2.66 56.00
1.50 73.82 74.33 4.28 3.53 42.00
2.00 74.64 74.68 3.63 3.60 316.00
2.50 74.12 74.38 5.12 4.59 74.00
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Results on CARS, BNN trained on train set with topology: [512-512] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 84.81 84.97 5.80 5.48 31.00
0.50 84.72 84.81 5.42 5.36 133.00
1.00 0.95 0.95 0.12 0.12 1333.00
1.50 82.73 82.75 7.55 7.58 316.00
2.00 83.28 83.29 7.75 7.74 10000.00
2.50 83.18 83.11 7.94 7.94 237.00

Results on CARS, BNN trained on validation set with topology: [512-512]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 75.05 75.60 4.13 3.42 56.00
0.50 75.09 75.46 4.16 3.55 177.00
1.00 0.53 0.49 0.11 0.15 10000.00
1.50 74.76 74.74 5.37 5.35 3162.00
2.00 74.40 74.66 6.18 5.90 133.00
2.50 75.97 76.01 4.23 4.49 316.00

Results on CARS, BNN trained on train set with topology: [1024] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 86.40 86.83 3.83 3.13 23.00
0.50 85.35 85.36 3.80 3.77 421.00
1.00 82.96 83.16 7.42 7.16 100.00
1.50 83.75 83.93 7.06 6.88 1333.00
2.00 84.46 84.44 6.91 6.88 421.00
2.50 83.72 83.72 7.02 7.01 7498.00
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Results on CARS, BNN trained on validation set with topology: [1024] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 78.56 79.69 2.35 3.00 17.00
0.50 77.70 77.59 1.77 2.00 2371.00
1.00 75.22 75.23 2.39 2.31 5623.00
1.50 75.20 75.07 3.56 3.68 421.00
2.00 75.88 75.91 3.28 3.35 1778.00
2.50 76.30 76.27 3.50 3.53 10000.00

Results on CARS, BNN trained on train set with topology: [1024-1024] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 85.30 85.48 5.98 5.75 177.00
0.50 84.56 84.56 6.48 6.49 5623.00
1.00 0.95 0.95 0.12 0.12 5623.00
1.50 83.34 83.34 7.17 7.16 7498.00
2.00 84.11 84.02 7.10 7.05 74.00
2.50 83.85 83.83 7.06 7.07 562.00

Results on CARS, BNN trained on validation set with topology: [1024-1024]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 76.16 75.93 4.52 4.70 237.00
0.50 76.35 76.42 4.75 4.67 2371.00
1.00 0.58 0.54 0.06 0.09 10000.00
1.50 75.83 75.88 4.65 4.56 1000.00
2.00 76.12 76.06 4.42 4.48 10000.00
2.50 77.31 77.32 4.01 4.02 5623.00
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Results on CARS, BNN trained on train set with topology: [2048] and DAR
divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 86.66 86.70 4.21 4.15 562.00
0.50 85.79 85.86 3.96 3.89 177.00
1.00 83.46 83.65 6.92 6.71 133.00
1.50 84.16 84.16 6.94 6.89 237.00
2.00 83.95 84.00 7.69 7.64 421.00
2.50 84.79 84.89 6.62 6.49 177.00

Results on CARS, BNN trained on validation set with topology: [2048] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 80.04 80.28 1.99 1.96 56.00
0.50 78.44 78.61 1.74 1.64 133.00
1.00 75.27 75.28 3.39 3.33 1333.00
1.50 76.01 76.11 3.49 3.16 56.00
2.00 77.27 77.29 2.98 2.97 10000.00
2.50 75.55 75.88 5.89 5.30 56.00

Results on CARS, BNN trained on train set with topology: [2048-2048] and
DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 85.10 85.00 6.82 6.85 100.00
0.50 85.31 85.35 6.33 6.29 1000.00
1.00 0.95 0.95 0.10 0.12 74.00
1.50 83.06 83.05 8.05 8.06 7498.00
2.00 84.13 84.25 6.78 6.67 562.00
2.50 83.87 83.82 7.02 7.06 4216.00
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Results on CARS, BNN trained on validation set with topology: [2048-2048]
and DAR divergence

α Acc Acc ECE ECE Best K
(best K) (K = 20000) (best K) (K = 20000)

0.10 75.81 76.25 6.30 5.64 56.00
0.50 76.53 76.58 5.49 5.57 1000.00
1.00 0.54 0.53 0.11 0.11 1333.00
1.50 77.01 77.03 4.42 4.36 4216.00
2.00 75.51 76.11 6.85 5.55 23.00
2.50 75.43 75.66 6.81 6.59 421.00



Appendix C

Results Divergences
Comparison

In this appendix we show the results of all the experiments regarding the
comparison between divergences. For a reference of the chosen configura-
tions see Table 5.6.

C.1 Results on CIFAR10

C.2 Results on CIFAR100

C.3 Results on CARS
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Divergences comparison on CIFAR10 with state-of-the-art performing con-
figuration

Divergence β Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 200 95.47 95.49 1.27 1.32
DKL 450 95.32 95.46 0.42 1.05
DKL 1000 95.30 95.48 1.79 2.17
DAR(α = 0.1) 200 95.30 95.31 1.78 1.77
DAR(α = 0.5) 200 95.28 95.24 1.55 1.50
DAR(α = 1.0) 200 95.35 95.36 1.47 1.44
DAR(α = 1.5) 200 95.28 95.39 1.84 1.79
DAR(α = 2.0) 200 95.39 95.41 2.02 2.07
DAR(α = 2.5) 200 95.33 95.40 2.23 2.13
DAR(α = 0.1) 450 95.31 95.30 1.24 1.26
DAR(α = 0.5) 450 95.33 95.34 0.83 0.67
DAR(α = 1.0) 450 95.18 95.40 0.56 1.22
DAR(α = 1.5) 450 95.38 95.37 0.94 1.00
DAR(α = 2.0) 450 95.35 95.36 1.35 1.31
DAR(α = 2.5) 450 95.30 95.37 1.54 1.57
DAR(α = 0.1) 1000 95.21 95.31 0.69 0.69
DAR(α = 0.5) 1000 95.15 95.33 0.81 1.58
DAR(α = 1.0) 1000 95.10 95.39 1.63 2.20
DAR(α = 1.5) 1000 95.08 95.39 0.71 1.59
DAR(α = 2.0) 1000 95.12 95.40 0.57 1.13
DAR(α = 2.5) 1000 95.36 95.40 0.65 1.07

Divergences comparison on CIFAR10 with poor performing configuration
(β = 1000).

Divergence Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 95.07 95.44 3.66 4.29
DAR(α = 0.1) 95.27 95.45 1.85 2.39
DAR(α = 0.5) 94.99 95.45 5.09 5.93
DAR(α = 1.0) 95.00 95.43 3.40 4.07
DAR(α = 1.5) 95.06 95.44 2.25 2.81
DAR(α = 2.0) 95.29 95.46 1.77 2.07
DAR(α = 2.5) 95.21 95.45 1.12 1.69
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Divergences comparison on CIFAR100 with state-of-the-art performing con-
figuration

Divergence β Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 100 77.36 77.44 3.46 3.33
DKL 200 77.21 77.15 1.23 1.43
DKL 450 75.89 76.87 4.97 5.50
DAR(α = 0.1) 100 0.94 1.03 0.19 0.09
DAR(α = 0.5) 100 77.53 77.55 3.38 3.35
DAR(α = 1.0) 100 77.20 77.25 3.83 3.71
DAR(α = 1.5) 100 77.53 77.44 4.83 4.91
DAR(α = 2.0) 100 77.45 77.50 5.63 5.57
DAR(α = 2.5) 100 77.60 77.61 6.12 6.11
DAR(α = 0.1) 200 0.92 1.01 0.20 0.11
DAR(α = 0.5) 200 77.68 77.74 1.88 1.87
DAR(α = 1.0) 200 77.43 77.46 0.87 0.99
DAR(α = 1.5) 200 77.16 77.20 2.21 2.19
DAR(α = 2.0) 200 77.34 77.42 3.34 3.26
DAR(α = 2.5) 200 77.62 77.62 3.83 3.82
DAR(α = 0.1) 450 78.53 78.48 1.90 2.12
DAR(α = 0.5) 450 77.21 77.81 2.10 2.09
DAR(α = 1.0) 450 76.42 77.12 4.65 5.71
DAR(α = 1.5) 450 77.04 77.30 2.36 3.14
DAR(α = 2.0) 450 77.05 77.42 1.79 1.72
DAR(α = 2.5) 450 77.52 77.43 0.96 0.81

Divergences comparison on CIFAR100 with poor performing configuration
(β = 2000).

Divergence Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 72.21 76.73 19.38 25.47
DAR(α = 0.1) 77.52 78.63 2.48 3.41
DAR(α = 0.5) 77.53 78.32 4.98 6.46
DAR(α = 1.0) 71.66 76.71 18.26 25.14
DAR(α = 1.5) 73.51 76.84 13.66 18.29
DAR(α = 2.0) 74.11 77.00 9.82 13.88
DAR(α = 2.5) 74.86 77.38 8.23 11.21
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Divergences comparison on CARS with state-of-the-art performing configu-
ration

Divergence β Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 10 82.47 82.54 3.43 3.36
DKL 20 82.34 82.35 1.66 1.59
DKL 40 82.06 82.40 2.20 2.34
DAR(α = 0.1) 10 86.42 86.65 2.56 2.15
DAR(α = 0.5) 10 84.76 84.64 1.55 1.63
DAR(α = 1.0) 10 83.03 83.01 3.48 3.20
DAR(α = 1.5) 10 82.31 82.32 4.93 4.90
DAR(α = 2.0) 10 82.73 82.68 5.49 5.54
DAR(α = 2.5) 10 82.16 82.01 6.07 6.18
DAR(α = 0.1) 20 86.60 86.70 2.47 2.42
DAR(α = 0.5) 20 84.39 84.48 2.39 2.43
DAR(α = 1.0) 20 83.37 83.31 1.81 1.94
DAR(α = 1.5) 20 82.73 82.68 2.52 2.59
DAR(α = 2.0) 20 82.40 82.42 4.28 4.23
DAR(α = 2.5) 20 82.57 82.72 4.51 4.43
DAR(α = 0.1) 40 87.39 87.34 4.09 4.17
DAR(α = 0.5) 40 83.31 84.76 3.51 3.49
DAR(α = 1.0) 40 81.58 82.83 2.69 2.45
DAR(α = 1.5) 40 82.11 82.85 2.27 1.88
DAR(α = 2.0) 40 82.39 82.42 2.55 2.18
DAR(α = 2.5) 40 82.52 82.50 2.91 2.94

Divergences comparison on CARS with poor performing configuration (β =
450).

Divergence Acc Acc ECE ECE
(best K) (K = 20000) (best K) (K = 20000)

DKL 73.79 80.92 14.57 23.07
DAR(α = 0.1) 79.77 82.86 9.01 12.43
DAR(α = 0.5) 83.62 86.29 9.83 13.14
DAR(α = 1.0) 74.66 80.12 14.47 22.04
DAR(α = 1.5) 77.44 81.61 10.97 16.33
DAR(α = 2.0) 79.13 82.65 8.76 12.85
DAR(α = 2.5) 80.13 83.14 7.27 10.46


	List of figures
	List of tables
	Introduction
	State of the Art
	Supervised Learning
	The Classification Setting

	Neural Networks
	The Multi-Layer Perceptron (MLP)
	Convolutional Neural Networks (CNNs)
	Other architectures
	Improvements on the learning process
	The training of Neural Networks

	Calibration
	Measures
	Methods


	Generalized Variational Inference
	Bayesian Inference as an Optimization Problem
	Variational Inference

	Violated Assumptions underlying the Bayesian Paradigm
	The Rule of Three and Generalized Variational Inference
	Robustness to Prior Misspecification through Robust Divergence

	Design
	Model
	Approximating the Posterior with GVI
	Implementation

	Experiments
	Set-Up
	Sensitivity Study
	KL divergence
	Rényi's -divergence

	Comparison

	Conclusions and Future Work
	Results Sensitivity Study KL Divergence
	Results on CIFAR10
	Results on CIFAR100
	Results on CARS

	Results Sensitivity Study Rényi's -divergence
	Results on CIFAR10
	Results on CIFAR100
	Results on CARS

	Results Divergences Comparison
	Results on CIFAR10
	Results on CIFAR100
	Results on CARS




