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Abstract

The main objects of study in this thesis are parafree groups, although the theory
of pro-p groups plays a significant role. A finitely generated group G is termed
parafree if

(i) there exists a free group F which has the same isomorphism types of nilpotent
quotients as G; and

(ii) G is residually nilpotent.

There are two original results in this thesis. On the one hand, we can completely
describe which free products of finitely generated groups, with abelian amalgams,
are parafree. Secondly, we can characterise more precisely which abelian HNN ex-
tensions of finitely generated groups are parafree.

The latter is not an explicit description, although it can still describe, as a
corollary, which abelian HNN extensions of finitely generated groups G, with two-
generated abelianisation G/[G,G], are parafree.
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Chapter 1

Introduction

In this thesis we study groups that resemble free groups in terms of their residual,
cohomological and structural properties.

There has been much research in group theory around comparing infinite groups
by the study of some of their quotients. A famous open problem is the following.

Remeslennikov’s Question: Given a finitely generated free group F and a
finitely generated residually finite group G having the same isomorphism types of
finite quotients, does it follow that F ∼= G?

One can pose this question in more general terms. A variety of groups C is a
collection of groups closed under taking subgroups, quotients and direct products.
A group G is said to be residually-C if for every 1 6= g ∈ G there exists a normal
N E G such that g /∈ N and G/N ∈ C. This way, one can ask whether every
two finitely generated residually-C groups having the same isomorphism types of
quotients and belonging to C are necessarily isomorphic.

The problem of Remeslennikov is conjectured to have positive answer. However,
for other varieties of groups, such as the variety of nilpotent groups or finite p-groups;
the analogous question is known to have negative answer.

We say that two groups G and H have the same nilpotent genus if they have
the same isomorphism types of nilpotent quotients. Even if it does not follow that
G ∼= H, one can still ask which properties must G and H share.

Bridson and Reid [7] solved a few problems posed by Baumslag regarding the
previous question; and these results exhibit the possible divergence between groups
G and H having the same nilpotent genus. For example, they show that there exist
two pairs of finitely generated residually-(torsion-free nilpotent) groups H ↪−→ G
with the same nilpotent genus such that: for the first pair, G has solvable conjugacy
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2 CHAPTER 1. INTRODUCTION

problem while N does not; and, for the second pair, G is finitely presented while
H2(H,Q) is infinite-dimensional.

The case we study in this thesis corresponds to one of the groups being free. A
finitely generated group G is said to be parafree if it is residually nilpotent and
has the same nilpotent genus as some free group. Equivalently, a finitely generated
residually nilpotent group G is parafree if there exists a free group F such that, for
all k, G/γkG ∼= F/γkF .

Baumslag introduced this class of groups. He gave many examples of non-free
parafree groups [3] and he also studied some of their key structural properties [4].
As opposed to general pairs of finitely generated residually-(torsion-free nilpotent)
groups of the same nilpotent genus, parafree groups are expected to share many
properties of free groups. We can mention a few. The Parafree conjecture, which
appears in Kirby’s list [31, Problem 3.78], expectsH2(G,Z) to vanish if G is parafree.
It is also conjectured that parafree groups have cohomological dimension at most
two. However, these problems are particularly difficult keeping in mind we do not
even know if (finitely generated) parafree groups are finitely presented.

In this thesis we do not address these questions. We are concerned with the
construction of parafree groups. Most known examples of parafree groups essentially
fall into one of two classes of groups, namely

(a) amalgamated products of a parafree group and Z; and

(b) cyclic HNN extensions of free groups.

Our purpose is to describe which abelian HNN extensions of parafree groups and
which free products of parafree groups with abelian amalgams are still parafree. We
should remark that two-generated subgroups of parafree groups are free, so non-
trivial abelian subgroups of parafree groups are isomorphic to Z.

Given a group G, we denote by rab(G) the minimal number of generators of its
abelianisation Gab = G/[G,G]. We name rab(G) the abelian rank of G.

There are two original results in this thesis. In regard to amalgamated products
of parafree groups, we prove the following (theorem 9.1.1).

Theorem (Parafreeness of amalgamated products with cyclic amalgam).
Let U and V be finitely generated groups. Let 1 6= u ∈ U and let 1 6= v ∈ V .
Consider the following amalgamated product of cyclic amalgam

W = U ∗
u=v

V ∼=
U ∗ V
〈〈uv−1〉〉

.

Then W is parafree if and only if the three following conditions hold:
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1. The groups U and V are parafree.

2. The element uv−1 of U ∗ V is not a proper power in the abelianisation.

3. At least one of u or v is not a proper power in U or V , respectively.

In this case, W is parafree of abelian rank rab(U) + rab(V )− 1.

In regard to HNN extensions of parafree groups, we prove the following (theo-
rem 9.2.1).

Theorem (Parafreeness of cyclic HNN extensions). Let U be a finitely gen-
erated group. Let u, v ∈ U \ {1}. Consider the following cyclic HNN extension of
U

W =
U ∗ 〈t〉

〈〈tut−1v−1〉〉
.

Then W is parafree if and only if the four following conditions hold:

1. The group U is parafree.

2. The image of uv−1 is not a proper power in Uab.

3. At least one of u or v is not a proper power in U .

4. The image of u is non-trivial in some finite nilpotent quotient of U .

In this case, W is parafree of the same abelian rank as U .

The fourth property of the previous theorem may be, in general, difficult to
check. However, for parafree groups of abelian rank 2, this can be reformulated in
very simple terms (corollary 9.2.5).

Theorem (Parafreeness of cyclic HNN extensions of groups with abelian
rank 2). Let U be a finitely generated group of abelian rank 2. Let u, v ∈ U \ {1}.
Consider the following cyclic HNN extension of U

W =
U ∗ 〈t〉

〈〈tut−1v−1〉〉
.

Then W is parafree if and only if the four following conditions hold:

1. The group U is parafree.

2. The image of uv−1 is not a proper power in Uab.
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3. At least one of u or v is not a proper power in U .

4. The images of u and v generate a subgroup isomorphic to Z2 in Uab.

In this case, W is parafree of abelian rank 2.

The methods that we use to prove these results mainly rely on the theory of
group rings of residually-(torsion-free nilpotent) groups and a dimension theory on
their modules, for whose required computations and estimations we shall use the
theory of L2-Betti numbers. A combination of these ideas lead to a criterion for
constructing embeddings of abstract groups into free pro-p groups (theorem 9.0.1.
This criterion was developed by Jaikin-Zapirain [26] to embed finitely generated
subgroups of free Q-groups into free pro-p groups. The aforementioned theorems
for characterising parafree amalgamated products and HNN extensions are studied
in more depth and extended to the more general context of fundamental groups in
[29], where we prove the following.

Theorem (Corollary 1.4, [29]). Let (G,Γ) be a graph of groups over a finite graph
Γ whose edge morphisms are injective. Let W = π(G,Γ) be its fundamental group.
Assume that all vertex subgroups G(v) (v ∈ V (Γ)) are finitely generated and all
edge subgroups G(e) (e ∈ E(Γ)) are cyclic. Then W is parafree if and only if the
following four conditions hold.

1. All the vertex subgroups G(v) (v ∈ V (Γ)) are parafree.

2. The abelianisation of W is torsion-free of rank

rab(W ) =
∑

v∈V (Γ)

rab(G(v))−
∑
e∈E(Γ)

rab(G(e))− χ(Γ),

where χ(Γ) = |V (Γ)| − |E(Γ)|-1.

3. All the centralisers of non-trivial elements in W are cyclic.

4. For each non-trivial edge subgroup of G(e) (e ∈ E(Γ)) there is a finite nilpotent
quotient of W where the image of this edge subgroup is non-trivial.

We would like to conclude this introduction by pointing out a recent develop-
ment [25] which shows in particular that in order to give a positive solution to
Remeslennikov’s problem, it suffices to rule out non-free parafree groups.
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1.1 Structure of the exposition

• Chapter 1: We briefly introduce the problem of constructing parafree groups
and we overview our two main results of the thesis. In section 1.2, we fix some
conventions that will be followed during the whole text.

• Chapter 2: We discuss some important classes of groups in terms of their
structural and residual properties in order to compare them, later on, with
parafree groups.

• Chapter 3: Here we review two old applications of Bass-Serre theory on
the structure of elements and subgroups of amalgamated products and HNN
extensions.

• Chapter 4: We introduce profinite groups and we give some tools to study
pro-p groups. We precise the notion of free product in the category of pro-p
groups to give more explicit descriptions of pro-p completions of amalgamated
products and HNN extensions in terms of the pro-p completions of the factors
during section 4.3.

• Chapter 5: Here we collect some known examples of parafree groups. We
give a pro-p reformulation of the property of having the same nilpotent genus
as a free group in proposition 5.2.2. In our applications, we work with this
viewpoint.

• Chapter 6: Here we recall some standard properties about the augmentation
ideals, with the aim of applying the main result of the chapter (lemma 6.3.1) to
groups that arise as the construction of an amalgamated product or an HNN
extension.

• Chapter 7: Amore sophisticated and concrete version of the previous lemma 6.3.1
requires developing further the theory of certain groups rings and a dimension
theory on their modules. The main results are corollary 7.5.4, proposition 7.6.8
and proposition 7.6.10.

• Chapter 8: We introduce some techniques of L2-Betti numbers that will be
required to estimate dimensions of modules related to augmentation ideals.
The main result is corollary 8.2.3.

• Chapter 9: Here we start introducing the main tool for constructing em-
beddings of abstract groups into pro-p groups (theorem 9.0.1), which is a
sophisticated version of lemma 6.3.1 mixed with the methods of Chapters 7
and 8. This will be applied to the settings of amalgamated products and HNN
extensions of parafree groups. The main results are theorems 9.1.1 and 9.2.1.
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1.2 Notation and conventions

We remind a few basic definitions and we set several conventions which are worth-
recalling because some of them are not standard.

1. All of our rings R will be associative and unitary. All ring homomorphisms
will map 1 7→ 1. We denote by R× or R∗ the multiplicative group of units of
R. All of our modules will be left modules if there is no explicit mention.

2. Given a group G, we will denote by Gab = G/[G,G] its abelianisation and by
G′ = [G,G] its commutator subgroup (also known as the derived subgroup).
The p-abelianisation of G is the quotient G/Gp[G,G], which is isomorphic to
both H1(G,Fp) and H1(G,Fp).

3. Given a word ω ∈ Fn, where Fn is the free group considered with free gen-
erators x1, . . . , xn; we denote ωxi ∈ Z to be defined in such a way that the
canonical image of ω in the abelianisation Zn of Fn is (ωx1 , . . . , ωxn) ∈ Zn.

4. We denote by k a commutative ring. We are particularly interested in k = Fp
and k = Z.

5. Given a set S, we denote by kG(S) the free kG module with a basis {es}s∈S
indexed by S.

6. Given a group G, we denote by Gk or γkG (resp. Gk,p or γk,pG) its lower cen-
tral series (resp. its p-lower central series). These are defined recursively
as follows: G1 = G1,p = G and, for n ≥ 1,

Gn+1 = [Gn, G], Gn+1,p = Gp
n[Gn, G].

If G = F is free, we might denote Gk by G(k) in order to avoid confusion,
because we leave the notation Fk for the free group on k generators. We refer
to the quotients G/Gk (resp, G/Gk,p) as the lower central quotients (resp.
p-lower central quotients) of G.

7. Whenever we say that a map is natural we mean that it is functorial. This
is of particular importance in homological arguments. On the other side, we
say that a map, or other mathematical object, is canonical if it does not rely
on a particular choice of generators or data. Sometimes, a map can be both
canonical and natural. For example, given R-vector spaces U and V , U ⊗

R
V is

canonically isomorphic to V ⊗
R
U ; although this isomorphism is also natural.
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8. The group Zp is the group of p-adic integers. The letters F,G,H,N will
denote pro-p groups. We reserve F to denote a free pro-p group. The free
group of rank n will be denoted by Fn.

9. Let G be a group. We denote its rank by

d(G) = inf{m : there exists a generating set of G with m elements} ∈ Z≥0∪{∞}.

We denote its abelian rank (usually named para-rank or parafree rank) by

rab(G) = d(Gab).

If G is a profinite group, we also denote

d(G) = inf{m : G admits a topological generating set with m elements}.

We say that G is topologically finitely generated, or simply that it has finite
rank, if d(G) <∞.

10. Given a pro-p group G of finite rank, we denote by γ(p)
k G its p-lower cen-

tral series. These are defined recursively by γ
(p)
1 G = G and γ

(p)
n+1G =

Gp [G, γ
(p)
n G] for n ≥ 1. These are open normal subgroups of G. Similarly,

we denote by γkG the lower central series of G, which are defined recur-
sively by γ1G = G and γk+1G = [γkG,G] for k ≥ 1. These are closed normal
subgroups of G.

11. Given a group G of the form Fnp , Zn or Fn; and a subset S ⊆ G; we say that
S is primitive if it is part of a generating set of n elements. If G = Fn then
we say S ⊆ G is primitive if it is part of a topological generating set of n
elements.

12. Given a group G, we denote by Φ(G) its Frattini subgroup.

13. Given an abstract group G, we denote its pro-p completion by Gp̂.

14. Given a pro-p group G, we will write H ≤o G if H is an open subgroup, and
NEo G if N is a normal open subgroup.

15. A variety of groups will always be denoted by C and Cp denotes the variety
of finite p-groups.
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Chapter 2

Some special classes of groups

In this chapter, we simply review a few characteristic properties of three classes of
groups; namely free groups, surface groups, nilpotent and residually-(torsion-free
nilpotent) groups.

Free groups are our starting point. Their subgroup structure is particularly
well-understood; and so are their residual and cohomological properties.

Theorem 2.0.1 (Schreier’s index-rank formula). Let H be a subgroup of Fn of finite
index k. Then H is a free group of rank equal to k(n− 1) + 1.

This fundamental property can be proven by combinatorial methods ([36, Propo-
sition 3.9]) and also using more sophisticated tools: by covering space theory ([39,
Chapter 4, Section 5]) and by Bass-Serre theory ([13, Theorem 1.2, Chapter II]. We
will see that surface groups also enjoy a similar property. However, the feature of
free groups we are most interested in is the following.

Theorem 2.0.2 (Magnus). Free groups are residually-(torsion-free nilpotent).

Proof. Since free groups are residually-(finitely-generated free groups), it suffices
to prove the statement for finitely generated free groups Fn. On the one hand, a
result of Magnus states that Fn/γmFn is torsion-free for all m. We can prove this
inductively. The induction base m = 1 is trivial and Fn/γm+1Fn fits into a short
exact sequence

1 −→ γmFn
γm+1Fn

−→ Fn
γm+1Fn

−→ Fn
γmFn

−→ 1.

The first group is a torsion-free abelian group freely generated by basic commuta-
tors. This is a consequence of the normal form of elements of Fn/γmFn (described,

9
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using the collecting commutator process, in [20, Chapter 11], for example). By the
inductive hypothesis, Fn/γmFn is also torsion-free, so Fn/γm+1Fn is torsion-free.

It rests to verify that Fn is residually-nilpotent. One argument consists on con-
sidering an embedding Fn ↪−→ Q〈〈X1, . . . , Xn〉〉×, where the last group stands for the
unit group of the ring Q〈〈X1, . . . , Xn〉〉 of power series in non-commuting indeter-
minates X1, . . . , Xn, with coefficients in Q. This embedding is defined by taking
free generators xi to 1 + Xi, respectively. One would then notice that non-trivial
elements of γmFn embed into elements of the form 1+

∑
i1,...,ik;k≥m ai1,...,ik Xi1 · · ·Xik ;

or, in other words, of the form 1+ (power series supported in monomials of degree
≥ m). This is an standard argument originally due to Malcev and the last claim
can be easily verified inductively (see [44, Section 6] for details).

An alternative way to check that Fn is residually nilpotent is using the fact that
Fn = γ1Fn ⊇ γ2Fn ⊇ · · · ⊇ γm+1Fn ⊇ . . . is an strictly decreasing chain that verifies
that γm+1Fn is characteristic in γmFn for all m. By [45, Theorem 5], its intersection⋂
m γmFn is trivial.

By proposition 2.2.4 and the previous theorem, free groups are also residually-p
for every prime p. The two ways to establish the residual nilpotence of free groups
that we discussed during the proof of theorem 2.0.2 are purely algebraic. One can
use covering space theory methods to directly prove that free groups are residually-p
for every prime p (see [47, Section 3.2]).

A deep defining theorem of free groups due to John R. Stallings and Richard Swan
states that free groups are exactly the abstract groups of cohomological dimension
1. During section 4.5, we will establish the analogous principle for pro-p groups,
which is significantly simpler.

2.1 Surface groups

Fundamental groups of connected and compact surfaces are called surface groups.
From the classification of these surfaces, one can write down a classification of such
groups. Furthermore, from their topological description as fundamental polygons,
the classification of surface groups is precised in terms of their presentations. Non-
closed surfaces (those with non-empty boundary) have free fundamental group and
closed surfaces can be classified as follows.

Theorem 2.1.1. The fundamental group of the closed orientable surface of genus
g ≥ 0, denoted by Σg, is

π1(Σg) ∼= 〈x1, . . . , xg, y1, . . . , yg : [x1, y1] · · · [xg, yg] = 1〉.
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The fundamental group of the closed non-orientable surface of genus g ≥ 1, denoted
by Sg, is

π1(Sg) ∼= 〈x0, x1, . . . , xg : x2
0x

2
1 · · ·x2

g = 1〉.

Remark 2.1.2. Directly from their presentations, one can compute the abelianisa-
tion of a surface group. For example, let G = π1(Σg), then

G/[G,G] ∼= Z2g.

If G = π1(Sg), then
G/[G,G] ∼= Zg × Z/2.

In particular, their first Betti numbers (see definition 8.0.1) are b1(π1(Σg)) = 2g and
b1(π1(Sg)) = g.

Interestingly, it is still fruitful to consider them as fundamental groups of a
geometric object because this way one can understand their subgroups using covering
space theory, as one does for free groups.

Theorem 2.1.3. Let S be a closed surface and let G be its fundamental group. Let
H be a subgroup of G. There are two cases:

• If H is has finite index in G then H ∼= π1(Ŝ), where Ŝ is a closed surface of
Euler Characteristic χ(Ŝ) = |G : H|χ(S).

• If H has infinite index in G, then H is free.

Using covering space methods one can also verify residual properties of surface
groups (see, for example, [21]).

Proposition 2.1.4. Surface groups are residually finite.

The previous result admits another proof in the orientable case since Fricke and
Klein proved that π1(Σg) has a faithful representations in PSL2(C) and, by a result
of Mal’cev, we know that PSL2(C) is residually finite.

Baumslag established only by purely algebraic means the following much stronger
property in [2].

Proposition 2.1.5. Surface groups are residually free.
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2.2 Nilpotent groups

Since parafree groups are residually nilpotent groups, it would be convenient to
collect here some properties of this class of groups.

For a thorough introductory development of the theory of nilpotent groups, we
recommend the book of M. Hall [20, Chapter 10], which contains proofs for most of
the results we are about to mention. The proofs of the residual properties of these
groups use an standard inductive argument on the Hirsch length.

Proposition 2.2.1. The following is true.

1. Finitely generated nilpotent groups are polycyclic.

2. Polycyclic groups are residually finite.

3. Finitely generated residually finite groups are Hopfian.

Remark 2.2.2. The Hopf property can be used to check whether a surjective map
is injective. For example, if G is a Hopfian group; and f : G → H and g : H → G
are surjective group homomorphisms; then both f and g are isomorphisms. This is
due to the fact that g ◦ f is a surjective endomorphism of G. By the Hopf property,
g ◦ f must be injective. Since f is surjective, the previous implies that f and g are
injective.

We should still remark that finitely generated nilpotent groups are a much more
particular class of groups than the class of finitely generated residually finite groups.
In fact, they are closer to finitely generated abelian groups. In this sense, a different
explanation for the Hopf property of finitely generated nilpotent groups G can be
given by means of the Noetherian condition. R. Baer proved that any subgroup of
G is finitely generated [9, Theorem 2.18]. From this, it directly follows that G is
Hopf.

The following is a consequence of the Burnside Basis Theorem for nilpotent
groups.

Proposition 2.2.3. LetG be a nilpotent group. Then [G,G] ⊆ Φ(G). In particular,
if a subgroup H ≤ G verifies that H [G,G] = G, then H = G.

Parafree groups are not only residually nilpotent but also residually-(torsion-free
nilpotent). This is due to the fact that, when F is free, the quotients F/γnF are
torsion-free nilpotent.

In addition, this proves that parafree groups are residually-p for every prime p.
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Proposition 2.2.4 (Theorem 2.1, [19]). Finitely generated torsion-free nilpotent
groups are residually-p for every prime p.

The class of residually-(torsion-free nilpotent), which includes parafree groups,
locally resemblances the family of groups Zn and, as such, they fall into other inter-
esting classes of groups. They are both orderable and locally indicable.

Definition 2.2.5. A group G is orderable if there exists an order relation ≤ on
G with the property that, for all r, s, t, if r ≤ s, then rt ≤ st and tr ≤ ts. A subset
S ⊆ G is said to be well-ordered if every subset of S has a minimum. We denote
this ≤ a group order on G.

There is a simpler way to codify a group ordering, with the concept of positive
cone.

Lemma 2.2.6. A group G is orderable if and only if there exists a subset P ⊆ G
such that {P, P−1} is a partition of G \ {e}, P · P ⊆ P and gPg−1 ⊆ G for every
g ∈ G.

Proof. Given an order ≤ on G, we can take the positive cone P = {g ∈ G : 1 < g}.
Reciprocally, given such subset P , we can define x < y if x−1y ∈ P . We write x ≤ y
if x = y or x < y. This defines an order on G.

Lemma 2.2.7. Suppose that a group G has a central subgroup N ≤ G such that
both N and G/N are orderable. Then G is orderable.

Proof. We use lemma 2.2.6. Consider the canonical projection p : G −→ G/N .
Given the positive cone PN for an ordering of H and the positive cone P ′N for an
order on G/H, we can simply take P = PN ∪ p−1(P ′N) as positive cone to define an
order on G.

We can now prove that finitely generated torsion-free residually nilpotent groups,
and groups that are locally or residually of this way, are orderable.

Proposition 2.2.8. Torsion-free nilpotent groups are orderable.

Proof. Let G be torsion-free nilpotent. By an standard compactness argument, it
suffices to check that G is locally orderable. We will now prove the statement for
finitely generated torsion-free nilpotent groups by induction on their Hirsch length.
The only such groups of Hirsch length at most 1 are the trivial group and Z, both
orderable. Now let H ≤ G be a finitely generated subgroup. There is a finite normal
series

1 = G0 EG1 E · · ·EGm = G,
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where Gk/Gk−1
∼= Z and Gk/Gk−1 ⊆ Z(G/Gk−1) for all 1 ≤ k ≤ m. This m is the

Hirsch length of H and this group is the central extension of G0
∼= Z by G/G0, both

orderable by the induction hipothesis. So H is orderable by lemma 2.2.7.

Proposition 2.2.9. Residually-(torsion-free nilpotent) groups are orderable.

Proof. Consider

W = {N EG : G/N is torsion-free nilpotent}.

We endow W of a well order. For each N ∈ W , we endow G/N of a group ordering.
The group

∏
N∈W G/N has a natural group order with respect to the lexicographic

order on W and the coordinate-wise order on each group G/N . The latter order
exists by proposition 2.2.8. The restriction of this order to its subgroup

G ↪−→
∏
N∈W

G/N

proves that G is orderable.

A simple observation is that these groups, namely residually-(torsion-free nilpo-
tent) groups, are locally indicable1.

Definition 2.2.10. We say that a group Γ is locally indicable if every finitely
generated nontrivial subgroup has an epimorphism onto Z.

1In fact, orderable groups are locally indicable. However, we prefer not to mention this because
local indicability follows directly from the structure theory of finitely generated nilpotent groups,
as depicted in the proof of proposition 2.2.8.



Chapter 3

Bass-Serre theory

We introduce one of the most fundamental and elementary tools of the Bass-Serre
theory, namely the characterisation of free groups in terms of their action on graphs.

Theorem 3.0.1 (Reidemeister). A group G is free if and only if it acts freely on a
tree.

Proof. Omitted. This is a direct consequence of the structure theorem of groups
acting on graphs. The reader is referred to [13, Theorem 1.1, Chapter II].

A direct consequence is the following.

Corollary 3.0.2. A subgroup of a free group is free.

A fundamental object in Bass-Serre theory is the notion of graph of groups (G, Y );
its associated tree; and its associated fundamental group π1(G, Y ), which is a type
of “free construction”. With these tools, one can prove that many subgroups H ≤
π1(G, Y ); such as those that act freely on the corresponding tree; are free. However,
we will not need to work in such generality. We will simply revise some properties
of two concrete examples, namely amalgamated products and HNN extensions. The
families of free groups we previously referred to are collected in corollaries 3.0.6 and
3.0.12.

Amalgamated products

Definition 3.0.3. Let θ : A −→ G and ω : A −→ H be two group monomorphisms.
We define its corresponding amalgamated product, denoted G ∗

A
H, by the group

G ∗
A
H = G ∗H

/
〈〈θ(a)ω(a)−1, a ∈ A〉〉.

15
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We can give an explicit description of the elements of the group G ∗
A
H.

Proposition 3.0.4 (Britton’s lemma. Normal form of elements in amalgamated
products). Let θ : A −→ G and ω : A −→ H be two group monomorphisms. Let
G1 (resp. H1) be a set right-coset representatives of θ(A) (resp. ω(A)) such that
1 ∈ G1 (and 1 ∈ H1). Then any element g ∈ G ∗

A
H can be uniquely written in the

form
a g1 · · · gn,

where a ∈ A, and 1 6= gi ∈ G1 ∪H1 are such that they alternate from H1 to G1. In
other words, gi ∈ H1 implies that gi+1 ∈ G1, and vice versa.

A particular implication of this lemma is that both G and H canonically embed
into G ∗

A
H.

Corollary 3.0.5. Let θ : A −→ G and ω : A −→ H be two group monomorphisms.
Let n ≥ 1 and consider an element g ∈ G ∗

A
H of the form

g = g0 g1 · · · gn,

where gi ∈ G ∪H, gk /∈ H if k > 0; and the gi alternate from G to H. Then g 6= 1.

Corollary 3.0.6. Let F be a subgroup of G ∗
A
H that intersects trivially any conju-

gate of G or H. Then F is free.

HNN extensions

Here we introduce an important construction in group theory, named HNN ex-
tensions. It was introduced by Graham Higman, Bernhard Neumann, and Hanna
Neumann. As the amalgamated products, they naturaly arise when taking the fun-
damental group of a certain topological construction. We will see that they also
have a normal form theorem.

Definition 3.0.7. Let θ : A→ G be a group monomorphism. We define the HNN
extension of G over A with respect to θ as the group

〈G, t : tat−1 = θ(a), a ∈ A〉 ∼= G ∗ 〈t〉
/
〈〈tat−1θ(a)−1, a ∈ A〉〉.

When the monomorphism θ is understood from the context, this is simply denoted
by G∗

A
and the letter t is called stable letter.
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Proposition 3.0.8 (Britton’s Lemma. Normal form of elements in HNN exten-
sions). Let θ : A → G be a group monomorphism and let A1, A−1 be, right-coset
representatives in G of the subgroups A and θ(A), respectively. Any element g ∈ G ∗

A

can be uniquely represented as a product

g0 t
ε1 g1 · · · tεn gn,

where g0 ∈ G; εi ∈ {−1, 1}; gi ∈ A1 \ {1} if εi = 1; gi ∈ A−1 \ {1} if εi = −1; and
εi = εi+1 if gi = 1.

In particular, G embeds into G∗
A
.

Corollary 3.0.9. Let θ : A → G be a group monomorphism. Let g ∈ G ∗
A
be an

element of the form
g0 t

ε1 g1 · · · tεn gn,

where g0 ∈ G, εi ∈ {−1, 1}; gi /∈ A if εi = −εi+1 = 1; and gi /∈ θ(A) if εi = −εi+1 =
−1. Then g 6= 1.

Some classical and important examples of HNN extensions are the Baumslag-
Solitar groups B(n,m) = 〈x, y|yxny−1 = xm〉.

Example 3.0.10. The group B(1,m) ∼= 〈x, y | yxy−1 = xm〉 is isomorphic to Z[ 1
m

]o
Z, with φ : Z→ AutZ[ 1

m
] given by φ(n)(a) = nma for every n ∈ Z, a ∈ Z[ 1

m
]. They

are isomorphic via the isomorphism that maps x 7→ (1, 0) and y 7→ (0, 1).

Example 3.0.11. The groups B(n,m), for n,m ≥ 2 coprime, are more interesting.
One can prove that in these groups are not Hopf. In fact, the endomorphism given
by x 7→ xn and y 7→ y is surjective, since it contains xn, xm = yxny−1 and y, though
it is not injective, since 1 6= [x, yxy−1] belongs to the kernel. Since they are finitely
generated and not Hopf, then these groups are not residually finite and hence not
parafree.

Corollary 3.0.12. Let H ≤ G∗
A
be a subgroup such that H intersects trivially all

the conjugates of G. Then H is free.
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Chapter 4

Profinite groups

Let I be set of subscripts with a partial order ≥ such that for every i, j ∈ I, there
exists k ∈ I such that k ≥ i and k ≥ j. An inverse system of groups is a
collection of groups Gi together with a collection of maps {φji : j ≥ i ∈ I} such that

1. For every j ≥ i, φji : Gj −→ Gi is a group homomorphism.

2. For every i, φii = idGi
.

3. For every k ≥ j ≥ i, φki = φji ◦ φkj.

The inverse limit of this inverse system of groups, denoted by lim←−i∈I Gi, is defined
by

lim←−
i∈I

Gi =

(gi)i ∈
∏
i∈I

Gi : φji(gj) = gi for all j ≥ i

 . (4.1)

The group operation on lim←−Gi is inherited from the natural group structure of∏
i∈I Gi.

A profinite group is an inverse limit of finite groups and they arise naturally
in infinite Galois theory. It can be seen that an automorphism of Q restricts to an
automorphism of each finite Galois extension L/Q. Reciprocally, an automorphism
of Q is made out of elements of the groups Gal(L/Q). However, Gal(Q/Q) is
not the whole

∏
L Gal(L/Q), since the later collections of automorphisms should

satisfy some consistency conditions in the form of (4.1) to be the restrictions of an
automorphisms of Q. More precisely, the absolute Galois group Gal(Q/Q) of Q
would be a profinite group, seen as the inverse limit of the finite groups Gal(L/Q),
where L/Q ranges over finite Galois extensions with partial order E ⊇ L and with
restriction homomorphisms rEL : Gal(E/Q) −→ Gal(L/Q).

19
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From the point of view of category theory, the group lim←−Gi, endowed with the
canonical projections φj : lim←−Gi −→ Gj, is defined by the following universal
property: For any group G and any group homomorphisms ψi : G −→ Gi such
that, for any k ≥ j, the diagram

Gk

G

Gj

φkj

ψk

ψj

is commutative; there exists a unique group homomorphism ψ : G −→ lim←−Gi such
that the diagram

Gk

G lim←−Gi

Gj

φkj
ψ

ψk

ψj

φk

φj

(4.2)

is commutative. This gives us a practical way to construct homomorphisms between
profinite groups from first principles.

On the other side, profinite groups also have a rich structure as topological
groups. We equip the groups Gi with the discrete topology, the group

∏
Gi with

the product topology and the inverse limit lim←−Gi with the subspace topology. As
an application of Tychonoff’s theorem, these groups are compact. This topology on
lim←−Gi is named the profinite topology; and, in the context of Galois theory, the
Krull topology; which is crucial in the Fundamental Theorem of Galois theory.

Going back to the universal property of the diagram (4.2), if the initial G is a
topological group and the maps ψk are continuous; then the resulting ψ : G −→
lim←−Gi would be continuous, too.

In the class of topological groups, there are three defining properties of the sub-
class of profinite groups, namely being Hausdorff, compact and totally disconnected.
In particular, these are far from most topological groups that arise in geometry.

The richness of profinite groups lies in the interface of their algebraic and topo-
logical features. Our main interest in these groups is that their structure captures
residual properties of abstract groups in the form of profinite invariants.
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We now extend upon the latter remark. A variety of groups is a class of groups
C that verifies the following conditions.

1. (Closed under isomorphism types) If C1
∼= C2 and C2 ∈ C, then C1 ∈ C.

2. (Closed under direct products) If C1, C2 ∈ C, then C1 × C2 ∈ C.

3. (Closed under subgroups) If C1 ≤ C2 and C2 ∈ C, then C1 ∈ C.

4. (Closed under quotients) If C1 is a quotient of C2 and C2 ∈ C, then C1 ∈ C.

A few examples are the varieties of finite groups, finite p-groups, nilpotent groups
and soluble groups.

Let C be a variety. A pro-C group is an inverse limit of groups belonging to C.
We describe the most important examples of pro-C groups. Let G be an abstract
group. Then the pro-C completion of G, denoted by GĈ, is the inverse limit of
the system of groups

{N EG : G/N ∈ C},

with containment ⊆ as partial order and canonical group homomorphisms φN1,N2
:

G/N1 −→ G/N2 whenever N1 ⊆ N2.

If C is a variety of finite groups, then GĈ is an inverse limit of finite groups in C
and it is also endowed with the profinite topology. If C = Cp is the variety of finite
p-groups, we denote its pro-C completion by Gp̂ = GĈ and we name it the pro-p
completion of G.

One could also consider pro-C completions of varieties which contain infinite
groups, such as the variety of nilpotent groups; although these completions lack an
interesting topological structure.

We say that a group G is residually-C if the intersection of normal subgroups
N E G with G/N ∈ C is trivial. In other words, G is residually-C if for every
1 6= g ∈ G, there exists a group homomorphism f : G −→ C, with C ∈ C, such that
f(g) 6= 1.

Proposition 4.0.1. Let C be a variety. The following is true:

• There is a natural and canonical group homomorphism ιĈ : G −→ GĈ. This
map injective if and only if G is residually-C, and it is bijective if and only if
G ∈ C.
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• If h : G −→ K group homomorphism and K is a pro-C group, then there exists
a group homomorphism hĈ : GĈ −→ K such that the diagram

G

GĈ K

ιĈ

h

hĈ

is commutative.

• If f : G −→ H is a group homomorphism, there exists a group homomorphism
fĈ : GĈ −→ HĈ such that the diagram

G H

GĈ HĈ

ιĈ

f

ιĈ

fĈ

is commutative.

• If, in addition, C is a variety of finite groups, then ιĈ has dense image and the
maps hĈ and fĈ can be chosen to be continuous in exactly one way.

When we work in the category of pro-p groups, the maps ιĈ, hĈ and fĈ of propo-
sition 4.0.1 will be denoted by ιp̂, hp̂ and fp̂, respectively. We observe that GĈ is
residually-C. In order to inspect the isomorphisms types of quotients of G belonging
to a certain variety C; or to study whether G is residually-C; it is natural to consider
its pro-C completion GĈ.

Theorem 4.0.2 (Dixon, Formanek, Poland, Ribes [16]). Let C be a variety of finite
groups. Two abstract groups Γ and Λ have the same class of isomorphism types of
quotients belonging to C if and only if ΓĈ

∼= ΛĈ.

We remark that whenever we talk about morphisms between inverse limits, we
talk about group homomorphisms; and, if these are also profinite, we addition-
ally require morphisms to be continuous maps. All group homomorphisms between
profinite groups in this exposition will be naturally continuous. Still, it is worth
mentioning that sometimes this is not really an issue. For instance, since profi-
nite groups are compact and Hausdorff, the inverse of a continuous bijective group
homomorphism will always be continuous.

There are deeper principles in regard to the algebraic and topological proper-
ties of profinite groups. A profinite group G is said to be topologically finitely
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generated if there is a finite subset S ⊆ G that generates a dense subgroup of
G. A deep theorem due to Nikolov and Segal [41], which we shall not use, states
that all finite-index subgroups of a profinite group are open. As a consequence, a
group homomorphism f : G −→ H between a profinite G and H, where G is finitely
generated, must be continuous. This result is significantly easier in the category of
p-groups and it is a classical observation of Serre.

Proposition 4.0.3. Let G be a topologically finitely generated pro-p group. Then
any finite-index subgroup H of G has p-power index and it is open.

We do will not develop the theory of profinite groups, though we would like to
recall a few fundamental facts of this theory. Since we are only going to work with
pro-p groups, we will still recollect some of the important features and tools of the
theory of this particular subclass of profinite groups. We refer the reader to the
books [15], [43] and [48] for a thorough treatment of this topic.

We start recalling a fundamental observation of groups that are constructed as
inverse limits. Group homomorphisms between inverse limits need not be induced
from a homomorphism between their inverse systems. More precisely, a group ho-
momorphism lim←−Gi −→ lim←−Hi need not be induced from a sequence of group homo-
morphisms Gi −→ Hi. Moreover, a group can be the inverse limit of many different
inverse systems of groups.

Proposition 4.0.4. Let G be a profinite group. Let {Nn}n be a decreasing
sequence of open subgroups with trivial intersection. Then the canonical map
G −→ lim←−nG/Nn is an isomorphism.

Proof. The map is injective because
⋂
Nn = 1. On the other side, the image is

closed since this is a map between Hausdorff compact topological sets. In addition,
the image surjects into each factor G/Nn of the inverse limit, so the image is also
dense. This implies that φ is bijective, as we wanted.

Since we are going to consider closed subgroups and quotients of pro-p
groups, we sketch how one can make sense of them in the category of pro-p groups.
Let G = lim←−Gi be a pro-p group with projection maps pj : G −→ Gj. We can
assume without loss of generality that each pj is surjective since, otherwise, the
canonical map G −→ lim←− pi(Gi) would be an isomorphism and the latter inverse
limit has surjective projections pj. Let H ≤ G be a closed subgroup and let N ≤ G
be a normal closed subgroup. Then there are canonical continuous isomorphisms
H −→ lim←− pi(H) andG/N −→ lim←−Gi/pi(N), whereH is endowed with the subspace
topology; G/N is endowed with the quotient topology; and both lim←− pi(H) and
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lim←−Gi/pi(N) are endowed with the profinite topology. This way, both H and G/N
are naturally pro-p groups in the sense of inverse limits.

These notions of subgroup and quotient enjoy all expected and desirable prop-
erties in the category of pro-p groups. For example, there is a first isomorphism
theorem.

Lemma 4.0.5. Let G and H be pro-p groups and let f : G −→ H be a continuous
epimorphism. For any closed NEker f , the induced map G/N −→ H is continuous
and verifies and makes the following diagram

G

G/N H

f (4.3)

commutative. Moreover, if N = ker f then the induced G/(ker f) −→ H is an
isomorphism of pro-p groups.

We also remind that a subgroup of a pro-p group is open if and only if it is
closed and has finite index. As a consequence, given an open normal subgroup H of
a pro-p group G, the quotient G/H is a finite p-group and it is endowed with the
discrete topology.

There is a particularly valuable case of proposition 4.0.4. Let G have finite rank.
Since G is residually p, then we would have that G is isomorphic to lim←−nG/γ

(p)
n G,

where γ(p)
n G are the p-lower central series of F . These are defined recursively by

γ
(p)
1 G = G and γ(p)

n+1G = Gp [G, γ
(p)
n G] for n ≥ 1. One can inductively use proposi-

tion 4.0.3 to check that these are, in fact, open normal subgroups of G. Similarly,
we denote by γkG the lower central series of G, which are defined recursively by
γ1G = G and γk+1G = [γkG,G] for k ≥ 1. We know that these are closed normal
subgroups of G (see [15, Proposition 1.9 and Exercise 17]).

This special filtration makes the topology of pro-p groups special among profinite
groups. However, the key aspect of pro-p groups is the simple characterisation of
their Frattini subgroup.

Definition 4.0.6. Let G be a pro-p group. We define its Frattini subgroup Φ(G)
to be the intersection of all its maximal closed subgroups.

The interest of the Frattini subgroup, which is clearly normal and closed, is that
it allows to reduce the algebraic-topological question of group generation to linear
algebra.
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Proposition 4.0.7. Let S be a subset of G. Then the following statements are
equivalent.

1. S topologically generates G.

2. SΦ(G) topologically generates G.

3. SΦ(G)/Φ(G) topologically generates G/Φ(G).

In particular, d(G) = d(G/Φ(G)).

Proposition 4.0.8. The Frattini subgroup is

Φ(G) = Gp [G,G],

so G/Φ(G) is a p-elementary abelian group. Moreover, if G is topologically finitely
generated, then

Φ(G) = Gp [G,G] and G/Φ(G) ∼= Fd(G)
p .

Let Γ be a finitely generated abstract group with pro-p completion Γp̂. Given a
finite p-group Q, there is a bijective correspondence

{epimorphisms Γ −→ P} ←→ {epimorphisms Γp̂ −→ P} (4.4)

which assings to each epimorphism f : Γ −→ P the epimorphsm fp̂ : Γp̂ −→
P . Reciprocally, given an epimorphism g : Γp̂ −→ P , it will be continuous by
proposition 4.0.3. So the map g ◦ ιp̂ : Γ −→ P is a surjective homomorphism. In
particular, given any p-elementary abelian group A ∼= Fnp , the previous assignment
produces a bijective correspondence

{epimorphisms Γ/Γp [Γ,Γ] −→ A} ←→ {epimorphisms Γp̂/Γ
p
p̂ [Γp̂,Γp̂] −→ A}.

(4.5)
This implies that the dense canonical map Γ −→ Γp̂ induces an isomorphism of
elementary abelian p-groups

Γ/Γp [Γ,Γ] −→ Γp̂/Γ
p
p̂ [Γp̂,Γp̂]. (4.6)

We encompass, as a corollary of propositions 4.0.7 and 4.0.8, part of the utility
of the Frattini group in the following statement.

Corollary 4.0.9. Let G have finite rank. Then S ⊆ G generates G topologically
if and only if S generates G modulo Gp [G,G]. In particular, a homomorphism
f : G −→ H between finitely generated pro-p groups G and H is surjective if and
only if the induced

f :
G

Gp [G,G]
−→ H

Hp [H,H]

is surjective.
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These results have surprising implications and constitute one of the reasons for
which pro-p groups are easier to work with than with abstract groups or more general
profinite groups.

Notice that free groups F do also have the property that d(F ) = dimFp F/F
p [F, F ],

but not for analogous reasons. As opposed to what happens in pro-p groups, lifts of
generators of F/F p [F, F ] are not necessarily generators of F .

4.1 Solving equations

In the theory of pro-p groups, we talk about topological generation, rather than
abstract generation. As a consequence, elements of pro-p groups cannot be generally
described by finite words. In this section, our aim is to develop an elementary way of
describing implicitly elements in pro-p groups. This section is perfectly avoidable. It
just suggests and alternative combinatorial way of thinking about elements in pro-p
groups.

Let Fn be the free group on X = {x1, . . . , xn} and let ω ∈ Fn be a word in X.
Defining a group homomorphism from a one-relator group 〈X|ω〉 to another group
G is equivalent to finding h1, . . . , hn ∈ G such that ω(x1 = h1, . . . , xn = hn) = 1 in
G. If H is a topological group, there are methods to ensure non-explicit solutions
h1, . . . , hn of ω. Suppose that G is a pro-p group. Take X = {x1, x2, x3} and
consider the word ω = x1[x2, x1][x3, x2]. Take any x2 = b ∈ G and x3 = c ∈ G. We
want to find a ∈ G that completes a solution (a, b, c) of ω. If (a, b, c) is a solution,
then

a = [b, c][a, b] = [b, c][[b, c], [a, b]], b] = · · · = f (n)(a) = · · · ,
where f (n) is the n-th iteration of f(z) = [b, c][z, b]. It is tempting to take any
initial a0 ∈ G and define a = limn f

(n)(a0) in G, since the required a is a fixed
point of f . However, we do not know whether the limit limn f

(n)(a0) exists or not.
In this section, we introduce basis elementary tools to study when this sequence is
convergent and when the resulting limit is independent of the initial a0 ∈ G.

There are mainly two ways to prove the existence of such a by using the com-
pactness of G. These are encoded in lemma 4.1.1 and lemma 4.1.6.

Lemma 4.1.1. Let ω be a word on n letters. Let G be the inverse limit lim←−Gi of
finite groups Gi. Let a ∈ G. Suppose that the equation w(x1, . . . , xn) = pi(a) has a
solution in Gi for every i ∈ I. Then the equation w(x1, . . . , xn) = a has a solution
in G. Additionally, if the previous equation has unique solution modulo Gi for each
i ∈ I, then the solution is also unique in G.

In particular, this allows us to extract roots in pro-p groups.
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Proposition 4.1.2 (Divisibility of pro-p groups). Let G be a pro-p group, let a ∈ G
and let n be an integer not divisible by p. Then there exists a unique b ∈ G such
that a = bn.

The application of lemma 4.1.1 works to some extend and we are going to in-
troduce another method for solving more general type of equations in pro-p groups,
provided a mild condition modulo p.

Definition 4.1.3. Let G be a profinite group and let N be a collection of open
normal subgroups with trivial intersection. For each N ∈ N , we construct the
continuous function dN : G −→ {0, 1} which verifies that dN(x) = 0 if x ∈ N and
dN(x) = 1 if x /∈ N.

Proposition 4.1.4. Let G be a profinite group of finite rank. Then the collection of
all finite-index subgroups is countable. LetN be a subcollection of finite intersection.
Then G is isomorphic to lim←−N∈N G/N. In addition, let us consider an ordering of
N by N. We denote dn = dUn . Then the following function d : G ×G −→ [0, 1] is
a metric for the topology of G:

d(x, y) =
∑
n∈N

2−n dn(xy−1).

Once we have built an explicit metric forG, we will see how a fixed-point theorem
from functional analysis can be used to solve equations in pro-p groups G.

Definition 4.1.5. Let X be a metric space of distance d. We say that a function
f : X −→ X is weakly contractive if it verifies that d(f(x), f(y)) < d(x, y) whenever
x 6= y.

Lemma 4.1.6 (Fixed point theorem in compact metric spaces). LetX be a compact
metric space of distance d. Let f : X −→ X be a weakly contractive function. Then
f has a unique fixed point.

Proof. The function q : X → R defined by x 7→ d(x, f(x)) is continuous since both d
and f are clearly continuous. Let m be its minimum, which is finite and is attained
at some x0 ∈ X by the compactness of X. If x0 6= f(x0), we would have that
q(f(x0)) = d(f(x0), f(f(x0))) < d(x0, f(x0)) = q(x0), contradicting the definition of
x0. So x0 is a fixed point. If x1 and x2 where different fixed points we would reach
the contradiction d(x1, x2) = d(f(x1), f(x2)) < d(x1, x2). Thus x0 is the unique
fixed point.

Proposition 4.1.7. Let G be a topologically finitely generated pro-p group, en-
dowed with some metric from proposition 4.1.4. A function f : G −→ G is weakly
contractive if and only if for every x 6= y there exists an open normal subgroup
N ≤ G such that xy−1 /∈ N and f(x)f(y)−1 ∈ N.
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We now give many examples of contractive functions on pro-p groups.

Proposition 4.1.8. Let ω be a word in {x1, . . . , xn} such that ωx1 is divisible by
p. Then for every finitely generated pro-p group G and every c2, . . . , cn ∈ G, the
function f : G −→ G defined by x 7→ ω(x, c2, . . . , cn) is weakly contractive.

Proof. With the aim of applying proposition 4.1.7, we will ensure, for each x 6= y,
the existence of an open normal subgroup N such that, naming d = xy−1, it is true
that d /∈ N, dp ∈ N and [d, c] ∈ N for every c ∈ G. Then it would be clear that
f(dy)f(y)−1 ≡ dωx1 ≡ 1 mod N. So f(x)f(y)−1 ∈ N and xy−1 /∈ N, as we wanted.

Take x 6= y ∈ G. Since d = xy−1 6= 1, there exists a continuous homomorphism
φ : G → P to a finite p-group P such that φ(d) 6= 1. Since P is a finite p-group,
there exists a unique k such that φ(d) ∈ γk−1,pP \γk,pP . Now consider the projection
p : P → P/γp,kP . It is clear that N = ker(p ◦ φ) verifies the previously claimed
conditions.

These families of contractive functions allow us to produce many examples of
equations in G with unique solutions.

Proposition 4.1.9. Let ω be a word in {x1, . . . , xn} such that ωx1 is coprime with
p. Then for every finitely generated pro-p group G and every c2, . . . , cn ∈ G, the
equation ω(x, c2, . . . , cn) = 1 has a unique solution x ∈ G.

Proof. There exists a positive integer m ∈ Z, coprime with p, such that mωx1 + 1
is divisible by p. As a consequence, the word ω′(x1, . . . , xn) = x1 ω(xm1 , x2, . . . , xn)
lies under the assumptions of proposition 4.1.8. By proposition 4.1.2, the equation
ω(x, c2, . . . , cn) = 1 has a unique solution x ∈ G if and only if y = ω′(y, c2, . . . , cn)
has a unique solution y ∈ G, and the later claim is ensured by lemma 4.1.6 and
proposition 4.1.8.

We will later use this result to characterise which one-relator groups have free
pro-p completion.

4.2 Free products of pro-p groups

We have two purposes for this subsection. One the one hand, we define what is
meant for a pro-p group to be free and we also discuss some methods for ensuring
the pro-p completion of a group to be free. On the other hand, we discuss the
construction of the free product in the category of pro-p groups. In the category of
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abstract groups, this would be the usual free product ∗, though in the later category
this is more delicate.

Let G be a pro-p group and let n be a non-negative integer. We say that G is
a free pro-p group of rank n if it has a subset X ⊆ G of size n such that the
pair (G, X) verifies the following universal property. Let K be a pro-p group and
let f0 : X −→ K be set-theoretical map. Then there exists a unique continuous
homomorphism f : G −→ K such that the diagram

X G

K

f0
f (4.7)

is commutative. In this case, we also say that G is freely generated by X or,
simply, that G is free on X.

Proposition 4.2.1. There exists a pro-p group G verifying the previous universal
property (4.7) for some X ⊆ G of size n and, up to isomorphism, this group is
unique.

Proof. We start verifying the uniqueness with an standard argument.

Uniqueness: Suppose that we are given two pairs (G, X) and (G′, X ′) verifying
the universal property. We can take a bijection φ : X −→ X ′. There exist continuous
group homomorphisms f : G −→ G′ and f ′ : G′ −→ G such that f(x) = φ(x),
for all x ∈ X; and f ′(x′) = φ−1(x′), for all x′ ∈ X ′. We can now verify that
f ′ ◦ f = idG and f ◦ f ′ = idG′ . Both are analogous. For the former, notice
that f ′ ◦ f : G −→ G is a continuous homomorphism whose restriction to X is
f ′(f(x)) = f ′(φ(x)) = φ−1(φ(x)) = x = id(x). By the uniqueness of the universal
property, this implies that f ′ ◦ f ≡ idG.

Existence: Let F (X) be a free group on generators X = {x1, . . . , xn}. We
denote F(X) to be its pro-p completion. For our argument, we simply need propo-
sition 4.0.1. We know that the canonical map ιp̂ : F (X) ↪−→ F(X) is injective, since
F is residually-p. So we can identify F with its isomorphic copy in F. We now
prove that the pair (F(X), X) verifies the universal property of eq. (4.7). Let K be
a pro-p group and let f0 : X −→ K be a set-theoretic map. Since F (X) is free with
free generators X, there exists a unique group homomorphism f1 : F (X) −→ K
such that f1(x) = f0(x) for all x ∈ X. We can now consider its pro-p extension
f = (f1)p̂ : F(X) −→ K, which is a continuous homomorphism. The following
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diagram

X F (X) F(X)

K
f0

f1

ιp̂

f (4.8)

is commutative. The subdiagram that is highlighted in red exhibits that the resulting
f : F(X) −→ K has the required properties of (4.7). It would remain to prove that
this map f is unique. Let us consider another such map f ′ : F(X) −→ K and its
corresponding f ′1 = f ′ ◦ ιp̂ : F (X) −→ K. By assumption, the following diagram

X F (X) F(X)

K
f0

f ′1

ιp̂

f ′
(4.9)

would be commutative. We study the subdiagram that is highlighted in blue. Since
X generates F (X), the extensions f ′1 ≡ f1 must be identical. Secondly, the con-
tinuous homomorphisms f, f ′ : F(X) −→ K would coincide in the dense subgroup
ιp̂(F (X)). So f ′ ≡ f . This finishes the proof.

Notation 4.2.2. We denote by Fn the free pro-p group of rank n.

Analogously, we could have introduced the notion of free pro-p group of any
cardinal. However, we stick to the case of finitely generated pro-p groups. The only
free such groups are the Fn. Observe that F1 is isomorphic to the group of p-adic
integers Zp.

In terms of the universal property (eq. (4.7)), we can rephrase the property of a
one-relator group having free pro-p completion in terms of a problem of ensuring a
unique solution to an equation related to the defining relator ω. The latter reminds
of section 4.1.

Lemma 4.2.3. Let ω be a word in X = {x1, . . . , xn}. Suppose that for any finitely
generated pro-p groupG and for all c2, . . . , cn ∈ G, the equation ω(x1, c2, . . . , cn) = 1
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has a unique solution x1 ∈ G. Then the one-relator group G̃ = 〈X|ω〉 verifies that
its pro-p completion G̃p̂ is isomorphic to Fn−1.

As a consequence, we can give a simple criterion for the pro-p completion of a
one-relator group to be free.

Proposition 4.2.4. Let ω be a word in X = {x1, . . . , xn} and suppose that, for
some 1 ≤ k ≤ n, ωxk is coprime with p. Denote by G = 〈X|ω〉 the one-relator group
of defining relation ω. Then Gp̂

∼= Fn−1.

Proof. This follows from lemma 4.2.3 and proposition 4.1.9.

We leave stated two elementary lemmas on free pro-p groups, which are direct
consequences of the the above arguments and the properties of the Frattini subgroup,
collected in propositions 4.0.7 and 4.0.8.

Corollary 4.2.5 (Free bases of free pro-p groups). Let X be a subset of Fn. Then
X freely generates Fn if and only if the reduction map X −→ F/Φ(F) is injective
and {xΦ(F) : x ∈ X} is a basis of the Fp-vector space

F

Φ(F)
∼= Fnp .

Corollary 4.2.6 (Strong Hopf property). Let F and F′ be two finitely generated
pro-p groups and suppose that F′ is free. Let f : F −→ F′ be a continuous epimor-
phism. Then d(F) ≥ d(F′), with equality if and only if f is an isomorphism.

The proof of the last result does also require the Hopf property on finitely gen-
erated pro-p groups, which is not hard to establish.

We have worked with a universal property in order to compare two pro-p com-
pletions. We will refine this method in the next section. For the moment, we will
introduce another important construction which generalises the free pro-p group,
namely the free product of pro-p groups.

Let G1, . . . ,Gn be pro-p groups. We are interested in constructing their free
product (coproduct) in the category of pro-p groups. More precisely, we are inter-
ested in a pro-p group G, endowed with n canonical continuous homomorphisms
φk : Gk −→ G, that verifies the following universal property: For any pro-p group
K and any continuous homomorphisms ψk : Gk −→ K, there exists a unique con-
tinuous homomorphisms ψ : G −→ K such that, for any k, the diagram

Gk G

K

φk

ψk ψ (4.10)
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is commutative. That is, ψ ◦ φk = ψk.

Proposition 4.2.7. Given pro-p groups G1, . . . ,Gn, there exists a unique pro-p
group G verifying the universal property of (4.10). We denote this group G by∐

iGi and by φk : Gk −→
∐

iGi the canonical maps.

Proof. We first precise what we mean by saying that such G is unique and we prove
that, indeed, this object is unique. Then we give an explicit construction of it.

Uniqueness: Suppose that there exist two such objects G and G′ endowed
with canonical maps (φk)k and (φ′k)k, respectively. We claim that there exists a
group isomorphism ψ : G −→ G′ such that ψ ◦ φk = φ′k for every k. This is what
we mean when we say that the object G is unique. We are going to see how to
produce this isomorphism ψ from the universal property. Applying the universal
property of (4.10) that verifies G to the data (K = G′, φ′k : Gk −→ G′) and the
universal property that verifies G′ to the data (K = G, φk : Gk −→ G), we get
homomorphisms ψ and ψ′ such that, for every k, the diagram

Gk G

G′ Gk,

φk

φ′k

ψψ′

φ′k

φk (4.11)

is commutative. In other words, ψ ◦ φk = φ′k and ψ′ ◦ φ′k = φk. It directly follows
that the diagram

Gk G

G

φk

φk id ψ′◦ψ

is commutative. By the uniqueness of the universal property of G with respect to
the data (K = G, φk : Gk −→ G), this implies that ψ′ ◦ ψ = id. Analogously, we
prove that ψ ◦ ψ′ = id, and the uniqueness is ensured.

Existence: Consider the free product Gabs = G1 ∗ · · · ∗Gn in the category of
groups, with canonical maps φabs

k : Gk −→ Gabs. We introduce the family

N0 = {N EGabs : (φabs
k )−1(N) Eo Gk, and Gabs/N ∈ Cp}.

We claim that for any N1, N2 ∈ N0, N1

⋂
N2 ∈ N0. In fact, N1

⋂
N2 is the kernel of

the canonical map
Gabs −→ Gabs/N1 ×Gabs/N2.
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Now consider the following inverse system of groups:

N = {Gabs/N : N ∈ N0}.

where it is viewed with canonical maps φN1N2
: Gabs/N1 −→ Gabs/N2 whenever

N1 ⊆ N2. Denote its inverse limit by

G = lim←−
N∈N0

Gabs/N.

By the universal property eq. (4.2) of G, the canonical projections φabs
k : Gabs −→

Gabs induce a map ι : Gabs −→ G, which has dense image.

We think of Gabs as a topological group that has N0 as a basis of neighbourhoods
of 1 ∈ Gabs. This way, we can view G as the completion of Gabs with respect to this
topology and the map ι is continuous. Similarly, the maps φk = ι ◦ φabs

k : Gk −→ G
are continuous. We have that φk is continuous because, for each N ∈ N′, φ−1

k (N) is
open in Gk, by assumption. So φk = ι ◦φabs

k is the composition of continuous maps.

We now want to establish the universal property (4.10) for the group G and
the continuous homomorphisms φk : Gk −→ G. Let K be a pro-p group and let
ψk : Gk −→ K be continuous homomorphisms. Due to the universal property of
the inverse limit, condensed in the diagram (4.2), we can assume that K is a finite
p-group in order to construct a continuous homomorphism ψ : G −→ K such that
the diagram (4.10) commutes.

Since K is finite (and hence discrete), the continuity of ψk translates into each
kerψk being open. Working in the category of groups, by the universal property of
Gabs = G1 ∗ · · · ∗Gn, there exists a unique ψabs : Gabs −→ K such that the diagram

Gk Gabs

K

φabs
k

ψk ψabs (4.12)

is commutative. Furthermore, it can be said that ψabs is continuous. To prove this
claim, it suffices to check that kerψabs is open. In fact, we see that kerψabs ∈ N0,
since

φ−1
k (kerψabs) = kerψk

is open in Gk for all k.

So ψabs is continuous and can be extended to a continuous map ψ : G −→ K in
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such a way that the diagram

Gk Gabs G

K

φk

φabs
k

ψk

ψabs

ι

ψ (4.13)

is commutative. The commutative subdiagram that is highlighted red shows that
the resulting ψ : G −→ K has the desired properties.

It rests to check that this ψ is unique. Suppose that ψ0 is a any other such map.
We can define ψabs

0 : Gabs −→ K by ψabs
0 = ψ0 ◦ ι and observe that there are, again,

commutative diagrams of the form

Gk Gabs G

K.

φk

φabs
k

ψk

ψabs
0

ι

ψ0
(4.14)

Analysing the subdiagram that is highlighted in blue; we prove that ψabs
0 ≡ ψabs,

due to the universal property of Gabs in the category of groups. Lastly, it is also clear
that ψ0 ≡ ψ, since they are both continuous and both coincide every ι(φabs

k (Gk)),
which generate the dense subgroup ι(Gabs) of G.

This completes the proof of proposition 4.2.7.

As we remarked before, it is convenient to think of G1

∐
· · ·
∐
Gn as the com-

pletion of the topology of Gabs = G1 ∗ · · · ∗Gn generated by the finite-index normal
subgroups N such that Gabs/N are finite p-groups and N

⋂
Gk is open in Gk.

In any case, the way we are going to work with this object is by means of its
universal property (4.10). Observe that Fn is isomorphic to the n-fold coproduct
Zp
∐
· · ·
∐

Zp. We give some of the expected properties of the coproduct.

Corollary 4.2.8. LetG1, . . . ,Gn be pro-p groups and let φk : Gk −→ G1

∐
· · ·
∐

Gn

be the canonical maps. Then
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• each φk is injective; and

• G is topologically generated by
⋃
k φk(Gk).

Proof. Notice that each Gk is a retract of G = G1

∐
· · ·
∐

Gn. In fact, there exists
continuous homomorphisms ψk : G −→ Gk such that ψk ◦ φk = idGk

. From this,
the first claim follows. The second one is a consequence of the fact that, as we saw
in the proof of proposition 4.2.7, ι(G1 ∗ · · · ∗Gn) is dense in G and G1 ∗ · · · ∗Gn is
generated by ∪kGk.

Since the canonical φk : Gk −→ G1

∐
· · ·
∐

Gn are injective, we will sometimes
identify Gk with its isomorphic copy in G1

∐
· · ·
∐

Gn. More than this can be said.
The following is [43, Proposition 9.1.8].

Proposition 4.2.9. Let G1, . . . ,Gn be pro-p groups and consider its free product
Gabs = G1 ∗ · · · ∗Gn as abstract groups. Then the canonical map

ι : Gabs −→ G1

∐
· · ·
∐

Gn

is injective.

The Grushko-Neumann theorem in the category of abstract groups is a deep
result. Interestingly, in the category of profinite groups, its analogue turns out to be
false. However, as we are about to see, in the category of pro-p groups this theorem
can be reduced to elementary linear algebra.

Proposition 4.2.10. LetG1,G2 be two pro-p groups of finite rank. Then d
(
G1

∐
G2

)
=

d(G1) + d(G2).

Proof. Since G1 and G2 generate topologically G = G1

∐
G2, it is clear that

d(G) ≤ d(G1) + d(G2). (4.15)

Furthermore, by the universal property of G, there is a continuous homomorphism
f : G −→ G1/Φ(G1) × G2/Φ(G2) such that the restrictions to each Gi are the
canonical projections Gi −→ Gi/Φ(Gi). In particular, f is surjective. So

d(G) ≥ d
(
G1/Φ(G1)×G2/Φ(G2)

)
. (4.16)

Recall that each Gi/Φ(Gi) is a p-elementary abelian group by proposition 4.0.8 and
that, by proposition 4.0.7, d(Gi) = d(Gi/Φ(Gi)). Thus

d
(
G1/Φ(G1)×G2/Φ(G2)

)
= d(G1/Φ(G1)) + d(G2/Φ(G2)) = d(G1) + d(G2),

which, in addition to (4.15) and (4.16), implies that d(G) = d(G1) + d(G2).



36 CHAPTER 4. PROFINITE GROUPS

Corollary 4.2.11. Let G1 and G2 be two pro-p groups of finite rank and let G =
G1

∐
G2. Then there is a canonical isomorphism

G

Φ(G)
−→ G1

Φ(G1)
× G2

Φ(G2)
.

Proof. In the proof of proposition 4.2.10, we defined the canonical surjective map

f :
G

Φ(G)
−→ G1

Φ(G1)
× G2

Φ(G2)
.

We now know that both finite p-elementary abelian groups have the same size by the
same proposition. So f is, in fact, an isomorphism. Alternatively, we can explicitly
construct an inverse of f .

4.3 Presentations of pro-p completions

From this point on, we shall discuss how the pro-p completions of an amalgamated
products or of an HNN extensions can be described in terms of the pro-p completions
of the involved factors. The most natural way to compare pro-p completions is by
working with a defining universal property. Before this, we give an example of what
we mean by presenting a pro-p completion.

Abstract group presentation: Let X be a set and let R be a subset of the
free group F (X) on X. We denote the abstract group

〈X|R〉 = F (X)
/
〈〈R〉〉.

Pro-p group presentation: Let X be a set and let F(X) be the free pro-p
group of free generators indexed by the X. We denote the pro-p group

〈X|R〉p = F(X)
/
〈〈R〉〉.

A particular property that we will establish is the following.

Proposition 4.3.1. Let G be an abstract group of presentation 〈X|R〉. Then there
is a canonical isomorphism

Gp̂
∼= 〈X|R〉p.

Our starting point, as we mentioned above, is re-defining the canonical map
G −→ Gp̂ in terms of a universal property.
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Proposition 4.3.2. Let Γ be an abstract group. Let ιp̂ : Γ −→ Γp̂ be the canonical
map. The data (Γp̂, ιp̂) is characterised by the following properties.

1. Γp̂ is a pro-p group.

2. The map ιp̂ has dense image.

3. For any pro-p group K and every group homomorphism f : Γ −→ K with
dense image, there exists a continuous homomorphism fp̂ : Γp̂ −→ K such
that the diagram

Γ Γp̂

K

f

ιp̂

fp̂
(4.17)

is commutative.

When we say (Γp̂, ιp̂) are unique, we mean if (H, ι), where H is a pro-p group and
ι : Γ −→ H is a group homomorphism, is a pair that verifies the three above
properties; then there exists an isomorphism of pro-p groups α : Gp̂ −→ H such
that α ◦ ιp̂ = ι. Moreover, by the universal property of the inverse limit (4.2), it
suffices to check the third condition for finite p-groups K.

Proof. We already know that (Gp̂, ιp̂) verifies the given properties. The proof of the
uniqueness of the objects (Gp̂, ιp̂) is standard and works the same way as in the
uniqueness of the free product of pro-p groups.

From this point of view, we can compute pro-p completions of quotients and of
free products. Notice that the following result generalises proposition 4.3.1.

Proposition 4.3.3 (Pro-p completion of a quotient). Let Γ be an abstract
group and let N E Γ be a normal subgroup. There is a canonical isomorphism(

Γ/N
)
p̂
∼= Γp̂

/
ιp̂(N).

Proof. Consider the canonical group homomorphisms

Γ Γp̂ Γp̂

/
ιp̂(N),

ιp̂

whose composition Γ −→ Γp̂

/
ιp̂(N) is a map with dense image and with a kernel

that contains N . This induces a group homomorphism ι : Γ −→ Γp̂

/
ιp̂(N). We are
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going to prove the required properties of proposition 4.3.2 for the pair (Γp̂, ι). The
first two properties are immediate. We study the universal property of the third
point.

Let K be a pro-p group and let f : Γ/N −→ K be a group homomorphism with
dense image. We have a diagram of the form

Γ Γp̂

Γ/N Γp̂

/
ιp̂(N)

K,

q

ιp̂

qp̂
g

ι

f

h

(4.18)

where the subdiagram that is highlighted in blue is commutative.

There exists a continuous group homomorphism g : Γp̂ −→ K such that g ◦ ιp̂ =
f ◦ q. Since f has dense image and q is surjective, the map g is surjective. We also
notice that N ≤ Γp̂ is contained in the kernel of g, so ιp̂(N) E ker g is closed. By
lemma 4.0.5, there exists a continuous group homomorphism h : Γp̂

/
ιp̂(N) −→ K

such that h ◦ qp̂ = g.

The overall commutativity of the diagram (4.18) follows directly and the proof
is complete.

It might be enlightening to remark that this provides an alternative proof of
proposition 4.2.4, the simple criterion for the pro-p completion of a one-relator group
to be free.

Second proof of proposition 4.2.4. We identify F (X) with its image in F(X). The
element ω ∈ F does not belong to F(X) because the continuous map f : F(X) −→
Z/p that determined by f(xk) = 1 and f(xi) = 0 for i 6= k verifies that f(ω) ∼=
ωxk mod p so ω /∈ ker f . In particular, by proposition 4.0.8, this implies that
ω /∈ Φ(G). Furthermore, by corollary 4.2.5, there exists a topological generating
set {ω, ω2, . . . , ωn} of F(X). We consider Y = {y1, . . . , yn} and a pro-p completion
map ιp̂ : F (Y ) −→ F(X) given by ιp̂(y1) = ω and ιp̂(yi) = ωi for i ≥ 2. Then, by
proposition 4.3.1, there are canonical isomorphisms

〈X,ω〉p̂ ∼= F(X)/〈〈ω〉〉 ∼= F(X)/ιp̂(y1) ∼=
(
F (Y )/〈〈y1〉〉

)
p̂
∼= (Fn−1)p̂ ∼= Fn−1.
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A sufficient understanding of the pro-p completion of one-relator groups gave us
a criterion for ensuring this to be free. We want to extend this principle for more
general classes of groups.

The next step is to understand pro-p completions of free products. This will
exhibit the functorial behaviour of the assignment G 7→ Gp̂, from the category of
abstract groups to the category of pro-p groups.

Proposition 4.3.4 (Pro-p completion of a free product). Let Γ and Λ be two
abstract groups. There is a canonical isomorphism

(Γ ∗ Λ)p̂
∼= Γp̂

∐
Λp̂.

Proof. We define j : Γ∗Λ −→ Γp̂
∐

Λp̂ by j = ι◦(ιp̂∗ιp̂), where ιp̂∗ιp̂ : Γ∗Λ −→ Γp̂∗Λp̂

is canonical and ι : Γp̂ ∗ Λp̂ −→ Γp̂
∐

Λp̂ is as in the proof of proposition 4.2.7.

To prove this proposition, it suffices to ensure the conditions of proposition 4.3.2
for the pair (Γp̂

∐
Λp̂, j).

On the one hand, we claim that the map j has dense image. To verify this, we
will need to refer to the proof of proposition 4.2.7. Here, the free product Γp̂∗Λp̂ was
endowed with a topology under which the map ι : Γp̂ ∗Λp̂ −→ Γp̂

∐
Λp̂ is continuous

and has dense image. It remains to proof that the map

ιp̂ ∗ ιp̂ : Γ ∗ Λ −→ Γp̂ ∗ Λp̂

has dense image. For doing so, we use the basis of neighbourhoods of the identity N0

that defines the topology of Γp̂ ∗Λp̂. Since these open subsets are normal subgroups,
it suffices to check that, for every N ∈ N′, the induced map

αN : Γ ∗ Λ −→
(
Γp̂ ∗ Λp̂

)
/N (4.19)

is surjective. Every N ∈ N′ verifies, by definition, that N
⋂

Γp̂ (resp. N
⋂

Λp̂) is an
open subgroup of Γp̂ (resp. Λp̂)). So the canonical maps

Γ −→ Γp̂/N
⋂

Γp̂ ∼= Γp̂N/N ; Λ −→ Λp̂/N
⋂

Λp̂
∼= Λp̂N/N

are surjective. Hence the image of αN contains both Γp̂N/N and Λp̂N/N . Since
these subgroups generate the whole

(
Γp̂ ∗ Λp̂

)
/N , then the map αN of (4.19) is

surjective.

It rests to verify the third condition of proposition 4.3.2, which is a universal
property. LetK be a pro-p groups and let f : Γ∗Λ −→ K be a group homomorphism.
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We have a diagram of the form

Γ Γ ∗ Λ Λ

Γp̂ Γp̂
∐

Λp̂ Λp̂

K

f |Γ

j|Γ
ιp̂ j ιp̂

j|Λ

f |Λ

fp̂
g

fp̂

(4.20)

The subdiagram that is highlighted in blue is commutative. By the universal prop-
erties of the pro-p completions Γp̂ and Λp̂, there exist continuous homomorphisms
fΓ
p̂ : Γp̂ −→ K and fΓ

p̂ : Λp̂ −→ K such that f |Γ = fΓ
p̂ ◦ ιp̂ and f |Λ = fΛ

p̂ ◦ ιp̂.
By the universal property of the coproduct, there exists a continuous homomor-

phism g : Γp̂
∐

Λp̂ −→ K that extends the previous fΓ
p̂ and fΛ

p̂ .

Finally, by the universal property of the coproduct (now in the category of ab-
stract groups), we can uniquely extend f |Γ and f |Λ to a group homomorphism
f : Γ ∗ Λ −→ K.

The resulting diagram (4.20) is commutative. We are interested in verifying that
f = g◦j. The groups Γ and Λ generate Γ∗Λ, so it suffices to prove that f |Γ = g◦j|Γ
and f |Λ = g ◦ j|Λ. These identities can be read in the diagram (4.20).

We can now discuss two applications of the two previous propositions 4.3.3 and
4.3.4. These will be used during chapter 9 and they describe completions of amal-
gamated products and HNN extensions using the constructions that have just been
introduced.

Corollary 4.3.5 (Pro-p completions of amalgamated products). Let θ1 :
A −→ Γ and θ2 : A −→ Λ be group homomorphisms. Consider the corresponding
amalgamated product Γ ∗

A
Λ of abstract groups. Then there is a canonical isomor-

phism of pro-p groups(
Γ ∗
A

Λ

)
p̂

∼= Γp̂
∐

Λp̂

/
〈〈ι(θ1(a) θ−1

2 (a)), a ∈ A〉〉.
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Proof. Since
Γ ∗
A

Λ ∼= Γ ∗ Λ
/
〈〈ι(θ1(a) θ−1

2 (a)), a ∈ A〉〉,

the claimed isomorphism comes from the canonical isomorphisms described in propo-
sition 4.3.3 and proposition 4.3.4.

Corollary 4.3.6 (Pro-p completions of HNN extensions). Let A be a subgroup
of Γ and let θ : A→ Γ be a group monomorphism. Consider the corresponding HNN
extension Γ∗

A
. Then there is a canonical isomorphism of pro-p groups

(
Γ∗
A

)
p̂

∼= Γp̂
∐

Zp

/
〈〈ι(t a t−1θ−1(a)), a ∈ A〉〉,

where t also corresponds to the topological generator of Zp.

We finish this section with a non-trivial result about free pro-p groups. It is
obvious, by construction, that these are residually-p. However, we are going to
verify that they are residually -(torsion-free nilpotent).

Proposition 4.3.7. A free pro-p group is residually-(torsion-free nilpotent).

Proof. A free pro-p group is residually-(free of finite rank), so it suffices to restrict
to the case of finite rank. Let F = Fn be the free pro-p group of rank n. Since F is
residually-p,

⋂
k γ

(p)
k F = {1} and, in particular,

⋂
k γkF = 1.

It rests to prove that each F/γkF is torsion-free.

Now let Γ be a finitely generated torsion-free nilpotent group with lower central
series 1 = γc+1ΓEγcΓEo · · · γ2ΓEγ1Γ = Γ. Then γkΓ/γk+1Γ ∼= Znk for all 1 ≤ k ≤ c
and some non-negative integers n1, . . . , nc. By the indications of [15, Exercises 21
and 22], it follows that the canonical maps (γkΓ)p̂ −→ γkΓp̂ and (γk+1Γ/γkΓ)p̂ −→
γk+1Γp̂/γkΓp̂ are isomorphisms of pro-p groups for all 1 ≤ k ≤ c. So there is a lower
central series of Γp̂ by closed subgroups

1 E γcΓp̂ E · · ·E γ2Γp̂ E Γp̂,

for which each quotient γk+1Γp̂/γkΓp̂ ∼= Znk
p is torsion-free. So Γp̂ is torsion-free.

Now let F = Fn be the free group of rank n. We know that Γ = F/γc+1F is a
finitely generated torsion-free nilpotent group (this was checked during the proof of
theorem 2.0.2). Hence by the previous remark, Γp̂ is torsion-free. In addition, the
canonical map Γp̂ −→ F/γk(F) is an isomorphism by proposition 4.3.3.
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4.4 The completed group algebra

Given an abstract group G, we denote by Fp[G], or simply by FpG, the group algebra
of G with coefficients in the field Fp of p elements. In the case of pro-p groups G,
there is an analogous ring which is more interesting than its group algebra FpG,
namely the completed group algebra, since it captures the topology of G as well.

Definition 4.4.1. Let G be a pro-p group. Its completed group algebra Fp[[G]]
is defined by the inverse limit of the Fp-group algebras Fp[G/N], where G ranges
over open normal subgroup of G. We can write

Fp[[G]] = lim←−
NEoG

Fp[G/N].

If G is a free pro-p group, there is a more explicit description of the completed
group algebra.

Theorem 4.4.2. Let F be a free pro-p group freely generated by f1, . . . , fd, then the
continuous homomorphism Fp〈〈x1, . . . , xn〉〉 −→ Fp[[F]] that sends xi to fi− 1 is an
isomorphism.

For a proof of the previous result, the reader is referred to [48, Theorem 7.3.3].

Remark 4.4.3 (Fp[[F]] as a local ring). Let P be a finite p-group. Then Fp[P ] is
a local ring with maximal ideal m = FpIP and residual division ring Fp[P ]/m ∼= Fp.
Observe that given an inverse limit of rings R = lim←−Ri, its set of units R∗ can be
identified with lim←−R

∗
i . Given a pro-p group G, we can use the latter observation

to prove that Fp[[G]] is also a local ring. The completed group algebra Fp[[G]] also
has an augmentation map ε : Fp[[G]] −→ Fp, whose kernel m is the only maximal
ideal and equals the closure of Fp IF ⊆ Fp[F] in Fp[[F]] (endowed with the profinite
topology). In case G is a free pro-p group F, one can alternatively check that Fp[[F]]
is local as follows as a corollary of the isomorphism of theorem 4.4.2. In any case,
we conclude that an element x ∈ Fp[F] is invertible in Fp[[F]] if and only if x /∈ FpIF.

4.5 Cohomological characterisation of freeness

Free abstract groups and free pro-p groups share some similar properties. They are
both, in their corresponding categories of groups, the free objects. From the point
of view of this section, these are the groups of cohomological dimension at most one.
In the category of abstract groups, this characterisation is due to deep arguments
given by Stallings and Swan.
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We are going to review the proof of this characterisation in the pro-p setting,
assuming some bits of the cohomology theory of profinite groups. We will assume,
for simplicity, finite topological generation (finite rank).

Definition 4.5.1. A pro-p group G is said to have p-cohomological dimension
d if n = d is the smallest n such that Hm(G,Fp) = 0 for every m ≥ n+ 1, where Fp
is considered with the discrete topology. We denote cdp(G) = d.

The following is [43, Theorem 7.3.1].

Theorem 4.5.2. Let G be a pro-p group and let H be a closed subgroup. Then
cdp(H) ≤ cdp(G).

Theorem 4.5.3. Let G and G′ be finite-rank pro-p groups. Let f : G → G′ be a
continuous homomorphism such that

f ∗ : H1(G′,Fp)→ H1(G,Fp)

is an isomorphism and

f ∗ : H2(G′,Fp)→ H2(G,Fp)

is an injection. Then f is an isomorphism.

The idea of the proof of the previous result is that a pro-p groups G is an
inverse limits of p-groups that are related to H1(G,Fp) and H2(G,Fp) by short
exact sequences. We should remark that the root of this principle is specially the
paper of Stallings [44]. We are giving an adaptation to the setting of pro-p groups,
taken from [47], avoiding the technicalities of the cohomology theory of profinite
groups.

This result has several important consequences, which we shall state later. Briefly,
it says that abstract groups with trivial H2(−,Fp) have free pro-p completion. On
other side, this characterisation of freeness is easily seen to be stable with respect
to subgroups. In particular, it allows to derive the non-trivial fact that closed sub-
groups of free pro-p groups are pro-p free.

Before giving the proof, we state the Five Term Exact sequence lemma. Given
an open subgroup H of a pro-p group G, this lemma relates the cohomology (with
coefficients in Fp) of the three groups H,F,F/H.

Lemma 4.5.4 (Five Term Exact sequence). Given an open subgroup H of a pro-p
group G and a G-module M , we have a natural short exact sequence of the form

0→ H1(G/H,MH)→ H1(G,M)→ H1(H,M)G → H2(G/H,MH)→ H2(G,M).
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Remark 4.5.5. If M is a trivial G-module, then H1(G,M) = Hom(G,M). In this
case, we can also describe more precisely H1(H,M)G, for an open normal subgroup
H of G. The underlying action of G on H1(H,M) is the one induced by the
conjugation action of F on H. So

H1(H,M)G ={φ ∈ Hom(H,M) : φ(ghg−1) = φ(h) for all g ∈ G, h ∈ H}
={φ ∈ Hom(H,M) : φ([g, h]) = 0 for all g ∈ G, h ∈ H}
= Hom(H/[G,H],M).

Proof. For each n, recall the notation G(n) = γ
(p)
n G and G′(n) = γ

(p)
n G′. Since

G ∼= lim←−nG/G(n), it suffices to check that, for each n, the induced map

fn : G/G(n) → G′/G′(n) (4.21)

is an isomorphism. We proceed by induction on n. The case n = 1 is trivial. Let us
suppose that fn is an isomorphism for some n ≥ 1.

H1(G′/G′(n)) −−−→ H1(G′) −−−→ H1(G′(n))
G′ −−−→ H2(G′/G′(n)) −−−→ H2(G′)

g1

y g2

y g3

y g4

y g5

y
H1(G/G(n)) −−−→ H1(G) −−−→ H1(G(n))

G −−−→ H2(G/G(n)) −−−→ H2(G)

By assumption, g2 is an isomorphism and g5 is an injection, and by the induction
hypothesis, g1 and g4 are isomorphisms. So applying the five lemma to the previous
diagram we deduce that g3 is an isomorphism1. By remark 4.5.5

H1(G(n)) = Hom(G(n)/[G,G(n)],Fp),

and since Fp has exponent p, the previous equals

Hom

(
G(n)

/
Gp

(n) [G,G(n)],Fp
)
,

which is the dual of G(n)/G(n+1) as Fp-vector space. So the dual map hn of g3 is the
map

G(n)/G(n+1)
hn−→ G′(n)/G

′
(n+1)

induced by f and this is an isomorphism. Lastly, we consider the commuting dia-
gram:

1 −−−→ G(n)/G(n+1) −−−→ G/G(n+1) −−−→ G/G(n) −−−→ 1y hn

y fn+1

y fn

y y
1 −−−→ G′(n)/G

′
(n+1) −−−→ G′/G′(n+1) −−−→ G′/G′(n) −−−→ 1

1Recall that, in order to apply the five lemma, we only needed g1 to be surjective.
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Since hn and fn are isomorphisms, another application of the five lemma yields that
fn+1 is an isomorphism. This completes the induction.

Corollary 4.5.6. A pro-p group is free if and only if its cohomological dimension
is at most 1.

Proof. We only prove the hard direction. It is easy to check that free pro-p groups
F have cohomological dimension one by using the interpretation of H2(F,Fp) in
terms of the splitting of short exact sequences 0 −→ Fp −→ G −→ F −→ 1. For a
complete proof, we refer the reader to [43, Theorem 7.7.4]. Let G be a pro-p group
of cohomological dimension 1. Let F be a free pro-p group such that d(G) = d(F).
In particular, we have

H1(G,Fp) ∼= G/Φ(G) ∼= F/Φ(F) ∼= H1(F,Fp),

so any surjective map f : F → G induces an surjection between finite groups
f ∗ : H1(G,Fp)→ H1(F,Fp). Hence the latter f ∗ is an isomorphism and the corre-
sponding f ∗ : H2(G,Fp)→ H2(F,Fp) would be an injection because H2(G,Fp) = 0.
Thus any such f , which can be constructed because F is free, would be an isomor-
phism by theorem 4.5.3.

Essentially the same proof of theorem 4.5.3 gives a way of ensuring that an
abstract group with H2(G,Fp) = 0 has free pro-p completion. This observation, in
combination with Hopf’s formula on H2, can give another proof of proposition 4.2.4.
A more general consequence of the argument of theorem 4.5.3 is the following.

Corollary 4.5.7. Let G and G′ be finitely generated (abstract) groups and let
f : G→ G′ be a group homomorphism such that

f ∗ : H1(G′,Fp)→ H1(G,Fp)

is an isomorphism and
f ∗ : H2(G′,Fp)→ H2(G,Fp)

is an injection. Then the induced map fp̂ : Gp̂ −→ G′p̂ is an isomorphism.

We also leave stated an important result which we shall use in the arguments of
chapter 9.

Corollary 4.5.8. A (finite rank) closed subgroup H of a (finite rank) free pro-p
group F is free.

Proof. By theorem 4.5.2, cdp(H) ≤ cdp(F) ≤ 1. By corollary 4.5.6, we conclude
that H is free.
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Chapter 5

Parafree groups

Definition 5.0.1. We say that two groups G1 and G2 have the same lower central
quotients if, for every k ≥ 1, we have

G1

γkG1

∼=
G2

γkG2

.

Definition 5.0.2. A finitely generated abstract group G is termed parafree if it
has the following two properties:

(i) It has the same lower central sequence as some free group F .

(ii) It is residually nilpotent.

5.1 Classical examples and counterexamples

In this section we will collect some known families of parafree groups. We first remark
how they relate to other groups that we have already mentioned. First, notice that
Baumslag-Solitar groups are not residually nilpotent. In fact, by example 3.0.11,
B(n,m) is not even residually finite if n,m ≥ 2. If n = 1 and m = 2, we have
Γ = B(1, 2) = 〈a, b|bab−1 = a2〉. Observe that a = [a, b−1] ∈ γ2Γ. Recursively, we
deduce that a, which is a non-trivial element of Γ, belongs to

⋂
γkΓ. So B(1, 2)

is not residually nilpotent. It is clear that the remaining group B(1, 1) = Z2 is
not parafree. A different way to verify Baumslag-Solitar groups are not parafree
goes as follows. It is easy to see that exactly when n,m are coprime, B(n,m) has
abeliank rank equal to 1, though they are not isomorphic to Z (as they should, by
corollary 5.3.2). In other cases, it is not even true that the abelianisation of B(n,m)
is torsion-free.

47
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Another counterexample to parafree groups are non-free surface groups. For
example, the fundamental group of non-orientable closed surfaces π1(Ng) do not have
torsion-free abelianisation. On the other side, the groups π1(Σg) have abelianisation
isomorphic to Z2g. If these were parafree, then they would be non-free parafree
groups Γ with d(Γ) = d(Γab). We will see in proposition 5.3.1 that this cannot
happen.

We now turn to review some examples. Recall that our aim is to study parafree
groups and that these groups are characterised by two properties. The first property,
having the same nilpotent genus as a free group, was studied and characterised in
different ways during the previous section. The second property enjoyed by groups
that are named parafree is their residual nilpotence. This condition is considerably
harder to verify.

Bausmlag also produced many examples parafree one-relator groups and as amal-
gamated products of a parafree group and Z in [3] and [4].

We can described some of these families, which are also surveyed in [5].

Definition 5.1.1. We introduce the following families of groups.

Gi,j = 〈a, b, c | a = [ci, a][cj, b]〉 for any positive integers i, j.
Hi,j = 〈a, b, c | a = [ai, tj][s, t]〉 for any positive integers i, j.
Ki,j = 〈a, b, c | ai[s, a] = tj〉 for coprime integers i, j.
Np,q,r = 〈a, b, c | apbqcr〉 for non-zero integers with gcd(p, q, r) = 1.

These families of groups split over Z. The first are cyclic HNN extensions of F2.
On the other side, the two last families are amalgamated products of F2 and Z with
cyclic amalgams.

For the question of whether the groups of definition 5.1.1 are pairwise non-
isomorphic or not, see [5, Section 9] and the references therein.

The following source of examples is due to Baumslag and Cleary. We first need
to introduce a definition to describe the structure of the defining relations of this
family.

Definition 5.1.2. Given free generators s1, . . . , sn, t of Fn+1 and w ∈ [Fn+1, Fn+1],
we set si,j = tjsit

−j for each 1 ≤ i ≤ n and j ∈ Z. We can express w uniquely as a
word on the previous si,j. Given i, we define µ(i) (resp. ν(i)) to be the minimum
(resp. maximum) of those j such that si,j appears in w. We say that w satisfies the
redundancy condition on si′ if µ(i′) and ν(i′) are distinct and both si′,µ(i′) and si′,ν(i′)

appear once and only once in w (possibly as inverses).

We can now formulate the following result from [6, Theorem 3].
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Corollary 5.1.3. Let F be the free group on a1, . . . , ap, s1, . . . , sn, t, where p ≥ 1
and n ≥ 1. Furthermore, let E be the subgroup of F generated by s1, . . . , sn, t and
let w be a cyclically reduced word in [E,E] that satisfies the redundancy condition
on si′ . Finally, let v belong to [F, F ] and suppose that v does not involve si′ . Then
the one-relator group

G = 〈a1, . . . , ap, s1, . . . , sn, t | a1 = vw〉

is parafree.

5.2 Free nilpotent genus

Definition 5.2.1. We say that two groups have the same nilpotent genus if they
have the same isomorphism types of nilpotent quotients. Similarly, given a prime p,
we say that two groups have the same p-genus if they have the same isomorphism
types of finite p-groups quotients. We say that a group has free nilpotent genus
if it has the same the same nilpotent genus as some free group.

In these terms, studying parafree groups is studying residually nilpotent groups
with free nilpotent genus. Let us look at a few alternative ways to look at this family
of groups.

Proposition 5.2.2 (Characterisations of the property of having free nilpotent
genus). Let G be a finitely generated group. The following conditions are equiv-
alent.

(i) There exists a free group F that has the same nilpotent genus as G.

(i’) There exists a free group F such that, for every k ≥ 1, F/γkF ∼= G/γkG.

(i”) There exists a free group F and an injection φ : F −→ G such that, for every
k ≥ 1, the induced map φk : F/γkF −→ G/γkG is an isomorphism.

(ii) There exists a free group F with the same p-genus as G for every prime p.

(ii’) There exists a free group F such that, for every p and every k ≥ 1, F/γk,pF ∼=
G/γk,pG.

(ii”) There exists a free group F and an injection φ : F −→ G such that, for every
prime p, the induced maps φk,p : F/γk,pF −→ G/γk,pG are isomorphism.

(iii) There exists a free group F such that, for every prime p, Gp̂
∼= Fp̂.
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(iii’) There exists a free group F and an injection φ : F −→ G such that, for every
prime p, the induced map φp̂ : Fp̂ −→ Gp̂ is an isomorphism.

These equivalences are well-known. We include a proof for the convenience of
the reader.

Proof. We discuss each implication separately. We simply observe in advance that,
under all circumstances, it is clear that the free group F must have finite rank
n = d(F ).

1. (i) =⇒ (i′). Let k ≥ 1. The group G/γkG is a nilpotent quotient of G. So
there is an epimorphism f : F −→ G/γkG, which induces an epimorphism fk :
F/γkF −→ G/γkG. Similarly, there is an epimorphism gk : G/γkG→ F/γkF .
The group F/γkF is finitely generated nilpotent. By the Hopf property, this
implies that fk and gk are inverses of each other.

2. (i′) =⇒ (i). This is trivial because the collection of isomorphism types of
nilpotent quotients of a group Γ is the union of collections of isomorphisms
types of quotients of each Γ/Γk.

3. (i′′) =⇒ (i′) is trivial.

4. (i′) =⇒ (i′′). Take g1, . . . , gn ∈ G lifts of generators of G/γ2G. We
name by f1, . . . , fn free generators of F and consider the homomorphism
φ : F → G such that φ(fi) = gi. We will prove that the induced maps
φk : F/γkF → G/γkG are isomorphisms. By construction, φ2 is an isomor-
phism. In particular, φ(F ) [G,G] = G. This implies that, naming G(k) =
G/γkG, φk(F(k)) [G(k), G(k)] = G(k). Since each G(k) is nilpotent, we deduce
from proposition 2.2.3 that φk(F(k)) = G(k); hence φk is surjective. We also
know that each F(k) is Hopfian (proposition 2.2.1). Since F(k)

∼= G(k), the latter
implies that each φk is injective (see remark 2.2.2). So every φk is an isomor-
phism. Lastly, we can claim that φ is injective because it factors through every
isomorphism φk; and F is residually nilpotent, which means that

⋂
γkF = 1.

5. The equivalence (ii) ⇐⇒ (ii′) ⇐⇒ (ii′′) is entirely analogous to the already
proven equivalence (i) ⇐⇒ (i′) ⇐⇒ (i′′).

6. (i) =⇒ (ii) is trivial.

7. (ii′′) =⇒ (i′′). This is simply due to the fact that
⋂
p γk,pF = γkF.

8. (iii) =⇒ (ii). This is a direct consequence of the correspondence (4.4)
between the finite p-quotients of an abstract group Γ and those of its pro-p
completion Γp̂.
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9. (ii′) =⇒ (iii). Notice that this is a particular case of theorem 4.0.2. In this
particular case, we give a more direct proof. The given φ induces isomorphisms

Fp̂ ∼= lim←−
k

F/γk,pF ∼= lim←−
k

G/γk,pG ∼= Gp̂.

10. (iii′) =⇒ (iii) is trivial.

11. (iii) =⇒ (iii′). Since Gp̂
∼= Fp̂, then Gp̂ is pro-p free. In addition, since

(iii) =⇒ (i), G and F have the same abelian quotients. From this, we
deduce that Gab

∼= Fab. Take g1, . . . , gn such that their reductions modulo
[G,G] form a Z-basis of Gab

∼= Zn. Consider the map φ : F −→ G defined by
sending φ(fi) = gi, for some generating set {f1, . . . , fn} of F . For every prime
p, there is a commutative diagram

F G

Fp̂ Gp̂.

ιp̂

φ

φp̂

Notice that φp̂ is surjective, since the induced φ : F/F p[F, F ] −→ G/Gp[G,G]
is surjective, by construction. So φp̂ is a continuous epimorphism between two
free pro-p groups of the same rank. By corollary 4.2.6, φp̂ is an isomorphism.
On the other side, F is residually-p, so ιp̂ is injective, too. This implies that φ
is injective.

With these equivalences, the proof is complete.

From this point of view, we can introduce another criterion for a finitely gener-
ated G to have free nilpotent genus; which is a direct consequence of corollary 4.5.7
and proposition 5.2.2.

Proposition 5.2.3. Let G be a finitely generated group such that G/[G,G] is free
abelian and H2(G,Fp) = 0 for every prime p. Then G has the same lower central
series as a free group of the same rank as G/[G,G].

5.3 Similarities and differences with free groups

We know that finitely generated residually nilpotent groups are Hopfian. In partic-
ular, parafree groups are Hopfian. Moreover, we have an strong Hopf property for
parafree groups, which says that parafree proper quotients of parafree groups have
strictly lower rank.
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Proposition 5.3.1. Let N be a normal subgroup of a group P . Suppose that both
P and P/N are parafree groups of the same rank, then N = 1.

Proof. We consider the natural projection p : P → P/N and we will show that its
kernel N is trivial. This projection induces a surjective map

pn :
P

γnP
−→ P/N

γn(P/N)
∼=

P

(γnP )N
,

for every n. Since both of the previous groups are isomorphic to F/γnF , for the
same free group F , pn is a surjective endomorphism of the Hopfian group F/γnF ,
so it is injective. This implies that N ⊆ γnP for every n ≥ 1, so N = 1.

This is due to the fact that finitely generated nilpotent groups are Hopfian. We
have two immediate consequences from the last proposition.

Corollary 5.3.2. Parafree groups of abelian rank 1 are isomorphic to Z.

Proof. Applying proposition 5.3.1 to N = [G,G] it follows that G ∼= G/N ∼= Z.

By similar reasons, we can also prove that the only abelian (equivalently, nilpo-
tent) parafree groups are the trivial group and Z.

Proposition 5.3.3. The free product of parafree groups is parafree.

Proposition 5.3.4. Subgroups of parafree are not necessarily parafree.

Proof. The group G = 〈a, b, c|a2b2c3〉 is parafree. The subgroup of G generated by
a, b, cac−1, cbc−1 has presentation 〈x, y, z, t|x2y2z2t2〉 ∼= π1(S3). So G contains the
surface groups

π1(Σg) ↪−→ π1(S3) ↪−→ G

for g ≥ 2; which are not parafree.

The following proposition is harder. Its proof can be found in [4].

Proposition 5.3.5. The two-generator subgroups of parafree groups are free.

Proposition 5.3.6. For every integer n ≥ 2, there exists a parafree G with rab(G) =
n and with a non-free three-generated subgroup.

Proof. Let n ≥ 2 and consider the 3-generated group G3 = 〈a, b, c|a2b2c3〉, which is
a non-free parafree group. By taking Gn = G3∗Z∗· · ·Z, the free product of G3 with
n − 2 copies of Z, we get a group Gn with rab(Gn) = n that contains a subgroup
isomorphic to G3.
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The previous group G3 = 〈a, b, c|a2b2c3〉 is quite interesting. It is not only a
non-free parafree group, it is residually free [2] and non-limit [35].

Corollary 5.3.7. The centre of a parafree group is either trivial or the whole group.
This last case only occurs for Z. More generally, any abelian subgroup of a parafree
group is free.

The following is [7, Theorem 7.1]. It uses the L2-methods of chapter 8.

Theorem 5.3.8. Let G be a finitely generated parafree group and let N be a finitely
generated normal subgroup of infinite index. Then N = 1.

Proof. The group G has rank n. If n = 1 then, by corollary 5.3.2, G ∼= Z and the
statement is trivial. Suppose that n ≥ 2 and let F be the free group of rank n.
Since G is parafree, Gp̂ is pro-p free by proposition 5.2.2 and the canonical map
G ↪−→ Gp̂

∼= Fp̂ is injective and has dense image. By proposition 8.1.5, b(2)
1 (G) ≥

b
(2)
1 (F ) = n − 1 > 0. Let us suppose that N is not trivial. Then, since G is
torsion-free, N is infinite. We have a short exact sequence

1→ N → G→ G/N → 1,

where both N and G/N are infinite, b(2)
1 (G) > 0 and b(2)

1 (N) <∞ (since N is finitely
generated). This contradicts theorem 8.1.4. Thus N = 1.
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Chapter 6

The theory of group rings

The main idea that underlies this chapter can be roughly outlined as follows. Given
a group homomorphism G −→ H, we want to “linearise” it by studying instead
the corresponding map IG −→ IH . In the last setting, cohomological and ring-
theoretical arguments are applicable. From this, one wants to derive information
about the initial group homomorphism. The most important result of this chapter
is lemma 6.3.1.

6.1 The bar resolution

Let G be a group. We review the construction of the bar resolution C
∗
(G, k) →

k → 0, a resolution of k over kG. It is also named standard resolution and it allows
us to explicitly compute homology groups of low degree. Let Cn

(G, k) be a kG-
module with free basis given by the symbols {|g1| · · · |gn| : gi ∈ G}, a collection
that is naturally in bijection with Gn. Observe that C0

(G, k) = kG. We define
dn : C

n
(G, k)→ C

n−1
(G, k) by

dn(|g1| · · · |gn|) = g1 |g2| · · · |gn|
− |g1g2|g3| · · · |gn|
+ . . .

+ (−1)n−1 |g1| . . . |gn−1gn|
+ (−1)n |g1| · · · |gn−1|.

We claim that the following is a resolution of projective (in fact, free) kG-modules

dn+2−−−→ C
n+1

(G, k)
dn+1−−−→ C

n
(G, k)

dn−→ · · · d3−→ C
2
(G, k)

d2−→ C
1
(G, k)

d1−→ kG
d0−→ k → 0.

55
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This particular resolution allows us to compute Hn(G, k) as the homology of the
chain complex obtained after applying the functor ⊗

kG
k to the previous resolution

(the application of this functor is named taking kG-invariants). This sequence is
natural from the point of view of topology.

Homology groups also appear as correction terms in sequences that are not exact
and homology groups of low degree are very meaningful. In fact, H0(G, k) ∼= k and
H1 verifies the following.

Lemma 6.1.1. There is a natural isomorphism H1(G, k) = k ⊗
Z
Gab.

Proof. We use the bar resolution of k to compute H1(G, k). By applying to

d3−→ C
2
(G, k)

d2−→ C
1
(G, k)

d1−→ kG
d0−→ k → 0

the functor ⊗
kG
k, we obtain the sequence of k-modules

d3⊗k−−−→ kG2 d2⊗k−−−→ kG
0−→ k

id−→ k → 0,

where d̃2 sends each (g, h) to g + h− gh. So

H1(G, k) ∼=
k G2

im d̃2

∼= k ⊗Z Gab.

More importantly, this particular resolution, the bar resolution, allows us to add
explicitly an homology group to a non-exact resolutions of k over kG, to obtain
an exact sequence. Of course, here underlies the fact that the computation of the
homology does not depend on the choice of projective resolution of k over kG, since
any pair of such resolutions is homotopically equivalent and the application of ⊗

kG
k

preserves chain homotopies, as it is an additive functor. This fact will underlie the
arguments of subsequent sections.

6.2 The augmentation ideal

During section 4.3, we saw the importance of defining objects in terms of univer-
sal properties. We worked with pro-p completions in terms of neat diagrams and,
roughly, we could observe that it is functorial. The approach of this section is sim-
ilar. We introduce the notion of derivation to describe the augmentation ideal kIG
in terms of a universal property.
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Definition 6.2.1 (Derivation). Let M be a G-module. We say that a function
d : G→M is a derivation if d(xy) = d(x) + xd(y) for every x, y ∈ G. We denote by
Der(G,M) the abelian group of derivations G→M .

There is a universal derivation D of G. We define D : G → kIG to be the
derivation such that D(g) = g − 1. There is an isomorphism of abelian groups
Der(G,M) ∼= HomG(kIG,M) described as follows. Given f ∈ HomkG(kIG,M), we
define a derivation d = f ◦D : G→M .

G kIG

M.

d

D

f (6.1)

Reciprocally, given d ∈ Der(G,M), we can define the associated kG-homomorphism
f : kIG → M by f(g − 1) = d(g). These correspondences are well-defined and are
inverses of each other.

Lemma 6.2.2. Let F be a free group freely generated by S ⊆ F . Then {s− 1 : s ∈
S} is a free basis of the kF -module kIF .

Proof. It is clear that Der(G,A) is in bijection with group homomorphisms γ : F →
M o F that are splittings of the exact sequence

1→M →M o F → F → 1.

In fact, those γ are exactly those maps of the form γ(f) = (d(f), f) for some
derivation d. In other words, for any {as : s ∈ S} ⊆ M , there is exactly one
d ∈ Der(F,M) such that d(s) = as for all s ∈ S. Using the characterisation
Der(F,M) ∼= HomkF (kIF ,M) of eq. (6.1), we can also conclude that for any kF -
module M and any {as : s ∈ S} ⊆ M , there is exactly one kF -homomorphism
f : IF →M such that f(s− 1) = as for all s ∈ S. The conclusion follows.

Definition 6.2.3 (Fox derivatives). Let F be a free group freely generated by
S ⊆ F . We denote by ∂

∂s
: F → kF the maps defined by

f − 1 =
∑
s∈S

∂f

∂s
(s− 1), for all f ∈ F .

Our aim is to prove the following result.
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Theorem 6.2.4. Let F be a free group freely generated by S ⊆ F . Let T ⊆ F and
consider the normal closure N = 〈〈T 〉〉. Consider G = F/N . Given f ∈ F , we
denote its image under the projection F → G by f ∈ G. There is an exact sequence
of kG-modules of the form

0 k ⊗
Z
Rab kG(S) kG k 0,

∂2 ∂1 ε

where the maps δ1 and δ2 are defined as follows:

∂1 (gs es) =gs (s− 1), for all s ∈ S and gs ∈ G,

∂2

(
c⊗ r [G,G]

)
=
∑
s∈S

c ∂r
∂s
es, for all c ∈ k, r ∈ R.

Definition 6.2.5. In the context of the previous theorem, the group Rab, or more
broadly k⊗ZRab, is called the relation module of G. Notice that it requires a choice
of F and a map F → G. It has a natural kG-structure described as follows. The
conjugation action of F on R, leads to a right kF -module structure on k ⊗ Rab.
However, the action of R is trivial since rt ≡ r mod [R,R] for all r, t ∈ R. So this
induces a natural kG-modules structure on k ⊗Rab.

Proof. The sequence

0 kG(S) kG k 0,
∂1 ε

is not exact at kG(S). It needs a correction of H1(R, k) and we compute this correc-
tion explicitly with the aid of the bar resolution. Consider the following commutative
diagram of kR-modules, whose rows are resolutions of k over kR,

· · · C3(R, k)] C2(R, k) C1(R, k) kR k 0

· · · 0 0 kF (S) kF k 0.

d4 d3

f3 f2

d2

f1

d1

f0

d0

id

∂1 ∂0

Here f0 is the natural inclusion, fk = 0 for k ≥ 2 and

f1

(
r|t|
)

=
∑
s∈S

r
∂t

∂s
es, for all r, t ∈ R.

Since this the arrows are projective resolutions of kR-modules, the chain map fk is
an homotopy equivalence. We apply the functor k⊗

kR
and observe that the resulting
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diagram is

· · · kR3 kR2 kR k k 0,

· · · 0 0 kG(S) kG k 0,

k⊗d4 k⊗d3

0 0

k⊗d2

k⊗d1

0

ι

id

id

∂1 ∂0

from where we can adapt the following exact sequence of abelian groups

0 kR
im d2⊗k kG(S) kG k 0.

k⊗f1 ∂1 ∂0

By substituting the first non-zero factor by k⊗ZRab, which is isomorphic to H1(R, k)
according to the isomorphism that is implicit in the proof of lemma 6.1.1, then the
corresponding k ⊗ f1 turns into ∂2 and the result is the following exact sequence of
abelian groups

0 k ⊗Z Rab kG(S) kG k 0,
∂2 ∂1 ∂0

whose maps are also seen to be kG-homomorphisms. The only map for which this
is not obvious is the map ∂2. Let r ∈ R and let f ∈ F . Notice that

∂2

(
frf−1 [R,R]

)
=
∑
s∈S

∂frf−1

∂s
es

=
∑
s∈S

∂f
∂s

+ f ∂r
∂s
− frf−1 ∂f

∂s
es

=
∑
s∈S

f ∂r
∂s
es

=f ∂2

(
r [R,R]

)
.

One can view an algebraic proof of theorem 6.2.4 that uses no homological ma-
chinery in [30, Chapter 11]. A purely topological argument is given in [8, Chapter
II, Section 5], by means of the Hopf’s formula. Our argument is based on the
indications given in [8, Exercise 4, Chapter IV, Section 2].

We have given a description of the augmentation ideal of a group in terms of
a presentation. We are also interested in giving a description of the augmentation
ideal of an an amalgamated product and of an HNN extension. However, we should
first study free products.

Notation 6.2.6. Given two groups Λ ≤ Γ, we denote by kIΓ
Λ the left ideal of kG

generated by IΛ. Since kΓ is a natural free right kΛ-module, it follows that the
canonical map of kΓ-modules

kΓ ⊗
kΛ
kIΛ −→ kIΓ

Λ
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is an isomorphism.

Lemma 6.2.7. Let Γ be the free product of two groups A and B. Then the kΓ-
homomorphism

kIΓ
A ⊕ kIΓ

B −→ kIΓ,

defined by (x, y) 7→ x+ y for x ∈ kIA and y ∈ kIB, is an isomorphism.

Proof. We name ψ the given map. This statement can be verified by brute force us-
ing Britton’s lemma. However, it is cleaner to refer to the correspondence Der(Γ,M) ∼=
HomZΓ(IΓ,M) of eq. (6.1).

Theorem 6.2.8 (Swan). Let θ1 : C → A and θ2 : C → B be group homomorphisms
and consider the induced amalgamated product Γ = A∗

C
B. There is an exact sequence

of kΓ-modules

0 kIΓ
C kIΓ

A ⊕ kIΓ
B kIΓ 0,α β

where α(z) = (θ1(z),−θ2(z)) for all z ∈ kIC and β(x, y) = x + y for all x ∈ IA,
y ∈ IB.

Proof. It is clear that β ◦ α = 0, that α is injective and that β is surjective. We
simply have to check that imα = ker β.

Let Γ0 = A∗B. We consider the normal subgroup R of Γ0 generated the elements
of the set {θ1(c)−1 θ2(c) : c ∈ C}. Then Γ ∼= Γ0/R. The idea is to consider an exact
sequence using lemma 6.2.7 for the free product Γ0, to take R-coinvariants, and to
study the correction term that arises in the new sequence for Γ with the aid of the
bar resolution of R.

Consider a diagram of the following form

· · · C3(R, k) C2(R, k) C1(R, k) kR k 0

· · · 0 0 kIΓ0
A ⊕ kI

Γ0
B kΓ0 k 0.

d4 d3

f3 f2

d2

f1

d1

f0

d0

id

ψ ∂0

The map ψ is the isomorphism kIΓ0
A ⊕ kI

Γ0
B → IΓ0 of lemma 6.2.7 while the maps

fk are zero for k ≥ 2. Lastly, the map f1 is the kR-linear extension of f1(|r|) =
ψ−1(r − 1). It is clear that f0 ◦ d1 = ψ ◦ f1. Moreover, since the map ψ−1(r − 1) :
R→ kIΓ0

A ⊕ kI
Γ0
B is a R-derivation, then f1 verifies that f1 ◦ d2 = 0. So the previous
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diagram is commutative. The arrows are projective resolutions of kR-modules and
the maps fi define a chain homotopy. Applying the functor k⊗

kR
we obtain

· · · kR3 kR2 kR k k 0

· · · 0 0 kIΓ
A ⊕ kIΓ

B kΓ k 0.

k⊗d4 k⊗d3

f3 f2

k⊗d2

f1

0

f0

id

id

β ∂

Arguing as in theorem 6.2.4, we have an exact sequence of the form

0 k ⊗Rab kIΓ
A ⊕ kIΓ

B kΓ k 0,
f1 β ∂

where the image of r + [R,R] ∈ Rab under f1 is φ−1(r − 1) for any r ∈ R. Since
Rab is generated by the elements of the set {θ−1

1 (c) θ2(c) : c ∈ C}, the image of f1 is
generated by their corresponding images. Let c ∈ C.

Notice that

θ−1
1 (c) θ2(c)− 1 = θ1(c)−1

(
(θ2(c)− 1)− (θ1(c)− 1)

)
,

and so
f1(θ−1

1 (c) θ2(c)) = θ1(c)−1 (1− θ1(c), θ2(c)− 1).

The kΓ-span of these elements, for c ∈ C, generate the image of f1, which, by
exactness, is the kernel of β. Crucially, this is the image of α.

Theorem 6.2.9. Let A be a subgroup of H and let θ : A→ H be a group monomor-
phism. Consider the corresponding HNN extension Γ = H∗

A
. The kΓ-homomorphism

kIΓ
H ⊕ kΓ kIΓ,

β

where β(x, y) = x+ y(t− 1) for all x ∈ IH and y ∈ kΓ, is surjective and the kernel
is kΓ-generated by the set {(θ(a)− 1− t(a− 1), θ(a)− 1) : a ∈ A}.

Our argument is essentially the same as in theorem 6.2.8.

Proof. Let Γ0 = H ∗ (t) and let R be the normal subgroup of Γ0 generated by the
elements {a−1t−1θ(a)t : a ∈ A}. Then Γ ∼= Γ0/R. Consider a diagram of the form

· · · C3(R, k) C2(R, k) C1(R, k) kR k 0

· · · 0 0 kIΓ0
H ⊕ kΓ0 kΓ0 k 0.

d4 d3

f3 f2

d2

f1

d1

f0

d0

id

ψ ∂0
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The map ψ : kIΓ0
H ⊕ kΓ0 → kIΓ0 is the isomorphism of lemma 6.2.7, defined by

(x, y) 7→ x+ y(t− 1) for all x ∈ kIH and y ∈ kΓ0. Here we have implicitly identified
kΓ0
∼= IΓ0

〈t〉 by means of the isomorphism

z 7→ z(t− 1), for all z ∈ kΓ0.

On the other side, the map f0 is the natural inclusion, the maps fk are zero for k ≥ 2
and f1 is the kΓ0-extension of f1(|r|) = ψ−1(r − 1), which defines, when restricted
to G, a derivation G → kIΓ0

H ⊕ kΓ0. So f1 ◦ d2 = 0. It is also direct to see that
f0 ◦ d1 = ψ ◦ f1. So the previous diagram represents a chain homotopy fi between
projective resolutions of k over kR. Applying k⊗

kR
we get the commutative diagram

· · · kR3 kR2 kR k k 0

· · · 0 0 kIΓ
H ⊕ kΓ kΓ k 0,

k⊗d4 k⊗d3

f3 f2

k⊗d2

f1

0

f0

id

id

β ∂

From this, we can obtain, arguing as in theorem 6.2.4, an exact sequence of kΓ-
modules

0 k ⊗Rab kIΓ
A ⊕ kIΓ

B kΓ k 0,
f1 β ∂

where the image of r + [R,R] ∈ Rab under f1 is φ−1(r − 1) for any r ∈ R. By
exactness, the image of f1 must be the kernel of β, and we want to check that this
can be kΓ-generated by the elements of {(θ(a)−1− t(a−1), θ(a)−1) : a ∈ A}. The
image of f1 will be kΓ-generated by the images under f1 of {a−1t−1θ(a)t : a ∈ A},
since this set generates the abelian group Rab. Lastly, observe that, for any a ∈ A,

a−1t−1θ(a)t− 1 = a−1t−1
(
θ(a)− 1− t(a− 1) + (θ(a)− 1)(t− 1)

)
.

Hence
f1(a−1t−1θ(a)t+ [R,R]) = (θ(a)− 1− t(a− 1), θ(a)− 1).

and the conclusion follows.

Corollary 6.2.10. Let A = 〈a〉 be a cyclic subgroup of H and let θ : A→ H be a
group monomorphism. Consider the corresponding HNN extension Γ = H∗

A
. Then

kIΓ
H ⊕ kΓ

kΓ
(
θ(a)− 1− t(a− 1), θ(a)− 1

) ∼= IΓ,

where this isomorphism of kΓ-modules is given by

[(x, y)] 7→ x+ y(t− 1), for all x ∈ IH and y ∈ kΓ.
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6.3 Back to group homomorphisms

We wanted to study the maps that group homomorphisms induce between their aug-
mentation ideals. Here will give two instances in which one can derive information
from these induced maps back to the initial group homomorphisms.

Lemma 6.3.1. Let φ : G̃ → G be a surjective group homomorphism of kernel K.
Suppose that the natural homomorphism of kG-modules

kIG̃ ⊗
kG̃

kG −→ kIG,

defined by the k-linear extension of a⊗ b 7→ φ(a)b, is an isomorphism. Then

k ⊗Z Kab = 0.

Proof. We can view any group as a quotient of a free group. We take a free group F
freely generated by some S ⊆ F and a surjective map F → G̃ of kernel Ñ E F . By
composing this projection with φ, we have a surjective F → G, of (possibly) bigger
kernel N EF . By using the functoriality of the exact sequence of theorem 6.2.4, we
obtain a commutative diagram of k-modules, with exact rows, of the form

k ⊗ Ñab kG̃(S) kIG̃ 0

k ⊗Nab kG(S) kIG 0,

ιab

∂2

φ

∂1

φ

∂2 ∂1

where the unspecified arrows are the natural ones, induced either by φ : G̃→ G or
the natural inclusion ι : Ñ ↪−→ N .

Applying the right-exact functor ⊗kG̃kG, where kG has the natural kG̃ structure
induced by φ, we get a commutative diagram of kG-modules with exact arrows(

k ⊗ Ñab

)
⊗kG̃ kG kG(S) kIG 0

k ⊗Nab kG(S) kIG 0.

ιab⊗1

∂2⊗1

id

∂1

id

∂2 ∂1

We look at the arrows that point downwards. Since the second arrow is surjective
and the third one is injective, then ιab ⊗ 1, the first arrow, is surjective. This is one
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of the so called “four lemma” on diagram-chasing. We now rewrite the map ιab ⊗ 1.
There is a commutative diagram of the form(

k ⊗ Ñab

)
⊗kG̃ kG k ⊗ Ñ

[Ñ,N ]

k ⊗Nab k ⊗ N
[N,N ]

,

ιab⊗1

ψ

α

id

(6.2)

where ψ is an isomorphism defined by

ψ
(

(1⊗ ñ+ [Ñ , Ñ ])⊗ g
)

= 1⊗ gng−1 + [Ñ ,N ]

and α is defined by

α(1⊗ ñ+ [Ñ ,N ]) = 1⊗ ι(ñ) + [N,N ].

The inverse of ψ would be given by

ψ−1
(
ñ+ [Ñ ,N ]

)
= (1⊗ ñ+ [Ñ , Ñ ])⊗ 1.

For the previous map to be well-defined, we observe the following in the module(
k ⊗ Ñab

)
⊗kG̃ kG. For any n ∈ N , ñ ∈ Ñ ,

(1⊗ nñn−1 + [Ñ , Ñ ])⊗ 1 =(1⊗ (ñ+ [Ñ , Ñ ])n)⊗ 1

=(1⊗ ñ+ [Ñ , Ñ ])⊗ φ(n) · 1
=(1⊗ ñ+ [Ñ , Ñ ])⊗ 1.

Hence, for any n ∈ N and ñ ∈ Ñ ,

(1⊗ [ñ, n] + [Ñ , Ñ ])⊗ 1 = 0.

This verification says that ψ−1 is also well-defined. It is easy to see that ψ and ψ−1

are inverses of each other. So ψ is an isomorphism of kG-modules.

We proved that ιab ⊗ 1 is surjective. So the map α of the commutative square
(6.2) must be surjective, too.

From the natural exact sequence of ZG-modules

Ñ

[Ñ,N ]

N
[N,N ]

N

Ñ [N,N ]
0.α′ β′
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we obtain, by applying the right exact functor k⊗
Z
, an exact sequence of kG-modules

k ⊗ Ñ

[Ñ,N ]
k ⊗ N

[N,N ]
k ⊗ N

Ñ [N,N ]
0.α β

We have already deduced that the map α is surjective, so the image of β is zero and
then the third module must be zero. Observe that K ∼= N/Ñ ≤ F/Ñ ∼= G̃, so

k ⊗ N

Ñ [N,N ]
∼= k ⊗Kab

∼= 0.

A particular realisation of the previous lemma is a result due to Lewin.

Corollary 6.3.2 (Lewin). Let G be a group generated by two subgroups A and
B with C = A

⋂
B. Suppose that kIGC = kIGC

⋂
kIGB . Then the natural map

A ∗
C
B −→ G is an isomorphism.

Proof. Denote G̃ = A∗
C
B and name φ : G̃→ G the natural map, which is surjective.

Consider a commutative diagram of k-modules of the form

kIG̃C kIG̃A ⊕ kIG̃kB kIG̃ 0

kIGC kIGA ⊕ kIGB kIG 0,

α

φ φ

β

φ

α β

where the arrows are the obvious ones. We define α(z) = (z,−z) for all z ∈ IC and
β(x, y) = x+y for all x ∈ IA and y ∈ IB. By theorem 6.2.8, the first row is an exact
sequence of kG̃-modules. Furthermore, by assumption, the second row is an exact
sequence of kG-modules.

We apply the right-exact functor kG⊗
kG̃

to the first row and we obtain a commu-

tative diagram of kG-modules

kIGC kIGA ⊕ kIGkB kG⊗kG̃ kIG̃ 0

kIGC kIGA ⊕ kIGB kIG 0,

α

φ φ

β

φ

α β

with exact rows.

Now we look at the arrows that point downwards. The first is an epimorphism,
and the second and fourth are monomorphism. A version of the four lemma ensures
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that the third arrow 1 ⊗ φ : kG ⊗kG̃ kIG̃ → kIG is a monomorphism. Moreover,
this map is surjective, since φ itself is surjective. By lemma 6.3.1, the map φ is an
isomorphism.



Chapter 7

Universal division rings of fractions

We want to emphasise our aim in talking about the concept of “universal division
rings of fractions” before going into details.

Let G̃ be a candidate to being a parafree group. Suppose we already know that
its pro-p completions G̃p̂ are free. Suppose, in addition, we also know that, for a
suitable prime p, the kernel of the canonical map φ : G̃ −→ G̃p̂ is free. Let G be the
image of G̃ under the previous map. We consider the canonical FpG-module

FpG ⊗
FpG̃

FpIG̃

and the canonical map of FpG-modules

FpG ⊗
FpG̃

FpIG̃ −→ FpIG. (7.1)

If we check that the previous map is an isomorphism, we would deduce, by lemma 6.3.1,
that

Fp ⊗
Z

kerφ = 0,

implying that kerφ = 1, since it is free. In order to check that the map of (7.1) is
an isomorphism, we develop a “dimension function” on FpG-modules. This map is
clearly surjective and, assuming reasonable properties about this “dimension func-
tion”, if we prove that the dimension of both involved modules is the same, then the
surjective map of (7.1) would be an isomorphism, as we want.

This dimension function would be defined as follows. Let FpG ↪−→ D be an
embedding of FpG into a division ring D. A tentative “dimension function” for the
collection of FpG-modules M goes as follows. We can define

dimM = dimDD ⊗
FpG

M.

67
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However, for this dimension function to enjoy desirable properties, the ring D cannot
be any division ring. It has to be “minimal” and “universal” in some sense. We will
now give a brief account of how these notions are precised for some classes of rings,
before introducing the universal division ring of fractions of FpG.

7.1 Embeddability of domains into division rings

For a ring to be embeddable into a division ring, this ring must be a domain. In
the commutative setting, this condition is not only necessary but also sufficient for
the existence of such embedding. In fact, given a commutative domain A, there
is the standard construction of the field of fractions Frac(A) of A with a canonical
embedding A ↪−→ Frac(A). It satisfies that, for any ring homomorphism f : A → B

such that f(A \ {0}) ⊆ B×, there exists a unique f̂ : Frac(A) → B such that
f̂ ◦ ι = f ; that is, such that the diagram

A Frac(A)

B

ι

f
f̂

(7.2)

is commutative.

Underlying the construction of Frac(A), there is the more general notion of lo-
calization, of fundamental importance in algebra and geometry. There is also a
non-commutative analogue of this notion, namely the localization in the sense of
Ore.

Given a ring R and a (multiplicatively closed) subset S ⊆ R, we ask for the
existence of a ring RS equipped with an injective map φS : R −→ RS such that

1. the map φS is injective;

2. any element of RS can be written in the form φS(r)φS(s)−1 for some r ∈ R
and s ∈ S; and

3. for any ring homomorphism ψ : R→ B with ψ(S) ⊆ B×, there exists a unique
ψ̂S : RS → B such that ψ = ψ̂ ◦ φS. In other words, the diagram

A S−1A

B,

φS

ψ
ψ̂ (7.3)
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would be commutative.

The natural candidate for RS, and, in fact, the only one, is constructed from R
by attaching inverses ts to each element s ∈ S as follows

RS =
R 〈ts; s ∈ S〉

〈tss− 1, sts − 1; s ∈ S〉
. (7.4)

It is easy to check that it the universal property of the diagram (7.3). It would
remain to ask under which conditions can we ensure that the canonical map φS :
R → RS is injective and that the elements of RS can be written as a s−1. In this
case, we name RS the right Ore localisation of R with respect to S. We give sufficient
conditions due to Asano and Gabriel, inspired by the work of Ore [42].

Definition 7.1.1. We say that S ⊆ R is a right Ore set of regular elements if

1. S is closed under multiplication.

2. For any a ∈ R and s ∈ S, as = 0 implies that a = 0.

3. For any a ∈ R and s ∈ S, aS
⋂
sR 6= ∅.

The following statement is taken from the book of Cohn [12, Theorem 0.7.1].

Theorem 7.1.2 (Criterion for faithful localization). Let S ⊆ R be closed under
multiplication. Then the canonical map R→ RS, defined in (7.4), is an embedding
and every element of RS can be written in the form r s−1, for r ∈ R, s ∈ S, if and
only if S is a right Ore set of regular elements.

Definition 7.1.3. A ring R is said to be a right Ore domain if S = R \ {0} is a
right Ore set of regular elements. In this case, R can be embedded into RS, which is
a division ring generated by R. We name Qore(R) = RS the (right) Ore division
ring of fractions.

It is not very difficult to find a big family of non-commutative Ore domains.

Proposition 7.1.4 (“Little Goldie’s theorem”, 1957). Let R be a right Noetherian
domain, then S = R \ {0} is a right Ore set of regular elements. In particular, R
can be embedded into its right Ore ring of fractions, which is a division ring.

Proof. To check that S = R \ {0} is a right Ore set of regular elements, we only
have to verify that for any a ∈ R and s ∈ S, aS

⋂
sR 6= ∅. If a = 0, the previous

intersection contains zero. Suppose that a 6= 0 and consider the chain of right ideals
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Im = (s, as, a2s, . . . , ams), which is increasing, so it has to stabilise. In particular,
there exists n ≥ 1 so

ans =
n−1∑
k=0

ak s rk, for some rk ∈ R.

Consider the minimal k0 so rk0 6= 0, then

a

an−k0−1s−
n−2∑
k=k0

ak−k0 s rk

 = srk0 ∈ aS
⋂

sR.

This produces many examples of Ore domains, such as polynomial algebras. We
review the situation by saying that an Ore domain R can be embedded into its
Ore division ring of fractions ιore : R ↪−→ Qore(R) and that this embedding verifies
the following universal property. For any ring homomorphism ψ : R −→ B such
that ψ(R \ {0}) ⊆ B∗, there exists a unique ψ̂ such that the following diagram

R Qore(R)

B

ιore

ψ
ψ̂

(7.5)

is commutative. In addition, if ψ is injective, the resulting ψ̂ is injective, too.
Moreover, Qore(R) is a flat R-module. This means that the functor ⊗

R
Qore(R), from

the category of R-modules to the category of abelian groups; preserves exactness of
short exact sequences.

When discussing the question of embedability of domains into division rings, it is
natural, for historical reasons, to introduce the class of Ore domains. Furthermore,
these domains will be part of our arguments in section 7.6. However, the class of
Ore domains is still a very restrictive one. In fact, a result of Bartholdi and Kielak
[1] states that a group ring KG, with coefficients in a field K, is an Ore domain
if and only if KG is a domain and G is amenable. For this reason, the previous
methods will not be directly applicable to our groups of interest, namely abstract
subgroups G of free pro-p groups F. The crucial aspect of these groups G is that
they are orderable.

Malcev and Neumann discovered independently a way to embed the group ring
of an orderable group into a division rings of power series. For the group Z, notice
that KZ ∼= K[X,X−1]. The embedding provided by Malcev and Neumann, where
Z is viewed with the standard ordering, would be K[X,X−1] ↪−→ K((X)), where
K((X)) denotes the ring of one-variable Laurent series with coefficients in the field
K.
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Definition 7.1.5 (Malcev-Neumann construction of D((G))). Given a division
ring D and an orderable group G, we define the formal power series of G over D,
denoted D((G)), as the set of formal sums∑

g∈G

ag g : the support {g : ag 6= 0} is well-ordered

 .

The operations on D((G)) are defined analogously as in K((X)).∑
g

ag g

+

∑
g

bg g

 =
∑
g

(ag + bg) g. (7.6)

∑
g

ag g

∑
h

bh h

 =
∑
k

∑
gh=k

ag bh

 k. (7.7)

The difficult technical lemma about the order on G which allows one to prove
that (7.7) is well defined and that D((G)) is a division ring is the following.

Lemma 7.1.6. Let G be an orderable group and let S ⊆ G be a well-ordered subset
such that s > 1 for every s ∈ S. Consider

Sω =
⋃
n≥1

Sn.

Then Sω is well-ordered and every s ∈ Sω appears only in finitely many sets Sn.

Given an element 0 6=
∑

g∈G ag g ∈ D((G)), we use the previous lemma to
explicitly write down its inverse. Since its support is well-ordered, it has a minimum
g0 ∈ G, and we can write

0 6=
∑
g∈G

ag g = ag0 g0

1 +
∑

1<g∈G

bg g

 .

This way, writing c =
∑

1<g∈G bg g, its inverse will be ∞∑
k=0

(−1)kck

 a−1
g0
g−1

0 . (7.8)

We refer to the paper of Neumann [40, Part I] for details.
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This provides embeddings into division rings for group rings of orderable groups.
However, for these group rings, there may not exist a division ringD and a monomor-
phism R ↪−→ D verifying a universal property in the sense of the commutative dia-
gram (7.5).

There is still a suitable and weakened notion of universality for division rings,
due to Cohn, which we shall discuss next.

7.2 Definition and existence of the ring DR
Definition 7.2.1 (Division closure). Given a ring extension R0 ⊆ D0, where D0 is a
division ring, we say that D ⊆ D0 is the division closure of R0 in D0 if R0 generates
rationally D0. In other words, each element of D0 can be built up from the elements
of R0 in stages, using addition, subtraction, multiplication, and division by nonzero
elements. We denote the division closure of R0 in D0 by D = D(R0,D0) or, simply,
by D(R0).

Definition 7.2.2. A R-ring is a homomorphism φ : R→ S. Two R-rings φ1 : R→
S1 and φ2 : R → S2 are said to be isomorphic if there exists a ring isomorphism
α : S1 → S2 such that φ2 = α ◦ φ1.

We now precise Cohn’s notion of universal division ring of fractions.

Definition 7.2.3. Consider a R-ring φ : R −→ D. We also say that it is

1. a division R-ring if φ is injective and D is a division ring;

2. a R-ring of fractions if D is generated by φ(R).

If the previous conditions hold, then we say that φ : R ↪−→ D is a division ring of
fractions of R.

Definition 7.2.4. Let R be a ring and let D1 and D2 be two division R-rings of
fractions.

• We say write dimD1 ≤ dimD2 if any finitely presented module M , it follows
that dimDD ⊗

R
M ≤ dimD′ D

′ ⊗
R
M .

• We say that there is a specialization from D1 to D2 if there exists a local
subring R ⊆ B ⊆ D1 with residual division ring isomorphic to D2.



7.2. DEFINITION AND EXISTENCE OF THE RING DR 73

Definition 7.2.5. Let DR be a division R-ring of fractions. We say that it is
a universal division R-ring of fractions if, for any other division R-ring of
fractions D′, dimD ≤ dimD′ .

We can give a few families of examples.

Example 7.2.6. The following rings R have a universal division R-ring of fractions
DR.

• Commutative domains A, for which DA ∼= Frac(A).

• More generally, right (resp. left) Ore domains R, for which DR is their right
(resp. left) Ore division ring of fractions DR ∼= Qore(R).

• Semifirs [10]: A ring R is said to be a semifir if every finitely generated left
ideal of R is free of fixed rank.

• In particular, if K is a field, then R = K〈〈X〉〉 has universal DR since R is a
semifir by [12, Proposition 2.9.19]).

Another significant example for us is the completed group algebra Fp[[F]]. We
know, from theorem 4.4.2, that this ring is isomorphic to Fp〈〈X〉〉, where |X| = d(F).
From the previous examples, we know the following.

Proposition 7.2.7. The ring Fp[[F]] has a universal division ring of fractions
DFp[[F]].

As we remarked before, there is no chance in having universal property for the
embedding R ↪−→ DR as in the setting of Ore division rings of fractions (7.5). In fact,
Herbera and Sánchez [22] prove that, if R = K〈X〉 with |X| > 1, there are infinitely
many non-isomorphic R-division rings of fractions. However, for some favourable
situations one still expects to be able to compare different R-division rings. For
example, let G be a subgroup of F. Then FpG embeds into DFp[[F]] and also into
Fp((G)), after giving G some ordering. It is not easy to compare both embeddings
nor to study whether one of them turns out to provide a universal division FpG-ring.
Both questions are answered positively. Interestingly, Cohn and Hughes developed
some methods that allow us to compare different R-division rings and, in particular,
to prove the previous claim about FpG−division rings of fractions. First of all, let us
mention a more elementary criterion that can be used to compare division R-rings
for Ore domains R.

Lemma 7.2.8. Suppose that R is an (left or right) Ore domain and that R ↪−→ D
is a division R-ring of fractions. Then D and Qore(R) are isomorphic R-rings.
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Proof. By the universal property (7.5) of the Ore division R-ring of fractions R ↪−→
Qore(R), there is a commutative diagram

R Qore(R)

D,

ιore

ψ
ψ̂ (7.9)

with ψ̂ injective. Furthermore, since R ↪−→ D is a division R-ring of fractions, then ψ̂
is surjective. So ψ̂ defines an isomorphism between the R-rings D and Qore(R).

We will talk about Hughes criterion later, we start with two results of Cohn [11,
Theorem 4.4.1 and Subsection 4.1].

Proposition 7.2.9. Let R be a ring and let D1 and D2 be two division R-rings of
fractions. Then the following holds.

• The rings D1 and D2 are isomorphic, as R-rings, if and only if dimD1 = dimD2 .

• There is a specialization from D1 to D2 if and only if dimD1 ≤ dimD2 .

In particular, if the universal division ring of fractions DR exists, then it is unique.

Definition 7.2.10. Let R ↪−→ DR be a universal division R-ring of fractions. Given
a R-module M , we denote

dimRM = dimDD ⊗
R
M.

By proposition 7.2.9, this is well-defined.

In section 7.4, we will use the criterion of proposition 7.2.9 to check that for any
closed subgroup H of F, the division closure of Fp[[H]] in DFp[[F]] is isomorphic to
DFp[[H]].

Using this fact, we would later prove, in section 7.5, that DFpG exists and that
the division closure of FpG in DFp[[F]] is isomorphic to DFpG. However, in this case,
we will not use proposition 7.2.9, but a criterion of Hughes on group rings of locally
indicable groups (definition 2.2.10).
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7.3 Sylvester rank functions

Before establishing properties about the rings DFpG and DFp[[F]], we discuss some
properties about their induced dimension functions in terms of Sylvester rank func-
tions.

Let M be a finitely presented R-module. This is, there is an exact sequence of
R-modules

Rm −→ Rn −→M −→ 0.

In other words, there is a matrix A ∈Mm×n(R) such that

M ∼=
Rn

RmA
.

The consideration of a reasonable “dimension function” dim on R-modules M is
related to a reasonable “rank function” on matrices A ∈Mm×n(R).

For example, let D be a division R-ring. Then

dimDD ⊗
R
M = n− rkD(A), (7.10)

where rkD(A) is the rank of A as a matrix with coefficients in the division ring D.
For more general rings, that are not division rings, we do not expect a notion of

rank as well behaved as the one coming from linear algebra, though we are interested
in those which preserve some of their convenient properties.

Definition 7.3.1. Let R be a ring. A Sylvester matrix rank function rk on
R is a function that assigns a non-negative real number to each matrix over R and
that satisfies the following conditions.

1. rk(A) = 0 if A is any zero matrix and rk(1) = 1.

2. For all matrices A1, A2

rk

(
A1 0
0 A2

)
= rk(A1) + rk(A2).

3. For all matrices A1, A2, A3, of appropriate sizes,

rk

(
A1 A3

0 A2

)
≥ rk(A1) + rk(A2).
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Given a Sylvester matrix rank function rk on R, we have a “dimension” function
on finitely-presented R-modules by setting dim(Rn/RmA) = n− rk(A), as occurs in
(7.10). This rk enjoys the following properties.

Definition 7.3.2. A Sylvester module rank function on R is a function that
assings a non-negative real number to each finitely presented R-module and that
satisfies the following conditions.

1. dim({0}) = 0 and dimR = 1.

2. dim(M1 ⊕M2) = dimM1 + dimM2, and

3. if M1 −→M2 −→M3 −→ 0 is exact, then

dimM1 + dimM3 ≥ dimM2 ≥ dimM3.

By previous comments, we know there is a natural correspondence between
Sylvester matrix rank functions and Sylvester matrix module functions. Our next
aim is to discuss a few aspects about the convergence of these Sylvester rank func-
tions. However, these notions uniquely provide a “dimension function” for finitely
presented modules. Recall that we are also interested in finitely generated modules.
Given a Sylvester matrix rank function, Li [32] provides a way to extend the induced
dimension function to finitely generated modules so it verifies some favourable prop-
erties, as those listed in definition 7.3.2.

Definition 7.3.3. Given a Sylvester module rank function dim, we define its ex-
tension to finitely generated modules M as follows.

dimM = inf{dim M̃ : M̃ is finitely presented and M is a quotient of M̃}.

The following lemma reflects that this is a natural extension for the type of
module rank functions we are interested in.

Lemma 7.3.4. Let R ↪−→ D be a division R-ring. We consider the Sylvester module
rank function dim defined by

dimM = dimDD ⊗
R
M.

Then the extension d̃im to finitely generated modules M verifies that

d̃imM = dimDD ⊗
R
M.
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This exhibits that in order to study these dimension functions, it suffices to
restrict ourselves to the study of finitely presented modules. However, for other
Sylvester rank functions, their extensions are not as easy to depict. Before describing
more precise examples about this phenomena, we introduce the useful notion of
convergence in Sylvester rank functions.

Definition 7.3.5. Let dim1 and dim2 be Sylvester module rank functions on R. We
write dim1 ≥ dim2 if, for every finitely presented R-module M , dim1M ≥ dim2M .

By proposition 7.2.9, we can say that the universal division R-ring of fractionsDR
is the the division R-ring of fractions which induces the minimal Sylvester module
rank function dimR.

Definition 7.3.6 (Convergence). Let dim, dimi be two Sylvester module rank func-
tions on R. We write rk = limi→∞ rki if, for every finitely presented R-module M ,
dimM = limi→∞ dimiM .

Equivalently, one could define the previous notion of convergence by setting a
right topology in the collection of Sylvester matrix rank functions. Precisely, we
denote by P(R) the collection of Sylvester matrix rank functions on R and we view
P(R) as a subspace of the space of real-valued functions on matrices, RMat(R). This
bigger space is endowed with the topology of pointwise convergence. Then P(R) is
a compact convex subset of RMat(R).

There are many interesting problems, for example, in the surroundings of Lück
approximation conjectures, which can be rephrased, and generalised, in terms of
convergence principles of certain Sylvester matrix rank functions.

Lemma 7.3.7. Let M be finitely generated R-module and suppose that dim =
limi→∞ dimi. Then

dimM ≥ lim sup
i→∞

dimMi.

If, in addition, dimi ≥ dim for all i, then

dimM = lim
i→∞

dimMi, for all finitely generated R-modules M .

Proof. Let W be the set of all finitely presented R-modules M̃ such that M is a
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quotient of M̃ . Then

dimM = inf
M̃∈W

dim M̃

= inf
M̃∈W

lim sup
i→∞

dimi M̃

≥ lim sup
i→∞

inf
M̃∈W

dimi M̃

= lim sup
i→∞

dimiM,

and the first part of the statement follows. If, in addition, dimi ≥ dim, then it is
clear that

lim inf
i→∞

dimiM ≥ dimM,

so it follows that limi→∞ dimiM exists and equals dimM .

7.4 The ring DFp[[F]]

Our next aim is to study concrete convergence of Sylvester module rank functions
of Fp[[F]], following the treatment of [26, Section 3.1].

Proposition 7.4.1. Let F = N1 > N2 > · · · be a chain of open normal subgroups
with trivial intersection. Let M be a finitely generated Fp[F]]-module. Then

dimFp[[F]] M = lim
i→∞

dimFp

(
Fp[F/Ni] ⊗

Fp[[F]]
M

)
|F : Ni|

.

Proof. Let N be a normal open subgroup of F, we define the Sylvester module rank
function dimFp[F/N] on Fp[[F]] by

dimFp[F/N] M =

dimFp

(
Fp[F/N] ⊗

Fp[[F]]
M

)
|F : N|

.

We claim that
dimFp[F/N] ≥ dimFp[[F]] . (7.11)

In fact, let M be a finitely generated Fp[[F]]-module with

dimFp[[F]] = dimDFp[[F]]
DFp[[F]] ⊗

Fp[[F]]
M = k.
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Then there exist k elements {m1, . . . ,mk} ⊆M such that {1⊗m1, . . . , 1⊗mk} are
DFp[[F]]-linearly independent in DFp[[F]] ⊗

Fp[[F]]
M . In particular, the Fp[[F]]-submodule

N spanned by {m1, . . . ,mk} is free of rank k. So Fp[F/N] ⊗
Fp[[F]]

N ∼= Fp[F/N]k is a

Fp-subspace of Fp[F/N] ⊗
Fp[[F]]

M of dimension k|F : N|, implying that

dimFp[F/N](M) ≥
dimFp

(
Fp[F/N] ⊗

Fp[[F]]
N

)
|F : N|

= k = dimFp[[F]] M.

This proves (7.11).

Furthermore, if M is a finitely presented Fp[[F]]-module, then [24, Theorem 1.4]
implies that

dimFp[[F]] M = lim
i→∞

dimFp[F/Ni] M. (7.12)

With (7.11) and (7.12), we can apply lemma 7.3.7 to conclude that for all finitely
generated Fp[[F]]-module M ,

dimFp[[F]] M = lim
i→∞

dimFp[F/Ni] M.

Given a closed H ≤ F, the next proposition will allow us to view DFp[[H]] inside
DFp[[F]].

Proposition 7.4.2. Let H be a closed finitely generated subgroup of F. The fol-
lowing holds.

(a) Let DH be the division closure of Fp[[H]] in DFp[[F]]. Then DH and DFp[[H]] are
isomorphic Fp[[H]]-rings.

(b) If M is a finitely generated Fp[[H]]-module, then

dimFp[[H]] M = dimFp[[F]]

(
Fp[[F]] ⊗

Fp[[H]]
M

)
.

(c) If H is open, then
dimDH

DFp[[F]] = |F : H|.

(d) If H is open, then
DFp[[F]]

∼= Fp[[F]] ⊗
Fp[[H]]

DFp[[H]]

canonically as (Fp[[F]],Fp[[H]])-bimodules.
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Proof. By corollary 4.5.8, the pro-p group H is free. Let F = N1 > N2 > · · · be a
chain of open normal subgroups with trivial intersection. DefineHi = Ni

⋂
H. Then

H = H1 > H2 > · · · is a chain of open normal subgroups with trivial intersection.
Let M be a finitely generated Fp[[H]]-module.

(a) By proposition 7.4.1,

dimFp[[H]] M = lim
i→∞

dimFp

(
Fp[H/Hi] ⊗

Fp[[H]]
M

)
|H : Hi|

. (7.13)

There is an injection of finite p-groups H/Hi ↪−→ F/Ni and the image can be iden-
tified with HNi/Ni. This yields to an isomorphism

(F/Ni)/(HNi/Ni) ∼= F/HNi.

Therefore, considering Fp[[F/Ni]] as a right Fp[[H]]-module, we obtain that

Fp[F/Ni] ∼= Fp[H/Hi]
|F:HNi|

as right Fp[[H]]-modules. So

dimFp

(
Fp[H/Hi] ⊗

Fp[[H]]
M

)
=

dimFp

(
Fp[F/Ni] ⊗

Fp[[H]]
M

)
|F : HNi|

.

Combining the latter equation; the application of proposition 7.4.1 to the finitely
generated Fp[[F]]-module Fp[[F]] ⊗

Fp[[H]]
M ; and (7.13), we conclude that

dimFp[[F]]

(
Fp[[F]] ⊗

Fp[[H]]
M

)
= lim

i→∞

dimFp

(
Fp[F/Ni] ⊗

Fp[[F]]
(Fp[[F]] ⊗

Fp[[H]]
M)

)
|F : Ni|

= lim
i→∞

dimFp

(
Fp[F/Ni] ⊗

Fp[[H]]
M

)
|F : Ni|

= lim
i→∞

dimFp

(
Fp[H/Hi] ⊗

Fp[[H]]
M

)
|H : Hi|

= dimFp[[H]] M.
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On the other hand, since DH is the division closure of Fp[[H]] in DFp[[F]]; then

dimDFp[[H]]

(
DFp[[H]] ⊗

Fp[[H]]
M

)
= dimFp[[H]] M

= dimFp[[F]]

(
Fp[[F]] ⊗

Fp[[H]]
M

)

= dimDFp[[F]]

DFp[[F]] ⊗
Fp[[F]]

(
Fp[[F]] ⊗

Fp[[H]]
M

)
= dimDFp[[F]]

(
DFp[[F]] ⊗

Fp[[H]]
M

)

= dimDH

(
DH ⊗

Fp[[H]]
M

)
.

By Cohn’s criterion (proposition 7.2.9), the division Fp[[H]]-rings of fractions DH

and DFp[[H]] are isomorphic.

(b) This was verfied during the proof of (a).

(c) Given a Fp[[F]]-module M , there are canonical isomorphisms of Fp-vector
spaces Fp[H/Hi] ⊗

Fp[[H]]
M ∼= Fp ⊗

Fp[[Hi]]
M and Fp[F/Ni] ⊗

Fp[[F]]
M ∼= Fp ⊗

Fp[[Ni]]
M .

Moreover, since H is open then by compactness there exists N such that, for all
i ≥ N , Ni ⊆ H and hence Ni = Hi. Now using the latter observations and (a) we
get

dimDH
DFp[[F]] = dimFp[[H]]DFp[[F]]

= lim
i→∞

dimFp

(
Fp[H/Ni] ⊗

Fp[[H]]
DFp[[F]]

)
|H : Ni|

= lim
i→∞

dimFp

(
Fp ⊗

Fp[[Ni]]
DFp[[F]]

)
|H : Ni|
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= |F : H| lim
i→∞

dimFp

(
Fp ⊗

Fp[[Ni]]
DFp[[F]]

)
|F : Ni|

= |F : H|
dimFp

(
Fp[F/Ni]] ⊗

Fp[[F]]
DFp[[F]]

)
|F : Ni|

= |F : H| dimFp[[F]]DFp[[F]] = |F : H|.

(d) We first prove this when we additionally have that H is normal. In
this case, the automorphism-actions of F on DF, induced by conjugation, leave the
subring Fp[[H]] invariant; and, then, F also normalizes its division closure DH in
DN . As a consequence, the Fp subspace FDH spanned by all the products {f ·d : f ∈
F, a ∈ DH} is a subring of DFp[[F]]. Moreover, it is clear that dimDH

(FDH) ≤ |F :
H| <∞. This implies that FDH is a domain and a finite dimensional DH-algebra;
hence it is a division ring. Therefore, since FDH contains Fp[[F]] , FDH = DFpF.
We deduce that the canonical map of (Fp[[F]],DH)-bimodules

α : Fp[[F]] ⊗
Fp[[H]]

DH −→ DFp[[F]]

can be read as a surjective homomorphism of right DH-modules of the same finite
dimension by (b) and (c). So α is an isomorphism.

Having verified the property of (d) for open normal HEo F, we want to extend
this property to all open H ≤o F by induction on the index |F : H|. If |F : H| ≤ p,
then HEo F satisfies the property. If |F : H| > p, then there exists an open normal
H ≤o H1 Eo F with |F : H1| = p. By the inductive hypothesis,

DFp[[F]]
∼= Fp[[F]] ⊗

Fp[[H]]
DH
∼= Fp[[F]] ⊗

Fp[[H1]]

(
Fp[[H1]] ⊗

Fp[[H]]
DH

)
∼= Fp[[F]] ⊗

Fp[[H]]
DFp[[H]],

with canonical isomorphisms of (Fp[[F]],DH)-modules in each step. The induction
is complete.

From now on, we can identify DH and DFp[[H]] as Fp[[H]]-rings without explicit
mention of it.

7.5 The ring DFpG

There are some convenient features about group ringsKG of locally indicable groups.
A result of Higman says that these rings are domains and that (KG)× is K∗ × G.
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We will talk about a specific type of division rings of fractions of these group rings,
introduced by Hughes.

Definition 7.5.1. Let Γ be a group and let KΓ ↪−→ D be a division KΓ-ring of
fractions with the following property. For every finitely generated S E T ≤ Γ, such
that T = S o Z, where Z ≤ T is generated by t ∈ T , we have that∑

i∈Z

KS ti (7.14)

is a direct sum of KS-submodules of KT ⊆ D. Then we say that D is Hughes-free.

The following is proven in [23].

Theorem 7.5.2 (Hughes). Let Γ be a locally indicable group. There exists at most
one Hughes-free division KΓ-ring of fractions up to KΓ-isomorphism.

The following result is a consequence of [27, Theorem 1.1.].

Theorem 7.5.3 (Jaikin-Zapirain). Let G be a residually-(torsion-free nilpotent)
group and let E be a division ring. Then there exists the universal division EG-ring
of fractions DEG and it is Hughes-free.

As a consequence of the last two results, we can prove that a priori different
FpG-division rings of fractions are FpG-isomorphic and universal, as the following
corollary reflects. Let G be an abstract subgroup of F, then G is residually-(torsion-
free nilpotent) by proposition 4.3.7 and theorem 7.5.3 applies.

Corollary 7.5.4. Let F be a free pro-p group and let G ≤ F be a subgroup.

1. Let D1 be the division closure of FpG in DFp[[F]].

2. Take any group order ≤ on G and let D2 be the division closure of FpG in the
corresponding Fp((G)).

Then D1 and D2 are both isomorphic, as FpG-rings, to DFpG.

We divide the verification of this corollary in two lemmas. The first lemma will
correspond to the verification of the first part and relies on an improvement of the
Hughes-freeness criterion (theorem 7.5.2) that is due to Sánchez [46, Theorem 6.3].
An alternative approach of the first part of corollary 7.5.4 based on Cohn’s criterion
(proposition 7.2.9) is taken in [26, Proposition 3.4].
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Lemma 7.5.5. Let F be a free pro-p group of finite rank and let G ≤ F be a
subgroup. Let DG be the division closure of FpG in DFp[[F]]. Then DG is Hughes-
free.

Proof. Since FpG has a Hughes-free division FpG-ring of fractions (theorem 7.5.3),
then in order to conclude thatDG is isomorphic toDFpG (and hence that it is Hughes-
free), it suffices to ensure by [46, Remark 6.4(a)] the following property: for all
finitely generated T ≤ G, there exists a subgroup N0 ET with T = 〈N0, t〉 ∼= N0 oZ
such that (7.14) is satisfied; or, in other words, such that the canonical map of
(FpT,DN0)-bimodules

δ : Fp[T ] ⊗
FpN0

DN0 ↪−→ DT (7.15)

is injective.

Consider the pro-p group T . It is a closed subgroup of F. By corollary 4.5.8,
it is free of positive rank. As a consequence, there is a continuous epimorphism
f : T −→ Zp. Its kernel K is a closed subgroup of T . We consider K = K

⋂
T .

Notice that T/K ∼= Zm for some m ≥ 1.

We want to prove that the canonical map of (FpT,DK)-bimodules

α : Fp[T ] ⊗
FpK
DK −→ DT (7.16)

is injective.

Recall that FpT is a free right FpK-module with a free basis given by a choice
{ci} ⊆ T of representatives of the left-cosets ofK in T . As a consequence, FpT ⊗

FpK
DK

is a free right DK-module of basis {ci⊗ 1}. Similarly, let H be an open subgroup of
T . Then Fp[[T ]] is a free (profinite) right Fp[[H]]-module with basis given by a choice
of left coset representatives {c′i} of H in T . In particular, viewing Fp[[T ]] ⊗

Fp[[H]]
DH

as a right DH-module; the set {c′i ⊗ 1} is DH-linearly independent.

Let us take some 0 6= x =
∑n

i=1 ci ⊗ di ∈ FpT ⊗
FpK
DK , where n ≥ 1 and

0 6= di ∈ DK . First of all, since K = K
⋂
T , the elements {ci} represent different

left-cosets of K in T . For these fixed c1, . . . , cn; there must exist an open subgroup
H ≤ T such that the elements {ci}n1 represent different left-cosets of H in T .

There is a commutative diagram of canonical homomorphisms of (FpT,DK)-
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bimodules

FpT ⊗
FpK

DK DT

Fp[[T ]] ⊗
Fp[[H]]

DH DT ,

α

β

γ

where the map γ is an isomorphism by proposition 7.4.2.

By the choice of H, β(x) =
∑n

i=1 ci ⊗ di 6= 0. So, due to the commutativity of
the above diagram, α(x) 6= 0; hence α is injective.

We select any K ≤ N E T such that T/N ∼= Z.
There is a commutative diagram of canonical homomorphisms of (FpT,DK)-

bimodules

FpN ⊗
FpK

DK DN

FpT ⊗
FpK
DK DT ,

α1

β1

α

where α has been proven to be injective; and β1 is injective because FpN is a direct
summand of FpT as right FpK-modules. It follows that α1 is injective.

We denote DKN to be the Fp-linear span of elements of the form ab with a ∈ DK
and b ∈ N . This is a subring of DT because the automorphism-actions of N on
DN , induced by conjugation, leave the subring FpK invariant; and, then, N also
normalizes its division closure DK in DN .

We claim that DKN is an Ore domain.

Notice that there is a natural ring homomorphism from the crossed product FpK∗
N/K −→ DKN . By the injectivity of α1, the previous is, in fact, an isomorphism.
Since DKN is a domain and FpK ∗N/K is Noetherian, due to N/K being abelian;
then DKN is an Ore domain by Goldie’s theorem (proposition 7.1.4). Since DKN ↪−→
DN is a division FpN -ring of fractions of the Ore domain DKN ; then, by (7.2.8),
DN is isomorphic to Qore(DKN).

Observe that DKN can also be seen as the isomorphic image of the (FpN,DK)-
bimodule FpN ⊗

FpK
DK under α1. There is a commutative diagram of (FpN,DK)-
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bimodules
FpT ⊗

FpK
DK

FpT ⊗
FpN
DKN DT ,

α∼=
α2

from which we deduce that α2 is injective. Recall that ⊗
DKN

Qore(DKN) is an exact

functor, so the induced map

α3 :

(
FpT ⊗

FpN
DKN

)
⊗
DKN

Qore(DKN) −→ DT ⊗
DKN

Qore(DKN) ∼= DT

is injective, too. We recall that Qore(DKN) ∼= DN canonically; so we have an
injective canonical homomorphism of (FpT,DN)-bimodules

α4 : Fp[T ] ⊗
FpN
DN ↪−→ DT . (7.17)

This proves that we can take N0 = N on (7.15) and the proof is complete.

Remark 7.5.6. In the previous lemma, the use of the criterion of J. Sánchez to es-
tablish the Hughes-free property of DG was crucial. It might be tempting to directly
prove this property for any pair (S, T ), with S E T E G and T/S ∼= Z; by reduc-
ing it to the “pro-p Hughes-free property” that was established in proposition 7.4.2.
However, one may not be able to separate S and T with pro-p closed subgroups.
In other words, it may happen that T ⊆ S. For instance, one can take F = Zp;
a = 1 +

∑∞
k=0 p

2k+2; b = 1 +
∑∞

k=0 p
2k+1; S = 〈a〉; and T = 〈a, b〉. It is clear that

a, b are Z-linearly independent in Zp, so T/S ∼= Z. Furthermore, S = T = F.

Lemma 7.5.7. Let G be an orderable group, with a choice of ≤, and let DG be the
division closure of FpG in the division FpG-ring Fp((G)). Then for any H ≤ G, the
canonical map of (FpG,FpH)-bimodules

FpG ⊗
FpH
DH −→ DG

is injective.

Proof. The canonical map α : FpG ⊗
FpH
DH −→ DG is defined by a⊗ b 7→ ab, for all

a ∈ FpG, b ∈ DH . We take a collection of representatives {ti : i ∈ I} of the left
cosets of H in G. This way, G is equal to the disjoint union ti∈ItiH and FpG admits,
as right FpH-module, the decomposition FpG = ⊕i∈ItiFpH. So FpG ⊗

FpH
DH admits,
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as right DH-vector space, the basis {ti ⊗ 1 : i ∈ I}. We gave a description of the
inverses of elements of Fp((G)) in (7.8). In particular, it implies that any element
of DH is supported in H. Let us take x =

∑
i∈I ti ⊗ xi ∈ FpG ⊗

FpH
DH , whose image

equals α(x) =
∑

i∈I tixi. If x 6= 0, then xj 6= 0 for some j. Write xj =
∑

h∈H λh h,
with λh ∈ Fp and some λh0 6= 0. Since tixi is supported in the coset tiH, then the
coefficient of the power series

∑
i∈I tixi corresponding to tjh0 is equal to λh0 6= 0.

So α(x) 6= 0 and α is injective.

With these two lemmas, corollary 7.5.4 follows directly from previous results.

Proof of corollary 7.5.4. By proposition 4.3.7, G is residually-(torsion-free nilpo-
tent) and hence, by theorem 7.5.3, there exists a universal division FpG-ring of
fractions DFpG and this is Hughes-free. Both D1 and D2 are Hughes-free division
FpG-rings by lemmas 7.5.5 and 7.5.7. We deduce by theorem 7.5.2 that these division
FpG-rings are isomorphic, since all of them are Hughes-free.

Corollary 7.5.8 (Strong Hughes-free property). Let G be a residually-(torsion-free
nilpotent) group. Then DFpG is strongly Hughes-free, this is, for any H ≤ G, the
canonical map of (FpG,FpH)-bimodules

FpG ⊗
FpH
DFpH −→ DFpG

is injective.

Proof. By proposition 2.2.9, G is orderable. After taking an ordering ≤ on G, we
know from lemma 7.5.7 that the division closureDG of FpG in Fp((G)) is Hughes-free.
By theorem 7.5.2 and theorem 7.5.3, DG and DFpG are isomorphic FpG-rings. There
is a commutative diagram of canonical homomorphisms of (FpG,FpH)-bimodules

FpG ⊗
FpH
DH FpG ⊗

FpH
DFpH

DG DFpG,

α

∼=

β

∼=

where the horizontal arrows are isomorphisms. We already verified in lemma 7.5.7
that α is injective. So β must be injective, too.

We finish this section with a formula that allow us to estimate dimensions of
FpG-modules by approximating it with the aid of finite-index subgroups of G.



88 CHAPTER 7. UNIVERSAL DIVISION RINGS OF FRACTIONS

Proposition 7.5.9 (Lück-type approximation). Let G be an abstract finitely gen-
erated subgroup of a free pro-p group of finite rank F. Let F = N1 > N2 > . . . be a
chain of open normal subgroups of F with trivial intersection. Define Gj = G

⋂
Nj.

Then for every finitely generated FpG-module M ,

dimFpGM = lim
i→∞

dimFp

(
Fp ⊗

Fp[Gi]
M

)
|G : Gi|

.

Proof. Let DG be the division closure of FpG in DFp[[F]]. By corollary 7.5.4, DG and
DFpG are isomorphic as FpG-rings. So

dimFpGM = dimDG
(DG ⊗

FpG
M).

In addition,

dimDG
(DG ⊗

FpG
M) = dimDFp[[F]]

(DFp[[F]] ⊗
FpG

M) = dimFp[[F]](Fp[[F]] ⊗
FpG

M).

Since there is a canonical isomorphism G/Gi −→ F/Ni, we have that

Fp ⊗
FpGi

M ∼= Fp[G/Gi] ⊗
FpG

M ∼= Fp[F/Ni] ⊗
FpG

M ∼= Fp[F/Ni] ⊗
Fp[[F]]

(
Fp[[F]] ⊗

FpG
M

)
.

Thus, by proposition 7.4.1,

dimFpGM = lim
i→∞

dimFp Fp[F/Ni] ⊗
Fp[[F]]

(
Fp[[F]] ⊗

FpG
M

)
|F : Ni|

= lim
i→∞

dimFp

(
Fp ⊗

Fp[Gi]
M

)
|G : Gi|

and the conclusion follows.

7.6 Examples of DFpG-torsion-free modules

The importance of the existence of a universal division rings of fractions of a ring
R, denoted by DR, is that it yields to a dimension theory of certain R-modules by
extending them to scalars in DR. However, we need our DR-modules to be torsion-
free for an statement of the type “surjective homomorphisms between R-modules of
the same dimension are isomorphisms”.

We start by defining the concept of DR-torsion-free modules. We then give some
general methods to construct them; and, finally, we give some explicit families of
DFpG-torsion-free modules.
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Definition 7.6.1. Let R ↪−→ D be an embedding of the ring R into a division ring
D. Let M be a R-module. We say that M is D-torsion-free if the canonical map
M −→ D ⊗

R
M is injective.

The following provides a more flexible criterion for verifying whether a module
is torsion-free.

Lemma 7.6.2 (Characterisations of torsion-freeness). Let M be a FpG-module.
Then M is DFpG-torsion-free if and only if there exists a DFpG-module N and an
injective homomorphism of FpG-modules M ↪−→ N .

We leave stated other two lemmas which are not hard to prove. We refer to [26,
Section 4.1] for details.

Lemma 7.6.3. Let D be a division R-ring and let M be a D-torsion-free R-
module of finite D-dimension. Let L be a non-trivial R-submodule of M . Then
dimD(M/L) < dimD(M). Moreover, if dimD L = 1, then dimD(M/L) = dimDM−1.

Lemma 7.6.4. Let D be a division R-ring and let 1 → M1 → M2 → M3 → 0 be
an exact sequence of R-modules. Assume that

1. M1 and M3 are D-torsion-free;

2. dimDM1 and dimDM3 are finite; and

3. dimDM1 + dimDM3 = dimDM2.

Then M2 is also D-torsion-free.

We denote by H ≤ G subgroups of a free pro-p group F. we alternatively classify
what is it to be torsion free.

Lemma 7.6.5. Let M be a FpH-module. Then M is DFpH-torsion-free if and only
if FpG ⊗

FpH
M is DFpG-torsion-free.

Proof. Suppose that M is DFpH-torsion-free. Then the canonical map

M −→ DFpH ⊗
FpH

M

is injective. Notice that FpG is a free right FpH-module. Thus the canonical map

FpG ⊗
FpH

M
α−→ FpG ⊗

FpH

(
DFpH ⊗

FpH
M

)
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is also injective. The right-hand side FpG-module is canonically isomorphic to(
FpG ⊗

FpH
DFpH

)
⊗
FpH

M.

We want to embed this FpG-module into a DFpG-module. To do so, we recall the
strong Hughes-free property of corollary 7.5.8, which says that the canonical map
of (FpG,FpH)-bimodules

FpG ⊗
FpH
DFpH −→ DFpG

is injective. Since DFpG is a free right DFpH-module and DFpH is a free right FpH-
module, we deduce that both FpG ⊗

FpH
DFpH and DFpG are free right FpH-modules.

It follows that the canonical map of FpG-modules(
FpG ⊗

FpH
DFpH

)
⊗
FpH

M
β−→ DFpG ⊗

FpH
M.

Composing α and β, we construct an injective FpG-homomorphism between FpG ⊗
FpH

M and the DFpG-module DFpG ⊗
FpH

M .

By lemma 7.6.2, we conclude that FpG ⊗
FpH

M is a DFpG-torsion-free module.

Proposition 7.6.6. Let H ≤ G ≤ F and let A be a maximal abelian subgroup of
H. Then the FpG-module

FpIGH
/
FpIGA

is DFpG-torsion-free.

Proof. Omitted. It is proven in [26, Proposition 4.8].

This directly leads to the following consequence.

Corollary 7.6.7. Let u ∈ G. Suppose that the cyclic group 〈u〉 that u generates is
maximal abelian in H. Then the FpG-module

FpIGH
FpG(u− 1)

is DFpG-torsion-free.

The next proposition produces torsion-free modules that have the form of aug-
mentation ideals of amalgamated products with cyclic amalgam.
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Proposition 7.6.8. Let H1 and H2 be two finitely generated subgroups of a finitely
generated free pro-p group F. Consider A = H1

⋂
H2 and suppose that A is a

maximal abelian subgroup of H1. Let G = 〈H1, H2〉 and let

J = {(x,−x) : x ∈ FpIGA} ≤ FpIGH1
⊕ FpIGH2

.

Then the FpG-module

M =
FpIGH1

⊕ FpIGH2

J
is DFpG-torsion-free and

dimFpGM = dimFpH1 FpIH1 + dimFpH2 FpIH2 − 1.

Before giving the proof, we shall make an observation. If A is finitely torsion-
free abelian, as occurs in the previous proposition, then A ∼= Zn and the universal
division FpA-ring of fractions is the field of fractions of the commutative domain FpA.
Given a nontrivial finitely generated ideal I = (a1, . . . , an) of FpA, we see that the
Frac(FpA)-vector space Frac(FpA) ⊗

FpA
I can be generated by any 1⊗ ai with ai 6= 0.

In fact, if a1 6= 0, then 1⊗ai = a−1
1 a1⊗ai = a−1

1 ⊗a1ai = a−1
1 ai⊗a1 = a−1

1 ai (1⊗a1).
This implies that

dimFpA I = dimFrac(FpA) Frac(FpA) ⊗
FpA

I = 1. (7.18)

Proof of proposition 7.6.8. We consider the FpG-submodule of M defined by L =
(FpIGA ⊕ FpIGH2

)/J .

We want to apply lemma 7.6.4 to the short exact sequence 0 → L → M →
M/L→ 0 of FpG-modules.

Since L ∼= FpIGH2
≤ FpG, then it is DFpG-torsion-free and

dimFpG L = dimFpH2 FpIH2 .

By the observation (7.18), 1 = dimFpA FpIA = dimFpG FpIGA = dimFpG J . So it is
clear, by lemma 7.6.3, that

dimFpGM = dimFpG FpIGH1
+ dimFpG FpIGH2

− 1 = dimFpH1 FpIH1 + dimFpH2 FpIH2 − 1.

On the other side, the quotient M/L is isomorphic to FpIGH1
/FpIGA , which is

DFpG-torsion-free by proposition 7.6.6. Again, by lemma 7.6.3,

dimFpGM/L = dimFpG FpIGH1
− dimFpG FpIGA = dimFpH1 FpIH1 − 1.

Therefore, the short exact sequence 0 → L → M → M/L → 0 of FpG-modules
satisfies the requirements of lemma 7.6.4; and the conclusion follows.
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We now turn to the study of torsion-free modules that have the form of an
augmentation ideal of a cyclic HNN extension.

Our point is to prove that certain augmentation ideals, which may have the form

Rm/R(u1, . . . , um)

for some group ring R; are DR-torsion-free. When extending this R-module with co-
efficients in a bigger ring, some ui may become invertible. The following elementary
lemma simply studies this scenario, which we shall encounter many times.

Lemma 7.6.9. Let R be a unital ring and M be a R-module. Let m0 ∈M and let
u be a unit of R. Then there is an isomorphism of R-modules

γ :
M ⊕R
(m0, u)

−→M

given by
γ([m, r]) = m− ru−1m0,

with inverse
γ−1(m) = [m, 0].

We can now state the last proposition of this section. The proof is relatively long
and, for convenience, it is divided in several intermediate lemmas.

Proposition 7.6.10. Let H ≤ G be subgroups of F. Suppose that we can write
G = N o (t) = 〈N, t〉 for some H ≤ N ≤ G and some t ∈ G. Let u ∈ H be
an element which generates a maximal abelian group 〈u〉 in H and suppose that
v = tut−1 ∈ H. Then the FpG-module M defined by

M =
FpIGH ⊕ FpG

FpG (v − 1− t(u− 1), v − 1)

is DFpG-torsion-free.

Proof. Since G ∼= N o (t), we can write FpG ∼= FpN [t±1, σ] as a skew-polynomial
ring in one indeterminate t with coefficients in FpN . Here σ is an automorphism of
the ring DFpN such that σ(FpN) = FpN , since it is induced from the automorphism
of conjugation-by-t in the subring FpN of FpG.

Lemma 7.6.11. Let R = DFpN [t±, σ]. Then R is a (right) Ore domain and its
(right) Ore division ring of fractions Qore(R) is isomorphic to DFpG.
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To check this lemma, we start noting that R is a domain. In addition, by the
Hilbert’s basis theorem, the ring R is also Noetherian; and hence, by Little Goldie’s
theorem 7.1.4, R is an Ore domain. We want to compare the resulting Ore division
R-ring of fractions R ↪−→ Qore(R) with DFpG. By corollary 7.5.4, we can identify DFpG

and DFpH with the division closures of FpG and FpH, respectively, in Fp((G)). In this
setting, there is a natural monomorphism DFpN ↪−→ DFpG. We want to extend this
to a monomorphism of rings R ↪−→ DFpG. Observe that, as (FpG,FpH)-bimodules,
there is a canonical injection

R = DFpN [t±, σ] ∼= FpG ⊗
FpN
DFpN ↪−→ DFpG

according to lemma 7.5.7. In addition, we can observe that this map is a ring
homomorphism. So we have an ring monomorphism ι : R ↪−→ DFpG. Since DFpG is a
division ring, we have, by the universal property (7.5) of the embedding ιore : R ↪−→
Qore(R), a commutative diagram of ring homomorphisms

R Qore(R)

DFpG,

ιore

ι
ι̂ (7.19)

where ι and ιore are injective.

Moreover, R contains FpN [t±1, σ] = FpG, so ι : R ↪−→ DFpG is a division R-ring
of fractions. Arguing as in lemma 7.2.8, ι̂ : Qore(R) −→ DFpG is an isomorphism of
R-rings. So lemma 7.6.11 is proven.

There is a division R-ring R ↪−→ DFpN((t±, σ)), where the latter is the ring of Skew
Laurent series. The universal property of Qore(R) and the isomorphism Qore(R) ∼=
DFpG of lemma 7.6.11 induces a commutative diagram of rings

R DFpG

DFpN((t±, σ)).

ιore

(7.20)

In particular, we can upgrade this diagram to one of the following form

FpG DFpN [t±1, σ]

DFpG DFpN((t±1, σ)),

(7.21)
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where all the arrows are injective. This induces the following commutative diagram
of FpG-modules

FpIGH DFpN [t±1, σ] ⊗
FpG

FpIGH

DFpG ⊗
FpG

FpIGH DFpN((t±1, σ)) ⊗
FpG

FpIGH

γ

α

β

δ
(7.22)

Lemma 7.6.12. The map β of the diagram (7.22) is injective.

We claim that both γ and δ are injective. On the one hand, the FpG-module FpIGH
is a submodule of FpG, so it is DFpG-torsion-free and γ is injective. Furthermore,
DFpN((t±1, σ)) is a free right DFpG-module, since DFpG is a division ring; so DFpG is a
direct summand of DFpN((t±1, σ)) as a right FpG-module. Hence δ is injective. Since
the diagram (eq. (7.22)) is commutative, β must be injective and lemma 7.6.12 is
proven.

We will now view this injective map β in another diagram.

The commutative diagram of rings (7.21) induces the following commutative
diagram of FpG-modules

M DFpN [t±1, σ] ⊗
FpG

M

DFpG ⊗
FpG

M DFpN((t±1, σ)) ⊗
FpG

M

γ′

α′

β′

δ′
(7.23)

Now let R be either DFpN [t±1, σ] or DFpN((t±1, σ)). Observe that

R ⊗
FpG

M

(
R ⊗

FpG
FpIGH

)
⊕R

R (v−1−t(u−1),v−1)
R ⊗

FpG
FpIGH ,

∼= γ∼=

where both arrows are isomorphisms of Fp-modules and γ is given by lemma 7.6.9,
since v − 1 is invertible in DFpN and so also in R. We now integrate these isomor-
phisms γ into the commutative diagram of (7.23) as follows.
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M DFpN [t±1, σ] ⊗
FpG

M DFpN [t±1, σ] ⊗
FpG

FpIGH

DFpG ⊗
FpG

M DFpN((t±1, σ)) ⊗
FpG

M DFpN((t±1, σ)) ⊗
FpG

FpIGH

γ′

α′

β′

γ1
∼=

β

δ′ γ2
∼=

(7.24)

We already know, from lemma 7.6.12, that β is injective. So β′ must be injective
since γ1 and γ2 are both isomorphisms.

We claim that α′ is also injective. If we proved this, then, by inspecting again the
commutative diagram (7.24), γ′ would also be injective and hence we could conclude
that M is DFpG-torsion-free, as we want.

So it rests to prove the following lemma.

Lemma 7.6.13. The map α′ of the diagram (7.24) is injective.

We will prepare a bit the ground before checking this lemma.

By assumption, 〈u〉 is a maximal abelian subgroup of H. By corollary 7.6.7, the
FpN -module

M0 =
FpINH

FpN(u− 1)

is DFpN -torsion-free. This implies that the canonical map

M0 −→ DFpN ⊗
FpN

M0

is injective. This translates into the following equality of subsets of DFpN ⊗
FpN

FpINH ,

1 ⊗
FpN

FpINH
⋂
DFpN ⊗

FpN
(u− 1) = 1 ⊗

FpN
FpN(u− 1). (7.25)

From this, we want to prove the following lemma. We denote H tn = tnHt−n,
which are also subgroups of N having 〈utn〉 as maximal abelian subgroup.

Lemma 7.6.14. For all n ∈ Z, we have the following equality of subsets of DFpN ⊗
FpN

FpIG,
1 ⊗

FpN
FptnINH

⋂
DFpN ⊗

FpN
tn(u− 1) = 1 ⊗

FpN
FptnN(u− 1). (7.26)
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The same way we had the equality (7.25), we can derive, for the same reasons,

1 ⊗
FpN

FpINHt−n

⋂
DFpN ⊗

FpN
(ut
−n − 1) = 1 ⊗

FpN
FpN(ut

−n − 1). (7.27)

Notice that FpIG has a right 〈t〉-module structure by multiplication. This induces
a right 〈t〉-module structure on DFpN ⊗

FpN
FpIG. Since N EG, then t normalises N .

We have the equations of subsets of DFpN ⊗
FpN

FpIG:(
1 ⊗

FpN
FpN(u− 1)

)
tm = 1⊗ Fp tmN(ut

−m − 1),

and (
1 ⊗

FpN
FpINH

)
tm = 1⊗ Fp tmIHt−m (ut

−m − 1).

As a consequence, applying the multiplication-by-tn automorphism of DFpN ⊗
FpN

FpIG
to the equation (7.27); we get (7.26).

Notice the following decomposition of FpN -modules

FpIGH = ⊕n∈Z Fp tnINH ,

which yields to the following decomposition of Fp-vector spaces

DFpN ⊗
FpN

FpIGH ∼= ⊕n∈ZDFpN ⊗
FpN

Fp tnINH .

Lemma 7.6.15. We have the following equation of subsets of DFpN ⊗
FpN

FpIGH ,

1 ⊗
FpN

FpIGH
⋂
DFpN ⊗

FpN
FpG(v− 1− t(u− 1)) = 1 ⊗

FpN
FpG(v− 1− t(u− 1)). (7.28)

Let us take an element w that belongs to the left-hand side. This element will
have the form

w =

n2∑
k=n1

ck ⊗ tk(v − 1− t(u− 1)), for some ck ∈ DFpN ,

and will also belong to 1 ⊗
FpN

FpIGH . We rewrite

w = cn1⊗ tn1(v−1)+

n2∑
k=n1+1

(
ck ⊗ tk(v − 1)− ck−1 ⊗ tk(u− 1)

)
+cn2⊗ tn2+1(u−1).
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Since w ∈ 1 ⊗
FpN

FpIGH , we can look at the highest power tn2+1 to deduce that

cn2 ⊗ tn2+1(u− 1) ∈ 1 ⊗
FpN

Fptn2+1INH
⋂
DFpN ⊗

FpN
tn2+1(u− 1).

By (7.26), this implies that

cn2 ⊗ tn2+1(u− 1) ∈ 1 ⊗
FpN

Fptn2+1N(u− 1),

so cn2 ∈ FpN . Let n1 + 1 ≤ k ≤ n2. Inspecting again the expression of w at the
component with power tk, we have that

ck ⊗ tk(v − 1)− ck−1 ⊗ tk(u− 1) ∈ 1 ⊗
FpN

FptkINH .

If we knew that ck ∈ FpN , then it would follow that

ck−1 ⊗ tk(u− 1) ∈ 1 ⊗
FpN

FptkINH
⋂
DFpN ⊗

FpN
tk(u− 1).

By (7.26), this means that

ck−1 ⊗ tk(u− 1) ∈ 1 ⊗
FpN

FptnN(u− 1),

and this implies that ck−1 ∈ FpN .

We have proven that if ck ∈ FpN , for n1 < k ≤ n2, then ck−1 ∈ FpN . Since we
also know that cn2 ∈ FpN , an inductive argument gives that ck ∈ FpN for every k,
meaning that

w ∈ 1 ⊗
FpN

FpN [t±, σ] (v − 1− t(u− 1)) = 1 ⊗
FpN

FpG(v − 1− t(u− 1)).

This proves that

1 ⊗
FpN

FpIGH
⋂
DFpN ⊗

FpN
FpG(v − 1− t(u− 1)) ⊆ 1 ⊗

FpN
FpG(v − 1− t(u− 1)),

one inclusion of (7.28). The reverse inclusion is trivial, so equation (7.28) is proven.

Observe that there is a canonical isomorphism of FpN -modules

DFpN [t±, σ] ∼= DFpN ⊗
FpN

FpN [t±, σ] = DpN ⊗
FpN

FpG.

This extends to a canonical isomorphism of FpN -modules

ψ :

DFpN [t±, σ] ⊗
FpG

FpIGH

DFpN [t±, σ] ⊗
FpG

FpG(v − 1− t(u− 1))
−→

DFpN ⊗
FpN

FpIGH

DFpN ⊗
FpN

FpG(v − 1− t(u− 1))
.
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Lastly, there is a commutative triangle of canonical FpN -homomorphisms

FpIGH
FpG(v−1−t(u−1))

DFpN [t±,σ] ⊗
FpG

FpIGH

DFpN [t±,σ] ⊗
FpG

FpG(v−1−t(u−1))

DFpN ⊗FpN
FpIGH

DFpN ⊗FpN
FpG(v−1−t(u−1))

,

α′′
η

ψ

The canonical map η is injective due to (7.28). Since ψ is an isomorphism, this
implies that α′′ is injective. From the injectivity of α′′, the injectivity of α′ follows
directly. In fact, let (x, y) ∈ FpIGH⊕FpG belong to the kernel of α. Then 1⊗(x, y) =
c (v − 1− t(u− 1), v − 1) for some c ∈ DFpG. Notice that

1⊗ x = c⊗ (v − 1− t(u− 1)) ∈ 1 ⊗
FpG

FpIGH
⋂
DFpN [t±, σ] ⊗

FpG
(v − 1− t(u− 1)).

From the injectivity of α′′, this implies that

c⊗ (v − 1− t(u− 1)) ∈ 1 ⊗
FpG

FpG(v − 1− t(u− 1)),

so c ∈ FpG and then (x, y) ∈ FpG(v − 1− t(u− 1), v − 1). Thus α′ is injective and
lemma 7.6.13 is demonstrated. The proof of proposition 7.6.10 is complete.



Chapter 8

Homology and L2-Betti numbers

L2-Betti numbers have played an important role in the solution of many problems
in group theory. They were originally introduced by M. Atiyah in the context of
Riemannian manifolds in 1974. J. Dodziuk extended the notion of L2-Betti numbers
to free cocompact actions of discrete groups G on CW-complexes X in 1977. Later
on, in 1998, W. Lück extended this notion to arbitrary G-CW-complexes.

We shall not discuss here how these analytical and topological notions are de-
fined. We are more interested in the algebraic approach that P. Linnell [33] intro-
duced in 1993. If G is residually-(torsion-free nilpotent), we can combine Linnell’s
definition and a description of DFpG that is based on the work of A. Jaikin-Zapirain
and D. López-Álvarez [28] to redefine the L2-Betti numbers as follows.

Let k ≥ 0. We define the k-th L2-Betti number of G, denoted b(2)
k (G), by

b
(2)
k (G) = dimDQG

Hk(G;DQG).

By analogy, we can define in characteristic p the k-th mod p L2-Betti number
of G as

βmodp
k (G) = dimDFpG

Hk(G;DFpG).

We are most interested in βmod p
1 (G) and we will later see how these numbers are

related to the computations of dimensions of the previous chapter.

First, we discuss how the most elementary version of Betti numbers can be used
to study discrete groups.

Definition 8.0.1. Given a finitely generated group G, its first Betti number is

b1(G) = dimQ
(
G/[G,G]

)
⊗
Z
Q.

99
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If G is finitely generated, we understand very well the dimension of the previous
Q-vector space. Since G/[G,G] is a finitely generated abelian group, it must have
the form Zr ⊕ T , where T is finite (the torsion subgroup). Tensoring by Q forgets
about the torsion part of the Z-module G/[G,G], so(

G/[G,G]
)
⊗
Z
Q ∼= Qr.

In particular, r = b1(G). Interestingly, one can find b1(G) just by looking at certain
finite quotients of G.

Lemma 8.0.2. Let G be finitely generated and let p be a prime. Then b1(G) is the
biggest m such that G surjects (Cpk)m for every k ≥ 1.

We will see how one can exploit this observation to estimate Betti numbers of
dense subgroups of free pro-p groups. Later, this will have consequences for the first
L2-Betti number of a parafree group.

Lemma 8.0.3. Let G and G′ be finitely generated and let p be a prime. If there is
a group homomorphism h : G −→ G′p̂ of dense image, then b1(G) ≥ b1(G′).

Proof. Let m = b1(G′). Recall that, given a finite p-group, there is a correspondence
(4.4) between the epimorphisms G′ −→ P and the epimorphisms G′p̂ −→ P ; given
by f 7→ fp̂. Similarly, given any epimorphism g : G′p̂ −→ P , there is an epimorphism
g ◦f : G −→ P . This is because P is finite, g is continuous and f(G) is dense in G′p̂.

Therefore, every finite p-quotient of G′ is also a finite p-quotient of G′; hence
b1(G) ≥ b1(G′) by lemma 8.0.2.

In particular, the first Betti number is a pro-p invariant.

Corollary 8.0.4. If G and G′ are finitely generated and Gp̂
∼= G′p̂, then b1(G) =

b1(G′).

8.1 Estimations and computations of b(2)
1 (G)

In order to compute the L2-Betti numbers of a finitely presented residually finite
group, it suffices to have information about the Betti numbers of its finite-index
subgroups. This is precised by the following important result of Lück [37].

Theorem 8.1.1 (Lück’s Approximation Theorem). Let G be finitely presented and
let G = N1 > N2 > · · · > Nm > . . . be a sequence of finite-index normal subgroups
with

⋂
mNm = 1. Then

lim
m→∞

b1(Nm)

|G : Nm|
= b

(2)
1 (G).
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A favourable family of groups for which we can estimate or compute their L2-
Betti numbers are residually finite groups for which we have some structural infor-
mation of their finite-index subgroups in relation to their index. This is the case
of fundamental groups of some topological spaces, such as free groups and surface
groups.

Example 8.1.2 (First L2-Betti numbers of surface groups). Finitely generated free
groups Fn have b(2)

1 (Fn) = n− 1. If S is a closed surface of genus g ≥ 1, then

b
(2)
1 (π1(S)) = −χ(S) = 2g − 2.

We will use Lück’s approximation theorem to verify this. The case of Fn follows
from Schreier’s index-rank formula (theorem 2.0.1) and the fact that a b1(Fk) = k
for every k ≥ 1. Let Fn = N1 > N2 > · · · > Nm > . . . be a sequence of finite-
index normal subgroups with

⋂
mNm = 1. The existence of this chain is ensured by

because Fn is residually finite. By theorem 8.1.1,

b
(2)
1 (Fn) = lim

m→∞

b1(Nm)

|Fn : Nm|
= lim

m→∞

1 + |Fn : Nm|(n− 1)

|Fn : Nm|
= n− 1.

Let S be a closed orientable surface. As we verified in remark 2.1.2, if S is orientable,
then b1(π1(S)) = 2−χ(S), and, if S is non-orientable, then b1(π1(S)) = 1−χ(S)/2.
The computation of their b(2)

1 is analogous and we only precise the case when S
is orientable. Let π1(S) = N1 > N2 > · · · > Nm > . . . be a sequence of finite-
index normal subgroups with

⋂
mNm = 1. The existence of this chain is ensured by

proposition 2.1.4. By theorem 2.1.3, b1(Nm) = 2− |π1(S) : Nm|χ(S), so

b
(2)
1 (π1(S)) = lim

m→∞

b1(Nm)

|π1(S) : Nm|
= lim

m→∞

2− |π1(S) : Nm|χ(S)

|π1(S) : Nm|
= −χ(S) = 2g − 2.

We have also used that |π1(S) : Nm| → ∞ because π1(S) is infinite.

In the previous example we saw the relation between the Euler characteristic of
a surface and the first L2-Betti number of its fundamental group. This relation is
extended to one-relator groups and surface-plus-one-relation groups by Dicks and
Linnell [14]. The Euler characteristic also appears in the computation of the first
L2-Betti numbers of compact 3-manifold groups [34]. As opposed to the case of
surface groups, their first L2-Betti numbers are not typically nonzero.

In the case of finitely generated groups that a priori are not finitely presented, one
can still estimate its first L2-Betti number in a similar way as Lück’s approximation
theorem. The following is a result of Lück and Osin [38].
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Theorem 8.1.3. Let G be finitely generated and let G = N1 > N2 > · · · > Nm > . . .
be a sequence of finite-index normal subgroups with

⋂
mNm = 1. Then

lim sup
m→∞

b1(Nm)

|G : Nm|
≤ b

(2)
1 (G).

In order to understand finitely generated normal subgroups of parafree groups,
we will also use the following theorem from of Gaborian [18, Theorem 6.8].

Theorem 8.1.4. Suppose that

1→ N → G→ G′ → 1

is an exact sequence of groups where N and G′ are infinite. If b(2)
1 (N) < ∞, then

b
(2)
1 (G) = 0.

The following result is due to Bridson and Reid [7, Proposition 7.5].

Proposition 8.1.5. Let G be a finitely generated group and let F be a finitely
presented group that is residually-p for some prime p. Suppose that there is an
embedding G ↪−→ Fp̂ of dense image. Then b(2)

1 (G) ≥ b
(2)
1 (F ).

This is proven by estimating b(2)
1 (F ) and b

(2)
1 (G) with Lück approximations’ of

theorems 8.1.1 and 8.1.3, respectively.

In particular, the first L2-Betti number is a pro-p invariant among finitely pre-
sented residually-p groups.

Corollary 8.1.6. Let G and G′ be finitely presented residually-p groups such that
Gp̂
∼= G′p̂. Then b

(2)
1 (G) = b

(2)
1 (G′).

Before proving proposition 8.1.5, we make a few observations about the pro-p
topology.

In general, given abstract groups Λ ≤ Γ; it may not happen that the canonical
map Λp̂ −→ Λ ⊆ Γp̂ is an isomorphism. We will implicitly search for this favourable
scenario during chapter 9. For the moment, we can give a simpler sufficient criterion
to ensure that it holds.

Lemma 8.1.7. Let Λ ↪−→ Γ be an inclusion of abstract groups, where Λ has finite
p-power index in Γ. Then the canonical map Λp̂ −→ Γp̂ is injective. In other words,
by denoting ιp̂ : Γ −→ Γp̂, the canonical map Λp̂ −→ ιp̂(Λ) ≤ Γp̂ is an isomorphism
of pro-p groups.
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Proof. By [43, Proposition 3.2.6], the conclusion of this lemma holds exactly when
the pro-p topology of Γ induces the pro-p topology on its subspace Λ. In addition,
by [43, Lemma 3.1.4(a)], the previous condition is ensured if Λ has p-power index
in Γ.

This observation can be used to compare first L2-Betti numbers of abstract
groups with the rank of their pro-p completions.

Proof of proposition 8.1.5. Since F is finitely generated, for every integer D ≥ 1
there are only a finite number of subgroups of F of index at most D. Let F (d)
denote the intersection of all normal subgroups of F with p-power index at most
pd. Alternatively, F (d) is the finite intersection of all kernels of surjective maps
F −→ P for any finite p-group of order at most pd. By the correspondence discussed
in eq. (4.4), it is clear that the closure F (d) of F (d) in Fp̂ is equal to the finite
intersection of all the open normal subgroups of Fp̂ (here we have implicitly used
the fact that X

⋂
Y = X

⋂
Y for p-power index subgroups of F ). In particular,

each F (d) has finite index in F and
⋂
d F (d) = {1}.

We introduce G(d) = G
⋂
F (d), which does also verify that

⋂
dG(d) = {1}. The

canonical map G −→ Fp̂/F (d) has dense image so it is surjective. By the choice of
G(d), it factors through an isomorphism G/G(d) −→ Fp̂/F (d). On the other side,
the canonical maps F/F (d) −→ (F/F (d))p̂ −→ Fp̂/F (d) are isomorphisms since
F/F (d) is a finite p-groups. This results in the equalities

|G : G(d)| = |Fp̂ : F (d)| = |F : F (d)|.

By lemma 8.1.7, the canonical map F (d)p̂ −→ F (d) ⊆ Fp̂ is an isomorphism of
pro-p groups. Since G is dense in Fp̂, then G(d) is dense in F (d) ∼= F (d)p̂, so
b1(G(d)) ≥ b1(F (d)) for all d ≥ 1 by lemma 8.0.3.

Lastly, we can compare b(2)
1 (F ) and b(2)

1 (G) by using the sequences {F (d)}d and
{G(d)}d by means of theorem 8.1.1 and proposition 8.1.5. Notice that

b
(2)
1 (G) ≥ lim sup

d→∞

b1(G(d))

|G : G(d)|
≥ lim sup

d→∞

b1(F (d))

|F : F (d)|
= b

(2)
1 (F ).

We mentioned in the introduction that b(2)
1 (G) = dimDQG

H1(G;DQG). The group
ring QG of zero characteristic admits some analytical tools that are not available in
the regime of positive characteristic. However, for our purposes, we prefer a priori
to work with mod-p L2 Betti numbers βmod p

1 instead of b(2)
1 . Our group G of study is

a subgroup G ≤ F of a finitely generated free pro-p group. As such, the ring DFpG

has other favourable properties in comparison to DQG; since it lies inside DFp[[F]].
Still, for parafree groups, L2-Betti numbers do not depend on the characteristic.
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8.2 The mod-p version of L2-Betti numbers βmod p
1 (G)

Here we briefly describe the mod-p analogue of the approximation results of L2-Betti
numbers that were described in the previous section.

Proposition 8.2.1 (Mod-p analogue of the Lück approximation theorem). Let F
be a finitely generated free pro-p group and let G be a finitely generated subgroup
of F of type FPk for some k ≥ 1. Let F = N1 > N2 > . . . be a chain of open normal
subgroups of F with trivial intersection. Define Gj = G

⋂
Nj. Then

βmod pk (G) = lim
j→∞

dimFp Hk(Gj;Fp)
|G : Gj|

.

In particular, if G is finitely generated, then

βmod p
1 (G) = dimFpG FpIG − 1.

Proof. If G is of type FPk, there exists a resolution of trivial FpG-module Fp of the
form

0 −→ Rk −→ Fp[G]nk−1
f−→−→ · · · −→ Fp[G]n0 −→ Fp −→ 0,

where ni are non-negative integers and Rk is a finitely generated FpG-module. In
order to compute the homology groups Hk(G; ∗), we isolate the short exact sequence

0 −→ Rk −→ Fp[G]nk−1
f−→ im f −→ 0.

In these terms, we can write

dimFpGHk(G;DFpG) = dimFpGRk − nk−1 + dimFpG im f,

and, similarly,

dimFp Hk(Gj;Fp) = dimFp(Fp ⊗
FpGj

Rk)− nk−1|G : Gj|+ dimFp(Fp ⊗
FpGj

im f).

Putting these pieces together with proposition 7.5.9 directly leads to the desired
conclusion.

Corollary 8.2.2. Let G be a finitely generated dense group of a finitely generated
free pro-p group F. Then we have that βmod p

1 (G) + 1 ≥ d(F). Moreover, if G is
parafree then βmod p

1 (G) + 1 ≥ d(Gp̂).
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Proof. Let F = N1 > N2 > . . . be a chain of open normal subgroups of F with
trivial intersection. Define Gj = G

⋂
Nj. It is clear that the closure of Gj in F is

Nj and that |G : Gj| = |F : Nj|. As a consequence, the natural map

Gj/G
p
j [Gj, Gj] −→ Nj/N

p
j [Nj,Nj] (8.1)

has dense image. Since the p-abelianisation of Nj is finite, the space Nj/N
p
j [Nj,Nj]

is discrete and we deduce that the previous map is surjective.

We know view F as the pro-p completion of a free group F of rank d(F) and we
consider the embedding F ↪−→ F. We define Fj = F

⋂
Nj. Arguing as before, Nj are

the closure of Fj and |F : Fj| = |F : Nj|. Since Fj has p-power index in F , we can
apply lemma 8.1.7 to deduce that the canonical map (Fj)p̂ −→ Nj is an isomorphism
of pro-p groups. Hence, by Schreier’s index-rank formula (theorem 2.0.1), Nj is a
free pro-p group of rank

d(Nj) = d(Fj) = (d(F )− 1)|F : Fj|+ 1 = (d(F)− 1)|F : Nj|+ 1.

Then we obtain that

dimFp H1(Gj;Fp) = logp |Gj : Gp
j [Gj, Gj]| ≥ logp |Nj,N

p
j [Nj,Nj]| = d(Nj)

=(d(F)− 1)|F : Nj|+ 1 = (d(F)− 1)|G : Gj|+ 1.

Thus, by proposition 8.2.1, we obtain that

βmod p1 (G) ≥ d(F)− 1.

Lastly, if G is parafree, then Gp̂ is free by proposition 5.2.2 and we study the
canonical embedding G ↪−→ Gp̂. In this case, by lemma 8.1.7, the canonical map
(Gj)p̂ −→ Nj is an isomorphism. By eq. (4.6), the surjective map of (8.1) is actually
an isomorphism. Re-doing the previous computations would lead to the equation

βmod p1 (G) = d(F)− 1.

We conclude this chapter by writing down an explicit relation between several
quantities that contain algebraic and topological information of parafree groups.

Corollary 8.2.3. Let Γ be a finitely generated parafree group. Then

dimDFpΓ
FpIΓ = βmod p

1 (Γ) + 1 = b
(2)
1 (Γ) + 1 = rab(G) = d(Γp̂).

Proof. Since Γab is torsion-free, we know by proposition 4.0.7, proposition 4.0.8 and
eq. (4.6); that

rab(Γ) = dimFp Γ/[Γ,Γ]Γp = dimFp Γp̂/Φ(Γp̂) = d(Γp̂).
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This is the last equality of the statement. The first equation is a consequence
of proposition 8.2.1. Furthermore, by corollary 8.2.2, βmod p

1 (Γ) = d(Γp̂) − 1. In
addition, βmod p

1 (Γ) ≥ b
(2)
1 (Γ) by proposition 8.2.1 and [17, Theorem 1.6]. Lastly,

b
(2)
1 (Γ) ≥ d(Γ̃p̂)− 1 by proposition 8.1.5,. The conclusion follows.



Chapter 9

Embbedings into free pro-p groups

In this section we detail a method for ensuring that a map from an abstract group
G̃ to a free pro-p group is injective. We are particularly interested in the problem
of producing families of parafree groups. Let G̃ be a candidate to being parafree,
meaning that G̃p̂ is free for every prime p. We want to study whether the canonical
map G̃ −→ G̃p̂ is an embedding for some suitable prime p. This would establish the
residual nilpotence of G̃ and we could conclude that G̃ is parafree.

An important fact that underlies the statement is that subgroups G of free pro-
p groups F are residually torsion-free nilpotent and hence FpG admits a universal
division ring of fractions DFpG.

Theorem 9.0.1 (Tool for constructing pro-p embeddings). Let G̃ be a finitely gen-
erated abstract group, let F be a finitely generated free pro-p group and let φ : G̃→ F
be a group homomorphism. Suppose that we have the following conditions.

1. The image G = φ(G̃) is dense in F.

2. The FpG-module FpG ⊗
FpG̃

FpIG̃ is a DFpG-torsion-free module of dimension

d(F).

3. The kernel of φ is free.

Then the map φ is an embedding.

Proof. We will prove that the surjective map φ : G̃→ G verifies the assumption of
lemma 6.3.1 to deduce that kerφ has trivial p-abelianisation. Since kerφ is free, the
latter would imply that kerφ = 1 and the conclusion would follow.

107
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It is clear that the natural homomorphism of FpG-modules

FpG ⊗
FpG̃

FpIG̃ −→ FpIG,

defined by a⊗b 7→ φ(a)b, is surjective. If it was not injective, then, naming its kernel
by L and naming M = FpIG̃ ⊗

FpG̃

FpG, we would deduce, after applying lemma 7.6.3,

that
d(F) = dimDFpG

M > dimDFpG
(M/L) = dimDFpG

(FpIG).

This would contradict corollary 8.2.2.

In the setting of our problem, that is, taking some G̃ with free pro-p completion
and studying whether G̃ −→ G̃p̂ is injective, we make a few comments about the
three conditions of theorem 9.0.1. We take G to be the image of G̃ inside G̃p̂.

1. The first condition will be naturally ensured.

2. The second condition will require to handle an augmentation ideal with tools
from section 6.2. Establishing torsion-freeness is the hardest part and requires
the most technical arguments, mostly from sections 4.4 and 7.

3. The third condition is natural from the point of view of Bass-Serre theory. If
we take some free construction G̃, meaning that G̃ is the fundamental group of
a graph of groups, and we ensure kerφ intersects trivially every vertex group,
then the kerφ will necessarily be free.

We will use this theorem to construct families of parafree groups in subsequent
sections by iterations of amalgamated products and HNN extensions. These sources
of examples will include the examples of parafree groups Gi,j, Hi,j, Ki,j, Np,q,r de-
scribed in definition 5.1.1.

9.1 Amalgamated products

The following statement describes exactly under which circumstances an amalga-
mated product of finitely generated groups with abelian amalgams is parafree.

Theorem 9.1.1 (Parafreeness of amalgamated products with cyclic amal-
gams). Let H̃1 and H̃2 be finitely generated groups. Let 1 6= u1 ∈ H̃1 and let
1 6= u2 ∈ H̃2. Consider the following amalgamated product of cyclic amalgam

G̃ = H̃1 ∗
u1=u2

H̃2
∼=

H̃1 ∗ H̃2

〈〈u1u
−1
2 〉〉

.
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Then G̃ is parafree if and only if the three following conditions hold:

1. The groups H̃1 and H̃2 are parafree.

2. The element u1u
−1
2 of H̃1 ∗ H̃2 is not a proper power in the abelianisation.

3. There is at least one i ∈ {1, 2} such that ui is not a proper power in H̃i.

In this case, G̃ is parafree of abelian rank rab(H̃1) + rab(H̃2)− 1.

Proof. We first observe that both conditions are necessary.

1. Let us suppose that G̃ is parafree. Since both H̃1 and H̃2 are subgroups of
G̃, then they are residually nilpotent. In order to prove that they are, in fact,
parafree, it would suffice to show, by proposition 5.2.2, that H̃ip̂ is pro-p free
for all primes p. By construction, it is clear that

d
(
G̃/G̃p [G̃, G̃]

)
≥ d

(
H̃1/H̃1

p
[H̃1, H̃1]

)
+ d

(
H̃2/H̃2

p
[H̃2, H̃2]

)
− 1.

So, by the equation (4.6),

d(G̃p̂) ≥ d(H̃1p̂) + d(H̃2p̂)− 1. (9.1)

By proposition 5.2.2, G̃p̂ is a free pro-p group. Consider the canonical map
φ : G̃ −→ G̃p̂, which is injective, and name H1 = φ(H̃1) and H2 = φ(H̃2).
By corollary 4.5.8, H1 and H2 are free pro-p groups. There is a canonical
continuous homomorphism H̃ip̂ −→ Hi, which is clearly surjective. From this,
it follows that

d(H̃ip̂) ≥ d(Hi), for i ∈ {1, 2}. (9.2)

If we managed to prove that

d(H̃ip̂) = d(Hi), for i ∈ {1, 2}, (9.3)

then we would conclude, by corollary 4.2.6, that H̃ip̂ is free, as we want. By
the universal property (4.10) of the coproduct, there is a continuous homo-
morphism

f : H1

∐
H2 −→ G̃p̂

which sends Hi to each corresponding copy in G̃p̂. Notice that im f contains
both H1 and H2, so φ(G̃) ≤ im f , implying that f is surjective. In addition,
f has non-trivial kernel since φ(uj) 6= 1 in Hj and f(φ(u1)φ(u2)−1) = 1 in G̃p̂.
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Here we have used that the canonical map ι : H1 ∗H2 −→ H1

∐
H2 is injective

(see proposition 4.2.9).

This verifies that f is a non-injective and surjective map onto a free pro-p
group. Hence, by corollary 4.2.6 and proposition 4.2.10,

d(H1) + d(H2) = d
(
H1

∐
H2

)
> d(G̃p̂).

The previous inequality together with (9.1) and (9.2) directly imply (9.3).

2. If the second condition did not hold then the abelianisation of G̃ would not be
torsion-free.

3. Lastly, suppose that u1 = vn1
1 in H̃1, and that u2 = vn2

2 in H̃2; with min{|n1|, |n2|} ≥
2. Since ui 6= 1 and H̃i is torsion-free, then vi /∈ 〈ui〉. By corollary 3.0.5,

[v1, v2] = v1
−1v−1

2 v1v2 6= 1.

Then the two-generated subgroup 〈tv1t
−1, v2〉 of G̃ would not be free because

[tv1t
−1, v2] 6= 1 and (tv1t

−1)n1 = vn2
2 . By proposition 5.3.5, we deduce G̃ is not

parafree.

We now verify that the three given conditions are sufficient.

There is a canonical isomorphism

G̃ab
∼=
H̃1ab ⊕ H̃2ab

u1 − u2

.

From the fact that u1−u2 is not a proper power in G̃ab, we see that G̃ab is torsion-free
of rank rab(H̃1) + rab(H̃2)− 1. By (4.6), we rephrase this as

d(G̃p̂) = d(H̃1p̂) + d(H̃2p̂)− 1.

Let us fix an arbitrary prime p from this point on. Since u1u
−1
2 is not a proper

power in G̃ab, at least one of u1 or u2, say uj; is primitive in the p-abelianisation
G̃/G̃p[G̃, G̃].

Consider the canonical map φ : G̃ −→ G̃p̂.

Lemma 9.1.2. The pro-p group G̃p̂ is free and the element φ(uj) is primitive in G̃p̂.
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To prove this lemma, we name Γ = H̃1 ∗ H̃2 and we consider the canonical
commutative diagram

Γ Γp̂ H̃1p̂

∐
H̃2p̂

Γ/Γp[Γ,Γ] Γp̂
/

Φ
(
Γp̂
)

H̃1p̂

/
Φ
(
H̃1p̂

)
⊕ H̃2p̂

/
Φ
(
H̃2p̂

)
,

∼=

∼= ∼=

(9.4)

with isomorphisms marked with ∼=. The isomorphism in blue is proven in (4.6); the
green one, in proposition 4.3.4; and the red one, in corollary 4.2.11.

By the choice of uj, {u1u
−1
2 , uj} are Fp-independent in Γ/Γp[Γ,Γ]. This implies

that the pair {φ(u1)φ(u2)−1, φ(uj)} is primitive in Γp̂
/

Φ
(
Γp̂
)
. So the latter pair is

part of a set of free generators of Γp̂ by corollary 4.2.5.

From corollary 4.3.5, we know there is a canonical isomorphism of pro-p groups

G̃p̂
∼= H̃1p̂

∐
H̃2p̂

/
〈〈u1 u

−1
2 〉〉.

So G̃p̂ is a free pro-p group and φ(uj) is primitive in G̃p̂. The lemma 9.1.2 is proven.

Lemma 9.1.3. The restrictions of φ to each H̃i are injective.

To check this lemma, we consider each restriction

φi = φ|H̃i
: H̃i −→ Hi,

where Hi = φ(H̃i). The subgroups H1 and H2 of the free pro-p group G̃p̂ are
closed. Hence they both are free pro-p groups by corollary 4.5.8. Since the induced
φip̂ : H̃ip̂ −→ Hi are surjective maps of free pro-p groups, then, by corollary 4.2.6,

d(H̃ip̂) ≥ d(Hi), for all i ∈ {1, 2}. (9.5)

Furthermore, by the universal property (4.10) of the coproduct, there is a continuous
homomorphism

f : H1

∐
H2 −→ G̃p̂

which sends Hi to each corresponding copy in G̃p̂. Notice that im f contains both
H1 and H2, so G ≤ im f , implying that f is surjective. In addition, f has non-trivial
kernel since φ(uj) 6= 1 in Hj and f(φ(u1)φ(u2)−1) = 1 in G̃p̂. Here we have used
that the canonical map ι : H1 ∗H2 −→ H1

∐
H2 is injective (see proposition 4.2.9).
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This verifies that f is a non-injective and surjective map onto a free pro-p group.
Hence, by corollary 4.2.6 and proposition 4.2.10,

d(H1) + d(H2) = d
(
H1

∐
H2

)
> d(G̃p̂) = d(H̃1p̂) + d(H̃2p̂)− 1.

The previous inequality together with (9.5) imply that

d(H̃ip̂) = d(Hi) for all i ∈ {1, 2}.

We now look at the commutative diagram of canonical arrows

H̃i Hi

H̃ip̂ Hi.

φi

ιp̂

φip̂

The map φip̂ is a continuous surjection between finitely generated free pro-p groups
of the same rank, so it is an isomorphism by corollary 4.2.6. Moreover, each H̃i is
parafree, so ιp̂ is injective, too. From this, we deduce that the surjective maps φi
are also injective and lemma 9.1.3 is proven.

Lemma 9.1.4. The map φ : G̃ −→ G̃p̂ is injective.

We denote G = φ(G̃). We want to apply theorem 9.0.1 to the map φ : G̃ −→ G.
On the one hand, notice that the kernel of φ intersects trivially the amalgam 〈u〉 of
G̃, so, by corollary 3.0.6, the kernel is free.

We consider the corresponding FpG-module

M = FpG ⊗
FpG̃

FpIG̃.

Consider A = 〈φ(u1)〉 and

J = {(x,−x) : x ∈ FpIGA} ≤ FpIGH1
⊕ FpIGH2

.

Then, by theorem 6.2.8,

M ∼=
FpIGH1

⊕ FpIGH2

J
.
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Without loss of generality, we suppose that u1 is not a proper power in H̃1.
Recall that φi : H̃i −→ Hi is an isomorphism, so Hi is parafree and φ(u1) is not a
proper power in H̃1. By proposition 5.3.5, A = 〈u1〉 is a maximal abelian subgroup
of H1.

By proposition 7.6.8, M is DFpG-torsion-free with dimension

dimFpGM = dimFpH1 FpIH1 + dimFpH2 FpIH2 − 1.

In addition, by corollary 8.2.3,

dimFpH1 FpIH1 + dimFpH2 FpIH2 − 1 = d(H1p̂) + d(H2p̂)− 1 = d(G̃p̂).

It follows that dimFpGM = d(G̃p̂).

We have verified the conditions of theorem 9.0.1 for the homomorphism φ : G̃ −→
G ⊆ G̃p̂. So lemma 9.1.4 is proven and G̃ is residually nilpotent. We already know
that each G̃p̂ is free so, by proposition 5.2.2, G̃ is parafree.

9.2 HNN extensions

The following result does not entirely describe which cyclic HNN extensions are
parafree, as in the case of amalgamated products, though it significantly reduces
the complexity of the conditions to be verified.

Theorem 9.2.1 (Parafreeness of cyclic HNN extensions). Let H̃ be a finitely
generated group. Let u, v ∈ H̃ \ {1}. Consider the following cyclic HNN extension
of H̃

G̃ = H̃ ∗
〈u〉

=
H̃ ∗ 〈t〉

〈〈tut−1v−1〉〉
.

Then G̃ is parafree if and only if the four following conditions hold:

1. The group H̃ is parafree.

2. The image of uv−1 is not a proper power in H̃ab.

3. At least one of u or v is not a proper power in H̃.

4. The image of u is non-trivial in some finite nilpotent quotient of G̃.

In this case, G̃ is parafree of the same abelian rank as H̃.
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Proof. The given conditions are necessary.

1. Let us suppose that G̃ is parafree. Since H̃ is a subgroup of G̃, then it is
residually nilpotent. In order to prove that it is parafree, it would suffice
to show, by proposition 5.2.2, that H̃p̂ is pro-p free for all primes p. By
construction, it is clear that

d
(
G̃/G̃p [G̃, G̃]

)
≥ d

(
H̃/H̃p [H̃, H̃]

)
So, by the equation (4.6),

d(G̃p̂) ≥ d(H̃p̂). (9.6)

By proposition 5.2.2, G̃p̂ is a free pro-p group. Consider the canonical map
φ : G̃ −→ G̃p̂, which is injective, and name H = φ(H̃). By corollary 4.5.8, H
is a pro-p group. There is a canonical continuous homomorphism H̃p̂ −→ H,
which is clearly surjective. From this, it follows that

d(H̃p̂) ≥ d(H). (9.7)

If we managed to prove that

d(H̃p̂) = d(H), (9.8)

then we would conclude, by corollary 4.2.6, that H̃p̂ is free, as we want. By
the universal property (4.10) of the coproduct, there is a continuous homo-
morphism

f : H
∐

Zp −→ G̃p̂

which sends H to its corresponding copy in G̃p̂ and Zp to the cyclic pro-p
group generated by φ(t). Notice that im f contains both H and 〈φ(t)〉, so
φ(G̃) ≤ im f , implying that f is surjective. In addition, f has non-trivial
kernel since φ(u1) 6= 1 in H and f(φ(t)(u1)φ(t)−1φ(u2)−1) = 1 in G̃p̂. Here
we have used that the canonical map ι : H ∗ Zp −→ H

∐
Zp is injective (see

proposition 4.2.9).

This verifies that f is a non-injective and surjective map onto a free pro-p
group. Hence, by corollary 4.2.6 and proposition 4.2.10,

d(H) + 1 = d
(
H
∐

Zp
)
> d(G̃p̂).

The previous inequality together with (9.6) and (9.7) directly imply (9.8).
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2. If the first condition did not hold then the abelianisation of G̃ would not be
torsion-free.

3. Secondly, suppose that u = wn1 in H̃1, and that v = wn2
2 in H̃2; with

min{|n1|, |n2|} ≥ 2. Since u, v 6= 1 and H̃i is torsion-free, then w1 /∈ 〈u〉
and w2 /∈ 〈v〉. By corollary 3.0.9,

[tw1t
−1, w2] = tw1

−1t−1w−1
2 tw1t

−1w2 6= 1.

Then the two-generated subgroup 〈tw1t
−1, w2〉 of G̃ would not be free because

[tw1t
−1, w2] 6= 1 and (tw1t

−1)n1 = wn2
2 . By proposition 5.3.5, we would deduce

that G̃ is not parafree.

4. If G̃ were parafree then it would be residually-p; hence G̃ ↪−→ G̃p̂ would be an
embedding and u would not have trivial image in G̃p̂.

We are going to verify that these conditions are sufficient for G̃ to be parafree.

First of all, it is clear that

G̃ab
∼=

H̃ab

〈u− v〉
⊕ 〈t〉.

From the fact that u− v is not a proper power in H̃ab, we see that G̃ is torsion-free
of the same rank as H̃. By (4.6), we rephrase this as

d(G̃p̂) = d(H̃p̂).

In addition, we also see that t is primitive in G̃ab. Let us fix an arbitrary prime p.

Consider the canonical map φ : G̃ −→ G̃p̂.

Lemma 9.2.2. The pro-p group G̃p̂ is free and the element φ(t) is primitive in G̃p̂.

To prove this lemma, we name Γ = H̃ ∗ 〈t〉 and we consider the canonical
commutative diagram

Γ Γp̂ H̃p̂

∐
Zp

Γ/Γp[Γ,Γ] Γp̂
/

Φ
(
Γp̂
)

H̃p̂

/
Φ
(
H̃p̂

)
⊕ Z/p,

∼=

∼= ∼=

(9.9)

with isomorphisms marked with ∼=. The isomorphism in blue is proven in (4.6);
the green one, in proposition 4.3.4; and the red one, in corollary 4.2.11. The pair
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{φ(tut−1v−1), φ(t)} is are Fp-linearly independent in Γ/Γp[Γ,Γ]. So this pair is also
primitive in Γp̂

/
Φ(Γp̂). By corollary 4.2.5, they are part of a set of free generators

of Γp̂.

By proposition 4.3.1, we see that there is a canonical isomorphism

G̃p̂
∼= H̃p̂

∐
Zp
/
〈〈tut−1v−1〉〉,

where the generator of Zp has been denoted by t. So G̃p̂ is free; φ(t) is part of a
topological generating set; and lemma 9.2.2 is proven.

We name H = φ(H̃).

Lemma 9.2.3. The restriction of φ to H̃ is injective.

To verify this, consider the closed subgroup H ≤ G̃p̂. Since G̃p̂ is free, the
pro-p group H must be free by corollary 4.5.8. We notice that the epimorphism
φ : H̃ −→ H induces a continuous epimorphism φp̂ : H̃p̂ −→ H. In particular, by
corollary 4.2.6, that

d(H̃p̂) ≥ d(H). (9.10)

Furthermore, by the universal property (4.10) of the coproduct, there is a continuous
homomorphism

f : H
∐

Zp −→ G̃p̂,

which sends H to G̃p̂, by inclusion; and Zp to the cyclic pro-p group generated by
φ(t). Since the image of f contains both H and φ(t), it follows that im f con-
tains φ(G̃), so f must be a surjective. In addition, it has a nontrivial kernel; since
φ(t)φ(u)φ(t)−1φ(v)−1 = 1 and φ(u) 6= 1, by assumption. Here we have used that
the canonical map ι : H ∗ Zp −→ H

∐
Zp is injective (see proposition 4.2.9).

This verifies that f is a non-injective and surjective continuous homomorphism
onto a free pro-p group. Hence, by corollary 4.2.6 and proposition 4.2.10,

d(H) + 1 = d(H) + d(Zp) = d
(
H
∐

Zp
)
> d(G̃p̂).

This, in addition to (9.10), implies that d(H̃p̂) = d(H). So φp̂ : H̃p̂ → H is a contin-
uous epimorphism between free pro-p groups of the same rank. By corollary 4.2.6,
this restriction φp̂|H̃ must be an isomorphism.
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Looking at the commutative diagram

H̃ H

H̃p̂ H,

φ

ι

φp̂

we observe that φ : H̃ −→ H is injective. This is because φp̂|H̃ is injective, as we
just proved; and ιp̂ is injective, due to H̃ being parafree.

The verification of lemma 9.2.3 is complete.

Lemma 9.2.4. The map φ : G̃ −→ G̃p̂ is injective.

We denote G = φ(G̃). We want to apply theorem 9.0.1 to the map φ : G̃ −→
G ⊆ G̃p̂. We already know, from lemma 9.2.2, that G̃p̂ is free. We already On the
one hand, notice that the kernel of φ intersects trivially the subgroup 〈u〉 of G̃. By
corollary 3.0.12, the kernel is free.

By corollary 4.2.5, we can pick a set {a2, . . . , an} of n − 1 elements of H̃ such
that

{φ(t), φ(a2), . . . , φ(an)}

is a set of free topological generators of G̃p̂. We define a continuous homomorphism
q : G̃p̂ −→ Zp such that q(φ(t)) = 1; and q(φ(ak)) = 0 if 2 ≤ k ≤ n. The restriction
q|G verifies that its its kernel ker q|G contains H. This is because {φ(a2), . . . , φ(an)}
belong to the kernel of q; and they generate H modulo [H,H]. In addition, t /∈
ker q|G, by construction. Since G/ ker q|G ∼= Zm for some m ≥ 1, we can take N EG
such that ker q|G ≤ N , G/N ∼= Z and G = 〈N, t〉 ∼= N o 〈t〉.

We now consider the FpG-module

M = FpG ⊗
FpG̃

FpIG̃.

By corollary 6.2.10, this FpG-module is isomorphic to

M ∼=
FpIGH ⊕ FpG

FpG (φ(v)− 1− φ(t)(φ(u)− 1), φ(v)− 1)
.

Without loss of generality, we suppose that u is not a proper power in H̃. Since
φ : H̃ −→ H is an isomorphism, H is parafree and φ(u) is not a proper power in H.
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From proposition 5.3.5, we deduce that that 〈φ(u)〉 is a maximal abelian subgroup
of H. By proposition 7.6.10, this implies that M is DFpG-torsion-free.

Using lemma 7.6.9, we have the following isomorphisms of DFpG-modules

DFpG ⊗
FpG

M ∼= DFpG ⊗
FpG

FpIGH ∼= DFpG ⊗
FpH

FpIH ∼= DFpG ⊗
DFpH

(
DFpH ⊗

FpH
FpIH

)
.

Combining these isomorphisms with corollary 8.2.3, yields to

dimFpGM = dimFpH FpIH = d(H̃p̂) = d(G̃p̂).

We have verified the conditions of theorem 9.0.1 for the homomorphism φ : G̃ −→
G ⊆ G̃p̂. So lemma 9.2.4 is proven and G̃ is residually nilpotent. We already know
that very pro-p completion G̃p̂ is free; so, by proposition 5.2.2, G̃ is parafree.

In the case of amalgamated products (theorem 9.1.1), we could explicitly describe
when the resulting group would be parafree. However, in the case of the HNN
extensions treated in theorem 9.2.1, we gave a characterisation whose last condition
(the image of u being non-trivial in some finite nilpotent quotient) can be hard to
check. Our last result will get rid of this condition in the case when the starting
group H̃ has abelian rank equal to 2.

Corollary 9.2.5 (Parafreeness of cyclic HNN extensions of groups with
abelian rank 2). Let H̃ be a finitely generated group of abelian rank 2. Let
u, v ∈ H̃ \ {1}. Consider the following cyclic HNN extension of H̃

G̃ = H̃ ∗
〈u〉

=
H̃ ∗ 〈t〉

〈〈tut−1v−1〉〉
.

Then G̃ is parafree if and only if the four following conditions hold:

1. The group H̃ is parafree.

2. The image of uv−1 is not a proper power in H̃ab.

3. At least one of u or v is not a proper power in H̃.

4. The images of u and v generate a subgroup isomorphic to Z2 in H̃ab.

In this case, G̃ is parafree of abelian rank 2.
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Proof. It is not hard to see that the four given conditions imply the conditions of
theorem 9.2.1. In fact, under these assumptions, the image of u is primitive in all
the pro-p completions of G̃.

In order to prove that they are necessary, let us suppose that G̃ is parafree. By
theorem 9.2.1, (1), (2) and (3) hold. We assume that (4) does not hold. Then, by
(2), the image of uv−1 in H̃ generates a subgroup which contains both u and v. So
there exists c ∈ Z such that u ≡ (uv−1)c mod [H̃, H̃]. In addition, since H̃p̂ is free
of rank 2 and the image of uv−1 is primitive in H̃p̂; we can denote by N the closed
normal subgroup generated by uv−1 in H̃p̂ and observe that H̃p̂/N ∼= Zp because
uv−1 has primitive image in H̃ab. Thus [H̃, H̃] ⊆ N and u ∈ N.

Denote byN1 the closed normal subgroup of G̃p̂ generated by uv−1. Then u ∈ N1

by the previous argument. Now observe that uv−1 = [u−1, t−1]. We are going to
verify that u ∈

⋂
k γkG̃p̂ = {1}. This would result in the contradiction u = 1,

finishing the proof. We proceed inductively to check the claim. The base of the
induction is trivial because u ∈ γ1G̃p̂ = G̃p̂. If u ∈ γkG̃p̂, then uv−1 ∈ [γkG̃p̂, G̃p̂] =

γk+1G̃p̂. Since γkG̃p̂ is a closed normal subgroup of G̃p̂, then N1 ⊆ γk+1G̃p̂ and hence
u ∈ γk+1G̃p̂, completing the inductive step.

9.3 General fundamental groups

There is a way to extend our results characterising parafree amalgamated products
and HNN extensions for more general fundamental groups.

Corollary 9.3.1 (Corollary 1.4 of [29]). Let (G,Γ) be a graph of groups over a finite
graph Γ whose edge morphisms are injective. Let W = π(G,Γ) be its fundamental
group. Assume that all vertex subgroups G(v) (v ∈ V (Γ)) are finitely generated and
all edge subgroups G(e) (e ∈ E(Γ)) are cyclic. Then W is parafree if and only if the
following four conditions hold.

1. All the vertex subgroups G(v) (v ∈ V (Γ)) are parafree.

2. The abelianisation of W is torsion-free of rank

rab(W ) =
∑

v∈V (Γ)

rab(G(v))−
∑
e∈E(Γ)

rab(G(e))− χ(Γ),

where χ(Γ) = |V (Γ)| − |E(Γ)|-1.

3. All the centralisers of non-trivial elements in W are cyclic.
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4. For each non-trivial edge subgroup of G(e) (e ∈ E(Γ)) there is a finite nilpotent
quotient of W where the image of this edge subgroup is non-trivial.
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