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Abstract

In this thesis, we expose a self-contained introduction to Iwasawa theory of elliptic curves,
our main objective being to prove Mazur’s control theorem concerning the Galois theoretic
behaviour (at primes of good ordinary reduction) of Selmer groups of elliptic curves defined
over a number field.

First, we cover some necessary algebraic preliminaries. They include the characterisation
of Iwasawa modules up to pseudo-isomorphism, the basic theory of formal groups and the
Pontryagin duality. We have also exposed the basic characterisation of profinite groups, as
a preparation for generalising Galois theory to infinite field extensions. Finally, a detailed
introduction to cohomological theory of finite and profinite groups has been included.

The second part of this thesis is related to local class field theory. Its goal is proving two deep
results. The first one is the local reciprocity law, about an isomorphism between the Galois
group of the maximal abelian extension of a local field and the profinite completion of the
multiplicative group of that field. The other important result is the corank lemma, on the
Zp-corank of a Galois cohomology group.

The final goal of this work is studying the arithmetic of elliptic curves. We do that when they
are defined over a local field and over a number field. In the latter case, the Mordell-Weil
theorem has been proven. We have delved into these issue by defining the Selmer and Tate-
Shafarevich groups, as a preparation for Mazur’s control theorem. After giving a proof, we
have surveyed the different implications it has.
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Resumen

En este trabajo exponemos una introducción autocontenida de la teoŕıa de Iwasawa de curvas
eĺıpticas, siendo nuestro principal objetivo demostrar el teorema de control de Mazur acerca
del comportamiento teórico de la acción de Galois en los groups de Selmer de curvas eĺıpticas
definidas sobre un cuerpo de números.

En primer lugar, explicamos ciertos preliminares algebraicos. Entre ellos se encuentra la
caracterización de módulos de Iwasawa salvo pseudo-isomorfismo, la teoŕıa básica de grupos
formales y la dualidad de Pontryagin. Además, hemos incluido una caracterización de los
grupos profinitos, a modo de preparación para generalizar la teoŕıa de Galois a extensiones
infinitas. Por último, se ha expuesto una introducción detallada a la cohomoloǵıa de grupos
finitos y profinitos.

La segunda parte de este trabajo trata sobre la teoŕıa de cuerpos de clase local y tiene como
objetivo demostrar dos resultados profundos. En primer lugar, está la función de reciprocidad
local, que da un isomofismo entre el grupo de Galois de la extensión maximal abeliana de un
cuerpo local y la compleción profinita de el grupo multiplicativo de dicho cuerpo. Por otro lado,
tenemos el lema del corango, sobre el corango como Zp-módulo de un grupo de cohomoloǵıa
de Galois.

El objetivo final de esta tesis es estudiar la aritmética de curvas eĺıpticas, tanto cuando están
definidas sobre un cuerpo local como cuando lo están sobre un cuerpo de números. En este
último caso, se ha demostrado el teorema de Mordell-Weil. Posteriormente, se ha profundizado
en este tema definiendo los grupos de Selmer y Tate-Shafarevich, a modo de preparación para
el teorema de control de Mazur. Después de demostrar este resultado, hemos indagado en sus
distintas implicaciones.
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Chapter 1

Introduction

1.1 About the Arithmetic of Elliptic Curves

The final goal of the content included in this thesis is to study the groups E(K), where E is
an elliptic curve defined over some field K.

An elliptic curve E is just a projective, smooth algebraic curve of genus 1 with a distinguished
point O ∈ E(K). They can be described by a Weierstrass equation. In other words, E can be
studied as the points (X : Y : Z) in the projective plane over the algebraic closure of K which
satisfy the following equation:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

for some coefficients ai ∈ K. Elliptic curves are endowed with a natural abelian group structure,
which can be defined algebraically or geometrically. This definition is the reason why O has
a distinguished role. Moreover, imposing that O has coordinates belonging to K implies that
the set of rational points E(K) is a subgroup.

Computing the groups of rational points is the central problem that concerns the arithmetic
of elliptic curves. In general, it is a difficult problem because, unlike conics, elliptic curves do
not satisfy the local-global principle. It means that an elliptic curve may not have any rational
point different from O although the curve always contains a non-trivial rational point when
considered as curves defined over the completion via every valuation in K.

The situation when K is a number field, i.e., a finite extension of Q, is related to Mordell-Weil
theorem, which states that the group E(K) is finitely generated under these hypothesis.

Theorem 1.1. (Mordell-Weil) Let E/K be an elliptic curve defined over a number field K.
Then the group E(K) is finitely generated.

Therefore, the structure theorem of finitely generated modules over the principal ideal domain
Z can be applied and we have the existence of an integer r ≥ 0 and a finite group T such that

E(K) ∼= Zr × T

Given an elliptic curve E/K, we want to know the rank r and the torsion subgroup T . The
torsion is usually easily computable since there is a result which states that, under certain
conditions, the torsion subgroup of some fixed order injects into the rational points of other
elliptic curves, defined over finite fields. In fact, for every discrete valuation v defined on K
but a finite amount of them, there is an injection

E(K)[m] ↪→ Ẽ(kv)

1
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where kv is the residue field of the completion Kv and Ẽ is called the reduced curve. By
checking some of these injections, one could compute E(K)tors.

Even more, there is a result due to Mazur [18] that says there are just 15 possible torsion
subgroups in an elliptic curve defined over Q.

Theorem 1.2. (Mazur) Let E/Q be an elliptic curve. Then the torsion subgroup E(Q)tors is
isomorphic to one of the following fifteen groups

Z/NZ, with 1 ≤ N ≤ 10 or N = 12; Z/2NZ× Z/2Z, with 1 ≤ N ≤ 4.

The generalisation of this result to number fields is an active research issue. In this direction,
there is a result due to Merel [19].

Theorem 1.3. (Merel, 1996) Let K be a number field such that d = [K : Q], let E/K be

an elliptic curve and let p > d3d2

be a prime number. Then E(K) does not contain torsion of
order p.

The problem of computing the rank of a given elliptic curve is much more difficult and, up to
now, there is no general method to compute it in an arbitrary curve. For a ’randomly chosen’
elliptic curve defined over Q, this rank is usually small, although it is conjectured that there
are elliptic curves E/Q having arbitrarily large rank.

At the moment, the known elliptic curve E with the highest rank was found by N. Elkies [9]
and has rank 28.

The way we approach this problem of computing the rank is purely cohomological and it is
based in the following short exact sequence:

0 // E(K)⊗Qp/Zp // SelE(K)p //XE(K)p // 0

where p is an arbitrary prime number and SelE(K)p and XE(K)p are the p-primary parts of
the Selmer and Tate-Shafarevich groups. Those are subgroups of certain Galois cohomology
groups which will be defined in chapter 11.

Since E(K)⊗Qp/Zp ∼= (Qp/Zp)r and it injects into the Selmer group, the latter can establish
an upper bound for the rank of Mordell-Weil. Moreover, there is an important conjecture
related to this exact sequence:

Conjecture 1.1. Let E be an elliptic curve defined over a number field K. Then the Tate-
Shafarevich group XE(K) is finite.

The interest of this conjecture resides on the fact that, under this assumption, the division
subgroup of SelE(K) will be isomorphic to E(K)⊗Qp/Zp, so the Selmer group will compute
the rank of the Mordell-Weil group.

In this line of computing the rank of an elliptic curve there is one of the millenium-prize
problems proposed by the Clay Mathematics Institute: Birch and Swinnerton-Dyer conjecture.
It states that the rank of an elliptic curve defined over Q is the order of vanishing at certain
complex function LE|Q(s), called Hasse-Weil L-series (see [27]), whose definition involves only

the number of points on the reduced curves Ẽ(kv) for the finite places v in K. Moreover, it
conjectures that the first non-vanishing coefficient in the Taylor expansion is related to the
cardinality of the Tate-Shafarevich group.

The first general advance in proving this conjecture is a theorem from Coates and Wiles [8],
that proves that the group E(Q) must be finite in case that LE|Q(s) does not vanish at s = 1
and E has complex multiplication. Gross and Zagier [12] proved the case when the Hasse-Weil
L-series has a simple zero. They assume the elliptic curve was modular, but it was proved
later that all elliptic curves defined over Q are. This result is known as modularity theorem
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[3]. The situation for higher ranks is still open, although there are strong numerical evidences
supporting it.

Next question that arises is whether Mordell-Weil theorem generalises to infinite algebraic
extensions of Q. The answer is clearly negative, since the torsion subgroup of an elliptic curve
defined over an algebraically closed field is

Etors(K) ∼= Q/Z×Q/Z

which is not finitely generated. However, there might be infinite algebraic extensions K|Q such
that E(K) contains only finitely many torsion elements. Then checking whether the group
E(K) is finitely generated or not could be done using the following sufficient, and obviously
necessary, conditions.

Theorem 1.4. Let K be a Galois extension of Q. Then E(K) is finitely generated if and only
if the following conditions are satisfied.

1. The torsion subgroup E(K)tors is finite.

2. The rank of E(L) is bounded when L runs through the finite subextensions of K|Q.

Verifying the hypothesis of last theorem is usually hard, specially the one related to the
boundedness of the rank.

A particular case in which these hypothesis has been done is when K is the maximal abelian
extension Qab

Σ of the rationals which is unramified outside a certain finite set of primes Σ.
The first hypothesis comes as consequence of some theorems due to K. Kato and D. Rohlich,
since they deduced that rankZE(L) is bounded when E is a modular elliptic curve and L runs
through the finite, abelian extensions of Q which are unramified outside a finite set of primes
Σ. The assumption that the elliptic curve is modular does not suppose much problem, since
the above mentioned modularity theorem [3] implies that every elliptic curve defined over Q is
modular.

The situation regarding the torsion subgroup is not so difficult, even though it is still far out
of the scope of this thesis. K. Ribet proved in [25] that E(Qab

Σ )tors is finite. As a consequence,
we have the following result.

Theorem 1.5. Let E/Q be an elliptic curve and let Σ be a finite set of primes. Then E(Qab
Σ )

is finitely generated.

1.2 About Iwasawa Theory

Iwasawa theory was first introduced in 1959 by the Japanese mathematician Kenkichi Iwasawa.
Its purpose was to examine the growth of the class number in a Zp-extension of a number field,
that is, a Galois extension whose Galois group is isomorphic to the p-adic integers, where p is
some fixed prime number. These extensions will be denoted by F∞|F , where F is a number
field. Because of the Galois correspondence between subextensions and closed subgroups of
GF∞|F

∼= Zp, we know that there is a unique subextension of degree pn, which will be denoted
by Fn.

For every number field F , there is a unique Zp-extension contained in F (µp∞), where µp∞ are
the roots of unity whose order is a power of p. It is known as the cyclotomic Zp-extension.
If F is totally real, that is, every embedding from F into C is contained in R, then it is
conjectured that the only Zp-extension is the cyclotomic one. That is known as Leopoldt’s
conjecture. However, in case that F is an imaginary quadratic field, there is another important
Zp-extension, known as the anticyclotomic Zp-extension. It is characterised by the isomorphism
GFn|Q = D2pn , where D2pn represents the dihedral group whose order is 2pn.

The idea behind Iwasawa theory is the following one. The Galois group of the maximal abelian
pro-p extension of F∞ is a Zp-module over which there is an action of Γ := GF∞|F defined by
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inner automorphisms. It can thus be understood as a module over the group algebra Zp[[Γ]],
which is defined by an inverse limit over the group algebras of the finite quotients of Γ. It
turns out that this group algebra is isomorphic to the power series ring Λ := Zp[[T ]] and finitely
generated Λ-modules can be classified through the following structure theorem.

Theorem 1.6. Let M be an Iwasawa module. Then there are irreducible polynomials Fj ,
natural numbers r, mi, nj and a homomorphism with finite kernel and cokernel given by

M
≈−→ Λr ⊕

s⊕
i=1

Λ/pmi ⊕
t⊕

j=1

Λ/F
nj
j

The number r is called the rank of M and it vanishes if and only if M is a torsion Λ-module.
Moreover, last theorem is the reason why we can define the following invariants:

µ =
∑s
i=1mi, λ =

∑t
j=1 njdeg(Fj)

There is a theorem [21] from basic algebraic number theory which states that the ideal class
group of a number field is always finite. However, computing its cardinality is not easy. The
achievement of K. Iwasawa was finding that the growth of the class number in a Zp-extension
of a number field follows some kind of regularity. In particular, Iwasawa proved in [15] the
following result.

Theorem 1.7. In a Zp-extension, there are integers λ, µ and ν (where λ and µ come from
theorem 1.6) such that, for n large enough

|Cl(Fn)p| = pλn+µpn+ν

Remark 1.1. In case that F∞|F is the cyclotomic Zp-extension of some number field, it is
conjectured that µ = 0.

The idea behind this proof is the following. By global class field theory, the class group of Fn
is isomorphic to the Galois group of its maximal abelian extension unramified at every prime
of Fn. That extension is known as Hilbert class field. Hence the p-primary part of this class
group is the Galois group of the maximal p-subextension of the Hilbert class field. This new
extension is called the p-Hilbert class field of Fn.

Iwasawa ideas can be applied to the maximal abelian, unramified at every prime, pro-p
extension L∞ of F∞. Then the maximal abelian subextension Ln|Fn of L∞|Fn is thus the
p-Hilbert class field of Fn, so Cl(Fn)p ∼= GLn|Fn . Moreover, GLn|Fn can be computed as the
abelianised group of GL∞|Fn . Hence X := GL∞|F∞ can be considered as Λ-module and Cl(Fn)p
can be thus computed as the quotient X/wn, where wn ∈ Zp[T ] is some particular polynomial.
The theorem follows thus from theorem 1.6.

Barry C. Mazur used in 1970 Iwasawa ideas for the study of elliptic curves. In particular, Mazur
considered an elliptic curve E defined over a number field F and studied the growth of the group
of rational points along a Zp-extension. His idea was to consider X = Hom(SelE(F∞),Qp/Zp)
as an Iwasawa module. One could thus deduce that X/wn = Hom(SelE(F∞)GF∞|Fn ,Qp/Zp)
and the growth of SelE(F∞)GF∞|Fn can be studied using theorem 1.6. This theorem also
controls the growth of the Selmer group defined over the number fields in the tower due to the
following result [17], whose proof is the main goal of this thesis.

Theorem 1.8. (Mazur, 1972) There are natural maps

SelE(Fn)p → SelE(F∞)
GF∞|Fn
p

having finite kernels and cokernels whose orders are bounded as n→∞.
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As a consequence, if an elliptic curve has rank 0 and finite Tate-Shafarevich group at the base
field F , then SelE(F∞) will be a torsion Iwasawa module and, consequently, the rank of E(Fn)
is bounded as n→∞, which was one of the assumptions of theorem 1.4.

Under certain conditions, the growth of the Selmer and Tate-Shafarevich groups can be controlled
by the invariants λ and µ defined after theorem 1.6.

Theorem 1.9. Assume that both E(Fn) and XE(Fn)p are finite for every n ∈ Z. Then there
are λ, µ ∈ N ∪ {0} depending only on E and F∞|F such that

|SelE(Fn)p| = |XE(Fn)p| = pλn+µpn+O(1)

Although it was conjectured that µ = 0 in theorem 1.7 applied to the cyclotomic Zp-extension
of the number field F , when working with elliptic curves we will show examples in which this
invariant takes a positive value. The following result, which will not be proved on this thesis
but appears in [10], gives a lower bound for this µ-invariant.

Theorem 1.10. Let E/Q be an elliptic curve and let p be an odd prime number such that E
has good, ordinary reduction at p. Assume that Hom(SelE(Q)p,Qp/Zp) is a torsion Λ-module
and that E[p∞] contains a GQ-submodule of order pm and ramified at p. Then µ ≥ m.

If the group of F -rational points of the elliptic curve is not torsion, it might happen that
the rank remains unbounded in the Zp-extension. Nevertheless, that growth is in some way
regular.

Theorem 1.11. Let E/F be an elliptic curve and assume it has good, ordinary reduction at
all primes of F lying over p. If r is the rank of Hom(SelE(Q)p,Qp/Zp) as a Λ-module and
XE(Fn)p is finite for all n ∈ N, then

rank(E(Fn)) = rpn +O(1) ∀n ∈ N

We now state two theorems, whose proofs are out of the scope of this work and that shows
that both situations (bounded or unbounded rank) may happen. For that purpose, we shall
mention that basic theory of elliptic curves imply that the ring of endomorphisms of an elliptic
curve satisfy that End(E) ⊗ Q is either Q or a quadratic imaginary field, provided that the
field over which the elliptic curve is defined has characteristic equal to 0. In the latter case, it
is said that E has complex multiplication.

Theorem 1.12. Let E/Q be an elliptic curve and assume F := End(E) ⊗ Q is imaginary.
Assume that F∞ is a Zp-extension of F different from the anticyclotomic one. Then rankZE(Fn)
is bounded.

Theorem 1.13. In the conditions of last theorem, if either E has supersingular reduction at p
or the Hasse-Weil L-series LE/Q(s) has order zero at s = 1, then rankZ(E(F acn )) is unbounded.

1.3 About This Thesis

This thesis intends to be a fairly self contained introduction to Iwasawa theory of elliptic curves.
The reader should also be warned that none of the results in these thesis are original, being
the work done merely bibliographic.

However, a deep result regarding Poitou-Tate duality in Galois cohomology groups ([23],
theorem 7.2.6) has had to be assumed while proving theorem 11.6, as a preparation for the
main result in this thesis: Mazur’s control theorem.

In another vein, it is assumed that the reader is familiar basic algebraic number theory and
basic properties of local fields, appearing in [5] and chapters I and II of [21], basic homological
algebra from the first chapter of [13] and, foremost, with some theory of elliptic curves included
in chapter III of [27].
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Now it will be briefly explained how the exposition is structured. First, it is divided into three
parts. In part I we explain the algebraic preliminaries we will need for developing the remaining
of the thesis. Part II shows an introduction to local class field theory, including some deep
results over which we build the Iwasawa theory of elliptic curves. Finally, part III is related to
the arithmetic of elliptic curves and completes the main goal of this thesis: proving Mazur’s
control theorem regarding the Galois theoretic behaviour of Selmer groups of an elliptic curve
defined over a number field.

Each part is again subdivided in several chapters. We start in chapter 2 by showing different
preliminaries related to commutative algebra which will be necessary for developing the Iwasawa
theory of elliptic curves. Among them we highlight the structure theorem of Iwasawa modules
up to pseudo-isomorphism, whose proof has been seen in [23]. This structure theorem will be
applied later to some Galois and Selmer groups. Apart from that, different topics like Hensel’s
lemma and certain localisations in Dedekind domains, which generalise the finiteness theorems
in algebraic number theory, are also covered in this chapter.

Chapter 3 is about formal groups, which appear in the theory of elliptic curves as a formal
development of the sum operation in terms of a power series. Their study permits us to
state very interesting properties about elliptic curves defined over local fields. In particular,
the characterisation of the torsion points in the group associated to a formal group gives an
algorithm to compute the torsion subgroup of an elliptic curve defined over a local field and,
consequently, over a number field. Some properties of divisibility and the concepts of invariant
differential and formal logarithm are also included in this chapter. The reference used for this
chapter has been chapter IV. of [27].

In chapter 4 we expose the concept of Pontryagin duality in order to extend the structure
theorem of finitely generated abelian groups to those groups having finite corank. For that
purpose, we develop some theory of inverse and direct limits and then we introduce profinite
groups, which will appear later in the exposition of infinite Galois theory. Then we detail the
concept of duality and Zp-corank, which will be used to generalise the structure theorem of
finitely generated modules over a principal ideal domain to those being cofinitely generated.

Chapter 5 is a mixture of topics related to Galois theory that will be required at some points
of this thesis. First, we mention n-Kummer extensions, i.e., abelian extensions with exponent
dividing n and describe them in terms of its generators. After that, we generalise Galois
theory to infinite field extensions, where the profinite groups previously defined arise naturally.
Finally, last section is dedicated to identify the absolute Galois group of a completion with the
decomposition subgroup of the absolute Galois group of the original field.

Chapter 6 is dedicated to introduce the continuous cohomology of profinite groups. Apart
from giving basic definitions, we show important properties like the long cohomological exact
sequence and inflation-restriction sequence. We will also define Tate-cohomology groups, which
are defined only for finite groups, and study them when the original group is cyclic. We conclude
the chapter by showing an important theorem due to Tate and studying the cohomology groups
for the p-adic numbers. This chapter plays a central role in this thesis, since the study of the
arithmetic of the elliptic curves will be mainly cohomological. The references used for this
chapter have been [4], [23] and [26].

Part II is dedicated to introduce local class field theory. Its main goal is to proof two deep
results in this area: the local reciprocity law, in chapter 7 and the corank lemma, in chapter 8.

In chapter 7 we apply the cohomological results obtained in chapter 6 to a Galois group of a
field extension. We particularise then to the case when the group is the absolute Galois group
of a local field in order to prove one of the above mentioned results: the local reciprocity law,
which establishes an isomorphism between the Galois group of the maximal abelian extension
of a local filed and the profinite completion of the multiplicative group of that field. The
reference used for this chapter has been [22].
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The local reciprocity map will have a central role in the proof of the other result, the one
concerning chapter 8. It is the corank lemma, which is proven in [11] and is related to the
Zp-corank of certain Galois cohomology group It will be required in chapter 11 for describing
the image of the Kummer map while proving the main result of this thesis: Mazur’s control
theorem.

The study of the arithmetic of elliptic curves is shown in part III. It includes the final goal of
this thesis and uses all of the theory included in parts I and II. For this part, we have used [27]
for chapters 9 and 10 and [11] for chapter 11.

First we expose a survey of the theory of elliptic curves defined over local and number fields.
Chapter 9 is dedicated to the local case, first defining the reduction map and then deducing
many interesting results about the torsion rational points. It provides a method for computing
the torsion subgroup of an elliptic curve defined over a local field and it can be applied for
number fields by considering different completions. In particular, it implies that the torsion
subgroup of an elliptic curve defined over a local or a number field is finite, result that will be
strengthened to Mordell-Weil theorem in chapter 10. Using the fact that the reduction map is
surjective, even when restricted to the torsion subgroups, a description of the group of rational
points of an elliptic curve defined over a local field has been given.

Like we have just mentioned, chapter 10 is dedicated to Mordell-Weil theorem, which states that
the group E(K) is finitely generated when K is a number field. Its proof is divided in two parts
The first one is the weak Mordell-Weil theorem, which says that the factor group E(K)/mE(K)
is finite. The proof exposed uses some cohomological tools previously developed. After that,
the weak Mordell-Weil theorem, together with the descent theorem and the definition of a
height function on the elliptic curve, imply Mordell-Weil theorem.

Last chapter 11 is dedicated to the main theorem of this thesis: Mazur’s Control theorem.
Before stating it, we had to develop Kummer theory for elliptic curves and define Selmer and
Tate-Shafatevich groups. After proving Mazur’s control theorem, some consequences related
to the growth of the rank of Mordell-Weil group and the cardinality of Tate-Shafarevich one
in a Zp-extension have been mentioned.
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Algebraic Preliminaries
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Chapter 2

Commutative Algebra

In this chapter, we expose some preliminary results related to commutative algebra which will
be needed for studying the arithmetic of elliptic curves. First section 2.1 is about one version of
Hensel’s lemma, which can be seen in [27] and is related to the existence of roots of polynomials
in complete local rings.

In sections 2.2, 2.3 and 2.4 we show the properties of Iwasawa modules, which will take a very
important role in the study of the growth of the Mordell-Weil group in Zp-extensions of certain
number field. We start this exposition by considering a more general case: finitely generated
modules over a complete discrete valuation ring. However, we will need to particularise to the
case when the discrete valuation ring is also regular and has dimension 2, what will be the case
we are going to be interested in, for the purpose of obtaining a complete structure theorem up
to pseudo-isomorphism. For these sections, the main reference used has been [23].

Finally, section 2.5 studies the behaviour of certain localisations in Dedekind domains. It is
used to extend two important theorems in algebraic number theory, Dirichlet’s unit theorem
and the finiteness of class number, to S-units and S-ideals, fact that will have a very important
role in the proof of weak Mordell-Weil theorem. An interested reader should also check [21].

2.1 Hensel’s Lemma

Throughout this section, we are going to show an important result, commonly known as
Hensel’s lemma, about lifting roots of polynomials in the residue field of a complete local
ring.

Proposition 2.1. Let O be a ring that is complete with respect to its I-adic topology, where
I is some ideal of O. Let F ∈ O[T ] be a polynomial and suppose there are a natural number
n ∈ N and an element a ∈ O satisfying

F (a) ∈ In, F ′(a) ∈ O∗

Then for any α ∈ O satisfying α = F ′(a) mod I, the sequence

ω0 = a, ωm+1 = ωm − F (ωm)
α

converges to an element b ∈ O satisfying

F (b) = 0, b ≡ a mod In

Furthermore, those conditions determine b uniquely providing that R is an integral domain.

11
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Proof. By replacing F (w) by F (w+a)
α , we can deal with the case a = 0 and α = 1 without any

loss of generality.

Since F (0) ∈ In, then F (x) ∈ In ∀x ∈ In, so it is easily seen by induction that wm ∈ In ∀m ∈
N.

Moreover, we will show by indiction that wm ≡ wm+1 mod In+m ∀m ∈ N. The base case
m = 1 is equivalent to the assumption F (0) = In. For the general case, write

F (X)− F (Y ) = (X − Y ) (F ′(0) +XG(X,Y ) + Y H(X,Y ))

where G,H ∈ O[X,Y ]. Then,

wm+1 − wm = (wm − wm−1)− (F (wm)− F (wm−1)) =

(wm − wm−1) [1− F ′(0)− wmG(wm, wm−1)− wm−1H(wm, wm−1)]

The assumptions that F ′(0) ≡ 1 mod I and wm−1, wm ∈ I, together the induction hypothesis
wm − wm−1 ∈ In+m−1, guarantees that wm+1 − wm ∈ In+m.

Thus (wn) is a Cauchy sequence in the I-adic topology, so it converges to an element b ∈ O
since O is complete. Since F is continuous with this topology, by taking limits we see that
b = b− F (b), so F (b) = 0.

To show uniqueness, let c ∈ In \ {b} such that F (c) = 0. Then,

0 = F (b)− F (c) = (b− c) [F ′(0) + bG(b, c) + cH(b, c)]

Since b 6= c, then F ′(0)+bG(b, c)+cH(b, c) = 0, what is a contradiction because F ′(0) /∈ In.

2.2 The Weierstrass Preparation Theorem

The main goal of this section is to show a structure appearing on the rings of power series
over complete discrete valuation rings. It can be considered as a preparation for the study of
Iwasawa modules, which are finitely generated ones over Zp[[T ]].

The above mentioned result is Weierstrass preparation theorem, which gives a description of
every element in O[[T ]]. For that purpose, we need to define what is the reduced degree of a
power series.

Definition 2.1. Let O be a complete discrete valuation ring with maximal ideal m and residue
field κ = O/m and let f =

∑∞
n=0 anT

n ∈ O[[T ]]. The reduced degree of f is

s := inf{n ∈ N : an 6∈ m}

In the proof of Weierstrass preparation lemma, the following result, known as division lemma,
plays an important role.

Lemma 2.1. Let O be a complete discrete valuation ring with maximal ideal m and whose
residue field κ is finite and let g ∈ O[[T ]] be an element of reduced degree s. Then every
f ∈ O[[T ]] can be written uniquely as

f(t) = g(t)h(t) + r(t)

with h ∈ O[[T ]] and a polynomial r ∈ O[T ] of degree less than s−1. In particular, O[[T ]]/fO[[T ]]
is a free O-module of rank s whose basis is {T i + (f)O[[T ]] : i = 0, . . . , s− 1}.

We will proof this lemma at the end of this section. The description given in Weierstrass
preparation theorem is based on a special kind of polynomials, which are defined below.
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Definition 2.2. Let O be a complete discrete valuation ring with maximal ideal m. A
polynomial F ∈ O[T ] is called Weierstrass polynomial or distinguished polynomial if it is
of the form

F = T s + as−1T
s−1 + · · ·+ a1T + a0

with a0, . . . , as−1 ∈ m.

The importance of Weierstrass polynomials is that its residue ring is easily described due to
the division lemma.

Corollary 2.1. Let O be a complete discrete valuation ring and let F be a Weierstrass
polynomial. Then the injection O[T ] ↪→ O[[T ]] induces an isomorphism

O[T ]/FO[T ]
∼−→ O[[T ]]/FO[[T ]]

Proof. It comes from lemma 2.1 and the following commutative diagram:

O[T ]/FO[T ] //

∼

''

O[[T ]]/FO[[T ]]

∼

ww∑s−1
i=0 T

iO

Taking this background into account, we can state and proof the main result of this section.

Theorem 2.1. (Weierstrass Preparation Theorem) Let O be a complete discrete valuation
ring with maximal ideal m and whose residue field is κ = O/m and let f ∈ O[[T ]] have reduced
degree s. Then there is a unique pair (u, g) such that f(t) = u(t)g(t), u ∈ O[[T ]]∗ and g is a
Weierstrass polynomial of degree s.

Proof. By lemma 2.1, there is a unique u ∈ O[[T ]] and a unique polynomial r(T ) =
∑s−1
i=0 aiT

i

such that

T s = f(T )u(T )− r(T )

Since f has reduced degree s then ai = 0 ∀i = 0, . . . , s− 1 and

T s + as−1T
s−1 + · · ·+ a0 = f(T ) · u(T )

then the reduced degree of u is zero, so u ∈ O[[T ]]∗. Then the existence is proven since
g(T ) := T s + r(T ) is clearly a distinguished polynomial.

By corollary 2.1, O[[T ]]/(f(T )) ∼= O[[T ]]/(g(T )) ∼= O[T ]/(g(T )) is a free Zp-module such
that multiplication by T has minimal polynomial g(T ). This proves the uniqueness in the
factorisation.

Weierstrass preparation theorem can be understood as a structure theorem for the elements in
O[[T ]].

Corollary 2.2. Let O be a complete discrete valuation ring and let π be a uniformizer. Then
every f ∈ O[[T ]] can be written uniquely as

f(T ) = πmu(T )g(T )

where m ∈ N, u(T ) ∈ O[[T ]]∗ and g(T ) is a Weierstrass polynomial.
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Proof. It comes from theorem 2.1 after choosing

m = min{v(an) : n ∈ N}

where f =
∑∞
n=0 anT

n. Thus π−mf has finite reduced degree and theorem 2.1 can be applied.

As a consequence, we can show that O[[T ]] is a unique factorisation domain.

Corollary 2.3. Let O be a complete discrete valuation ring. Then power series ring O[[T ]] is
a unique factorisation domain.

Proof. Since O[T ] is a unique factorisation domain, it is possible to express every distinguished
polynomial as a product of monic irreducible elements inO[T ], being this decomposition unique.
Since this decomposition reduces well to k[[T ]], the irreducible elements has to be Weierstrass
polynomials. By theorem 2.1, they are also irreducible as elements of O[[T ]], so every element
in O[[T ]] can be written as a product of irreducible ones because of corollary 2.2.

By corollary 2.2, we just need to check the uniqueness for distinguished polynomials. By
theorem 2.1, we can assume that all decompositions consist of Weierstrass polynomials. Then
the uniqueness of the factorisation in O[T ] guarantees the uniqueness in O[[T ]], so it is a unique
factorisation domain.

We end this section by giving a proof of division lemma 2.1.

Proof of lemma 2.1. For the uniqueness, let g(T )h(T ) + r(T ) = f(T ) = g(T )h′(T ) + r′(T ).
Then s(T ) = r′(T ) − r(T ) is divisible by g(T ) in O[[T ]]. Let π be a prime element in O. If
s(T ) 6= 0, there are m ∈ N and s0(T ) ∈ O[[T ]] \ πO[[T ]] such that s(T ) = πms0(T ). Since π is
a prime element, and g(T ) 6∈ π(T ), it is easy to see that g(T ) divides s0(T ).

Consider the reduction map O[[T ]] → κ[[T ]] : f(T ) 7→ f̃(T ) consisting of reducing each
coefficient modulo m. Since this reduction is a ring homomorphism, then g̃(T ) divides s̃0(T ).
However, this is imposible since the s̃0(T ) is a non-zero polynomial of degree less than the
first non-vanishing coefficient of g̃(T ). Hence, s(T ) = 0, so r(T ) = r′(T ) and, therefore,
h(T ) = h′(T ).

For the existence, we are going to use the fact that κ[[T ]] is a discrete valuation ring. For every
f ∈ O[[T ]] we can write

f̃(T ) = T s

( ∞∑
i=s

ãiT
s−i

)
+

s−1∑
i=0

ãiT
i

Since the reduced degree of g(T ) is s, then g̃(T ) and T s generate the same ideal, so f̃(t) =

g̃(t)h̃(t) + r̃(t), where h̃(T ) ∈ κ[[T ]] and r̃(T ) ∈ κ[T ] is a polynomial of degree less than s. We
can lift this equation to O[[T ]] and obtain

f(T ) = g(T )h0(T ) + r0(T ) + πf1(T )

for some f1(T ) ∈ O[[T ]]. We can do the same with f1(T ) finding the existence of some
h1(T ), f2(T ) ∈ O[[T ]] and r1(T ) ∈ O[T ] of degree less than s such that f1(T ) = g(T )h1(T ) +
r1(T ) + πf2(T ). Thus,

f(T ) = g(T ) (h0(T ) + πh1(T )) + (r0(T ) + πr1(T )) + π2f2(T )

Doing that for every n ∈ N we get that

f(T ) = g(T )

(
n−1∑
i=0

πihi(T )

)
+

(
n−1∑
i=0

πiri(T )

)
+ πnfn(T )
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The sequences of partial sums are Cauchy sequences, so we can define

h(t) =

∞∑
i=0

πihi(T ), r(T ) =

∞∑
i=0

ri(T )

and they satisfy the equation f(T ) = g(T )h(T ) + r(T ).

2.3 Modules up to Pseudo-Isomorphism

The main goal of this section is to prove the following structure theorem, which will be applied
in next section to the case of Iwasawa modules, when A = Zp[[T ]].

Theorem 2.2. Let A be a Noetherian, integrally closed, 2-dimensional local ring whose
maximal ideal has a minimal set of generators consisting of two elements. Then there exist
finitely many prime ideals of height 1, {p1, . . . , ph} ⊂ P(A), nonnegative integers r, ri, nij ∈
N ∪ {0} and a homomorphism with finite kernel and cokernel

f : M
≈−→ Ar ⊕

n⊕
i=1

ri⊕
j=1

A/p
nij
i

The prime ideals {p1, . . . , pn} are determined by M since

r = dimK M ⊗A K, {p1, . . . , ph} = supp(M) ∩ P(A)

However, we are going develop the theory needed for the proof in a slightly more general
version. From now on, let A be a commutative, noetherian and integrally closed local domain
whose quotient field is K, but we will have to assume that A is regular of dimension 2 to
complete the proof. First of all, it is useful to state a result from basic commutative algebra
which is going to be needed.

Theorem 2.3. Let A be an integrally closed, noetherian domain and let P(A) be the set of
prime ideals of height 1. Then

A =
⋂

p∈P(A)

Ap

Proof. [16], Theorem 11.5

The notion of an homomorphism having finite kernel and cokernel is related to the concept of
pseudo-isomorphism.

Definition 2.3. A finitely generated A-module M is called pseudo-null if supp(M)∩P(A) = ∅
and (0) /∈ supp(M).

Remark 2.1. If M is a finitely generated A-module, then

supp(M) = V (AnnA(M))

Remark 2.2. If A has Krull dimension equal to 2 then an A-module is pseudo-null if and only
if it is finite. Indeed, providing that M is finite, then for each element x ∈ M , the quotient
A/AnnA(x) is finite, so it is also Artinian. Then there is some rx such that mrx ⊂ AnnA(x),
where m denotes the maximal ideal of A. Then there is some r ∈ N such that mrM = 0. Since
the only prime ideal in which mr is contained is m, then Mp = mrMp = 0 for every prime ideal
p of heigth 0 or 1. Therefore supp(M) ⊂ {m}, so M is pseudo-null.

Conversely, if M is pseudo null then its support is contained in {m} and, therefore, m =
rad (AnnA(M)). Since m is finitely generated, then mr ⊂ AnnA(M) for some r ∈ N. Then M
is a finitely generated A/mr module, so it is finite because so is A/mr.
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Definition 2.4. A homomorphism f : M → N of finitely generated A-modules is called a
pseudo-isomorphism if ker(f) and coker(f) are pseudo-null A-modules. Equivalently, f is a
pseudo-isomorphism if and only if

fp : Mp
∼−→ Np

is an isomorphism for every p ∈ P(A). We then write

f : M
≈−→ N

Lemma 2.2. Let M be a finitely generated A-torsion module and let α ∈ A be a non-zero
element such that supp(A/αA)∩ supp(M)∩P(A) = ∅. Then the multiplication on M by α is
a pseudo-isomorphism.

Proof. For every p ∈ supp(M)∩P(A), then p 6∈ supp (A/αA), so Ap/αAp = (A/αA)p = 0 and
hence α is a unit in Ap. Therefore, multiplication by α induces an isomorphism in Ap.

For every p ∈ P(A)\supp(M), thenMp = 0, so multiplication by α also induces an isomorphism
in Mp.

Finally, M(0) = M ⊗A K = 0 since M is A-torsion, so same argument applies.

Now we want to classify the finitely generated A-modules up to pseudo-isomorphism. Due to
next result, we can do that separately in the torsion and torsion-free parts.

Proposition 2.2. LetM be a finitely generatedA-module, let TA(M) be the torsion submodule
and let FA(M) = M/TA(M) be the maximal torsion-free quotient of M . Then there is a
pseudo-isomorphism

f : M
≈−→ TA(M)⊕ FA(M)

Proof. Since A is noetherian, then TA(M) is a finitely generated torsion module. Therefore,
AnnA(TA(M)) 6= 0. Then supp (TA(M)) ∩ P(A) consits of some minimal primes of the set
V (AnnA(TA(M))), so it is a finite set and we can write

supp (TA(M)) ∩ P(A) = {p1, . . . , ph}

In case that h = 0, then TA(M) is pseudo-null, so the map

f : M
≈−→ TA(M)⊕ FA(m) : m 7→ (0, π(m))

is a pseudo-isomorphism provided that π is the canonical projection.

If h > 0, consider the set S =
⋂h
i=1 p

c
i . Then S−1A is a Dedekind domain with only finitely

many prime ideals, so Chinese remainder theorem guarantees that it is a principal ideal domain.

The torsion part of S−1A is S−1TA(M), so structure theorem for finitely generated modules
over principal ideal domains says that it is a direct summand of S−1M . Since M is finitely
generated, we have that

HomS−1A

(
S−1M,S−1TA(M)

)
= HomA

(
M,S−1TA(M)

)
= S−1HomA (M,TA(M))

Thus there is a morphism f0 : M → TA(M) and s0 ∈ S such that

f0

s0
: S−1M → S−1TA(M)

is the canonical projection. Then this map restricted to S−1TA(M) is the identity, so there is
some s1 ∈ S such that, defining f1 := s1f0, then

f1

∣∣
TA(M)

= s1s0 idTA(M)
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By lemma 2.2, f1

∣∣
TA(M)

is a pseudo-isomorphism. Considering

f = (f1, π) : M → TA(M)⊕ FA(M)

there is a commutative diagram

0 // TA(M) //

f1|TA(M)

��

M //

f

��

FA(M) //

��

0

0 // TA(M) // TA(M)⊕ FA(M) // FA(M) // 0

where the third vertical arrow is the identity. Snake’s lemma, which is a well known result that
will be detailed in lemma 6.3, shows that ker(f) ∼= ker(f1) and coker(f) ∼= coker(f1). Since f1

is a pseudo-isomorphism from TA(M) to itself, both kernels and cokernels are pseudo-null and
f is also an isomorphism.

We can also use the structure theorem for finitely generated modules over a principal ideal
domain in order to classify the A-torsion modules.

Proposition 2.3. Let M be a finitely generated torsion A-module. Then there exists a finite
family of prime ideals {p1, . . . , ph} ⊂ P(A) and a pseudo-isomorphism

g : M →
h⊕
i=1

ri⊕
j=1

A/p
nij
i

where nij are some natural numbers depending on M .

Proof. As in the proof of proposition 2.2, consider the finite set

supp(M) ∩ P(A) = {p1, . . . , ph}

In case h = 0, then the null map M → 0 is a pseudo-isomorphism, so we can suppose that
h > 0.

Again, let S =
⋂h
i=1 p

c
i . Since S−1M is a torsion finitely generated module over the principal

ideal domain S−1A, whose prime ideals are p1, . . . , ph, then the structure theorem gives an
isomorphism

g0 : S−1M →
h⊕
i=1

ri⊕
j=1

S−1A/S−1p
nij
i = S−1

 h⊕
i=1

ri⊕
j=1

A/p
nij
i


where we have used that localisation is transitive. Since for every A-module E it is true that

HomS−1A(S−1M,S−1E) = HomA(M,S−1E) = S−1HomA(M,E)

then there is an s ∈ S and a morphism

g : M →
h⊕
i=1

ri⊕
j=1

A/p
nij
i

such that g = sg0. Then S−1g is an isomorphism, so it is easy to see that ker(g) and coker(g)
are pseudo-null. In fact, given p ∈ Supp(M) ∩ P(A), ker(g)p =

(
ker(S−1g)

)
S−1p

= 0 and

coker(g)p =
(
coker(S−1g)

)
S−1p

= 0.

To study the torsion free parts, we need to introduce first the notion of reflexive module:
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Definition 2.5. An A-module M is called reflexive if the canonical map

ϕM : M →M∗∗ = HomA (HomA (M,A) , A) : m 7→ ϕM (m) : α 7→ α(m)

from M to its bidual is an isomorphism.

If M is a torsion-free finitely generated A-module, there are injections

M ↪→Mp ↪→Mp ⊗Ap
K = M ⊗A K =: V

M∗ ↪→ (M∗)p ↪→ (M∗)p ⊗Ap
K = M∗ ⊗A K = HomK(V,K) =: V ∗

Then we can consider the dual spaces and its localisations as submodules of V ∗. Moreover

(M∗)p ∼= {λ ∈ V ∗ : λ(m) ∈ Ap ∀m ∈Mp} ∼= (Mp)∗

Lemma 2.3. Let M be a finitely generated torsion-free A-module. Then

1. M∗ =
⋂

p∈P(A)

M∗p

2. M∗∗ =
⋂

p∈P(A)

Mp

3. M =
⋂

p∈P(A)

Mp if and only if M is reflexive.

Proof. For the first part, let λ ∈
⋂
M∗p . Then for every m ∈ M we get that λ(m) ∈ Ap for

every p ∈ P(A). Then, by theorem 2.3, λ(M) ⊂ A, so λ ∈M∗.

For the second part, notice that Mp is a torsion free finitely generated module over the principal
ideal domain Ap, so the structure theorem states that it is free. Then it is clearly reflexive and
the canonical map Mp → M∗∗p is thus an isomorphism. Identifying V = V ∗∗, due to the first
part we have that

M∗∗ =
⋂

p∈P(A)

M∗∗p =
⋂

p∈P(A)

Mp

The third part is clear from the second one.

Corollary 2.4. If M is finitely generated, then M∗ is reflexive.

Proposition 2.4. Let M be a finitely generated torsion-free A-module. Then there is an
injective pseudo-isomorphism of M into a reflexive A-module.

Proof. The canonical map
ϕM : M →M∗∗

is a pseudo-isomorphism because Mp is a torsion-free finitely generated Ap-module for every
p ∈ P(A)∪{0}. Since M is a quotient of Ar for some r, M∗ is a subgroup of (Ar)∗ ∼= Ar, so it
is finitely generated for being Ar Noetherian. Hence corollary 2.4 implies that M∗∗ is reflexive.

Since ker(ϕM ) ⊗A K = 0 for being ϕM a pseudo-isomorphism, then ker(ϕM ) is torsion and
therefore zero, because M is torsion-free.

To complete the characterization of the torsion-free quotient we need to assume that A is
regular of dimension 2.

Proposition 2.5. Let A be a Noetherian, integrally closed, 2-dimensional local domain whose
maximal ideal has a minimal set of generators consisting of two elements, m = p1A+ p2A. If
M is a finitely generated A-module, the following statements are equivalent:
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1. M is reflexive.

2. M is free.

Proof. In order to prove the non-trivial implication, assume M is reflexive. Since A/p1A is an
integral domain, HomA(M∗, A/p1A) is a torsion-free A/p1A module. The homomorphism

M∗∗/p1M
∗∗ = HomA(M∗, A)⊗A A/p1A ↪→ HomA(M∗, A/p1A)

is injective. Since M is reflexive then M/p1M ∼= M∗∗/p1M
∗∗ and it is a torsion free finitely

generated module over the discrete valuation ring A/p1A, so the structure theorem guarantees
that M/p1M is free.

Let ϕ : Ar � M be a minimal presentation of M and consider the following commutative
diagram with exact rows:

0 // Ar
p1 //

ϕ

��

Ar //

ϕ

��

(A/p1A)r //

ϕ

��

0

0 // M
p1 // M // M/p1M // 0

Since M/p1M is free as an A/p1A-module, Nakayama’s lemma implies that its rank is r.
Tensoring with the quotient field Kp1

of A/p1A is an exact functor because it is also a
localisation on the ideal (0).

0 // ker(ϕ)⊗A/p1
Kp1

// (A/p1A)r ⊗A/p1
Kp1

ϕ⊗Id
// M/p1M ⊗A/p1

Kp1
// 0

Since ϕ⊗Id is a surjective linear map of Kp1
vector spaces of the same dimension, it is injective.

It means that ker(ϕ)⊗Kp1 = 0. Since A/p1A is a principal ideal domain, then ker(ϕ) is torsion
free module of rank 0, so ker(ϕ) = 0.

Therefore, snake’s lemma, which will be shown in lemma 6.3, implies that multiplication by
p1 is surjective in ker(ϕ), so p1 ker(ϕ) = ker(ϕ). Again, Nakayama’s lemma implies that
ker(ϕ) = 0, so M is free.

Taking all of these background into account, the proof of theorem 2.2 is complete.

Remark 2.3. The kernel of th pseudo-isomorphism of theorem 2.2 is the maximal finite
submodule ofM . In fact, elementary modules does not contain any non-trivial finite submodule,
so every finite module of M has to be contained in the kernel.

2.4 The Structure Theorem of Iwasawa Modules

In this section we are going to particularise to the case we are interested in, which is O = Zp.

Definition 2.6. The group algebra Λ = Zp[[Γ]] ∼= Zp[[T ]] is called the Iwasawa algebra and
finitely generated Λ-module is called an Iwasawa module.

We want to apply theorem 2.2 to obtain the structure theorem for Iwasawa modules.

Theorem 2.4. Let M be an Iwasawa module. There are irreducible Weierstrass polynomials
Fj , natural numbers r, mi, nj and a homomorphism

M
≈−→ Λr ⊕

s⊕
i=1

Λ/pmi ⊕
t⊕

j=1

Λ/F
nj
j

with finite kernel and cokernel. The numbers r, mi, nj and the Weierstrass polynomials are
uniquely determined by M . A Λ-module of that form is called elementary Iwasawa module.
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This theorem is the reason why we give the following definition. As we have mentioned in the
introduction, these invariants can be used to control the growth of either the class number or
the Tate-Shafarevich group in a Zp-extension.

Definition 2.7. Given a finitely generated Iwasawa module M , using notation of theorem 2.4
we define the following invariants:

• Λ-rank of M : r(M) = rankΛ(M) = r.

• Iwasawa µ-invariant : µ(M) =
∑s
i=1mi.

• Iwasawa λ-invariant : λ(M) =
∑t
j=1 njdeg(Fj).

Remark 2.4. The invariants r, µ and λ are additive functions since they are the can be
computed using ranks of some localised modules over certain localised domains.

In order to proof theorem 2.4, we need to identify the prime ideals of Zp[[T ]].

Lemma 2.4. The prime ideals of heigth 1 of Λ ∼= Zp[[T ]] are (p) and (F ), where F is an
irreducible Weierstrass polynomial over Zp.

Proof. Since Λ is a unique factorisation domain by corollary 2.3, the prime ideals of height
one are those of the form p = (f), where f is an irreducible element in Λ. Apart from (p),
theorem 2.1 states that every prime ideal of height 1 can be written as p = (F ), where F is an
irreducible Weierstrass polynomial. 1

With all of these background, theorem 2.2 implies theorem 2.4. Just the uniqueness part
deserves a comment. However, two different Weierstrass polynomials cannot generate the
same ideal because of the uniqueness part of theorem 2.1.

In order to apply theorem 2.4, we want to know when an Iwasawa module is finitely generated.

Proposition 2.6. Let M be an Iwasawa module. Then M is finitely generated if and only
M/mM is a finitely generated Fp-vector space. In that situation, the minimal number of
generators of M as a Λ-module is dimFp(M/mM).

Proof. If M is finitely generated, then dimFp(M/mM) is clearly finite. Conversely, choose
m1, . . . ,md ∈M such that their images are a basis in M/mM and let N = Λm1 + · · ·+ Λmd.
Let X be a finitely generated sumbodule which contains N . Then

m

(
X

N

)
=
mX +N

N
=
X

N

Thus Nakayama’s lemma implies that X/N = 0, so X = N . Since that is true for every finitely
generated submodule, then M = N .

We can also use the structure theorem to study the growth of some relevant quotients of finitely
generated Iwasawa modules. Before that, we need to consider a technical lemma.

Lemma 2.5. Let f ∈ Zp[[T ]] be a distinguished polynomial and let M := Λ/(f(T )). Then

wn+1

wn
M = pM ∀n > λ(λ− 1)

2

1Note that, by the proof of corollary 2.3, the irreducibility of a distinguished polynomial is equivalent in
Zp[T ] and Zp[[T ]].
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Proof. Consider the Fp vector space M/pM whose dimension is λ = deg(f). Multiplication by
T is thus an endomorphism whose characteristic polynomial is Xλ and the endomorphism T+1
is represented by a matrix which is upper triangular and has 1 in every diagonal entry. Hence

it belongs to a subgroup of order p
λ(λ−1)

2 , so γp
m

acts trivially on M/pM for m ≥ λ(λ−1)
2 . Now

let n > λ(λ−1)
2 and let A be the matrix representing the action of γ on M as a Zp-module on

the basis {1, T, . . . , Tλ−1}. Then

Ap
n−1

≡ I mod p⇒ Ap
n

≡ I mod p2 ⇒ Ap
n(p−1) + · · ·+Ap

n

+ I ≡ pI mod p2

Hence there is some matrix U ∈ GLλ(Zp) such that

Ap
n(p−1) + · · ·+Ap

n

+ I = pU

Therefore,
wn+1

wn
M = (γp

n(p−1) + · · ·+ γp
n

+ 1)M = pM

Now we can control the growth certain quotients of some Iwasawa modules by using λ and µ
invariants.

Proposition 2.7. Let M be a finitely generated torsion Λ-module with λ and µ the invariants
given by the structure theorem. If M/wnM if finite for all n ∈ N, then

|M/wnM | = pµp
n+λn+O(1)

Proof. Assume first that M = E is a torsion elementary Λ-module. Hence

E ∼=
s⊕
i=1

Λ/pmi ⊕
t⊕

j=1

Λ/F
nj
j

For each factor, Ei := Λ/pmi , corollary 2.1 implies Ei/wnEi = pmip
n

. For the factors Ej :=
Λ/F

nj
j , lemma 2.5 gives, for n large enough, an exact sequence

0 // Ej/wn

wn+1
wn // Ej/wn+1

// Ej/p // 0

Again corollary 2.1 implies that |Ej/p| = pnjdeg(Fj), so for large enough n,

|Ej/wn+1| = pnjdeg(Fj)|Ej/wn|

Notice that E/wn is a Zp finite module, so its order has to be a power of p. Putting everything
together, we have that

|E/wn| = pµ(E)pn+λ(E)n+O(1)

For the general case, let M0 be the maximal finite submodule of M and let N = M/M0. Then
snake’s lemma 6.3 below gives the following exact sequence

M0/wn // M/wn // N/wn // 0

Hence,

|N/wn| ≤ |M/wn| ≤ |N/wn| · |M0|
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Moreover, theorem 2.4 says there is an elementary Iwasawa module E and a finite Λ-module
C such that the following sequence is exact:

0 // N // E // C // 0

Snake’s lemma 6.3 gives thus an exact sequence

wnC
// N/wn // E/wn // C/wn // 0

where wnC denotes the kernel of multiplication by wn on C. Therefore,

1

|C|
≤ 1

|C/wn|
≤ |N/wn|
|E/wn|

≤ |wnC| ≤ |C|

Since the modules M0 and C do not depend on n and taking into account that every finite
Zp-module has an order which is a power of p, we get that

M/wnM = pµ(M)pn+λ(M)n+O(1)

Proposition 2.8. Let M be an Iwasawa module such that M/w0M = M/tM is a finitely
generated Zp-module. Then M is a finitely generated Λ-module.

Moreover, if rankΛM = r, then rankZpM/wnM = rpn + O(1) ∀n ∈ N, where O(1) is always
positive and bounded above by λ.

The converse is also true. If M is an Iwasawa module such that, for every n ∈ N, M/wn is a
finitely generated Zp-module whose rank is rpn +O(1), then M is a Λ-module of rank r.

Proof. Clearly M/mM is finite, so proposition 2.6 implies that M is finitely generated. Assume
first that M = E is an elementary Iwasawa module. Then it is trivial that

E/wnE ∼= Zrp
n

p ⊕
s⊕
i=1

(
Zp[[T ]]

pmi

)pn
⊕

l⊕
j=1

Zp[t](
F
nj
j , wn

)
Since every factor associated to the µ-invariant is Zp-torsion, they have no effect in the rank.
Moreover, the factors associated to the λ-invariant have total rank bounded above by λ. Hence

rankZpE/wnE = pnrankΛE +O(1)

where 0 ≤ O(1) ≤ λ.

For the general case, theorem 2.4 gives an exact sequence

0 // M0
// M // E // C // 0

where M0 and C are finite Λ-modules. Calling N := M/M0, the exact sequence

M0/wn // M/wn // N/nw // 0

implies that rankZp(M/wn) = rankZp(N/wn). Moreover, the exact sequence

wnC // N/wn // E/wn // C/wn // 0

implies that rankZp(N/wn) = rankZp(E/wn). Putting all together

rankZp(M/wn) = rankZp(E/wn) = rpn +O(1)

where 0 ≤ O(1) ≤ λ.
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The way we are going to encounter Iwasawa modules is as Zp-modules on which there is a
continuous action by a group Γ, which is non-canonically isomorphic to Zp. This modules can
be understood as Zp[[Γ]]-modules because of the following proposition.2 However, we need to
use the concept of inverse limit, which will be introduced rigorously in chapter 4,

Proposition 2.9. Assume that γ is a topological generator of Γ ∼= Zp. Then the map

Zp[[T ]]
∼−→ Zp[[Γ]] : T 7→ γ − 1

Proof. Consider the distinguished polynomials

wn = (T + 1)p
n

− 1 = T p
n

+

pn−1∑
i=1

(
pn

i

)
T p

n−i

and let Γn := Γp
n ⊂ Γ be the unique subgroup of index pn. By corollary 2.1, we can consider

the maps

Zp[[T ]]/(wn)
∼−→ Zp[T ]/(wn)→ Zp[Γ/Γn] : T + wnZp[[T ]] 7→ γ − 1 + Γn

which is an isomorphism of Zp-algebras, because its inverse is given by the map γ + Γn 7→
T + 1 + wnZp[[T ]]. Since wn+1 ∈ wnZp[[T ]], we can consider the following commutative
diagram

Zp[[T ]]/(wn+1)
∼ //

��

Zp[Γ/Γn+1]

��

Zp[[T ]]/(wn)
∼ // Zp[Γ/Γn]

Then after taking limits we obtain the folllowing isomorphism

lim←−
n

Zp[[T ]]/(wn)
∼−→ lim←−

n

Zp[Γ/Γn] = Zp[[Γ]]

Then we just need to see that the natural homomorphism

ψ : Zp[[T ]]→ lim←−
n

Zp[[T ]]/(wn)

is an isomorphism. The injectivity comes from the fact that wn ∈ (p, T )n+1, so kerψ =⋂
n∈N(wn) = {0}. The surjectivity comes from the compactness of Zp[[T ]] with the (p, T )-adic

topology, since each projection is surjective. Therefore, taking an element of the direct limit,
the inverse image of each component by the projection is not empty and closed and finite
intersections of them are also non-empty because the projections are compatible. Due to the
compactness of Zp[[T ]], the intersection of the inverse images of all the projections is still not
empty, so ψ is surjective.

2.5 Localisation in Dedekind Domains

Throughout this section, let o be a Dedekind domain and let K be its field of fractions. We
want to study the localization of o using a multiplicative S subset which will be the complement
of a union

⋃
p∈X p, where X is a set that contains every prime ideal of o except a finite amount

of them. In particular, our main goal will be tho show that the finiteness of the number of
generators of the unit group and of the class number are conserved under this process.

2We consider these modules as Zp[[Γ]]-modules instead of Zp[Γ]-modules because of the compactness
properties we obtain.
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This process will be applied to the ring of integers of a number field and the localisation appears
when we consider the elements having positive valuation for every prime but a finite amount
of them. In this case, there are two important finiteness theorems from basic algebraic number
theory and we will generalise them to the localised ring.

Theorem 2.5. (Dirichlet’s Unit Theorem) Let o be the ring of integers of a number field K.
Then o∗ is a finitely generated group of rank r + s− 1 and there is an isomorphism

o∗ ∼= Zr+s−1 × µK

where µK is the finite subgroup formed by the roots of unity in K.

Proof. [21], Chap.I, Theorem 7.4.

Theorem 2.6. Let K be a number field. Its class group is finite.

Proof. [21], Chap.I, Theorem 6.3.

First of all, we need to see that the localised ring is still a Dedekind domain.

Proposition 2.10. If o is a Dedekind domain and S ⊂ o \ {0} is a multiplicative subset, then
S−1o is also a Dedekind domain.

Proof. If a is an ideal of o, then it has a finite set of generators, say {a1, . . . , an}. Then,{
a1

1 , . . . ,
an
1

}
clearly generates S−1a. Since every ideal of S−1o is an extended ideal, S−1o is

Noetherian. Moreover, the bijection between prime ideals in S−1o and prime ideals in o that
does not meet S guarantees that every non-zero prime ideal in S−1o is maximal. Finally, S−1o
is integrally closed. In fact, if some x ∈ K satisfies the integral equation

xn +
a1

s1
xn−1 + · · ·+ an

sn
= 0

with coefficients ai
si
∈ S−1o, after multiplying by the nth power of s := s1 . . . sn ∈ S, we would

get an integral equation for sx with coefficients in o. That would mean that sx ∈ o, since it is
integrally closed. It would be equivalent to x = sx

s ∈ S
−1o, so S−1o is integrally closed.

As we stated above, we want to study the localization of a Dedekind domain under the
complement of the union of almost every prime ideal in o. Since the Dedekind domains we are
going to be interested in are the ring of integers of number fields, we are going to assume that
the class number of o is finite.

Proposition 2.11. Let o be a Dedekind domain, let X ⊂ Spec(o) be a set containing almost
every prime ideal, and let S =

⋂
p∈X pc. If Cl(o) is a finite group, then there is a bijection

X ↔ Spec
(
S−1o

)
: p 7→ S−1p

Proof. From [1], proposition 3.11, the previous formula describes a bijection between prime
ideals in Spec(o) that does not meet S and prime ideal is Spec

(
S−1o

)
. Hence we just need to

prove that the elements of X are precisely those prime ideals of o that do not meet S.

It is clear that the elements of X does not meet S. Conversely, let p ∈ Spec(o) such that
p ∩ S = ∅. Then,

p ⊂
⋃
q∈X

q

Let n be the class number of o. Thus pn is a principal ideal, which is generated by some a ∈ o.
Then there is some q ∈ X such that a ∈ q, so pn ⊂ q. Since q is a prime ideal, then p ⊂ q.
Since o is a Dedekind domain, both p and q are maximal ideals and p = q ∈ X.
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Remark 2.5. In the reference used [21], it is said that last result can be generalised to
arbitrary Dedekind domains. However, that is not true because the finiteness of the class
number is necessary.

There is a theorem due to Claborn, which is proven in [6], that states that every abelian is
isomorphic to the class group of some Dedekind domain. Then there is a Dedekind domain o
and a prime ideal p such that pn is not principal for any n ∈ N.

For every x ∈ p, the ideal (x) has a factorisation containing some prime ideal different from p.
Hence x is contained in some prime ideal different from p. Then we have a counter example
to proposition 2.11 without assuming the finiteness of the class number, since

p ⊂
⋃

q∈Spec(o)\{p}

q

Next statements we are going to show are the facts that the finiteness in the rank of the group
of units and in the call number are conserved after localising. We will deduce its properties
from the following exact sequence.

Proposition 2.12. Let o be a Dedekind domain whose class number is finite. Then there is
a canonical exact sequence

1 // o∗ // o(X)∗ //
⊕
p/∈X

K∗/o∗p // Cl(o) // Cl(o(X)) // 1

Proof. The first arrow is clearly an inclusion and the second one is induced by the maps
o(X)∗ ↪→ K∗ � K∗/o∗p. It is clear that every unit of o is a unit in op for every prime p, so
it belongs to the kernel. Conversely, if a ∈ o(X)∗ belongs to the kernel, then a ∈ o∗p ∀p /∈ X.
Since localisation is transitive, a ∈ o(X)∗pX = o∗p, where pX is the extended ideal of p ∈ X.
Then,

a, a−1 ∈
⋂

p∈Spec(o)

op = o⇒ a ∈ o∗

Thus the sequence is exact at o(X)∗. The third arrow is induced by the mapping⊕
p/∈X

K∗/o∗p → Cl(o) :
⊕
p/∈X

αp mod o∗p 7→
∏
p/∈X

pvp(αp)

where vp is the exponential valuation associated to the prime ideal p. Let (αp)p/∈X be an
element in the kernel, so it is mapped to a principal ideal. Then,∏

p/∈X

pvp(αp) = αo =
∏
p/∈X

pvp(α)

Then vp(α) = 0 ∀p ∈ X and vp(αp) = vp(α) ∀p /∈ X. It thus follows from proposition 2.5 that
α ∈

⋂
p∈X o∗p =

⋂
p∈X o(X)∗pX = o(X)∗. Furthermore, α ≡ αp mod o∗p, which shows exactness

at
⊕

p/∈X K
∗/o∗p, since the other inclusion is trivial.

Last arrow is defined by the map

Cl(o)→ Cl(o(X)) : a 7→ a · o(X)

which is clearly well defined because principal ideals are mapped to principal ideals. Due
to proposition 2.5, the kernel of this map is the set of ideals whose factorisation into primes
contains only elements out of X, which is clearly the image of the previous map, so the sequence
is exact at Cl(o). Last arrow is also clearly surjective because every ideal in o(X) is an extended
ideal, so the exactness at Cl(o(X)) is satisfied.
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Corollary 2.5. Let o be a Dedekind domain and let X be a set containing almost every prime
ideal in o. If the class number of o is finite, then the class number of o(X) is also finite.

Corollary 2.6. Let o be a Dedekind domain whose class number is finite and let X ⊂ Spec(o)
be such that Spec(o)\X is a finite set containing a representative of every class of prime ideals
in o, then Cl (o(X)) = {1}.

Proof. It follows from proposition 2.12 and the fact that the map⊕
p/∈X

K∗/o∗p → Cl(o)

is in this case surjective.

Corollary 2.7. Let o be a Dedekind domain whose class number is finite and let X be a set
containing almost every prime ideal in o. Then the rank of o(X)∗ is finite and we have the
equality

rank (o(X)∗) = rank (o∗) + # (Spec(o) \X)

Proof. It follows from proposition 2.12 and the facts that rank is an additive function and that
both class groups Cl (o) and Cl (o(X)) are finite.



Chapter 3

Formal Groups

The content of this chapter is an introduction to the theory of formal groups. They arise
naturally when studying the arithmetic of elliptic curves and one try to express the group
operation as a power series of the coordinates.

The group operation defined on an elliptic curve is generally difficult to compute and the
formulas usually consider several cases. A different approach to that computation is expressing
the group operation as a power series of the coordinates. This is the content of section 3.5 and
has the advantage that a single power series can be used to calculate every sum, having no
necessity of considering several cases. However, one must be warned that this is just a formal
expression, although convergence would be guaranteed in several cases, like sums in the kernel
of the reduction map defined on an elliptic curve over a local field.

That is the reason why we define formal groups in section 3.1, which are a generalisation of
the notion of a group in which we are just considering the operation but not the elements in
the group. Some formal groups have associated groups, which are introduced in section 3.2.
Section 3.3 is dedicated to the concept on invariant differential, which is an analogue to that
concept in an elliptic curve. Finally, formal logarithm is considered in 3.4, which will be useful
for studying the Mordell-Weil group in an elliptic curve defined over a local field.

Although this is a pretty technical chapter, its conclusions would imply interesting properties
related to the arithmetic of elliptic curves defined over local fields. The reference used for this
chapter has been chapter IV of [27].

3.1 The Definition of Formal Groups

Formal groups are a generalization of the definition of abelian groups in which we are just
considering the operation and we are not considering the group elements.

Definition 3.1. Let R be a ring. A formal group F over R is a power series F (X,Y ) ∈
R[[X,Y ]] with no constant term satisfying the following properties:

• Neutral element: F (X, 0) = X; F (0, Y ) = Y .

• Associativity: F (X,F (Y,Z)) = F (F (X,Y ), Z).

• Commutativity: F (X,Y ) = F (Y,X).

• Inverse element: ∃! i(T ) ∈ R[[T ]] having no constant term such that F (T, i(T )) = 0.

Remark 3.1. The composition of two power series in R[[t]] could not be well defined. However,
the fact that the power series in the previous definition have no constant term ensures that

27
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those compositions are well defined since the computation of each term in the composition
involves only a finite sum.

Remark 3.2. The neutral element condition implies that

F (X,Y ) = X + Y + · · ·

Now we show the most basic examples of formal groups. However, more interesting examples
will appear in section 3.5 when talking about multiplication on elliptic curves.

Example 3.1. The formal additive group, denoted by Ga, is defined by

Ga(X,Y ) = X + Y

Example 3.2. The formal multiplicative group, denoted by Gm, is defined by

Gm(X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1

We can also extend the definition of homomorphism between groups to the case of formal
groups.

Definition 3.2. Let (F , F ) and (G, G) be formal groups defined over R. A homomorphism
from F to G defined over R is a power series f ∈ R[[t]] such that

f (F (X,Y )) = G(f(X), f(Y ))

Furthermore, two formal groups (F , F ) and (G, G) are called isomorphic if there are formal
group homomorphisms f : F → G and g : G → F such that

f(g(T )) = g(f(T )) = T

Definition 3.3. Let (F , F ) be a formal group. We define the homomorphisms [m] : F → F
inductively for m ∈ Z by

[0](T ) = 0, [m+ 1](T ) := F ([m](T ), T ), [m− 1](T ) := F ([m]T, i(T ))

These induction is well defined since after doing a step up and another one down, and vice
versa, we get the same power series since

F ([m+ 1](T ), i(T )) = F (F ([m](T ), T ), i(T )) = F ([m](T ), F (T, i(T ))) = F ([m](T ), 0) = [m](T )

F ([m− 1](T ), T ) = F (F ([m](T ), i(T )), T ) = F ([m](T ), F (i(T ), T )) = F ([m](T ), 0) = [m](T )

We will also use induction to prove that [m] are formal group homomorphisms. For m = 0,
that is clear. For m > 0, assuming that [m− 1] is a formal group homomorphism, we see that

[m](F (X,Y )) = F ([m− 1](F (X,Y )), F (X,Y )) = F (F ([m− 1](X), [m− 1](Y )), F (X,Y )) =

F ([m− 1](X), F ([m− 1](Y ), F (X,Y ))) = F ([m− 1](X), F (X,F ([m− 1](Y ), Y ))) =

F ([m− 1](X), F (X, [m](Y ))) = F (F ([m− 1](X), X), [m](Y )) = F ([m](X), [m](Y ))

so [m] is a formal group homomorphism ∀m ≥ 0 since it is clearly a power series without
constant term.
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Induction for negative numbers can be written as follows. Assuming that [m + 1] is a formal
group homomorphism we get that

[m](F (X,Y )) = F ([m+ 1](F (X,Y )), i(F (X,Y ))) =

F (F ([m+ 1](X), [m+ 1](Y )), i(F (X,Y ))) =

F (F (F ([m](X), X), F ([m](Y ), Y )), i(F (X,Y ))) =

F (F ([m](X), F (X,F ([m](Y ), Y ))), i(F (X,Y ))) =

F (F ([m](X), F ([m](Y ), F (X,Y ))), i(F (X,Y ))) =

F (F ([m](X), [m](Y ), F (X,Y )), i(F (X,Y ))) =

F (F ([m](X), [m](Y )), F (F (X,Y ), i(F (X,Y )))) =

F (F ([m](X), [m]Y ), 0) = F ([m](X), [m](Y ))

Remark 3.3. By induction, it is also easily proved that the first non-constant term in the
power series of [m] takes value m, i.e.,

[m]′(0) = m

Now we want to study in which cases multiplication by m is an isomorphism.

Lemma 3.1. Let a ∈ R∗ and let f(T ) ∈ R[[T ]] be a power series such that f(0) = 0 and
f ′(0) = a. Then there is a unique power series g(T ) ∈ R[[T ]] with no constant term satisfying
that

f(g(T )) = T

This series g(T ) also satisfies that g(f(T )) = T .

Proof. We want to construct a sequence of polynomials gn(T ) ∈ R[T ] such that

f(gn(T )) ≡ T mod (Tn+1), gn+1(T ) ≡ gn(T ) mod (Tn+1)

By induction, let g1(T ) := a−1T . Assuming that gn−1(T ) has been constructed there is some
b ∈ R such that f(gn−1(T )) = T + bTn mod (Tn+1). Then, let gn(T ) := gn−1(T ) − a−1bTn.
Then,

f(gn(T )) = f(gn−1(T )−a−1bTn) ≡ f(gn−1(T ))−aa−1bTn ≡ T+bTn−bTn ≡ T mod (Tn+1)

Then (gn) ⊂ R[[T ]] is a Cauchy sequence in the (T )-adic topology, so by completeness it
converges to some g(T ). Left composition with f is a continuous function in that topology so

f(g(T )) = lim
n→∞

f(gn(T )) = T

Clearly, g(0) = 0 and g′(0) = a−1 ∈ R∗, so we can apply to g what we have just proven and
deduce the existence of some h ∈ R[[T ]] such that g(h(T )) = T . Then

g(f(T )) = g(f(g(h(T )))) = g(f ◦ g(h(t))) = g(h(T )) = T

To see that g(T ) is unique, suppose that G(T ) ∈ R[[T ]] is another power series satisfying that
f(G(T )) = T . Then

g(T ) = g(f(G(T ))) = (g ◦ f)(G(T )) = G(T )

Proposition 3.1. Let (F , F ) and (G, G) formal groups over R and let a ∈ R∗. If f : F → G
is an homomorphism such that f ′(0) = a, then f is an isomorphism.
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Proof. By lemma 3.1, there exists a power series g ∈ R[[t]] such that g(f(T )) = f(g(T )). We
just need to check that g : G → F is a homomorphism between these formal groups. Since f
is a homomorphism,

F (g(X), g(Y )) = (g ◦ f)(F (g(X), g(Y ))) = g(G((f ◦ g)(X), (f ◦ g)(Y ))) = g(G(X,Y ))

so g : G → F is also a homomorphism.

Corollary 3.1. Let F be a formal group over R. If m ∈ R∗, then [m] : F → F is an
isomorphism.

3.2 The Groups Associated to Formal Groups

In case R is a complete local ring, a formal group has associated a canonical group by
considering the elements of the maximal ideal with the operation defined in definition 3.1.

Definition 3.4. Let (F , F ) be a formal group over a local ring (R,m) which is complete with
respect to the m-adic topology. Then the group associated to F/R, which is denoted by F(m),
is the set m endowed with the group operation

x⊕F y := F (x, y) 1

With this operation, 0 ∈ m is the neutral element and given some x ∈ m, its inverse is

	Fx = i(x)

Remark 3.4. Given two formal groups F and G defined over R and a homomorphism f :
F → G, then map

m→ m : x 7→ f(x)

is an homomorphism between their associated groups.

Remark 3.5. The associated group F(m) has an important filtration of subgroups

F(m) ⊃ F(m2) ⊃ F(m3) · · ·

Remark 3.2 implies that

F(mn)/F(mn+1) ∼= mn/mn+1

Example 3.3. The associated group Ga(m) is just m with the usual addition. On the other
hand, Gm(m) is the set 1 + m with the usual multiplication.

Proposition 3.2. Let F be a formal group defined over a complete local ring R and let p be
the characteristic of the residue field κ = R/m. Then every element of finite order in F(m) has
an order that is a power of p.

Proof. Let m ∈ N such that m /∈ pZ and let x ∈ m such that [m]x = 0. By corollary 3.1,
[m] was an automorphism of the formal group, so its associated group homomorphism has to
be an isomorphism of the associated group. Then, ker[m] = {0}, so F(m) has no non-trivial
m-torsion elements.

Now let n = prm, where r,m ∈ N, m > 1 and p 6 |m. If the associated group had an element x
of order n, then prx would have order m, which contradicts what was proven above.

1This operation is well defined since F has no constant term and it converges because R is complete with
the m-adic topology.
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When we have defined the associated group of a formal group, we have chosen the elements of
the maximal ideal m of R to be the elements of the associated group. However, if R is the ring
of integers of a complete field K with respect to a valuation and L|K is a field extension, we
can also consider the elements of the maximal ideal mL of the ring of integers RL of L to be the
elements of the associated group. In particular, when choosing L = K we get very interesting
properties of divisibility.

Nevertheless, one should be careful to check that all the power series converge. However, that
is not a problem in this case. For instance, given x, y ∈ m, then F (x, y) is a power series in the
ring of integers of K(x, y), which is a finite extension of K. Hence K(x, y) is still a complete
field, so convergence is guaranteed in this case.

Lemma 3.2. Let K be a complete field with respect to a discrete valuation, let R be its ring
of integers, let R be the ring of integers in the algebraic closure K and let m be its maximal
ideal. Assume that F has finite height, i.e., [p] /∈ πR[[T ]], where p = char(R/m) and π is a
uniformizer in R. Then, given formal group F defined over R, F(m) is [p]-divisible, i.e., for
every x ∈ F(m), there is some y ∈ F(m) such that [p]y = x.

Proof. Let x ∈ F(m), let L = K(x) and let RL be its ring of integers. Applying corollary 2.2
to [p](T ) − x ∈ RL[[T ]], we find some u ∈ RL[[T ]]∗ and a Weierstrass polynomial g ∈ RL[T ]
such that [p](T ) − x = πmL · u · g for some m ≥ 0 and where πL is a uniformizer in RL. Since
[p] /∈ πR[[T ]] and x ∈ mL, then m = 0 and g has positive degree. Let then y ∈ K be a root
of g. Clearly, y ∈ m because, otherwise, the leading term in g(y) = 0 will have strictly less
valuation than the others, which is not possible due to the ultrametric inequality. Then

[p]y − x = πm · u(y) · g(y) = 0⇒ [p]y = x

Corollary 3.2. Let K be a complete field with respect to a discrete valuation, let R be its ring
of integers, let R be the ring of integers in the algebraic closure K and let m be its maximal
ideal. Given formal group F of finite height defined over R, then F(m) is divisible.

Proof. We just need to see that F(m) is [l]-divisible for every prime number l ∈ Z. If l =
char(k), then lemma 3.2 applies. On the other hand, if l 6= char(k), then l ∈ R∗, so corollary
3.1 states that [l] is an isomorphism.

3.3 The Invariant Differential

This section is dedicated to the notion of invariant differential in a formal group. It is just
a formal expression of a differential form which has its name because of its analogy with the
invariant differential ω of an elliptic curve. That differential satisfies the property

ω(P +Q) = ω(P ) ∀P,Q ∈ E

and that is the reason why we give the following definition.

Definition 3.5. An invariant differential on a formal group F defined over R is a formal
expression

w(T ) = P (T )dT ∈ R[[t]]dT

satisfying that
P (F (T, S))FX(T, S) = P (T ) (3.1)

where FX denotes the formal derivative of F with respect to the first variable. Last identity
will be sometimes written as (ω ◦ F )(T, S) = ω(T ).

Moreover, we will say that an invariant differential is normalised if P (0) = 1.
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Proposition 3.3. Given a formal group (F , F ) over R, there is a unique normalised invariant
differential, which is given by the formula

ω = FX(0, T )−1 dT

Proof. Let ω = P (T )dT be a normalized invariant differential. Substituting T = 0 in equation
3.1, we get that

P (S)FX(0, S) = P (0) = 1⇒ P (T ) = FX(0, T )−1 ⇒ ω = FX(0, T )−1 dT

Then we have just seen the uniqueness. For the existence, we just need to see the previous
formula describes an invariant differential. Considering the associative law and differentiating
it with respect to U , we get that

F (U,F (T, S)) = F (F (U, T ), S)⇒ FX(U,F (T, S)) = FX(F (U, T ), S)FX(U, T )

Substituting U = 0,

FX(0, F (T, S)) = FX(T, S)FX(0, T )⇒ FX(0, F (T, S))−1FX(T, S) = FX(0, T )−1

Hence ω = FX(0, T )−1dT is an invariant differential.

Corollary 3.3. Let F and G be formal groups defined over R and let ωF and ωG be their
invariant differentials. Let f : F → G be a homomorphism. Then

ωG ◦ f = f ′(0)ωF

Proof. Since f is a homomorphism and ωG is G-invariant,

(ωG ◦ f)(F (T, S)) = (ωG ◦G)(f(T ), f(S)) = ωG(f(T )) = (ωG ◦ f)(T )

Then ωG◦f is F-invariant and, by proposition 3.3, ωG◦f and ωF are proportional. Comparing
the constant coefficients, ωG ◦ f = f ′(0)ωF .

Last result is useful to describe as power series the multiplications by prime numbers in a
formal group.

Corollary 3.4. Let (F , F ) be a formal group over R and let p ∈ Z be a prime number. Then
there are power series f(T ), g(T ) ∈ R[[t]] with f(0) = g(0) = 0 such that

[p](T ) = pf(T ) + g(T p)

Proof. Since [p] : F → F is a homomorphism, corollary 3.3 implies that

pP (T )dT = pω(T ) = ω ◦ [p](T ) = P ([p](T ))[p]′(T )dT

Because P (0) = 1, P ([p](T )) is invertible in R[[T ]], so [p]′(T ) ∈ pR[[T ]]. Therefore every term
aTn in the series [p](T ) satisfies that na ∈ pR, so either a ∈ pR or p|n.

Now we can state a bound in the valuation of the torsion elements in the associated group.
Notice that proposition 3.2 implies that the order of every torsion element is a power of the
characteristic of the ring.
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Theorem 3.1. Let R be a discrete valuation ring that is complete with respect to its maximal
ideal m, let p = char(R/m) > 0 and let v be the valuation on R. Let F/R be a formal group
and suppose that x ∈ F(m) has order pn, for some n ∈ N. Then,

v(x) ≤ v(p)

pn − pn−1

Proof. We can assume that char(R) > 0, since the other case is trivial by proposition 3.2. We
are going to proceed by induction on n. For n = 1, corollary 3.4 implies that there are powers
series f(T ), g(T ) ∈ R[[T ]] such that

0 = pf(x) + g(xp)

By remark 3.3, the leading term of f is T , so the only possibility for the leading term of pf(x)
to be cancelled is that

v(px) ≥ v(xp)⇔ v(p) ≥ (p− 1)v(x)⇔ v(x) ≤ v(p)

p− 1

For the general case, assume the theorem is true for n and let x ∈ F(m) be a torsion element
whose order is pn+1. Since [p](x) has order pn, induction hypothesis guarantees that

v(p)

pn − pn−1
≥ v ([p](x)) = v (pf(x) + g(xp)) ≥ min {v(px), v(xp)}

Since v(x) > 0, then v(px) > v(p), so the only possibility is that

v(p)

pn − pn−1
≥ v(xp) = pv(x)⇔ v(x) ≤ v(p)

pn+1 − pn

3.4 The Formal Logarithm

Another important property of the invariant differential is that its formal integral, which is
commonly known as the formal logarithm, gives an isomorphism between our formal group
and the additive formal group. Even though formal logarithm is not an isomorphism in the
sense of definition 3.2, since the formal integral is a power series with coefficients in R ⊗ Q
instead of R, it is an isomorphism when considered the formal groups as defined over R⊗Q.

Last condition is not enough to be sure that the formal logarithm defines an isomorphism
between the associated subgroups in case our formal group is defined over a discrete valuation
ring. Nevertheless, we will see that logF (x) converges provided that v(x) is large enough, so
it defines an isomorphism between the associated subgroups F(mr) and Ga(mr) = (mr,+) for
some r ∈ N.

Definition 3.6. Let R be a ring such that its additive group is torsion-free and let K := R⊗Q.
Let F be a formal group defined over R and let

ω(T ) = (1 + c1T + c2T
2 + · · · ) dT

be its normalized invariant differential. The formal logarithm of F is the power series

logF (T ) =

∫
ω(T ) := T +

c1
2
T 2 +

c2
3
T 3 + · · · ∈ K[[T ]]

The formal exponential of F is the unique power series expF (T ) ∈ K[[T ]] satisfying

logF ◦ expF (T ) = expF ◦ logF (T ) = T
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Remark 3.6. The existence and uniqueness of the formal exponential are guaranteed by
lemma 3.1.

Proposition 3.4. Let R be a torsion free ring and let F be a formal group defined over R.
Then

logF : F → Ga
defines an isomorphism of formal groups over K = R⊗Q.

Proof. Let ω(T ) the normalized invariant differential on F , so ω(F (T, S)) = ω(T ). Integrating
formally with respect to T gives the following identity.

logF F (T, S) = logF T + C(S)

where C(S) ∈ K[[T ]] is some constant of integration. After substituting T = 0, we see that
C(S) = logF (S). Hence,

logF F (T, S) = logF T + logF S = Ga (logF T, logF S)

Then logF : F → G is a formal group homomorphism. By lemma 3.1, it is guaranteed
the existence of an inverse homomorphism, which is the formal exponential, so logF is an
isomorphism.

We are going to see that logarithm can also define isomorphism between certain subgroups of
the associated groups.

Theorem 3.2. Let K be a field of characteristic 0 that is complete with respect to a normalised
discrete valuation, let R be its valuation ring and let m its maximal ideal. Let p ∈ Z be a

prime number such that v(p) > 0 and let r > v(p)
p−1 . Then the formal logarithm induces an

isomorphism
logF : F(mr)→ (mr,+)

In order to proof this theorem, we need to consider some technical lemmas first.

Lemma 3.3. Let R be a torsion free ring and let F be a formal group over R. Then the
formal exponential map can be written as

expF (T ) =
∞∑
n=1

λn
n!
Tn

where λn ∈ R ∀n ∈ N and λ1 = 1.

Proof. Notice that logF ◦ expF (T ) = T and that

logF (T ) = T +

∞∑
n=1

cn−1

n
Tn, cn ∈ R

Differentiating the first identity we get that

log′F (expF (T )) exp′F (T ) = 1⇒ λ1 = exp′F (0) =
1

log′F (expF (0))
=

1

log′F (0)
= 1

By repeated differentiation, it is easily seen by induction that log′F (expF (T )) exp
(n)
F (T ) can

be expressed as a polynomial with integer coefficients in the variables log
(i)
F (expF (T )), where

i ∈ {1, . . . , n} and exp
(j)
F (T ), where j ∈ {1, . . . , n− 1}.

Evaluating at T = 0, since log
(i)
F (0) = (n− 1)!cn and exp

(j)
F (0) = λj , we see that bn = a1b1 is a

polynomial expression, with coefficients in Z, evaluated in the variables c1, . . . , cn, λ1, . . . , λn−1.
Then, it follows from an easy induction that bn ∈ R.
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Lemma 3.4. Let F be a formal group defined over a discrete valuation ring R such that

char(R) = 0 and let p ∈ Z be a prime number such that v(p) > 0. If v(x) > v(p)
p−1 , then logF (x)

converges in R and

v (logF (x)) = v(x)

Proof. Since cn ∈ R, then v(cn) ≥ 0 and

v

(
cn−1x

n

n

)
≥ nv(x)− v(n) ≥ nv(x)− (logp n)v(p) ≥ v(x) +

(
(n− 1) + logp(n)(p− 1)

)
v(x)

For n > p, then n − 1 > logp(n)(p − 1), so v
(
cn−1x

n

n

)
> v(x). For n ∈ {2, . . . , p − 1} then

v(n) = 0, so v(n) = 0 and v
(
cn−1x

n

n

)
≥ v(xn) > v(x). If n = p, then

v

(
cp−1x

p

p

)
≥ pv(x)− v(p) = v(x) + (p− 1)v(x)− v(p) > v(x)

By what we have just seen, v
(
cn−1x

n

n

)
goes to ∞ as n → ∞, so logF (x) converges by the

completeness of R. Since v
(
cn−1x

n

n

)
> v(x) for every n ≥ 2 and the valuation of the leading

term is equal to v(x), then ultrametric inequality implies that

v (logF (x)) = v(x)

We now want to see that expF (x) also converges when v(x) is large enough. However, we need
to consider first a technical lemma.

Lemma 3.5. Let v be a valuation over a field K and let p ∈ Z a prime number such that
v(p) ∈ (0,∞). Then

v(n!) ≤ (n− 1)v(p)

p− 1
∀n ∈ N

Proof. We can compute

v(n!) =

∞∑
i=1

⌊
n

pi

⌋
v(p) ≤

blogp nc∑
i=1

nv(p)

pi
=
nv(p)

p− 1

(
1− p−blogp nc

)
≤ (n− 1)v(p)

p− 1

Lemma 3.6. Let F be a formal group defined over a discrete valuation ring R. Assume that
the characteristic of R is 0. Let p ∈ Z be a prime number such that v(p) > 0 and let x ∈ R
such that v(x) > v(p)

p−1 . Then expF (x) converges in R and

v (expF (x)) = v(x)
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Proof. For each term, lemma 3.5 implies that

v

(
λnx

n

n!

)
≥ nv(x)− v(n!) ≥ nv(x)− (n− 1)

v(p)

p− 1
= v(x) + (n− 1)

(
v(x)− v(p)

p− 1

)

If v(x) > v(p)
p−1 then limn→∞ v

(
λnx

n

n!

)
=∞, so expF (x) converges in R. Moreover, in that case

v
(
λnx

n

n!

)
≥ v(x) ∀n ∈ N and the equality happens only for n = 1 since λ1 = 1. Hence the

ultrametric inequality implies that v (expF (x)) = v(x).

We can now conclude the proof of theorem 3.2. Provided that v(x) ≥ r, lemmas 3.4 and 3.6
imply that the power series logF (x) and expF (x) converges to an element having the same
valuation as x. Thus

logF : F(mr)→ (mr,+), expF : (mr,+)→ F(mr)

are mutually inverse bijections. By proposition 3.4, logF is a group homomorphism, so it has
to be an isomorphism.

3.5 Formal Groups and Elliptic Curves

We will end this section by ensuring that the group operation in an elliptic curve can be
described by using a formal group. This description is in general just formal, being the
convergence of the power series only guaranteed only in some particular cases. We will try to
describe the group operation as a power series. For that purpose, consider an elliptic E/K
curve whose Weierstrass equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

With the change of coordinates
z = −xy , w = − 1

y

the Weierstrass equation becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 = f(z, w) (3.2)

Essentially, we have just change the order of the homogeneous coordinates, so the geometric
group law is the same, with the subtle difference that now the origin is the point (0, 0).

The curve can be considered as defined over K((t)). We want to see that the there is a unique
power series w(t) ∈ K[[t]] without constant term such that (t, w((t))) ∈ E. This statement can
be deduced from proposition 2.1 applied to the polynomial w − f(z, w) and a = 0.

The group law of the curve can be also understood using a power series expansion. For that
purpose, consider the elliptic curve defined over K[[t1, t2]]. By proposition 2.1, there is a unique
power series w ∈ K[[t]] such that the points (t1, w(t1)), (t2, w(t2)) ∈ E. We wish to compute
the sum of these two points. Then, the line containing (t1, w(t1)) and (t2, w(t2)) can be written
as w = λz + ν, where

λ = w(t2)−w(t1)
t2−t1 ∈ K[[t1, t2]], ν = w(t1)− t1λ ∈ K[[t1, t2]]

Substituting w = λz + ν in equation 3.2, we get the following cubic equation in z.

(1 + λa2 + λ2a4 + λ3a6)z3 + (a1λ+ a2ν + a3λ
2 + 2a4λν + 3a6λ

2ν)z2+

(a1ν + 2a3λν + a4ν
2 + 3a6λν

2 − λ)z + (a3ν
2 + a6ν

3 − ν) = 0
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Since t1 and t2 are roots of this equation for the appropiate values of λ, ν ∈ K[[t1, t2]], then
the third root can be computed as

x = −t1 − t2 −
a1λ+ a2ν + a3λ

2 + 2a4λν + 3a6λ
2ν

1 + λa2 + λ2a4 + λ3a6
∈ K[[t1, t2]]

It can be easily checked that x is a power series with no constant term. The other coordinate
of this third point of intersection can be computed as

y = λx+ ν ∈ K[[t1, t2]]

It is again a power series with no constant term. Then, by the uniqueness part of proposition
2.1, y = w(x).

A similar argument can be used to express the coordinates (t3, w3) of the third point of
intersection of the line through (x, y) and (0, 0) by a power series in K[[t1, t2]] with no constant
term. Then, the sum (t3, w3) = (t1, w1) + (t2, w2) can be written as

(t3, w3) =
(
F (t1, t2), w(F (t1, t2))

)
Analogously, there is a power series i(t) ∈ K[[t]] with no constant term such that

−(t1, w(t1)) = (i(t1), w(i(t1)))

Remark 3.7. An important advantage of using this technique is that there is no necessity of
distinguishing between summing different points of doubling one of them. That is because the
line through a point (z1, w(z1)) has slope λ = w′(z1), where w′ represents the formal derivative
of the power series w is tangent to the curve. Then simplifying denominators in the expression
of γ and substituting z1 = z2 would result in the same expression.

Proposition 3.5. Let F ∈ R[[z1, z2]] be the power series given by the group law of the elliptic
curve. Then, F defines a formal group.

Proof. Axioms of commutativity and the existence of neutral and inverse element comes from
this properties in the group law of the curve. For the associative axiom, we just need to
consider the curve to be defined over K[[t1, t2, t3]].
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Chapter 4

The Pontryagin Duality

The main goal of this chapter is giving a tool for classifying some discrete p-primary groups
which might not be finitely generated as groups. That tool is Pontryagin duality.

In order to develop it, we start by defining inverse and direct limits in section 4.1. Then
we define profinite topological spaces in section 4.2, as a preparation for introducing profinite
groups in section 4.3. The main references used have been [23] and [24]. We also characterise
them in several ways and describe how their discrete continuous modules are.

In section 4.4 the Pontryagin dual of a group is defined. It is also showed how the compact-open
topology works and how duality behaves under taking direct and inverse limits. In section 4.5
we give a Zp-module structure to the Pontryagin dual, which will be used in section 4.6 to
classify those discrete abelian groups being cofinitely generated. These sections are a personal
development, guided by [11] and [24].

4.1 Direct and Inverse Limits

Definition 4.1. A directed set (I,≤) is a set I with a binary relation ≤ (possibly partial)
satisfying the following axioms:

• i ≤ i ∀i ∈ I.

• i ≤ j, j ≤ k ⇒ i ≤ k ∀i, j, k ∈ I.

• i ≤ j, j ≤ i⇒ i = j ∀i, j ∈ I.

• ∀i, j ∈ I, ∃k ∈ I such that i ≤ k, j ≤ k.

Definition 4.2. An inverse system over a directed set I, is a collection of objects {Xi : i ∈ I}
in a category and a collection of morphisms {ϕji : Xj → Xi : i ≤ j} such that whenever
k ≥ j ≥ i, the following diagram commutes

Xk

ϕkj
//

ϕki
  

Xj

ϕji

��

Xi

Definition 4.3. Let {Xi, ϕji, I} be an inverse system in some category C and let Y ∈ C. A
collection of maps {ψi : Y → Xi : i ∈ I} is said to be compatible if whenever i ≤ j the following

39
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diagram commutes.

Y
ψj
//

ψi   

Xj

ϕji

��

Xi

Definition 4.4. Given an inverse system {Xi, ϕji, I} in some category, an inverse limit is
an object X ∈ C with compatible morphisms ϕi : X → Xi such that for every collection of
compatible maps {ψi : Y → Xi} there is a unique morphism ψ : Y → X such that the following
diagrams commute:

Y
ψ
//

ψi   

X

ϕi

��

Xi

Proposition 4.1. Given an inverse system {Xi, ϕji, I} in any category, there is at most one
inverse limit up to isomorphism.

Proof. Suppose there are two inverse limits X and X ′ with their respective collection of
morphisms {ψi : i ∈ I} and {ψ′i : i ∈ I}. Then the universal property of inverse limits
gives the following commutative diagram:

X
φ
//

ψi   

X ′
ψ
//

ψ′i

��

X

ψi~~

Xi

X ′
ψ
//

ψ′i   

X
φ
//

ψi

��

X ′

ψ′i~~

Xi

By the uniqueness part of the universal property of the direct limits, ψ ◦ φ = IdX and φ ◦ψ =
IdX′ , so X ∼= X ′.

Remark 4.1. Let {Xi, ϕji, I} be an inverse system of topological spaces, groups or topological
groups. Its inverse limit is the subset of their product space given by

lim←−
i∈I

Xi =

{
(xi) ∈

∏
i∈I

Xi : ϕji(xj) = xi ∀(i, j) ∈ I2 : j ≥ i

}

Definition 4.5. A direct system over a directed set I is a collection of objects {Xi : i ∈ I} in a
category and a collection of morphisms {ϕij : Xi → Xj : i ≤ j} such that whenever k ≥ j ≥ i,
the following diagram commutes

Xi

ϕij
//

ϕik
  

Xj

ϕjk

��

Xk

Definition 4.6. Let {Xi, ϕij , I} be a direct system in some category C and let Y ∈ C. A
collection of maps {ψi : Xi → Y : i ∈ I} is said to be compatible if whenever i ≤ j the
following diagram commutes.

Xi

ϕij
//

ψi
  

Xj

ψj

��

Y
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Definition 4.7. Given a direct system {Xi, ϕij , I} in some category, a direct limit is an object
X ∈ C with compatible morphisms ϕi : Xi → X such that for every collection of compatible
maps {ψi : Xi → Y } there is a unique morphism ψ : X → Y such that the following diagrams
commute:

Xi
ϕi //

ψi
  

X

ψ

��

Y

Proposition 4.2. Given a direct system {Xi : ϕij , I} in any category, there is at most one
direct limit up to isomorphism.

Proof. It is analogous to the proof of proposition 4.1, just considering the following commutative
diagrams:

X
φ
// X ′

ψ
// X

Xi

ψi
``

ψ′i

OO

ψi

>> X ′
ψ
// X

φ
// X ′

Xi

ψ′i
``

ψi

OO

ψ′i

>>

Remark 4.2. Let {Xi, ϕij , I} be a system of topological spaces. Its direct limit is the quotient
of their disjoint given by

lim←−
i∈I

Xi =

{
(xi) ∈

⊔
i∈I

Xi : ϕij(xi) = xj ∀(i, j) ∈ I2 : i ≥ j

}

In case the Xi are topological groups (or simply groups), the direct limit has a natural group
operation which consist on multiplying componentwise.

We will end this section by showing some properties of the direct limit in certain categories.

Proposition 4.3. Let I be a directed set and let {Ai : i ∈ I}, {Bi : i ∈ I} and {Ci : i ∈ I}
be direct system of R-modules such that, for every i ∈ I, the following sequence is exact:

0 // Ai
µi // Bi

εi // Ci // 0

It the following diagrams are commutative for every i ≤ j,

Ai
ϕij
//

µi

��

Aj

µj

��

Bi
ϕij
// Bj

Bi
ϕij
//

εi

��

Bj

εj

��

Ci
ϕij
// Cj

then the direct limit induces another short exact sequence:

0 // lim−→i∈I Ai
µ∗ // lim−→i∈I Bi

ε∗ // lim−→i∈I Ci
// 0

Proof. It is clear that the maps µ∗ and ε∗ are well defined.

Let ai be a representative of an element in kerµ∗ and let bi := µi(ai). Since [bi] = 0 there is
some j such that ϕij(bi) = 0. Then ϕij ◦ µi(ai) = µj ◦ ϕij(ai) = 0. Since µj is injective, then
ϕij(ai) = 0, so [ai] = 0. The secuence is thus exact at lim−→i∈I Ai.
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It is clear that ε∗ ◦ µ∗ = 0. Conversely, given [bi] ∈ ker ε∗, there is some j ∈ I such that
εj ◦ ϕij(bi) = 0, so ϕij(ai) ∈ Im(µi) and, therefore, [bi] ∈ Im(µ∗).

Since ε∗ is clearly surjective, the proof is complete.

Proposition 4.4. Let {Ai : i ∈ I} be a direct system of groups and let B another group.
Then there is an isomorphism

lim−→
i

(Ai ⊗B) ∼=

(
lim−→
i

Ai

)
⊗B

Proof. The maps

φi : Ai ⊗B →

(
lim−→
i

Ai

)
⊗B : ai ⊗ b 7→ [ai]⊗ b

form a compatible system, so they induce a map

φ : lim−→
i

(Ai ⊗B)→

(
lim−→
i

Ai

)
⊗B

Conversely, the map

ψ :

(
lim−→
i

Ai

)
×B → lim−→

i

(Ai ⊗B) : ([ai], b) 7→ [ai ⊗ b]

induces a map from the tensor product. It is easily seen that ψ and ψ are mutually inverse.

4.2 Profinite Spaces

As a preparation to study the profinite groups, we will study first profinite topological spaces
and its characterisation as compact, Hausdorff and totally disconnected spaces.

Definition 4.8. A topological space is called a profinite space if it is the inverse limit of finite
discrete spaces.

Profinite Hausdorff topological spaces can be easily characterised as those being compact and
totally disconnected.

Lemma 4.1. For a Hausdorff topological space T the following conditions are equivalent.

1. T is a profinite space.

2. T is compact and totally disconnected

3. T is compact and every point of T has a basis of neighbourhoods consisting of subsets
which are both open and closed.

Before proving that equivalence, we need to consider some technical lemmas.

Lemma 4.2. If the transition maps are surjective, the inverse limit of compact, Hausdorff
non-empty topological spaces {Xi : i ∈ I} is non-empty, Hausdorff and compact.

Proof. Since the spaces Xi are compact, so is their product
∏
i∈I

Xi, because of Tychonoff’s

theorem. The inverse limit X := lim←−
i

Xi can be expressed as follows

lim←−
i

Xi =
⋂
i≤j

Xji
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where Xji =

{
x ∈

∏
i∈I

Xi : ϕji ◦ πj(x) = πi(x)

}
. Since Xi is Hausdorff, then Xji is closed

whenever i ≤ j, so X is closed too and thus compact. Clearly, it is also Hausdorff for being a
subspace of a Hausdorff space.

Assume for the sake of contradiction that X is empty. Due to the compactness of the direct
product, a finite amount of Xjk,ik would have empty intersection. However, let l be an upper
bound for {j1, . . . , jn}, which exists because of last axiom of definition 4.1 and an inductive

argument. Given some y0 ∈ Xl, by the axiom of choice there exist some x0 ∈
∏
i∈I

Xi such that

πl(x0) = y0 and

πik(x0) = ϕl,ik(y0) ∀k = 1, . . . , n, πjk(x0) = ϕl,jk(y0) ∀k = 1, . . . , n

Hence the compatibility of the transition maps implies that

x0 ∈
n⋂
i=1

Xjk,ik 6= ∅

This contradiction proves that X 6= ∅.

Lemma 4.3. Let T be a compact Hausdorff topological space and let x ∈ T . Then the
connected component C of x is the intersection of all open and closed neighbourhoods of x.

Proof. Let {Uα} be the family of all open and closed neighbourhoods of x. Since C is connected,
it is contained in every Uα, so

C ⊂ A :=
⋂
Uα

Then it is enough to show that A is connected. Assume that A = U ∪ V , where U ∩ V = ∅,
and that U and V are closed in A, and so they are in T because A is closed too. Hence U and
V are compact and there are open sets U ′, V ′ ⊂ T containing U and V such that U ′ ∩ V ′ = ∅.

Since (T \ (U ′ ∪ V ′))∩A = ∅ and T is compact, there are a finite number α1, . . . , αn such that

(T \ (U ′ ∪ V ′)) ∩ Uα1
∩ · · · ∩ Uαn = ∅

However, B := Uα1
∩ · · · ∩ Uαn is an open and closed neighbourhood of x and

x ∈ (B ∩ U ′) ∪ (B ∩ V ′)

Without loss of generality, we can assume that x ∈ B ∩U ′, which is clearly open and it is also
closed because

B ∩ U ′ = (T \ (B ∩ V ′)) ∩B

By definition A ⊂ B ∩ U ′ ⊂ U ′, so A ∩ V ⊂ A ∩ V ′ = ∅, which implies that V = ∅. Thus A is
connected.

We can now complete the proof of lemma 4.1.

Proof of lemma 4.1. (1) ⇒ (2): T is compact by lemma 4.2. Since discrete spaces are totally
disconnected, so is their direct product and their direct limit, as a subspace of the product, is
totally disconnected too.

(2) ⇒ (3): Let x ∈ T and let {Uα} be the family of open and closed neighbourhoods of x.
According to lemma 4.3,

{x} =
⋂
Uα
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Let W be an open neighbourhood of T . Then T \W is compact and

(T \W ) ∩
(⋂

Uα

)
= ∅

By compactness, there is a finite intersection of open and closed neighbourhood contained in
W . Nevertheless, this finite intersection is itself an open and closed neighbourhood, so {Uα}
is a basis of neighbourhoods.

(3)⇒ (1): Denote by R the set of equivalence relations in T such that the equivalence classes
are open sets. Since T is compact, T/R is finite and discrete for every R ∈ R. There is also
a natural partial order relation in R: we say R ≥ R′ if and only if xR ⊂ xR′ ∀x ∈ T . This
makes R a directed set because R1 ∩R2 is an upper bound for the pair R1, R2.1

If R ≥ R′, we define the projection

ϕRR′ : T/R→ T/R′ : xR 7→ xR′

Since the projections πR : X → X/R : x 7→ xR are clearly compatible, by the universal
property of the inverse limit there is a canonical continuous mapping

ψ : T → lim←−
R
T/R

We can see ψ is surjective because, given an element {xR}R∈R ∈ lim←−
R
T/R, for each relation

R ∈ R, then (πR ◦ ψ)−1(xR) is non-empty and compact. Since R is a directed set and the
maps πR ◦ φ are compatible, finite intersecions of these preimages are also non-empty, which
implies by compactness that

ψ−1({xR}R∈R) =
⋂
R∈R

(πR ◦ ψ)−1(xR) 6= ∅

Moreover, given some x, y ∈ T such that x 6= y. By hypothesis, there is an open and closed
set U such that x ∈ U and y /∈ U . Then, the equivalence relation defined by (a, b) ∈ R if both
are in U or if both are not in U satisfies that (x, y) 6∈ R. Then, ψ(x) 6= ψ(y).

Since every equivalence class is open, the projection πR : T → T/R is continuous provided
that T/R is endowed with the discrete topology. Since all the projections are compatible, ψ
is continuous by the universal property of the inverse limit. Further, ψ is an homeomorphism
since T is compact and the inverse limit is Hausdorff.

4.3 Profinite Groups

Now, we will focus in the category of profinite groups.

Definition 4.9. A profinite group is a topological group which is the inverse limit of finite
discrete groups.

The situation regarding profinite groups is similar to profinite spaces. Hence profinite groups
can be identified by their topological properties.

Proposition 4.5. Given a Hausdorff topological group, the following conditions are equivalent.

1. G is a profinite group.

2. G is compact and totally disconnected.

1Here we are understanding relations as subsets of T × T given by (x, y) ∈ R⇔ x ∼ y.
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3. G is compact and the unit element has a basis of neighbourhoods consisting of open and
closed normal subgroups.

Proof. (1)⇒ (2): By lemma 4.1.

(2) ⇒ (3): By lemma 4.1, every point has a basis of neighbourhoods consisting of open and
closed sets. Let U be an open and closed neighbourhood of the neutral element. Define

V := {v ∈ U : Uv ⊂ U}, H = {h ∈ V : h−1 ∈ V }

Given some v ∈ V , then uv ∈ U ∀u ∈ U . By the continuity of the group operation, there are
open neighbourhoods Uu, Vu of u and v, respectively, such that UuVu ∈ U . Then {Uu : u ∈ U} is
an open cover of the compact subset U , so it is possible to find a finite subcover {Uu1

, . . . , Uun}.
Define then

Vv := Vu1
∩ · · · ∩ Vun

which is clearly an open neighbourhood of v contained in V , Since v ∈ V was arbitrary, V is
open. Since the inversion map is an homeomorphism, H = V ∩ V −1 is open too.

Let’s show that H is a subgroup. Trivially e ∈ H and H−1 = H. Moreover given x, y ∈ H, since
Uxy ⊂ Uy ⊂ U , then xy ∈ V . Similarly, since x−1, y−1 ∈ V , then y−1x−1 ∈ V , so xy ∈ H.
Therefore, H is an open subgroup contained in U . H is also closed, since its complementary
is a union of cosets of H, which are homeomorphic to H.

Since the cosets of H constitute an open cover of the compact group G, then (G : H) < ∞.
Therefore, there are only finitely many conjugates of H. The finite intersection of all of them
is an open and closed normal subgroup contained in U .

(3)⇒ (1): Assuming that U runs through the set of normal, open and closed subgroups, which
is a directed set, there is a canonical continuous homomorphism

ψ : G→ lim←−
U

G/U

Notice that the compactness imply that G/U is finite for every open normal subgroup. We
will see that ψ is a group isomorphism and a homeomorphism. The injectivity is clear since
G is Hausdorff and the normal, open and closed subgroups are a basis of neighbourhoods. For
the surjectivity, let x = {xU} ∈ lim←−

U

G/U . Then

ψ−1(x) =
⋂
U

(πU ◦ ψ)−1(xU )

Since the finite intersections of (πU ◦ ψ)−1(xU ) are nonempty, then ψ−1(x) 6= ∅ due to the
compactness of G.

The continuity on ψ comes from the universal property of the inverse limit. Since ψ is also
bijective, G is compact and the inverse limit is Hausdorff, ψ is an homeomorphism.

It is possible to characterise any closed subgroup of a profinite group as an inverse limit of
open subgroups.

Proposition 4.6. Let G be a profinite group and let H be a closed subgroup. Then

H = lim←−
U

HU

where U runs through the normal open subgroups and the transition maps are inclusions.
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Proof. There is a canonical injection from H to the direct limit by considering the same element
in the same coordinate. The surjectivity is equivalent to the following identity.

H =
⋂
U

HU

In fact, given g ∈ G \H, by proposition 4.5 there is some open normal subgroup U such that
gU ∩H = ∅ and hence g /∈ HU .

In order to study the order of a profinite group, we need to introduce the concept of supernatural
numbers.

Definition 4.10. A supernatural number is a formal product∏
p

pnp

where p runs through all prime numbers and, for each p, the exponent is a non-negative integer
or ∞.

Definition 4.11. Let G be a profinite group and let H ⊂ G be a closed group. The index of
H in G is the supernatural number

(G : H) = l.c.m. (G/U : H/(H ∩ U))

where U ranges over all normal subgroups of G. The order of G is

#G = (G : 1) = l.c.m. (|G/U |)

With that, the notion Sylow subgroup can be extended to profinite groups.

Definition 4.12. A profinite group G is said to be a pro-p group if it is the inverse limit of
finite discrete p-group. Equivalently, a profinite group is pro-p if its order divides p∞.

Definition 4.13. Let G be a profinite group and let p be a prime number. A subgroup Gp is
a p-Sylow subgroup if it is a pro-p group and (G : Gp) is prime to p.

Sylow theorems can be generalized to profinite groups.

Theorem 4.1. Let G be a profinite group and let p be a prime number.

1. There exists a p-Sylow subgroup Gp.

2. Every pro-p subgroup is contained in a p-Sylow subgroup.

3. The p-Sylow subgroups of G are conjugate.

Proof. Let U run through the open subgroups of G and denote by Σp(U) to the set of p-Sylow
subgroups of G/U , which is finite and non-empty by [14], theorem 1.7. If V ⊂ U , the canonical
projection G/V → G/U induces a map

Σp(V )→ Σp(U)

If we endowed Σp(U) with the discrete topology, then the inverse limit

lim←−
U

Σp(U)

is not empty by lemma 4.2 and each element is a p-Sylow subgroup.
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For the second part, let H be a pro-p group. By [14], theorem 1.14, the subset ΣHp (U) ⊂ Σp(U)
formed by the p-Sylow subgroups of G/U containing HU/U is not empty. Again, an element
belonging to the inverse limit

lim←−
U

ΣHP (U)

would be a Sylow subgroup containing H.

Finally, let Gp and G′p be two p-Sylow subgroups of G and let SU and S′U be their images in

G/U via the canonical projection. Let C(U) be the set of elements σUSUσ
−1
U = S′U , which is

not empty by [14], theorem 1.12. C(U) is thus a projective system such that

lim←−
U

C(U)

is not empty by lemma 4.2. Clearly, σGpσ
−1G′p for any σ ∈ lim←−U C(U).

We will also be interested in continuous actions of a profinite group on different abelian groups.

Definition 4.14. Let G be a profinite group. A (topological) G-module M is an abelian
Hausdorff topological group endowed with a continuous action

G×M →M : (g,m) 7→ g(m)

such that for every g, h ∈ G and m,n ∈M we have that

1(m) = m, (gh)(m) = g(h(m)), g(m+ n) = g(m) + g(n)

Definition 4.15. Let G be a profinite group, let H be a subgroup and let M be a G-module.
The H-invariant submodule is defined by

MH = {m ∈M : h(m) = m ∀h ∈ H}

Unless the contrary is stated, we will assume that M is endowed with the discrete topology.
The continuity of the action of G in that case can be studied using the next proposition.

Proposition 4.7. Let G be a profinite group acting on an abelian discrete topological group
M . Then the following conditions are equivalent:

1. The action is continuous.

2. For every m ∈M the subgroup Gm := {g ∈ G : g(m) = m} is open.

3. M =
⋃
U M

U , where U runs through the open normal subgroups of G.

Proof. (1)⇒ (2): The continuous action restricts to a continuous function

φm : G→M : g 7→ g(m)

Then Gm = φ−1
m ({m}) is open.

(2) ⇒ (3): Given m ∈ M , then m ∈ MGm ⊂
⋃
U M

U because Gm is a normal subgroup for
being the kernel of the homomorphism G→ End(M) induced by the action.

(3)⇒ (1): Given (g,m) ∈ G×M , there is an open subgroup such that m ∈MU . Then gU×m
is an open neighbourhood of (g,m) ∈ G×M mapping to g(m). Then the action is continuous
at (g,m).
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4.4 The Dual Group

This section is dedicated to the Pontryagin duality. We will focus it as a preparation for
defining in section 4.6 the notion of corank of a discrete p-primary module.

Throughout this section, let p ∈ Z be a fixed prime number. We are going to study the notion
of dual group and then we will show that abelian pro-p groups and discrete p-primary abelian
groups are mutually duals.

Definition 4.16. Let A be a topological group. Its Pontryagin dual is defined by

Â = Homcts(A,Qp/Zp)

when Qp/Zp is endowed with the discrete topology. The topology given to Â is the compact-open
topology, i.e., the topology generated by the following subbase

V (K,U) =
{
f ∈ Â : f(K) ⊂ U

}
where K runs through the compact subsets of A and U runs through the open sets in Qp/Zp.

Remark 4.3. The Pontryagin dual is sometimes defined as Homcts(A,Q/Z) (see [24]). However,
we are going to be only interested in studying its p-primary parts and that is the reason we
have given last definition.

In order to ensure that the Pontryagin dual of A is a topological group, we need to assume
that A is locally compact. However, that does not arise any problem to our interests, since
discrete and profinite groups are locally compact.

Proposition 4.8. Given a compact, Hausdorff and locally compact topological group A, its
Pontryagin dual Â is a topological group with the compact-open topology.

Proof. The inverse map i : x 7→ −x is an homeomorphism because

−V (K,U) = V (K,−U)

and −U is open since Qp/Zp is a topological group.

Then we just need to see that the sum map is continuous. Let f, g ∈ Â and let K ⊂ A compact
and U ⊂ Qp/Zp open be such that f + g ∈ V (K,U). Since the sum operation is continuous in

Qp/Zp, for each x ∈ K, there are open sets Ṽx, W̃x ⊂ Qp/Zp such that f(x) ∈ Ṽx, g(x) ∈ W̃x

and Ṽx + W̃x ⊂ U .

Since A is locally compact, we can find Vx and Wx precompact open neighbourhoods of x such
that V x ⊂ f−1(Ṽx) and W x ⊂ g−1(W̃x). By compactness, there is a finite number x1, . . . , xn
such that

K ⊂ (Vx1
∩Wx1

) ∪ · · · ∪ (Vxn ∩Wxn)

Therefore,

f ∈ V (Vx1
, Ṽx1

) ∩ · · · ∩ V (Vxn , Ṽxn), g ∈ V (Wx1
, W̃x1

) ∩ · · · ∩ V (Wxn , W̃xn)

By construction[
V (Vx1 , Ṽx1) ∩ · · · ∩ V (Vxn , Ṽxn)

]
+
[
V (Wx1 , W̃x1) ∩ · · · ∩ V (Wxn , W̃xn)

]
⊂ f(K,U)

Hence, the sum operation is a continuous map and Â is a topological group.

Corollary 4.1. If A is a compact Hausdorff group, then Â has de discrete topology.
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Proof. Since A is compact and Hausdorff, it is locally compact, Â is a topological group because
of proposition 4.8. Hence we just need that the set U = {0} is open. However, this is true by
definition because it is V (A, {0})

From now on, we will assume that the homomorphisms are continuous without specifying it.

Proposition 4.9. Let {Gi : i ∈ I} be an inverse system of finite discrete groups with transition
maps {ψji : j ≥ i}, then

Hom

(
lim←−
i∈I

Gi,Qp/Zp

)
∼= lim−→

i∈I
Hom (Gi,Qp/Zp)

where the transition homomorphisms in the last direct limit are

ψ∗ij : Hom(Gi,Qp/Zp)→ Hom(Gj ,Qp/Zp) : φ 7→ φ ◦ ψji, i > j

Proof. Let G = lim←−
i∈I

Gi, let ϕ ∈ Hom (G,Qp/Zp) and let U := kerϕ. By continuity, U is an open

normal subgroup of G, so there are some j1, . . . , jn ∈ I such that ker(πj1) ∩ · · · ∩ ker(πjn) ⊂
U , where πi is the canonical projection onto the ith coordinate. If j is an upper bound of
{j1, . . . , jn}, then ker(πj) ⊂ U . Hence we identify ϕ with the equivalence class of the quotient
map

ϕj = ϕj : Gj → Qp/Zp

If i ∈ I was another index such that ker(πi) ⊂ U , then there is some upper bound k ≥ i, j.
Then we have that ψki ◦ πk = πi and ψkj ◦ πk = πj , so we have the following commutative
diagrams:

G
πk // Gk

ψki ////

ϕk ##

Gi

ϕi
��

Qp/Zp

G
πk // Gk

ψkj
////

ϕk ##

Gi

ϕj

��

Qp/Zp

Thus ϕk = ϕi ◦ ψki = ϕj ◦ ψkj , so ϕi, ϕj and ϕk belong to the same equivalence class in the
direct limit. Hence we have defined a canonical map:

Φ : Hom

(
lim←−
i∈I

Gi,Qp/Zp

)
→ lim−→

i∈I
Hom (Gi,Qp/Zp) : ϕ 7→ [ϕi]

We want to see that this identification is a homomorphism. For that purpose, let α, β ∈
Hom(G,Qp/Zp) and let i, j ∈ I such that ker(πi) ⊂ ker(α) and ker(πj) ⊂ ker(β). For every
upper bound k ≥ i, j,

ker(πk) ⊂ ker(πi) ∩ ker(πj) ⊂ ker(α) ∩ ker(β) ⊂ ker(α+ β)

and clearly (α+ β)k = αk + βk.

The inverse function is given as follows. If φ ∈ Hom(Gi,Qp/Zp) for some i ∈ I and πi : G→ Gi
is the canonical projection, then

Φ−1(φ) = φ ◦ πi ∈ Hom(G,Qp/Zp)

The inverse function is well defined. To see that, let ϕ1 ∈ Hom(Gi,Qp/Zp) and ϕ2 ∈
Hom(Gj ,Qp/Zp) be two representatives of the same element in the direct product. Then
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there is an upper bound k ≥ i, j such that the following diagram is commutative

Gk
ψki //

ψkj

��

Gi

ϕ1

��

Gj
ϕ2 // Qp/Zp

Hence,
Φ−1(ϕ1) = ϕ1 ◦ πi = ϕ1 ◦ ψki ◦ πk = ϕ2 ◦ ψkj ◦ πk = ϕ2 ◦ πj = Φ−1(ϕ2)

then Φ−1 is well defined and thus Φ is an isomorphism.

Proposition 4.10. Let {Gi : i ∈ I} a direct system of finite discrete groups, being ϕij : Gi →
Gj , for i < j, the transition maps. Then

Hom

(
lim−→
I

Gi,Qp/Zp

)
∼= lim←−

I

Hom (Gi,Qp,Zp)

where the transition homomorphisms in the last inverse limit are

ϕ∗ji : Hom(Gj ,Qp/Zp)→ Hom(Gi,Qp/Zp) : φ 7→ φ ◦ ϕij , i < j

Proof. Let i ∈ I and let ji : Gi → lim−→
I

Gi : x 7→ [x] be the canonical map. Then consider the

collection of maps

ψi : Hom

(
lim−→
I

Gi,Qp/Zp

)
→ Hom (Gi,Qp,Zp) : φ 7→ φ ◦ ji

Since ji = jj ◦ϕij ∀i, j ∈ I, the collection {ψi : i ∈ I} is compatible. By the universal property
of the inverse limit, it factors through a homomorphism

ψ : Hom

(
lim−→
I

Gi,Qp/Zp

)
→ lim←−

I

Hom (Gi,Qp,Zp)

Conversely, given φ ∈ lim←−
I

Hom(Gi,Qp,Zp), we see that for every x ∈ Gi, where i ∈ I, then

ψ−1(φ)([x]) = π∗i (φ)(x)

where π∗i is the projection in the inverse limit associated to the coordinate i ∈ I. It is easy
to see that ψ−1 is well defined since given two representatives x ∈ Gi and y ∈ Gj in the same
equivalence class there is some upper bound k ≥ i, j and z ∈ Gk in that equivalence class.
Then

π∗i (φ)(x) = (ϕ∗ki ◦ π∗k)(φ)(x) = π∗k(φ)(ϕik(x)) = π∗k(φ)(z) = (ϕ∗jk ◦ π∗k)(φ)(y) = π∗j (φ)(y)

Then ψ−1 is well defined, so ψ is an isomorphism.

Remark 4.4. The topology in
lim←−
I

Hom (Gi,Qp,Zp)

given by the inverse limit is the compact open topology, since both of them are generated by
the same subbasis.
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Now we want to see that abelian pro-p groups and discrete p-primary abelian groups are
mutually duals. For that purpose, we need to see that the duals of finite abelian p-groups are
isomorphic to them.

Proposition 4.11. Let A be a discrete, finite cyclic p group. Then Â is non-canonically
isomorphic to A.

Proof. Let n ∈ N be such that |A| = pn and let σ ∈ A be a generator. Consider the map

Â→ Qp/Zp[pn] : ϕ 7→ ϕ(σ)

It is well defined since ord (ϕ(σ)) has to divide ord(σ) = pn. It is injective because σ generates
A and surjective because A is discrete. Since Qp/Zp[pn] is cyclic of order pn, it is isomorphic

to A. By corollary 4.1, Â has the discrete topology, so it is also homeomorphic to A.

Corollary 4.2. If A is an abelian finite discrete p-group, then Â is non-canonically isomorphic
to A.

Proof. By structure theorem of finite abelian groups, we can write

A = C1 × · · · × Cr

where C1, . . . , Cr are cyclic p-groups. Since A is also discrete, by proposition 4.11,

Â = Hom (A,Qp/Zp) = Hom (A,Qp/Zp) ∼= Hom (C1,Qp/Zp)× · · · ×Hom(Cr,Qp/Zp) ∼=
C1 × · · · × Cr ∼= A

By corollary 4.1, Â has the discrete topology, so it is homeomorphic to A.

Corollary 4.3. If A is an abelian pro-p group, then Â is a discrete p-primary abelian group.
Conversely, if A is a discrete, p-primary abelian group, then Â is an abelian pro-p group.

Proof. If A is an abelian pro-p group, it is an inverse limit of discrete abelian p-groups. Then
proposition 4.9 and corollary 4.2 imply that A is a direct limit of finite discrete abelian groups,
so Â is discrete, abelian and p-primary. By corollary 4.1, Â has also the discrete topology.

On the other hand, assume that A is an abelian, discrete, p-primary group. Since A is torsion,
it can be understood as the direct limit of every finite subgroup, with the transition maps
given by inclusions. Then proposition 4.10 and corollary 4.2 imply that Â is an inverse limit of
finite, abelian p-groups. It can be seen, by remark 4.4, that the dual topology is the profinite
topology, so Â is thus a pro-p group.

We end this section by showing that in case A is either an abelian pro-p group or a discrete
abelian p-primary group, then the Pontryagin bidual is canonically isomorphic to A.

Theorem 4.2. If A is either a p-primary discrete abelian group or an abelian pro-p group,

then A is canonically isomorphic to
ˆ̂
A.

Proof. If A is a finite, abelian, discrete group, then it is easily seen that the map

A→ ˆ̂
A = Homcts (Homcts (A,Qp/Zp)) : a 7→ (ϕ 7→ ϕ(a))

is an isomorphism, because it is clearly injective and both A and
ˆ̂
A are finite with same

cardinality.

On the one hand, if A is p-primary, then

A = lim−→Ai
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where Ai are the finite subgroups of A, which are finite, abelian, discrete p-groups. Then
proposition 4.10 implies that

Â = lim←− Âi

where the transition maps are given by

ϕ̂ji : Âj → Âi : ϕ 7→ ϕ ◦ ϕij , i < j

where ϕij was the transition map in the direct limit. Then, the bidual group is given by

ˆ̂
A = lim−→

ˆ̂
Ai

where the transition maps are given by

ˆ̂
Ai → ˆ̂

Aj : ψ 7→ ψ ◦ ϕ̂ji

Considering the identification Ai ↔ ˆ̂
Ai : a 7→ ˆ̂a given in the first part of this proof and tracing

through the definitions, we see that this transition maps are identified with the maps in the

original direct limit, so A ∼= ˆ̂
A canonically.

On the other hand, if A is a pro-p group then it is the inverse limit of finite discrete p-groups,
so the theorem is proven similarly.

4.5 The Dual Zp-module

We are going to work with Zp-modules instead of groups. To do that, notice there is a natural
Zp-module structure in any p-primary abelian group.

Lemma 4.4. Let A be a discrete p-primary abelian group. Then there is a natural continuous
action of Zp on A.

Proof. Let α ∈ Zp and a ∈ A. Then there is a sequence (αn) ⊂ Z such that (αn) → α with
the natural topology in Zp. Since it is a Cauchy sequence, αi − αj ∈ pmZ for i and j large
enough, where pm is the order of A. Then αna is eventually constant, so we can define αa to
be this value. It is clear that this definition does not depend on the sequence chosen and that
it really defines an action.

If we denote that action by ψ : Zp × A → A, it is clearly continuous since for every a ∈ A we
have that

ψ−1 ({a}) =
⋃
n∈Z

⋃
b∈A:nb=a

(n+ ordbZp)× {b}

which is an open set for being a union of open sets.

Definition 4.17. Let A be a Zp-module. Then Â is a Zp-module with an operation defined
by

Zp × Â→ Â : (α,ϕ(a)) 7→ (αϕ)(a) := ϕ(αa)

Remark 4.5. Notice that

ϕ(αa) = αϕ(a) ∀α ∈ Zp, ∀a ∈ A, ∀ϕ ∈ Â

This is true for every α ∈ Z because ϕ is a group homomorphism and then it has to be true
for every α ∈ Zp since Z is dense in Zp and ϕ is continuous.
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Remark 4.6. With the above definition, the natural map

A→ ˆ̂
A = Hom (Hom (A,Qp/Zp) ,Qp/Zp) : a 7→ ã(ϕ) := ϕ(a)

is a Zp-homomorphism. If A is a discrete p-primary group, it is an isomorphism by theorem
4.2.

Lemma 4.5. The natural action ψ : Zp × Â → Â is continuous provided that A is locally
compact.

Proof. Let (α,ϕ) ∈ Zp × Â and suppose that αϕ ∈ V (K,U) for some compact set K ⊂ A and
some open set U ⊂ Qp/Zp.

Since the action p : Zp ×Qp/Zp → Qp/Zp given by the usual product is continuous by lemma
4.4, then for every x ∈ K we can find an open neighbourhood Vx ⊂ Zp of α such that
p (Vx, ϕ(x)) ⊂ U .

Since ϕ is continuous and A is a locally compact topological group, we can find for each x ∈ K
compact neighbourhood Wx ⊂ ϕ−1 (ϕ(x)). {Wx : x ∈ K} is a cover of K which has to admit a
finite subcover {Wx1

, . . . ,Wxn} because each Wx contains an open neighbourhood of x which
constitute an open cover of K. Therefore,

ψ [(Vx1 × V (Wx1 , ϕ(x1))) ∩ · · · ∩ (Vxn × V (Wxn , ϕ(xn)))] ⊂ V (K,U)

so the action is continuous.

Example 4.1. We are going to see that Ẑp ∼= Qp/Zp. Notice that

Zp = lim←−
n

Z/pnZ

Then, proposition 4.9 and proposition 4.11 states that

Ẑp = lim−→
n

Z/pnZ ∼= Qp/Zp

where the last isomorphism comes from the fact that all the transition maps has to be injective,
because that maps were surjective in Zp.

Similarly, we have that (
Q̂p/Zp

)
∼= ̂̂Zp ∼= Zp

4.6 Corank

Pontryagin dual allow us to characterise some discrete p-primary groups which where not
finitely generated as groups. The groups which are cofinitely generated are those whose
Pontryagin dual is a finitely generated Zp-module. Then the structure theorem of finitely
generated modules over the principal ideal domain Zp classify these groups.

Definition 4.18. Let A be a discrete p-primary group. We say that A is cofinitely generated
if Â is finitely generated as a Zp-module. We also say that A has corank r if Â has rank r as
a Zp-module.

Remark 4.7. If A is a discrete p-primary group of corank k, then the structure theorem over
principal ideal domains imply that Â ∼= Zrp × T , where T is a finite p-group. Hence theorem
4.2 and example 4.1imply that

A ∼= ˆ̂
A ∼= (Qp/Zp)r × T̂

Moreover, if A is divisible and cofinitely generated, then A ∼= (Qp/Zp)r for some r ∈ N∪ {0}.
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The Pontryagin duality also behaves well under taking short exact sequences.

Proposition 4.12. Let

0 // A // B // C // 0

be a short exact sequence of discrete p-primary abelian groups. Then there is another short
exact sequence in the Pontryagin duals

0 // Ĉ // B̂ // Â // 0

Proof. Since A, B and C are p-primary discrete abelian groups, we can consider them as
Zp-modules by lemma 4.4. Moreover, HomZp,cts(A,Qp/Zp) = Hom(A,Qp/Zp).

Since Qp/Zp is divisible, then [13], Theorem I.7.1. implies that it is injective, so the following
short sequence is exact:

0 // Hom(C,Qp/Zp) // Hom(B,Qp/Zp) // Hom(A,Qp/Zp) // 0

Corollary 4.4. If A, B and C are p-primary discrete abelian groups such that there is a short
exact sequence

0 // A // B // C // 0

then
corankZp(B) = corankZp(A) + corankZp(C)

in the sense that if two of them are cofinitely generated, so is the third one.

Proof. It comes from proposition 4.12 and the fact that the rank is additive.



Chapter 5

Galois Theory

In this chapter we cover some topics of Galois theory. First of all, we study the basic theory of
Kummer extensions, which will appear on the proof of Mordell-Weil theorem. The references
used have been [4] and [20]. After that, we expose the generalisation appearing in [21] of Galois
theory to infinite field extensions. Finally, section 5.3 identifies the absolute Galois group of a
completion with the decomposition subgroup of the absolute Galois group GK . This fact will
be used later to identify the absolute Galois group of p-adic fields as a subgroup of the Galois
group of a number field. Last section generalises a result from [21] using theory from [23].

5.1 Kummer Field Extensions

In this section we study Galois extension L|K whose Galois group GL|K is abelian. Denoting
by n to the exponent of that group, then we are going to show that the extension is generated
by nth square roots of elements in K.

Definition 5.1. Let K be a field containing a primitive nth root of unity. A Galois extension
L of K is called an n-Kummer extension of K provided that GL|K is an abelian group whose
exponent divides n.

Lemma 5.1. Let K be a field containing a primitive nth root of unity ω, let L|K be a cyclic
extension of degree n and let σ be a generator of GL|K . Then there is an a ∈ L \ {0} with

ω = σ(a)
a .

Proof. σ can be considered as a K-linear transformation of the K-vector field L. Because
σ has order n in GL|K , it satisfies the polynomial equation Tn − 1 = 0. Furthermore, if
there is a polynomial of degree m < n vanishing σ, then the automorphisms Id, σ, . . . , σm

would be linearly dependent over K, contradicting basic Galois theory. Therefore, the minimal
polynomial of σ has degree n and divides Tn−1. Hence it is the minimal and the characteristical
polynomial of σ, so ω is an eigenvalue of σ. Thus ∃a ∈ L \ 0 such that σ(a) = ωa.

Lemma 5.2. Let K be a field containing a primitive nth root of unity ω and let L|K be a
cyclic Galois extension of degree n. Then there is an a ∈ L such that L = K(a) and an ∈ K.

Proof. Let σ be a generator of the Galois group. By lemma 5.1, there is an a ∈ L \ {0} such
that σ(a) = ωa, where ω is a primitive nth root of unity. Since σi(a) = ωia, we see that a is
fixed only by the identity automorphism, so GL|K(a) = {IdL}. By the fundamental theorem of
Galois theory, L = K(a). Moreover,

σ(an) = σ(a)n = (ωa)n = an

55
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so an is fixed by GL|K and hence an ∈ K.

Theorem 5.1. Let K be a field containing a primitive nth root of unity ω and let L be a finite
extension of K. Then L|K is an n-Kummer extension if and only if L = K

(
n
√
a1, . . . , n

√
ar
)
.

Proof. Assume that L = K(α1, . . . , αr) with αni = ai ∈ K. If ω ∈ K is a primitive nth

root of unity, then the polynomial fi(x) = xn − ai is separable because the distinct elements
αi, ωαi, . . . , ω

n−1αi are its roots. Hence L|K is a separable extension and it is Galois because
it is the splitting field of the polynomial

f(x) =

r∏
i=1

(xn − ai)

Let σ, τ ∈ GL|K . Given a generator αi, there exists natural numbers j, k ∈ N such that

σ(αi) = ωjαi and τ(αi) = ωkαi because they have to be roots of the polynomial xn−ai. Then

(στ)(αi) = σ(ωkαi) = ωkωjαi = ωjωkαi = τ(ωjαi) = (τσ)(αi)

Therefore, στ and τσ agree on the generators of L, so στ = τσ. Thus GL|K is abelian.

Furthermore, σn(αi) = ωjn(αi) = αi for every generator αi. Then σn = IdL ∀σ ∈ GL|K , so
the exponent of GL|K divides n.

Conversely, assume that L|K is Galois and abelian with exponent dividing n. By the structure
theorem of finite abelian groups, GL|K is a direct product of cyclic groups whose orders divide
n, i.e. GL|K = C1 × · · · × Cr. Define Hi := C1 × · · ·Ci−1 × Ci+1 × · · · × Cr, which satisfies
that G/Hi

∼= Ci. Let Li be the fixed field of Hi, which is Galois over K, since Hi / GL|K , and
GLi|K

∼= GL|K/Hi
∼= Ci.

Thus, Li|K is a cyclic Galois extension whose order, say mi, is the same as |Ci|. K contains
the mth

i primitive root ωn/mi , so lemma 5.2 says that Li = K(αi), where αmii ∈ K. Since mi|n,
we have that αni = ai ∈ K. Under Galois correspondence, the field K(α1, . . . , αr) = L1 · · ·Lr
corresponds to the group H1∩· · ·∩Hr = {IdL}, so L = K(α1, . . . , αr) = K( n

√
a1, . . . , n

√
ar).

Corollary 5.1. Let K be a field containing a primitive nth root of unity. Its maximal
n-Kummer extension is

K
(
n
√
a : a ∈ K

)

Proof. The first part of the proof of theorem 5.1 does not assume that the number of generators
has to be finite, so K ( n

√
a : a ∈ K) is an n-Kummer extension. Conversely, an n-Kummer

extension L|K is the composition of all of its finite Galois subextensions and they have to be
contained in K ( n

√
a : a ∈ K), by theorem 5.1. Then, L ⊂ K ( n

√
a : a ∈ K), so the latter is the

maximal n-Kummer extension of K.

5.2 Infinite Galois theory

Galois theory of finite extensions has a generalisation to infinite ones. In this generalisation,
profinite groups defined on section 4.3 arise naturally.

Definition 5.2. Let L|K be a possibly infinite Galois extension and let GL|K be its Galois
group. The Krull topology defined on GL|K is the one such that each automorphism σ ∈ GL|K
has a basis of neighbourhoods formed by the cosets

σGL|M

where M runs through the finite Galois subextensions M |K.
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Remark 5.1. If L|K is a finite extension, the Krull topology is just the discrete topology on
GL|K .

Proposition 5.1. Let L|K be a field extension. The Krull topology endows the Galois group
GL|K with a topological group structure.

Proof. On the one hand, the map

p : GL|K ×GL|K → GL|K : (σ, τ) 7→ στ

is continuous because

σGL|M × τGL|M ⊂ p−1
(
στGL|M

)
∀σ, τ ∈ GL|K

for every finite Galois extension M |K.

On the other hand, the inversion map

i : GL|K → GL|K : σ 7→ σ−1 ∀σ ∈ GL|K

is also continuous because

i−1
(
σ−1GL|M

)
= σGL|M ∀σ ∈ GL|K

for every finite Galois extension M |K.

We now show that Galois groups are always profinite groups.

Proposition 5.2. Let L|K be a Galois extension. Then GL|K is compact and Hausdorff with
respect to the Krull topology.

Proof. Let σ, τ be distinct elements of GL|K , let x ∈ L be such that σ(x) 6= τ(x) and let M |K
the Galois closure of K(x). Then σ|M 6= τ |M , so σGL|M ∩ τGL|M = ∅. The Galois group GL|K
is thus Hausdorff.

In order to prove the compactness, consider the map

h : GL|K →
∏
M

GM |K , σ 7→
∏
M

σ|M

where M varies over the finite Galois subextensions. Since the groups GM |K are finite, its
product is a compact topological space due to Tychonoff’s theorem. Moreover, h is injective
since σ|M = IdM for every finite Galois subextension is equivalent to σ = IdL.

The sets

U =
∏

M 6=M0

GL|M × {σ}

where σ ∈ GM0|K form a subbasis of the product. Let σ be an extension of σ to L (which
exists because of Zorn’s lemma). Then

h−1(U) = σGL|M0
, h(σGL|M0

) = h(GL|K) ∩ U

Thus h is an homeomorphism into its image, so we need to show that h(G) is closed. For that
purpose, let F ⊂ F ′ be two finite Galois extensions and define

HF ′|F =

{∏
M

σM ∈
∏
M

GM |K : σF ′
∣∣
F

= σF

}
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The set HF ′|F can be easily described. If GF |K = {σ1, . . . , σn}, let Σi ⊂ GF ′|K be the finite
set of extensions of σi to F ′. Then

HF ′|F =

n⋃
i=1

 ∏
M 6=F,F ′

GM |K × Σi × {σi}


Hence HF ′|F is clearly closed, so

h(G) =
⋂
F⊂F ′

HF |F ′

is also closed. Therefore, h(G) is compact and so is G.

Corollary 5.2. Let L|K be a Galois extension. Then GL|K is a profinite group providing that
it is endowed with the Krull topology.

Proof. By construction, the identity has a basis of neighbourhoods consisting of open normal
subgroups, which will be also closed because their complements are unions of its cosets. Since
it is also compact and Hausdorff by proposition 5.2, proposition 4.5 applies.

Remark 5.2. We can also describe explicitly the Galois group as the following inverse limit

GL|K = lim←−
M

GM |K

where M runs through all finite Galois subextensions of L|K.

Remark 5.3. We have shown that every Galois group is profinite. The converse is also true,
as it is shown in [29].

The main theorem of Galois theory can now be stated as follows.

Theorem 5.2. Let L|K be a Galois extension. Then the assignment

M → GL|M

is a bijective correspondence between the subextensions M |K of L|K and the closed subgroups
of GL|K . In this identification, the open sugbroups correspond to the finite subextensions of
L|K.

Proof. The assignment is well defined, since GL|M is clearly closed, and injective, since M is
the fixed field of GL|M . For the surjectivity, let H be a closed subgroup of GL|K and let M be
its fixed field. Clearly, H ⊂ GL|M . Conversely, let σ ∈ GL|M and let F |M be a finite Galois
subextension. The map H → GF |M is clearly surjective because the fixed field of H is M and
the main theorem of Galois theory for finite extensions applies. Then there is some τ ∈ H such
that τ |F = σ|F or, equivalently, τ ∈ σGF |M . Hence σ belongs to the closure of H in GL|M
and, since H is closed, σ ∈ H.

Since GL|K is a compact topological group, the open subgroups are the closed ones having finite
index. Hence every open subgroup H is of the form H = GL|M , where M |K is a subextension.
Hence

GL|K =
⊔

σ∈GM|K

σGL|M

Since (GL|K : H) < ∞, then M |K is a finite extension. Conversely, let M |K be a finite
extension and let F be its Galois closure. Then for every σ ∈ GL|M then

σGL|F ⊂ GL|M
so GL|M is an open subgroup.

Remark 5.4. In last identification, normal subgroups are identified with Galois subextensions.
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5.3 The Absolute Galois Group of a Completion

The goal of this section is to identify the absolute Galois group of a completion Kv of certain
field K with respect to certain valuation v with the decomposition group of the absolute Galois
group GK .

Assume we have a Galois extension L|K and let v be a valuation in K that extends to a
valuation w in L. If Kv is the completion of K with respect to v and Lw is the direct limit of
the completion with respect to the restriction of w to every finite subextension of L|K, then
the following is a basic result from algebraic number theory.

Proposition 5.3. Let L|K be a Galois extension, let v ∈MK and let w ∈ML be an extension
to L. Then there is an isomorphism (

GL|K
)
w
∼= GLw|Kv

where
(
GL|K

)
w

is the decomposition subgroup of GL|K with respect to the valuation w.

Proof. [21], proposition II. 9.6.

The problem that appears when we are working with absolute Galois groups is that we do
not know a priori whether, given a field K and a valuation v in K that extends to v in the
algebraic closure, Kv is the algebraic closure of Kv or not. However, that is true and can be
seen using Krasner’s lemma.

Lemma 5.3. (Krasner) Let K be a complete field with respect to a non-archimedean valuation
v that extends to K. Let α ∈ K be separable over K and let α = α1, . . . , αn be its conjugates.
Let β ∈ K satisfying that

|α− β| < |α− αi| ∀i = 2, . . . , n

Then K(α) ⊂ K(β).

Proof. Consider the extension K(α, β)|K(β) and let L be its Galois closure. By [21], theorem
II. 4.8., the valuation extends uniquely to the algebraic closure, so v ◦ σ = v ∀σ ∈ GK . Hence
for every σ ∈ GL|K(β)

|β − σ(α)| = |β − α| < |α− αi| ∀i = 2, . . . , n

Then,
|a− σ(a)| ≤ max{|α− β|, |β − σ(α)|} < |α− αi| ∀i = 2, . . . , n

Then σ(α) = α ∀σ ∈ GL|K(β), so α ∈ K(β).

Proposition 5.4. Let K be a field and let v ∈MK be a prime. Then

Kv = (K)v
1

Proof. The result is clear if v is archimedean since both fields would be equal to C in that
case. That is a consequence of Ostrwski’s theorem, which is proven in [21], II.4.2. Hence we
can assume without loss of generality that v is non-archimedean.

Since (K)v is the union of finite extensions of Kv, the inclusion (K)v ⊂ Kv is clear. Conversely,
let α ∈ Kv, let f ∈ Kv[T ] be its minimal polynomial and let

x := min{|α− αi| : i = 2, . . . , n}

Since K is dense in Kv, we can find a polynomial g ∈ K[T ] such that

|g(α)| < |g(α)− f(α)| < xn

1Notice the abuse of notation we are doing by denoting the extension of v to the algebraic closure indistinctly.
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If g(x) =
∏n
j=1(x− βj) there is some β ∈ {β1, . . . , βn} such that

|α− β| < x

By lemma 5.3, we have that

α ∈ Kv(β) = (K(β))v ⊂
(
K
)
v

We can thus identify the absolute Galois group of the completion Kv with a subgroup of GK .

Corollary 5.3. Let K be a field and let Kv be its completion with respect to a certain prime.
Then

GKv
∼= (GK)v

Remark 5.5. Notice that the decomposition group (GK)v depends on the extension of v
to the algebraic closure. However, choosing a different extension would only give a conjugate
subgroups since the Galois groups acts transitively on the different extensions by [21], proposition
II.9.1.



Chapter 6

Group Cohomology

This chapter is dedicated to show an introduction to the cohomological theory of finite and
profinite groups. We have developed first the continuous cohomology for profinite groups,
which also applies to the finite case. After that, we have extended this definition to the Tate
cohomology groups, which have only been defined for finite groups.

First of all, in section 6.1 are the cohomology groups introduced and described when its
dimension is low. Coinduced modules also appear on this section and they are very important
for the development of the cohomological theory because they are cohomologically trivial.
Section 6.2 is dedicated to the most important result in this area: the long cohomological
exact sequence. In particular, it is the base of the dimension-shifting technique.

Up to now, all changes studied are referred to the G-module. However, section 6.3 studies how
a change in the group affects to the cohomology. This section has many interesting results for
computing the cohomology groups. First of all, it is stated that the cohomology of profinite
groups can be computed as a direct limit of the cohomology of finite ones. We have also defined
inflation and restriction maps, which can be encapsulated in a really useful exact sequence.
Finally, corestriction map gives some conditions of triviality of some cohomology groups. In
particular, it implies that the cohomology of uniquely divisible modules always vanishes.

Tate-cohomology groups are defined in section 6.4. As we have mentioned above, we have only
defined them for finite groups. They play an important role in the study of the cohomology
of cyclic groups, in section 6.5. In this section, we have also stated the concept of Herbrand
quotient.

Section 6.6 introduces the cup-product, which appear in the results of section 6.7. This results
are the foundations of the local class field theory, that will be exposed in chapter 7.

Finally, section 6.8 studies some cohomology groups of the p-adic integers. These computations
will be needed in chapters 8 and 11

6.1 The Cohomology Groups

Let G be a profinite group and let A be a topological G-module endowed with the discrete
topology. Let Xn = Xn(G,A) = Map(Gn+1, A) be the abelian group consisting of all
continuous maps from Gn+1 to A. Xn(G,A) is a G-module in the way given by

(σx)(σ0, . . . , σn) := σx(σ−1σ0, . . . , σ
−1σn)

61
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We also define the connecting homomorphisms by

∂n : Xn−1 → Xn : x 7→ ∂x; (∂x)(σ0, . . . , σn) :=

n∑
i=0

(−1)ix(σ0, . . . , σ̂i, . . . , σn)

Furthermore, there is a G-homomorphism ∂0 : A → X0 that associates every a ∈ A to the
constant function x(σ0) = a ∀σ0 ∈ G.

At this point, it is important to remark that given a continuous function x : Gn → A, we get
another continuous function by adding a new variable that plays no role, i.e., the function

Gn+1 → A : (σ0, . . . , σn) 7→ x(σ0, . . . , σ̂i, . . . , σn)

is still a continuous function when considered as a function from Gn+1. Because A is a
topological G-module, ∂x is also continuous. Therefore the connecting homomorphisms are
well defined.

Proposition 6.1. The sequence

0 // A
∂0
// X0 ∂1

// X1 ∂2
// X2 ∂3

// · · ·

is exact.

Proof. Clearly, it is a cochain complex, since ∂∂ = 0 (every term appears exactly twice with
different sign). To see the exactness, consider the group homomorphisms D−1 : X0 → A :
x 7→ x(1) and

Dn : Xn+1 → Xn : x 7→ Dnx; (Dnx)(σ0, . . . , σn) := x(1, σ0, . . . , σn) ∀n ≥ 0

Similarly, Dn is well defined because it maps continuous functions to continuous maps. A
simple calculation shows that

Dn ◦ ∂n+1 + ∂n ◦Dn−1 = IdXn

If x ∈ ker(∂n+1), then x = (∂n ◦Dn−1)(x) ∈ Im (∂n). As ∂ ◦ ∂ = 0, then ker(∂n+1) = Im (∂n),
so the sequence is exact.

The next step consists on changing the groups Xn by their subgroups of elements fixed by G,
which will be denoted by

C•(G,A) := X•(G,A)G

Therefore, Cn(G,A) consists of the continuous functions x : Gn+1 → A such that

x(σσ0, . . . , σσn) = σx(σ0, . . . , σn)

From the exact sequence given by proposition 6.1, we obtain the sequence

C0(G,A)
∂1
// C1(G,A)

∂2
// C2(G,A)

∂3
// · · ·

which in general is no longer exact but it is still a cochain complex.

Definition 6.1. In the exact sequence above mentioned, we will refer as n-cocylces to the
elements of Zn(G,A) = ker ∂n+1 and as n-coboundaries to the elements of Bn(G,A) = Im(∂n).

Since ∂∂ = 0, it is clear that Bn(G,A) ⊂ Zn(G,A). Therefore, it makes sense to give the
following definition.

Definition 6.2. For n ≥ 0, we define the n-dimensional cohomology group ofG with coefficients
in A as the factor group

Hn(G,A) := Zn(G,A)/Bn(G,A)

where B0(G,A) := {0}.
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6.1.1 H0(G,A) and H1(G,A)

For computational purposes, it is convenient to change the cochain complex C•(G,A) via the
isomorphism

Cn(G,A)→ Xn−1(G,A) : x(σ0, . . . , σn) 7→ y(σ1, . . . , σn) := x(1, σ1, σ1σ2, . . . , σ1 · · ·σn)

It is clearly an isomorphism since its inverse map is given by

Xn−1(G,A)→ Cn(G,A) : y(σ1, . . . , σn) 7→ x(σ0, . . . , σn) := σ0 · y(σ−1
0 σ1, σ

−1
1 σ2, · · · , σ−1

n−1σn)

Notice that these identification do not arise any problem related to continuity.

Under this identification, the first coboundary operators are given by

(∂1a)(σ) = σa− a, (∂2y)(σ, τ) = σy(τ)− y(στ) + y(σ)

There is a natural identification of C0(G,A) with A by associating every G-invariant map
x : G → A to its evaluation x(1).1 Under this identification, the elements a ∈ Z0(G,A) are
such elements satisfying

∂1a(σ) = σa− a = 0 ∀σ ∈ G

Hence, the 0-cocycles are the elements of A fixed by G. Because there are no 0-coboundaries,
we have just proven that

H0(G,A) = AG

In order to study the first cohomology groups H1(G,A), we have to note that the 1-cocycles
are the continuous functions x : G→ A satisfying that

x(στ) = x(σ) + σx(τ) ∀σ, τ ∈ G (6.1)

Nevertheless, to compute the first cohomology group H1(G,A), it is necessary to note that the
coboundaries are the functions

x : G→ A : σ 7→ σa− a 2

It is interesting to consider the case where G acts trivially on A, i.e., σa = a ∀σ ∈ G, ∀a ∈ A.
In this case, the only 1-coboundary is the zero map, while 1-cocycles are exactly the same as
the homomorphisms in Hom(G,A). Thus, the first homology group would be

H1(G,A) = Hom(G,A)

6.1.2 Coinduced Modules

One strength of cohomology lies on the fact that, given a profinite group G, there is a special
kind of G-modules whose cohomology groups are trivial for every n ≥ 1. These groups are
called coinduced.

Definition 6.3. Given a profinite group G, a G-module A is said to be coinduced if A =
Map(G,X) consists of all continuous functions from G to X, where X is an abelian group and
its G-module structure is given by

(σx)(σ0) = σx(σ−1σ0)

1For this identification, note that every map G → A : σ 7→ σa is continuous because A is a topological
G-module.

2Note that these functions are continuous because A is a topological G-module.
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From every G module A, we can build a coinduced module by considering

IndG(A) := Map(G,A)

Moreover, there is a canonical injection

i : A ↪→ IndG(A)

which maps an element a ∈ A to the constant function onto this value. This injection induces
the following short exact sequence:

0 // A // IndG(A) // A′ // 1

The key fact for defining coinduced modules is that they have trivial cohomology groups for
every n ≥ 1.

Lemma 6.1. Coinduced G-modules are acyclic, i.e., its cohomology groups are null for every
n ≥ 1.

Proof. Since every group can be given a G-module structure (where G acts trivially), we can
suppose that our coinduced module is IndG(A), where A is a G-module. Then, consider the
map

ψ : Cn(G, IndG(A))→ Xn(G,A), x(σ0, . . . , σn) 7→ y(σ0, . . . , σn) := x(σ0, . . . , σn)(1)

It is clear that it commutes with ∂ and it is an isomorphism since its inverse is given by

φ : Xn(G,A)→ Cn(G, IndG(A)) : y(σ0, . . . , σn) 7→ x(σ0, . . . , σn)(σ) = σy(σ−1σ0, . . . , σ
−1σn)

By definition, ψ ◦ φ = IdXn(G,A). Furthermore, the definition says that

(φ ◦ ψ)(x)(σ0, . . . , σn)(1) = x(σ0, . . . , σn)(1)

Moreover, since (φ ◦ ψ)(x) is G-invariant,

(φ ◦ ψ)(x)(σ0, . . . , σn)(σ) = σ ·
(
σ−1(φ ◦ ψ)(x)

)
(σ0, . . . , σn)(1) =

σ · (φ ◦ ψ)(x)(σ−1σ0, . . . , σ
−1σn)(1) = σ · (σ−1x)(σ0, . . . , σn)(1) = x(σ0, . . . , σn)(σ)

Since this identification commutes with the boundary morphism, there is an isomorphism of
cochain complexes

C•(G, IndG(A)) ∼= X•(G,A)

Nevertheless, X•(G,A) is exact, so

Hn(G, IndG(A)) = Hn(C•(G, IndG(A))) = Hn(X•(G,A)) = 0 ∀n ≥ 1

Another important property of coinduced modules is that they behave well under taking
subgroups or quotients. In order to see that, we need a technical lemma about the existence
of continuous sections.

Lemma 6.2. Let G be a profinite group and let H be a subgroup. Let G/H the quotient
space induced by right multiplication of elements in H and let

π : G→ G/H3

be the canonical projection. Then there is a continuous section

σ : G/H → G

such that σ(1H) = 1.

3Note that in case H is not a normal subgroup, then G/H has not got a canonical group structure. Indeed,
by G/H we will refer to the set of right cosets.
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Proof. Assume first that H is finite. Because G is Hausdorff and the identity element has a
base of neighbourhoods consisting of normal open groups, we can find an open normal group
such that U ∩H = {1}. Therefore the restriction π|U is injective. Since G is compact and G\U
is a union of cosets of U , U is closed and, therefore, compact. Since G/H is Hausdorff, π|U is
an homeomorphism onto its image. Call σ : π(U)→ U to its inverse and let R = {x1 . . . , xn}
be a system of representatives of G/U . Given i, j ∈ {1, . . . , n} then either π(Uxi) = π(Uxj) or
π(Uxi) ∩ π(Uxj) = ∅. Since this images are compact, then there is a cover of G/H consisting
of a finite number of closed sets to which σ can be extended by translation. This extension
will be continuous for being so when restricted to a finite closed cover. Clearly, σ(1H) = 1.

For the gereral case, let P the set of all pairs (L, η), where K is a closed subgroup of H and
η : G/H → G/K is a continuous section of the canonical projection G/K → G/H such that
η(1H) = 1K. We can define a partial order in P as follow: (K1, η1) ≥ (K2, η2) if K1 ⊂ K2

and the following diagram is commutative

G/H

η1

��

η2

$$

G/K1
π // G/K2

Let {(Ki, ηi) : i ∈ I} ⊂ P be a totally ordered subset, where I has been chosen to be a directed
set. Define K :=

⋂
i∈I Ki. It can be seen that

G/K = lim←−
i∈I

G/Ki

The condition of total order implies that {ηi : i ∈ I} are compatible maps which induce, by
the universal property of the inverse limit a continuous section

η : G/H → G/K

By Zorn’s lemma, P contains a maximal element (T, σ). If T 6= {1}, then there is a normal
open group such that T ∩ U ( T . Since T/T ∩ U is finite, then the first part of this proof
implies that there is a continuous section

ξ : G/(T ∩ U)→ G/T

Then the composition
σ ◦ ξ : G/(T ∩ U)→ G/H

is a continuous section, which contradicts the maximality of the pair (T, σ).

Remark 6.1. Last section is not necessarily a group homomorphism, even though H is normal.

Corollary 6.1. Let G be a profinite group and let H be a closed subgroup. Then there is an
homeomorphism

H ×G/H → G

Proof. Consider the continuous map

ψ : H ×G/H → G : (h, x) 7→ σ(x)h

which it is bijective because its inverse is

G→ H ×G/H : g 7→
(

[σ(π(g))]
−1
g, π(g)

)
Since H is closed, then H ×G/H is compact, so ψ has to be an homeomorphism because G is
Hausdorff.
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Remark 6.2. Last homeomorphism is not necessarily a group homomorphism.

Proposition 6.2. Given a G-module A and a closed subgroup H ⊂ G, then IndG(A) is a
coinduced H-module.

Proof. We can write

IndG(A) = Map(G,A) = Map(H ×G/H,A) = Map(H,Map(G/H,A))

If we define the trivial action of H on G/H, then the previous identification is H-equivariant,
so Map(G,A) is an H-induced module

Proposition 6.3. Given a G-module A and a closed normal subgroup H, then IndG(A)H is
a coinduced G/H-module.

Proof. It comes from the fact that IndG(A) ∼= Map(G/H,Map(H,A)). Since H acts trivially
on G/H, then IndG(A)H = Map

(
G/H,Map(H,A)H

)
. Both modules can be considered as

G/H modules and this identification is clearly equivariant with the action of G/H.

6.2 The Long Cohomological Exact Sequence

In this section we prove the existence of the long cohomological exact sequence, which is the
most powerful cohomological tool and has numerous consequences. It is based on the naturality
of the well known snake’s lemma. This lemma also appeared on chapter 2, but we feel this is
the right place to proof it.

Lemma 6.3. Let R be a ring, let A, B, C, A′, B′ and C ′ be R-modules and let the following
commutative diagram have exact rows.

A
µ
//

α

��

B
ε //

β

��

C //

γ

��

0

0 // A′
µ′
// B′

ε′ // C ′

Then, there is a connecting homomorphism δ : ker γ → cokerα such that the following sequence
is exact:

kerα kerβ ker γ

cokerα cokerβ cokerγ

µ∗ ε∗

δn

µ′∗ ε′∗

Moreover, if µ is a monomorphism, so is µ∗ and ε′∗ is an epimorphism provided that ε′ is.

Proof. Last statement is clear. On the other hand, the commutative property of the diagram
is responsible of the fact that the exact sequence on the first row could be restricted to the
kernels:

kerα
µ∗ // kerβ

ε∗ // ker γ

It is clear that ε∗ ◦ µ∗ = 0. Furthermore, given b ∈ ker ε∗, ∃a ∈ A such that µ(a) = b. Then,
µ′α(a) = βµ(a) = β(b) = 0. Since µ′ is injective, a ∈ kerα and, therefore, b ∈ Im(µ∗). Hence,
the restricted sequence is exact kerβ.

Furthermore, the exact sequence in the second row induce an exact sequence on the cokernels:

cokerα
µ′∗ // cokerβ

ε′∗ // cokerγ
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In fact, it is clear that ε′∗ ◦ µ′∗ = 0. Conversely, given b′ ∈ B′ such that b′ + Im(β) ∈ ker ε′∗,
then ε′(b′) ∈ Im(γ) and, since ε is surjective, ε′(b) ∈ Im(γ ◦ ε), so ∃b ∈ B such that γε(b) =
ε′(b′) = ε′β(b). Thus b′ − β(b) ∈ ker ε′ = Im µ′. Then ∃a′ ∈ A′ such that µ′(a′) = b′ − β(b).
Hence, µ′∗(a

′ + Im α) = b′ + Im β.

The connecting homomorphism δ is defined as follows. Given c ∈ ker γ, choose b ∈ B such that
ε(b) = c. Since ε′β(b) = γε(b) = γc = 0, then β(b) ∈ ker(ε′) = Im µ′. Since µ′ is injective,
∃!a′ ∈ A′ such that µ′(a′) = β(b). We define δ(c) := a′+Im α. Providing that δ is well-defined,
it is clear that it is an homomorphism.

We just need to check that the definition of δ is independent of the choice of b. Then, let
b′ ∈ B be such that ε(b′) = c. Then, b′ = b+µ(a), for some a ∈ A, and β(b′) = β(b) +βµ(a) =
β(b)+µ′α(a). Therefore, the values of δ associated to b and b′ differ in an element of the image
of α, so they represent the same element in the cokernel.

Next step is to prove the exactness at ker γ. If c ∈ Im ε∗, then ∃b ∈ kerβ such that ε(b) = c.
Then, β(b) = 0, so δ(c) = 0 too. Conversely, let c ∈ ker(δ) and choose b ∈ B such that
ε(b) = c. Then there exists a ∈ A, such that β(b) = µ′α(a) = βµ(a). Defining b′ := β − µ(a),
then β(b′) = β(b)− βµ(a) = c+ 0 = c, so c ∈ Im ε∗.

Last step is to show the exactness at cokerα. Assume that δ(c) = a′ + Im α. That means that
∃b ∈ B such that ε(b) = c and β(b) = µ′(a′). Then,

µ′∗(a
′ + Im α) = µ′(a′) + Im β = β(b) + Im β = 0 + Im β

Conversely, if a′+Im α ∈ kerµ′∗, then µ′(a′) = β(b) for some b ∈ B. Clearly, δε(b) = a′+Im α ∈
Im(δ).

Lemma 6.4. For every short exact sequence 0 // A
µ
// B

ε // C // 0 ofG-modules,
there are homomorphisms

δn : Hn(G,C)→ Hn+1(G,A)

such that the following sequence is exact:

0 AG BG CG

H1(G,A) H1(G,B) H1(G,C)

H2(G,A) H2(G,B) H2(G,C)

Hn(G,A) Hn(G,B) Hn(G,C)

δ0

δ1

Proof. Given that exact sequence, then

0 // Xn−1(G,A)
µ∗ // Xn−1(G,B)

ε∗ // Xn−1(G,C) // 0

is well defined since the G-module homomorphisms µ and ε are continuous when A, B and C
are endowed with the discrete topology.. The exactness at Xn−1(G,A) and ε∗ ◦ µ∗ = 0 are
clear facts. Given ϕ ∈ ker ε∗, let ψ = µ−1 ◦ ϕ(b), where µ−1 is a right inverse for µ. Notice
that ψ is well defined and continuous since ϕ(σ) ∈ ker ε = Im(µ) ∀σ ∈ Gn. It is clear that
µ∗(ψ) = ϕ ∈ Im(µ∗) and the sequence is exact at Xn−1(G,B).
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On the other hand, we want to show that ε∗ is surjective. Since ε is surjective, there is a
section σ : C → B such that ε ◦ σ = IdC . Then given ϕ ∈ Xn(G,C), σ ◦ ϕ ∈ Xn−1(G,B) is a
preimage of ϕ, so ε∗ is surjective.

Using the inhomogeneous identification Cn(G,A) ∼= Xn−1(G,A) which commutes with the
induced maps µ∗ and ε∗, it is easy to see that the following sequence is exact.

0 // Cn(G,A) // Cn(G,B) // Cn(G,C) // 0

Consider the following commutative diagram with exact rows:

0 // Cn(G,A) //

∂A
��

Cn(G,B) //

∂B
��

Cn(G,C) //

∂C
��

0

0 // Cn+1(G,A) // Cn+1(G,B) // Cn+1(G,C) // 0

The first part of the exact sequence given by the snake lemma 6.3 applied to this diagram
could be understood as

0 // Zn(G,A) // Zn(G,B) // Zn(G,C)

Alternatively, calling C
n
(G,A) = Cn(G,A)/Bn(G,A), the second part of the exact sequence

of lemma 6.3 is

C
n
(G,A) // C

n
(G,B) // C

n
(G,C) // 0

As the C•(G,−) are cochain complexes, Bn(G,−) ⊂ ker δn, so the quotient maps induce the
following commutative diagram

C
n
(G,A) //

∂A
��

C
n
(G,B) //

∂B
��

C
n
(G,C) //

∂C
��

0

0 // Zn+1(G,A) // Zn+1(G,B) // Zn+1(G,C)

Noting that Hn(G,A) = ker ∂A and Hn+1(G,A) = coker ∂A, the snake lemma 6.3 gives the
exact sequence

Hn(G,A) Hn(G,B) Hn(G,C)

Hn+1(G,A) Hn+1(G,B) Hn+1(G,C)

δn

Gluing it for all n ∈ N, we obtain the desired long exact sequence.

That long exact sequence allows us to adopt a technique, called dimension shifting which let
us study certain properties of higher dimensional cohomology groups by proving them on a
single dimension. Consider the exact sequence

0 // A // IndG(A) // A′ // 0

As IndG(A) is cohomologically trivial, the long exact sequence is written as

0 // AG // IndG(A)G ∼= A // A′G // H1(G,A) // 0

0 // Hn−1(G,A′) // Hn(G,A) // 0

Last exact sequences means that there is an isomorphism Hn−1(G,A) ∼= Hn(G,A).



6.3. CHANGE OF GROUPS 69

6.3 Change of Groups

We have just seen that a short exact sequence of G-modules induces a long sequence in the
cohomology groups. However, we can also change the group G and it will have a consequence
in the cohomology groups. These changes have interesting properties that will be useful for
the purpose of computing cohomology groups.

Consider two profinite groups G and G′, a G-module A, a G′-module A′ and two continuous
homomorphisms

ϕ : G′ → G, f : A→ A′

such that f(ϕ(σ′)a) = σ′(f(a)) ∀σ′ ∈ G′, ∀a ∈ A. This condition ensures that f ◦ x ◦ ϕk is
G′-invariant for every x ∈ Cn(G,A), so the following homomorphism is well defined

ψ : Cn(G,A)→ Cn(G′, A′) : x 7→ f ◦ x ◦ ϕn+1 (6.2)

It clearly commutes with the connecting homomorphism ∂, so we have the following commutative
diagram:

Cn(G,A)
ψ
//

∂

��

Cn(G′, A′)

∂

��

Cn+1(G,A)
ψ
// Cn+1(G′, A′)

Chasing at this diagram, it is clear that if x ∈ Zn(G,A) ⊂ Cn(G,A), then (∂ ◦ ψ)(x) =
(ψ ◦ ∂)(x) = 0, so ψ(x) ∈ Zn(G′, A′).

On the other hand, if y ∈ Bn+1(G,A), then ∃x ∈ Cn(G,A) such that y = ∂x. Since (∂◦ψ)(x) =
(ψ ◦ ∂)(x) = ψ(y), we have that ψ(y) ∈ Bn+1(G′, A′).

Therefore, ψ maps cocycles to cocyles and coboundaries to coboundaries, so it induces a
homomorphism in the cohomology groups:

Hn(G,A)→ Hn(G′, A′)

If we have two compatible pairs of homomorphisms

G′′ // G′ // G , A // A′ // A′′

then the homomorphism Hn(G,A) → Hn(G′′, A′′) is the composite of the homomorphism
induced by each pair, i.e.,

Hn(G,A) // Hn(G′, A′) // Hn(G′′, A′′)

Hence the cohomology groups Hn(G,A) are functorial in G and A simultaneously.

Now we can prove the relations of cohomology groups after taking direct and inverse limits.

Proposition 6.4. Let (Gi)i∈I be a projective system of profinite groups and let (Ai)i∈I be a
direct system, where each Ai is a Gi-module and the transition maps

ϕji : Gj → Gi, fij : Ai → Aj

are compatible for every pair i ≤ j. Then defining G = lim←−
i∈I

Gi and A = lim−→
i∈I

Ai, we have

Hn(G,A) ∼= lim−→
i∈I

Hn(Gi, Ai)

where the transition maps in the direct limit are the induced homomorphisms

Hn(Gi, Ai)→ Hn(Gj , Aj), a 7→ fij ◦ a ◦ ϕji
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Proof. Since the pairs Gj → Gi and Ai → Aj are compatible, the action

G×A→ A : ((gi)i∈I , ai) 7→ giai

is well defined and makes A into a G-module. Moreover the pairs G → Gi, Ai → A are
compatible for every i ∈ I. Then there are canonical homomorphisms

κi : Cn(Gi, Ai)→ Cn(G,A)

This maps are compatible in the sense that they induce an homomorphism from the direct
limit:

κ : lim−→
i∈I

Cn(Gi, Ai)→ Cn(G,A)

We want to see that κ is an isomorphism. For the surjectivity, let x ∈ Cn(G,A). Since G is
compact and A is discrete, then x only takes a finite amount of values. By continuity, x−1({a})
is open for every a ∈ A, so by proposition 4.5 there is an open normal subgroup U such that
x factors through

x : (G/U)n+1 → A

Since the profinite topology is induced from the product topology, there are some finite set of
{i1, . . . , ih} ⊂ I such that

h⋂
i=1

ker(πi) ⊂ U

If k is an upper bound of {i1, . . . , ih}, then ker(πk) ⊂ U , so x factors through

x : Gk → A

Since the image of x is finite, there is some l ≥ k such that every element in the image has a
representative in Al. Therefore, x factors through

x : Gl → Al

and x is the image of the class generated by x in the direct limit.

To see the injectivity, let xi ∈ Cn(Gi, Ai) be a cochain that becomes zero in Cn(G,A) when
changing the group, i.e., the composition

Gn+1 // Gn+1
i

xi // Ai // A

vanishes. However, since xi takes only finitely many values, there exists some j ≥ i such that
the composite

Gn+1
j

// Gn+1
i

xi // Ai // Aj

vanishes. Then xi has an equivalent cochain which is zero in Cn(Gj , Aj), which shows the
injectivity of κ.

Since κ clearly commutes with ∂, then it induces an isomorphism in the cohomology groups.

The importance of this result resides in the fact that we can now compute the cohomology of
profinite groups just by studying the cohomology of the finite ones.

Corollary 6.2. Let G be a profinite group and let A be a G-module. Then the cohomology
groups can be described as follows.

Hn(G,A) = lim−→
U

Hn(G/U,AU )

where the direct limit is taken over the normal subgroups U of G.
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Now we can consider some special changes of groups:

• Conjugation: For this case, let H be a closed subgroup of G, let A be a G-module and B
an H-submodule of A. If we denote the conjugation by τσ := σ−1τσ and σH := σHσ−1,
we have the following pair of compatible homomorphisms for each σ ∈ G:

σH → H, τ 7→ τσ, B → σB, b 7→ σb

which induce the isomorphism in the cohomology groups, called the conjugation isomorphisms

σ∗ : Hn(H,B)→ Hn(σH,σB)

whose inverse is given by σ−1. Moreover, this correspondence is functorial since

1∗ = Id, (στ)∗ = σ∗τ∗

We are going to focus in the case in which H is a normal subgroup of G, so σH = H.
Then, G acts by conjugation on Hn(H,A). We are going to see that the restricted action
to H is trivial, so Hn(G,A) becomes a G/H module.

Proposition 6.5. Let G be a profinite group and let A be a G-module. Then the
conjugation σ∗ : Hn(G,A)→ Hn(G,A) is the identity for every σ ∈ G.

Proof. We are going to proceed by induction, being the assertion trivial in H0(G,A) =
AG. We assume it is also true for n− 1 and consider the following exact sequence.

0 // A // IndG(A) // A′ // 0

Then the long cohomological exact sequence induce the following commutative diagram.

Hn−1(G,A′)
δ //

σ∗

��

Hn(G,A)

σ∗

��

Hn−1(G,A′)
δ // Hn(G,A)

By hypothesis the conjugation σ∗ is the identity onHn−1(G,A′). Since δ is an isomorphism
for n > 1 and surjective for n = 1, it has to be the identity on Hn(G,A) too.

Corollary 6.3. Let G be a profinite group, let H be a closed normal subgroup and let A
be a G module. Then Hn(H,A) is a G/H module and the action is given by conjugation.

• Inflation: Let H be a normal closed subgroup of G and let A a be G-module. Then the
submoduleAH consisting of the points inA which are fixed byH is clearly aG/H-module.
The projection and injection

G→ G/H, AH ↪→ A

form a compatible pair of homomorphisms. Then, they induce the following homomorphism
between cohomology groups, called inflation:

Inf
G/H
G : Hn(G/H,AH)→ Hn(G,A)

Inflation is a transitive homomorphism. Suppose we have two closed normal subgroups
subgroups satisfying thatH ⊂ K. Then it is clear that we have the following commutative
diagrams:

G //

!!

G/H

��

G/K

AK //

""

AH

��

A
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Hence, the way homomorphisms between cohomology groups are constructed, by the
formula given in the equation 6.2, it is clear that we have the identity

Inf
G/H
G ◦ Inf

G/K
G/H = Inf

G/K
G

• Restriction: Similarly, if we have an arbitrary closed subgroup H of G and a G-module
A, there is a pair of compatible homomorphisms given the inclusion and the identity:

H ↪→ G, A = A

which induces a homomorphism in the cohomology groups

Res GH : Hn(G,A)→ Hn(H,A)

Similarly, restriction is transitive since, given the closed subgroups H ⊂ K, we have the
following commutative diagram

H //

  

K

��

G

so the induced homomorphisms between the cohomology groups satisfy the identity

Res KH ◦ Res GK = Res GH

When U is an open subgroup of G, then besides the restriction there is another map in the
opposite direction, which is called corestriction. However, we need to consider some technical
lemma before defining it.

Lemma 6.5. If

0 // A // Y 0 ∂0 // Y 1 ∂1 // Y 2 ∂2 // · · ·

is an acyclic resolution of A, i.e., Hn(G, Y n) = 0 ∀n ≥ 1, then canonically

Hn(G,A) ∼= Hn(H0(G, Y •))

Proof. We can consider the exact sequences

0 // A // Y 0 ∂0 // ker(∂1) // 0

0 // ker(∂n) // Y n
∂n // ker(∂n+1) // 0

Since the modules Y n are acyclic, lemma 6.4 gives the following isomorphisms:

H1 (G, ker(∂n−1)) ∼= H2 (G, ker(∂n−1)) ∼= · · · ∼= Hn(G,A)

Moreover, same lemma 6.4 gives another exact sequence

H0
(
K,Y n−1

)
// H0 (G, ker(∂n))

δ // H1 (G, ker(∂n−1)) // 0

Furthermore, we can compute

H0 (G, ker(∂n)) = ker
(
H0 (G, Y n)→ H0 (G, ker(∂n+1))

)
= ker

(
H0 (G, Y n)→ H0

(
G, Y n+1

))
Im
(
H0
(
G, Y n−1

)
→ H0 (G, ker(∂n))

)
= Im

(
H0
(
G, Y n−1

)
→ H0 (G, Y n)

)
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Then there is an isomorphism

H1 (G, ker(∂n−1)) ∼=
H0 (G, ker(∂n))

Im (H0 (G, Y n−1)→ H0 (G, ker(∂n)))
=

ker
(
H0 (G, Y n)→ H0

(
G, Y n+1

))
Im (H0 (G, Y n−1)→ H0 (G, Y n))

Therefore there is a canonical isomorphism

Hn(G,A) ∼= H1 (G, ker(∂n−1)) ∼= Hn
(
H0 (G, Y •)

)

Definition 6.4. Let G be a profinite group, let U ⊂ G be an open subgroup and let A be
a G-module. Since Xn(G,A) = IndG(Xn−1(G,A)), then Xn(G,A) are acyclic by lemma 6.1
and we can consider the acyclic resolution

0 // A // X0(G,A)
∂ // X1(G,A)

∂ // · · ·

By lemma 6.5, Hn(U,A) = Hn
(
X•(G,A)U

)
. Moreover, there is a norm map

NG|U : (Xn)U → (Xn)G : ϕ 7→
∑
σ∈R

σ · ϕ

whereR is a system of representatives ofG/U , where the quotient is taken by right multiplication.
Clearly, the norm map commutes with ∂, so taking cohomology groups of these cochain
complexes we obtain a canonical homomorphism called corestriction.

Cor UG : Hn(U,A)→ Hn(G,A)

Given two open subgroups V ⊂ U ⊂ G, it is easily seen that NG/U ◦NU/V = NG/V . Therefore,
corestriction is transitive:

Cor UG ◦ Cor VU = Cor VG

Proposition 6.6. If U is an open subgroup of G, then

Cor UG ◦ Res GU = (G : U)

Proof. Let’s proceed by induction. For n = 0, identifying H0(G,A) = AG and Hn(U,A) = AU ,
the restriction is the inclusion AG ↪→ AU and the corestriction is the norm map

NG|U : AU → AG : a 7→
∑
σ∈R

σa

It is thus clear that the composition is the multiplication in AG by the index (G : U).

For the general case, we are going to use dimension shifting. Assume the proposition is true
for n− 1, when n ≥ 1 and consider the exact sequence

0 // A // IndG(A) // A′ // 0

Since IndG(A) is also a coinduced U -module by proposition 6.2, then there are surjective
homomorphisms

δ : Hn−1(G,A′)→ Hn(G,A), δ : Hn−1(U,A′)→ Hn(U,A)
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These identifications are group homomorphisms, so they commute with the multiplication
by (G : U). Since Cor UG ◦ Res GU = (G : U) in Hn−1(G,A′) by the induction hypothesis
and the boundary maps are surjective, then it suffices to check that the following diagram is
commutative.

Hn−1(G,A′)
Res //

δ

��

Hn−1(U,A′)
Cor //

δ

��

Hn−1(G,A′)

δ

��

Hn(G,A)
Res // Hn(U,A)

Cor // Hn(G,A)

However, this is clear since both restriction and norm map commute with ∂.

Proposition 6.7. Let G be a profinite group, let U be an open subgroup and let n ∈ N∪{0}.
For every discrete G-module A such that Hn(U,A) = 0, we have

(G : U)Hn(G,A) = 0

Proof. Given ϕ ∈ Hn(G,A), we have

Res GU (ϕ) ∈ Hn(U,A) = 0⇒ Res GH(ϕ) = 0

Then proposition 6.6 says that

(G : U)ϕ =
(
CorUG ◦ ResGU

)
(ϕ) = CorUG(0) = 0

Thus (G : U)Hn(G,A) = 0.

Proposition 6.8. Let A be a G-module. Assume that multiplication by p is an automorphism
of A for every prime number p|#G. Then,

Hn(G,A) = 0

for every n ≥ 1.

Proof. Assume first that G is finite of order m = #G. Since multiplication by m is the
composition of multiplication by prime numbers dividing it, then it is also an automorphism of
A. Then, multiplication by m also induces automorphisms in the cohomology groups Hn(G,A).
However, proposition 6.7 applied to the subgroup H = {1G} implies that multiplication by m
annihilates the cohomology group, since n ≥ 1. Hence Hn(G,A) = 0.

Assume now that G is profinite and let U ⊂ G be an open normal subgroup and let m = #G/U .
Again, multiplication by m is a composition of multiplications by prime p|#G, which are
automorphisms by hypothesis. Then multiplication by m is an automorphism so it is still an
automorphism after taking U -invariants, i.e., m : AU → AU is still a well-defined isomorphism.
Since G/U is finite, first part of the proof implies that Hn(G/U,AU ) = 0. By corollary 6.2,

Hn(G,A) = lim−→
i∈I

Hn(G/U,AU ) = 0

Corollary 6.4. Let G be a profinite group and let A be a G-module. If A is a uniquely
divisible group, i.e., for every a ∈ A and n ∈ N there is a unique b ∈ A such that nb = a, then
A is cohomologically trivial, i.e.,

Hn(H,A) = 0 ∀H ⊂ G
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Another implication of proposition 6.7 is that cohomology groups are torsion.

Corollary 6.5. Let G be a profinite group and let A be a G-module. Then Hn(G,A) is
G-torsion for n ≥ 1. Moreover, the prime decomposition of the order of every element in
Hn(G,A) contains only primes dividing |G|.

Proof. Let ϕ ∈ Hn(G,A). By corollary 6.2, there is some open normal subgroup U such that
ϕ has a representative in Hn(G/U,AU ). By proposition 6.7, (G : U)ϕ = 0

Since cohomology groups are torsion, we can study their p-primary parts.

Proposition 6.9. Let G be a profinite group and let A be a torsion G-module. Then

Hn(G,A)p = Hn(G,Ap)

Proof. Since A is torsion, then

A =
⊕

p prime

Ap

Since the boundary maps act independently on each factor, it is easily seen that

Hn(G,A) =
⊕

p prime

Hn(G,Ap)

Since Hn(G,Ap) is p-primary and primary decomposition is unique, then

Hn(G,A)p = Hn(G,Ap)

The restriction to Sylow subgroups has the important property of being injective, which will
be very useful to compute certain cohomology groups.

Lemma 6.6. Let G be a profinite group, let A be a G-module and let Gp be a p-Sylow
p-subgroup. Then

Res : Hn(G,A)p → Hn(Gp, A)

is injective for every n ∈ N.

Proof. By proposition 4.3 and corollary 6.2, we can assume G is finite. Since (G : Gp) is prime

to p, by proposition 6.6, Cor ◦ Res = (G : Gp) is an automorphism of Ĥn(G,A)p. It implies
that the restriction map is injective.

Corollary 6.6. Let G be a profinite group, let A be a G-module and let n ∈ N. If for every
prime p, Hn(Gp, A)p = 0 for some p-Sylow subgroup, then Hn(G,A) = 0.

We now introduce a different change of group. One can define another cohomological operation,
called transgression.

Proposition 6.10. Let H be a normal closed subgroup of G and let A be a G-module. Then
there exists a canonical homomorphism, called transgression:

tg : H1(H,A)G/H → H2(G/H,AH)

where H1(H,A) is understood as a G/H-module because of corollary 6.3. This homomorphism
is defined as follows: given x ∈ C1(H,A) a representative of an element [x] ∈ H1(H,A), there
is a cochain y ∈ C1(G,A) such that y|H2 = x and that ∂y is contained in AH and depends
only on the cosets of H, so may be regarded as a 2-cocycle in H2(G/H,AH). Then we define

tg ([x]) = [∂y]
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Proof. We will work with inhomogeneous cochains. Let s : G/H → G be a section of the
canonical projection such that s(1H) = 1, given by lemma 6.2. Since x is invariant by
conjugation under every γ ∈ G/H, then

τ 7→ s(γ)x
(
s(γ)−1τs(γ)

)
− x(τ)

has to be a 1-coboundary. Therefore, there is an element y (s(γ)) ∈ A such that

s(γ)x
(
s(γ)−1τs(γ)

)
− x(τ) = τy (s(γ))− y (s(γ))

Since s(1H) = 1, we can assume that y(1) = 0. Moreover, the compactness of G implies that
the left hand side takes only finitely many values, so proposition 4.7 says we can find an open
subgroup U ⊂ G such that all of these values belong to AU and depends only on the cosets
of G/U . This means that we can take for y(sγ) the same value for every γ in a fixed coset of
G/U , what will make y : G/H → A, γ 7→ y (s(γ)) to be a continuous function.

Now, for an arbitrary σ ∈ G, there is a unique factorization σ = s(γ)τ , where γ ∈ G/H and
τ ∈ H. Then we define

y(σ) := y (s(γ)) + s(γ)x(τ)

Hence it is clear that y|H = x.

Now, let σ = s(γ)τ ′ = gτ ′ ∈ G, where τ ′ ∈ H. Let also τ ∈ H. Since x is a 1-cocycle,

y(στ) = y(gτ ′τ) = y(g)+gx(τ ′τ) = y(g)+gx(τ ′)+gτ ′x(τ) = y(σ)+σx(τ) = y(σ)+σy(τ) (6.3)

Furthermore, the definition of y gives that

y(τg) = y(gτg) = y(g) + gx(τg) = y(g) + x(τ) + τy(g)− y(g) = x(τ) + τy(g)

Hence, using equation 6.3 we obtain

y(τσ) = y(τgτ ′) = y(τg) + τgx(τ ′) = x(τ) + τy(g) + τgx(τ ′) = y(τ) + τy(σ) (6.4)

Now we can show that ∂y depends only on the right cosets of H. In fact, given σ1, σ2 ∈ G and
τ ∈ H, using equation 6.3

∂y(σ1, σ2τ) = σ1y(σ2τ)− y(σ1σ2τ) + y(σ1) = σ1y(σ2) + σ1σ2y(τ)− y(σ1σ2τ) + y(σ1) =

σ1y(σ2)− y(σ1σ2) + y(σ1) = ∂y(σ1, σ2)

For over, both equations 6.3 and 6.4 give us

∂y(σ1τ, σ2) = σ1τy(σ2)− y(σ1τσ2) + y(σ1τ) = σ1y(τσ2)− σ1y(τ)− y(σ1τσ2) + y(σ1τ) =

σ1y(τσ2)− y(σ1τσ2) + y(σ1) = ∂y(σ1, τσ2) = ∂y(σ1, σ2τ
σ2) = ∂y(σ1, σ2)

Using the fact that

∂∂y(τ, σ1, σ2) = τ∂y(σ1, σ2)− ∂y(τσ1, σ2) + ∂y(τ, σ1σ2)− ∂y(σ1, σ2) = 0

since ∂y(τ, σi) = ∂y(1, σi) = y(1) = 0, we get that

τ∂y(σ1, σ2) = ∂y(τσ1, σ2)− ∂y(τ, σ1σ2) + ∂y(τ, σ1) = ∂y(σ1, σ2)

so ∂y(σ1, σ2) ∈ AH . Since it is a cocycle because ∂∂y = 0, then it represents an element in
H2(G/H,AH).

The only step remaining is checking that transgression is well defined, since in that case it
would be clearly an homomorphism. For that purpose, let y′ : G → A be another cochain
such that y′|H and ∂y′(σ1, σ2) takes values in AH which depend only on the cosets σ1H and
σ2H. Calling z := y − y′, we get that z|H = 0. Then the fact that ∂z(σ, τ) = ∂z(σ, 1) = 0
implies that z(στ) = z(σ), so z(σ) depend only on the coset σH. Furthermore, since ∂z(τ, σ) =
∂z(1, σ) = 0, then τz(σ) = z(τσ) = z(στσ) = z(σ), so z(σ) ∈ AH . Therefore, z represents a
cochain of G/H with values in AH , so ∂z is a coboundary. Thus ∂y and ∂y′ represents the
same element in H2(G/H,AH).
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6.3.1 Inflation-Restriction Sequence

There is an important exact sequence that relates inflation, restriction and transgression.

Theorem 6.1. Let H be a closed normal subgroup of G, and let A be a G-module. Then, the
sequence

0 // H1(G/H,AH)
Inf // H1(G,A)

Res // H1(H,A)G/H
tg
// H2(G/H,AH)

is exact.

Proof. To check the exactness at H1(G/H,AH), let f : G/H → AH be a 1-cocycle, which
induces a 1-cocycle f ∈ H1(G,A) via the composition

f : G // G/H
f
// AH // A

The fact that f ∈ ker(Inf) means that f is a coboundary, i.e., there is an a ∈ A, such that
f(σ) = σa− a ∀σ ∈ G. However, f has to be constant on the cosets of H in G, so

σa− a = στa− a ∀σ ∈ G, ∀τ ∈ H

Taking σ = 1G, we get that τa = a ∀τ ∈ H. Thus, a ∈ AH , so f is a coboundary and inflation
is injective.

The second step of the proof is to check that Res ◦ Inf = 0. For that purpose, let f ∈
H1(G/H,AH) be a cocycle and let f be as above. It is clear that f |H is constant and it
has to be equal to f(1). Moreover, the condition of 1-cocycle given in equation 6.1 says that
f(1) = f(1) + f(1), so f(1) = 0. Hence, f |H = 0, which means that Res ◦ Inf(f) = 0.

The next step is checking that ker(Res) ⊂ Im(Inf). For that purpose, let φ ∈ ker(Res) ⊂
H1(G,A). Then, its restriction to H has to be a coboundary, i.e., ϕ(τ) = τa − a ∀τ ∈ H.
Subtracting from ϕ the coboundary G→ A : σ 7→ σa− a, we get another representative ϕ̃ of
the same element in the factor group H1(G,A) that satisfies that ϕ̃|H = 0. Hence, consider
the characterization of cocycles given by equation 6.1:

ϕ̃(στ) = ϕ̃(σ) + σϕ̃(τ) ∀σ, τ ∈ G

Taking τ ∈ H, we see that ϕ̃(στ) = ϕ̃(σ), so ϕ̃ is constant in the cosets of H in G. Moreover,
taking σ ∈ H, we see that ϕ̃(τ) = ϕ̃(στ) = σϕ̃(τ), so the image of ϕ̃ is contained in AH . Then,
ϕ̃ can be considered as a map from G/H to AH . Since G/H has the quotient topology and
AH inherits the subspace topology, that map would be continuous, so it would represent an
element in H1(G/H,AH). Therefore, ϕ ∈ Inf

(
H1(G/H,AH)

)
.

Moreover, corollary 6.3, implies that the image of the restriction map is invariant by G/H, so
that arrow is well defined. To check the exactness at H1(H,A)G/H , suppose that x = Res(y) ∈
H1(H,A)H for some y ∈ H1(G,A). Then y can be used to compute the transgression of x, so
tg([x]) = [∂y] = 0. Conversely, let x ∈ ker(tg). Then there is some y ∈ C1(G,A) such that
y|H2 = x and that [∂y] = tg([x]) = 0. Then ∂y is a 2-coboundary in C2(G/H,AH), so there is
some z ∈ C1(G/H,AH) such that ∂y = ∂z. As a function in C1(G,A), y − z is a 1-cocycle.
Since Res(y − z) and Res(y) = x are cocycles in C1(H,A), so is Res(z). Since z is constant in
H, then it is clear that Res(z) = 0, so [x] = Res([y − z]) ∈ Im(Res).

Theorem 6.2. Let n ≥ 1, let G be a finite group and let H be a normal closed subgroup and
assume that Hq(H,A) = 0 ∀q ∈ {1, . . . , n− 1}. Then the sequence

0 // Hn(G/H,AH)
Inf // Hn(G,A)

Res // Hn(H,A)

is exact.
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Proof. We will use the dimension shifting technique, being theorem 6.1 the base case. By
induction, suppose that n > 1 and that the result is true for n − 1. Consider the exact
sequence

0 // A // IndG(A) // A′ // 0

Since IndG(A) is also coinduced as an H-module because of proposition 6.2, we have seen that
the long cohomology exact sequence imply that

Hq(H,A′) ∼= Hq+1(H,A) = 0 ∀q ∈ {1, . . . , n− 2}

Hence A′ satisfies the theorem hypothesis for n− 1, so inductive hypothesis could be applied.
Furthermore, since H1(H,A) = 0, the first part of the long cohomological exact sequence
reduces to

0 // AH // IndG(A)H // (A′)H // 0

Moreover, IndG(A)H is coinduced as a G/H module due to proposition 6.3. Consider then the
following commutative diagram:

0 // Hn−1(G/H,A′H)
Inf //

δ

��

Hn(G,A′)
Res //

δ

��

Hn(H,A′)

δ

��

0 // Hn(G/H,AH)
Inf // Hn(G,A)

Res // Hn(H,A)

We knew that the vertical lines were isomorphisms due to the long cohomological sequence and
the cohomological triviality of coinduced modules. Since the top row is exact by the inductive
hypothesis, so is the bottom line.

6.4 Cohomology of Finite Groups

In case G is a finite group, we can extend the standard resolution Xn(G,A) to obtain the
complete standard resolution. Hence we define

X−n−1(G,A) := Xn(G,A) := Map(Gn+1, A) ∀n ≥ 0

For n < 0, the transition maps are defined as

∂n : Xn−1 → Xn : (∂nx)(σ0, . . . , σn−1) =
∑
τ∈G

n∑
i=0

(−1)ix(σ0, . . . , σi−1, τ, σi, . . . , σn−1)

For n = 0, the differential map is defined as

∂0 : X−1 → X0 : (∂0x)(σ0) = x

(∑
τ∈G

τ

)

Defining the maps D−n : X−n+1 → X−n as follows

(D−1x)(σ0) = δσ0,1x(1), (D−nx)(σ0, . . . , σn−1) = δσ0,1x(σ1, . . . , σn−1) ∀n > 1

where δ represents the Kronecker’s delta function. The following identity is satisfied

Dn ◦ ∂n+1 + ∂n ◦Dn−1 = IdXn(G,A)

Hence we have an exact sequence

· · · // X−2 ∂−1
// X−1 ∂0

// X0 ∂1
// X1 ∂2

// X2 // · · ·
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After considering the G-invariant elements, we can consider a cochain complex

Ĉ•(G,A) = (X•(G,A))
G

The Tate cohomology groups or modified cohomology groups are defined as the cohomology
groups of this complex:

Ĥn(G,A) := Hn
(
Ĉ•(G,A)

)
Remark 6.3. For n ≥ 1 the cohomology group is the same as the Tate-cohomology group:

Hn(G,A) = Ĥn(G,A) ∀n ≥ 1

It is possible to compute some cohomology groups using inhomogeneous cochains. Under the
identification

Ĉn(G,A)→ Xn−1(G,A) : x(σ0, . . . , σn) 7→ y(σ1, . . . , σn) := x(1, σ1, σ1σ2, . . . , σ1 · · ·σn)

the 0th boundary map is just the norm map:

∂0 : A→ A : a 7→ NG(a) :=
∑
σ∈G

σa

Hence, the 0th Tate-cohomology group can be written as

Ĥ0(G,A) ∼= AG/NG(A)

Again under this identification, the boundary homomorphism has also a simple expression

∂−1 : X0(G,A)→ A : x 7→
∑
σ∈G

(
σ−1x(σ)− x(σ)

)

Hence, the −1-coboundaries are

B̂−1(G,A) = IGA = {(σ − 1)a : σ ∈ G, a ∈ A}

The Tate Cohomology group is thus

Ĥ−1(G,A) =NG A/IGA

where NGA represents the kernel of the norm map.

The cohomological triviality of coinduced modules and the long cohomological exact sequence
also applies to modified cohomology groups, being their proofs similar.

Proposition 6.11. Let G be a finite group and let

0 // A // B // C // 0

be a short exact sequence of G-modules. Then there are connecting homomorphisms

δn : Ĥn(G,C)→ Ĥn+1(G,A)

such that the following sequence is exact:
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Ĥ−n(G,A) Ĥ−n(G,B) Ĥ−n(G,C)

Ĥ−1(G,A) Ĥ−1(G,B) Ĥ−1(G,C)

Ĥ0(G,A) Ĥ0(G,B) Ĥ0(G,C)

Ĥ1(G,A) Ĥ1(G,B) Ĥ1(G,C)

Ĥn(G,A) Ĥn(G,B) Ĥn(G,C)

δ−1

δ0

Proposition 6.12. Let G be a finite group and let A be a coinduced G-module. Then

Ĥn(G,A) = 0 ∀n ∈ Z

In case of finite groups, coinduced modules can be also identified as some tensor products.

Lemma 6.7. If G is a finite group and A is a G-module, there is an isomorphism

IndG(A) ∼= Z[G]⊗A

Proof. Consider the map:

ψ : IndG(A)→ Z[G]⊗A : ϕ 7→
∑
σ∈G

σ ⊗ ϕ(σ)

It is a G-homomorphism since

ψ(σϕ) =
∑
τ∈G

τ ⊗ σϕ(σ−1τ) =
∑
τ∈G

στ ⊗ σϕ(τ) = σ

(∑
τ∈G

τ ⊗ ϕ(τ)

)
= σψ(ϕ)

On the other hand, the billinear map

Z[G]×A→ IndG(A) : ({nσ}σ∈G, a) 7→ ϕ; ϕ(σ) := nσa ∀σ ∈ G

induces an homomorphism Z[G]⊗A→ IndG(A) which is the inverse of ψ.

Defining the G-modules

IG := 〈(σ − 1) ∈ Z[G] : σ ∈ G〉, JG := Z[G]/Z ·NG

there are exact sequences

0 // IG ⊗A // Z[G]⊗A ε // A // 0

0 // A
NG // Z[G]⊗A // JG ⊗A // 0
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where ε is induced by the augmentation map, which is defined as

ε : Z[G]→ Z :
∑
σ∈G

nσσ 7→
∑
σ∈G

nσ

If we define A0 = A and, inductively

Am := JG ⊗Am−1 ∀m ≥ 0

Am := IG ⊗Am+1 ∀m ≤ 0

then, by dimension-shifting, there are isomorphisms

δm : Ĥn−m(G,Am)→ Ĥn(G,A) ∀n,m ∈ Z

We end this section giving a characterisation of the group Ĥ−2(G,Z).

Proposition 6.13. Let G be a finite group. Then there is a canonical isomorphism

Ĥ−2(G,Z) ∼= Gab

Proof. By lemma 6.7, Z[G] is a coinduced module. Define the ideal

IG = 〈σ − 1 : σ ∈ G〉

Consider thus the following short exact sequence

0 // IG // Z[G]
ε // Z // 0

By lemma 6.7, Z[G] is a coinduced module. Hence proposition 6.11 implies that there is an
isomorphism

δ : Ĥ−2(G,Z)→ Ĥ−1(G, IG) = IG/I
2
G

For this, consider the map
G→ IG/I

2
G, σ 7→ (σ − 1) + I2

G

It is a homomorphism since

στ 7→ στ − 1 = (σ − 1) + (τ − 1) + (σ − 1)(τ − 1) ≡ (σ − 1) + (τ − 1) mod I2
G

Since IG/I
2
G is abelian, the commutator of G is contained in the kernel of this map, so it

induces a quotient map
ψ : G/G′ → IG/I

2
G

In order to show that ψ is bijective, we have another map

IG → G/G′ : σ − 1 7→ σG′

This definition extends to all IG by linearity, since IG is the free abelian group generated by
σ − 1, where σ varies over all elements of G.

It is easily seen that I2
G is contained in the kernel of this map since

(σ − 1)(τ − 1) = (στ − 1)− (σ − 1)− (τ − 1) 7→ στσ−1τ−1

Hence the induced quotient map is ψ−1, so ψ is an isomorphism.
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6.5 Cohomology of Cyclic Groups

When G is a cyclic group, its cohomology groups are easily computable.

Proposition 6.14. Let G be a cyclic group and let A be a G-module. Then there is an
isomorphism

Ĥn(G,A) ∼= Ĥn+2(G,A) ∀n ∈ Z

Proof. Let σ ∈ G be a generator and let N = #G. Consider the following exact sequence.

0 // Z
µ
// Z[G]

σ−1
// Z[G]

ε //// Z // 0

where µ is the inclusion, σ − 1 is the multiplication and ε is the augmentation map given by

n−1∑
i=0

aiσ
i 7→

n−1∑
i=0

ai

Writing I = ker ε, we can split the previous sequence in two short exact sequences:

0 // Z
µ
// Z[G]

σ−1
// I // 0

0 // I // Z[G]
ε // Z // 0

Since all the previous Z-modules are free, the previous sequences split and they remain exact
after tensoring with A.

Since Z[G] ⊗ A is coinduced by lemma 6.7, its cohomology groups are trivial and the long
cohomological exact sequence appearing in proposition 6.11 gives the following isomorphisms:

δ : Ĥn(G, I ⊗A)→ Ĥn+1(G,A), δ : Ĥn(G,A)→ Ĥn+1(G, I ⊗A)

The composite of this isomorphisms gives the desired isomorphisms:

δ2 : Ĥn(G,A)→ Ĥn+2(G,A)

Corollary 6.7. Let G be a finite cyclic group and let A be a G-module. Then for every even
number n

Ĥn(G,A) ∼= Ĥ0(G,A) ∼= AG/NG(A)

Corollary 6.8. Let G be a finite cyclic group generated by some σ ∈ G and let A be a
G-module. Then for every odd number n

Ĥn(G,A) ∼= Ĥ−1(G,A) ∼= kerNG/(σ − 1)A

Remark 6.4. For n = −1, looking carefully at the isomorphism in proposition 6.14, one can
find that every a ∈ kerNG is associated to the coboundary given by

σk 7→
k−1∑
i=0

σia

where σ is a generator of the group.
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Proposition 6.15. Let G be a finite cyclic group and let

0 // A // B // C // 0

be a short exact sequence of G-modules. Then the long cohomology sequence form the following
exact hexagon:

Ĥ−1(G,A)
f1 // Ĥ−1(G,B)

f2

&&

Ĥ0(G,C)

f6

88

Ĥ−1(G,C)

f3xx

Ĥ0(G,B)

f5

ff

Ĥ0(G,A)
f4

oo

Proof. The only map that deserves a comment is the map Ĥ0(G,C) → Ĥ−1(G,A), which
is just the composition of the map given in the long cohomological exact sequence and the
isomorphism given in remark 6.4. However, since the following diagram is clearly commutative

Ĥ−1(G,A)

∼
��

// Ĥ−1(G,B)

∼
��

H1(G,A) // H1(G,B)

then the kernel of the map H1(G,A)→ H1(G,B) is identified with the kernel of Ĥ−1(G,A)→
Ĥ−1(G,B), so the hexagon is exact.

In the study of cohomology of finite cyclic group it is very important the concept of Herbrand
quotient. In its most general form, it can be defined as follows,

Definition 6.5. Let A be an abelian group and let f, g ∈ End(A) such that f ◦ g = g ◦ f = 0.
Then the Herbrand quotient is defined as

qf,g(A) =
(ker f : Im g)

(ker g : Im f)

provided that both indices are finite.

Proposition 6.16. Let A be a finite abelian group and let f, g ∈ End(A) such that f ◦ g =
g ◦ f = 0. Then

gf,g(A) = 1

Proof. It comes from the fact that

|ker(f)| · |Im(f)| = |A| = |ker(g)| · |Im(g)|

In order to sutdy the cohomology groups of a G-module A, we will consider the endomorphisms

D = σ − 1, N = 1 + σ + · · ·+ σn−1
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This Herbrand quotient, called special Herbrand quotient, can be understood as

h(A) = qD,N (A) =
|Ĥ0(G,A)|
|Ĥ−1(G,A)|

=
|H2(G,A)|
|H1(G,A)|

Herbrand quotients have an interesting multiplicative property.

Proposition 6.17. Let G be a cyclic group and let

0 // A // B // C // 0

be a short exact sequence. Then
h(B) = h(A)h(C)

in the sense that if two of these quotients are defined, so is the third and the equality holds.

Proof. It is clear from proposition 6.15 that the third Herbrand quotient is defined provided
that the other two are defined too. Moreover, we can deduce from that result that

|Ĥ−1(G,A)| = |ker(f6)||ker(f1)|, |Ĥ−1(G,B)| = |ker(f1)||ker(f2)|,
|Ĥ−1(G,C)| = |ker(f2)||ker(f3)|, |Ĥ0(G,A)| = |ker(f3)||ker(f4)|,
|Ĥ0(G,B)| = |ker(f4)||ker(f5)|, |Ĥ0(G,C)| = |ker(f5)||ker(f6)|

Therefore,

|Ĥ−1(G,A)||Ĥ−1(G,C)||Ĥ0(G,B)| = |Ĥ−1(G,B)||Ĥ0(G,A)||Ĥ0(G,C)|

Hence the identity h(B) = h(A)h(C) is clear.

Corollary 6.9. Let
0 // A // B // C // 0

be a short exact sequence of abelian groups. If n denotes the multiplication by n, then

q0,n(B) = q0,n(A)q0,n(C)

in the sense that if two of them are defined, so is the third one.

Proof. It comes from proposition 6.17 by considering a trivial action of a cyclic group of order
n on A, B and C.

Lemma 6.8. Let A be an abelian group and let f, g ∈ End(A) be two endomorphisms such
that f ◦ g = g ◦ f . Assume that q0,f (A) and q0,g(A) are defined. Then q0,gf is defined too and

q0,gf (A) = q0,g(A) · q0,f (A)

Proof. Consider the following commutative diagram with exact rows:

0 // g(A) ∩ ker(f) //

��

g(A)
f
//

��

fg(A) //

��

0

0 // ker(f) // A
f
// f(A) // 0

Snake’s lemma gives an exact sequence

0 // ker(f)
g(A)∩ker(f)

// A
g(A)

// f(A)
fg(A)

// 0
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Hence we have the equality

(A : fg(A))

(A : f(A))
=

(A : g(A)) · |g(A) ∩ ker(f)|
|ker(f)|

Since ker(fg)/ ker(g) = g−1 (g(A) ∩ ker(f)) /g−1(0) ∼= g(A) ∩ ker(f), we get that

(A : gf(A))

|ker(gf)|
=

(A : g(A))

|ker(g)|
(A : f(A))

|ker(f)|

Since ker(gf) ⊂ ker(f), q0,gf is defined provided that q0,f and q0,g are.

The following theorem is useful to prove the local reciprocity law in chapter 7.

Theorem 6.3. Let G be a cyclic group of prime order p and let A be a G-module. If g0,p(A)
is defined, then q0,p(A

G) and h(A) are also defined, and

h(A)p−1 =
q0,p

(
AG
)p

q0,p(A)

Proof. Let σ be a generator of G and let D = σ − 1. Then the following sequence is exact:

0 // AG // A
D //// IGA // 0

By lemma 6.3, (IGA : pIGA) ≤ (A : pA). Since IG(A) is also a subgroup of A, then IGA[p] ⊂
A[p]. Hence q0,p(IGA) is also defined. By corollary 6.9, q0,p(A

G) is also defined and

q0,p(A) = q0,p(A
G) · q0,p(IGA)

Notice also that, since G acts trivially on AG, then q0,p(A
G) = h(A).

Since the ideal Z · NG = Z
(∑p−1

i=0 σ
i
)
⊂ Z[G] annihilates IGA, we can consider IGA as

a Z[G]/ZNG-module. Moreover, the ring Z[G]/ZNG is isomorphic to Z[ζ], where ζ is a
pth-primitive root of unity. Since p = (ζ − 1)p−1ε, where ε ∈ Z[ζ]∗, we have by applying
lemma 6.8 repeatedly that

q0,p(IGA) = q0,D(IGA)p−1q0,ε(IGA) =
1

qD,0(IGA)p−1

Since NG is the 0-endomorphism on IGA, we have that

q0,p(IGA) =
1

qD,0(IGA)p−1
=

1

qD,N (IGA)p−1
=

1

h(IGA)p−1

Proposition 6.17 gives the identity h(A)p−1 = h(AG)p−1h(IGA)p−1. Thus the claim

h(A)p−1 =
q0,p(A

G)p

q0,p(A)

follows by substitution.

6.6 The Cup Product

We can also extend the notion of tensor product to cohomology groups. For that purpose,
given two G-modules A and B we can define a canonical action on A ⊗ B by the following
formula:

G× (A⊗B)→ A⊗B : (σ, a⊗ b) 7→ σa⊗ σb
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With there action, there is a canonical mapping

AG ×BG 7→ (A⊗B)G : (a, b) 7→ a⊗ b

It is easily seen that NGA×NGB is mapped to NG(A⊗B), since

(NG(a), NG(b)) 7→

(∑
σ∈G

σa

)
⊗

(∑
τ∈G

τb

)
=
∑
σ∈G

σ

(∑
τ∈G

a⊗ σ−1τb

)

Hence it induces a quotient mapping in the 0th-Tate-cohomology groups, which is called
cup-product

Ĥ0(G,A)× Ĥ0(G,B)→ Ĥ0(G,A⊗B) : (a+NGA, b+NGB) 7→ (a⊗ b+NG(A⊗B))

Cup product can be extended to other dimensions by dimension-shifting.

Theorem 6.4. Let G br a finite group and let A and B be two G-modules. Then there is a
unique family of bilinear maps, the cup-product

∪ : Ĥp(G,A)× Ĥq(G,B)→ Ĥp+q(G,A⊗B), p, q ∈ Z

satisfying the following properties:

1. For p = q = 0, the cup product is given by

Ĥ0(G,A)× Ĥ0(G,B)→ Ĥ0(G,A⊗B) : (a+NGA, b+NGB) 7→ (a⊗ b+NG(A⊗B))

2. If the sequences of G modules

0 // A′ // A // A′′ // 0

0 // A′ ⊗B // A⊗B // A′′ ⊗B // 0

are both exact, then the following diagram commutes

Ĥp(G,A′′)× Ĥq(G,B)

δ×Id

��

∪ // Ĥp+q(G,A′′ ⊗B)

δ
��

Ĥp+1(G,A′)× Ĥq(G,B)
∪ // Ĥp+q+1(G,A′ ⊗B)

3. If the sequences of G modules

0 // B′ // B // B′′ // 0

0 // A⊗B′ // A⊗B // A⊗B′′ // 0

are both exact, then the following diagram commutes

Ĥp(G,A)× Ĥq(G,B′′)

Id×δ
��

∪ // Ĥp+q(G,A⊗B′′)

(−1)pδ

��

Ĥp(G,A)× Ĥq+1(G,B′)
∪ // Ĥp+q+1(G,A⊗B′)
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Proof. By hypothesis 2 and 3, the following diagram is commutative:

Ĥ0(G,Ap)× Ĥ0(G,Bq)
∪ //

δp×1
��

Ĥ0(G,Ap ⊗Bq)

δp

��

Ĥp(G,A)× Ĥ0(G,Bq)
∪ //

1×δq
��

Ĥp(G,A⊗Bq)

(−1)pqδq

��

Ĥp(G,A)× Ĥq(G,B)
∪ // Ĥp+q(G,A⊗B)

Hence it follows immediatly from condition 1 the uniqueness of the cup-product. The fact that
this definition satisfies axioms 2 and 3 is a computation whose details can be checked in [23],
proposition 1.4.7.

Remark 6.5. If p ≥ 0 and q ≥ 0, then the cup-product is induced by the following application

∪ : Cp(G,A)→ Cq(G,B)→ Cp+q(G,A⊗B) :

(a ∪ b)(σ0, . . . , σp+q) = a(σ0, . . . , σp)⊗ b(σp, . . . , σp+q)

This definition also generalizes to the case when G is a profinite group.

Proposition 6.18. Let G be a finite group and let A and B be G-modules. Let also a =
a+NGA ∈ Ĥ0(G,A) and b ∈ Ĥp(G,B), where p is an integer. Then

a ∪ b = a⊗ b

Proof. For p = 0, it is just the definition of cup-product. For other integers p, it follows from
dimension-shifting.

Proposition 6.19. The cup product is anticommutative and associative, i.e., given a ∈
Ĥp(G,A), b ∈ Ĥq(G,B) and c ∈ Ĥr(G,C), we have that

a ∪ b = (−1)pq(b ∪ a), (a ∪ b) ∪ c = a ∪ (b ∪ c)

Proof. It is trivial for p = q = 0. The general case follows from dimension-shifting.

Again, dimension-shifting also gives the commutativity of the cup-product with the inflation
and restriction.

We now show an important result for computing the cup product in a particular case which
will be used in next chapter to study the properties of the reciprocity map.

Lemma 6.9. Let G be a finite group and let A and B be G-modules. Let also a ∈ Ĥ1(G,A)

and let b ∈ Ĥ−1(G,B). Then

a ∪ b =
∑
τ∈G

a(τ)⊗ τb

Proof. Consider the exact sequences

0 // A // A⊗ Z[G] // A⊗ IG // 0

0 // A⊗B // A⊗ Z[G]⊗B // A⊗ IG ⊗B // 0
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Let a′ be the image of a in H1(G,A⊗Z[G]). Since A⊗Z[G] is a coinduced module by lemma

6.7, this cohomology group vanishes, so there is some a0 ∈ Ĥ0(G,A⊗Z[G]) such that a′ = ∂a0.
This means that

a(τ) = τa0 − a0 ∀τ ∈ G4

Moreover, if a′0 is the image of a0 in the projection to IG ⊗ A, then the definition of the
connecting homomorphism implies that a = δ(a′0). Then we obtain

a ∪ b = δ(a′0) ∪ b = δ(a′0 ∪ b) = δ(a0 ⊗ b) = NG(a0 ⊗ b) =
∑
τ∈G

τa0 ⊗ τb =∑
τ∈G

(a1(τ) + a0)⊗ τb =
∑
τ∈G

a1(τ)⊗ τb

where we have used in the last equality that NGb = 0.

Lemma 6.10. Let G be a finite group and let A be a G-module. Let σ ∈ G and a ∈ H1(G,A).

If we denote by σG′ the element that σ induces in Ĥ−2(G,Z) ∼= Gab, we have the following
identity:

a ∪ σG′ = a(σ) + IGA ∈ Ĥ−1(G,A)

Proof. Consider the exact sequence

0 // A⊗ IG // A⊗ Z[G] // A // 0

Then proposition 6.11 gives an isomorphism δ : Ĥ−1(G,A)→ Ĥ0(G,A⊗ IG), so it is enough
to proof that δ (a ∪ σG′) = δ (a(σ) + IG).

On the one hand, by the definition of δ we have that

δ(a(σ)) =
∑
τ∈G

τa(σ)⊗ τ +NG(A⊗ IG)

On the other hand, using the computations made in the proof of proposition 6.13, we get that

δ(a ∪ σG′) = −(a ∪ δ(σG′)) = −a ∪ (σ − 1)

By lemma 6.9,

δ(a ∪ σG′) = −
∑
τ∈G

a(τ)⊗ τ(σ − 1) =
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

a(τ)⊗ τσ

Since a is a 1-cocycle, then a(τσ) = a(τ) + τa(σ). Then,

δ(a ∪ σG′) =
∑
τ∈G

(a(τσ)− a(τ))⊗ τσ =
∑
τ∈G

τa(σ)⊗ τσ

Hence,

δ(a ∪ σG′)− δ(a(σ)) =
∑
τ∈G

τa(σ)⊗ τ(σ − 1) = NG (a(σ)⊗ (σ − 1)) ∈ NG(A⊗ IG)

4Notice the abuse of notation, since we are considering a0 as an element of A⊗ Z[G] and A ⊂ A⊗ Z[G]
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6.7 Tate’s Theorem

The goal of this section if proving a theorem about certain map defined as a cup-product map
being an isomorphism. This isomorphism in some particular Galois cohomology groups will be
understood as the reciprocity map in chapter 7.

We start proving a theorem of cohomological triviality.

Theorem 6.5. Let G be a finite group and let A be a G-module. If there is a dimension q
such that

Ĥq(H,A) = Ĥq+1(H,A) = 0

for every subgroup H ⊂ G, then A has trivial cohomology.

Proof. It is clear that we just need to prove that Ĥq−1(H,A) = Ĥq+2(H,A) = 0. Moreover,
we can assume by dimension-shifting that q = 1.

We are going to proceed by induction on n = |G|, being the case n = 1 trivial. Let thus G be
a subgroup of order n. By the induction hypothesis, we can assume the statement is true for
every proper subgroup of G.

IfG is not a p-group, then the induction hypothesis would imply that Ĥ0(Gp, A) = Ĥ3(Gp, A) =

0 so, by corollary 6.6 and dimension-shifting, Ĥ0(G,A) = Ĥ3(G,A) = 0.

We can thus assume that G is a p-group, so there is a normal subgroup H such that G/H is
cyclic of prime order. By induction,

Ĥ0(H,A) = H1(H,A) = H2(H,A) = H3(H,A) = 0

Hence theorem 6.2 gives isomorphisms

Inf : Hq(G/H,AH)→ Hq(G,A) ∀q = 1, 2, 3

The fact that H1(G,A) = 0 implies then that H1(G/H,AH) = 0, so H3(G/H,AH) = 0 by
proposition 6.14. Hence H3(G,A) = 0.

Again, H2(G,A) = 0 implies that H2(G/H,AH) = Ĥ0(G/H,AH) = 0. Taking into account

that Ĥ0(H,A) = 0, we have that

AG = (AH)G/H = NG/H(AH) = NG/H(NHA) = NGA⇒ Ĥ0(G,A) = 0

Theorem 6.6. Let G be a finite group and let A be a G-module satisfying that for each
subgroup H ⊂ G we have that

• Ĥ−1(H,A) = 0

• Ĥ0(H,A) is cyclic of the same order as H.

If a generates the group Ĥ0(G,A), the cup product map

a∪ : Ĥn(G,Z)→ Ĥn(G,A)

is an isomorphism for every n ∈ Z.

Proof. Let B = A× Z[G]. Since the boundary morphisms acts independly on each factor and
Z[G] is an induced module, we have that

Ĥn(H,B) = Ĥn(H,A)× Ĥn(H,Z[G]) = Ĥn(H,A)
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Choose an a0 ∈ AG such that a0 +NGA generates Ĥ0(G,A) and consider the map

f : Z→ B : n 7→ n · a0 + n ·NG

By proposition 6.18, it induces an isomorphism in the cohomology groups which fits into the
following commutative diagram

Ĥn(G,Z)
a∪ //

f

&&

Ĥn(G,A)

∼
��

Ĥn(G,B)

We just need to see that f is biyective. Since f was injective, the following sequence is exact:

0 // Z
f
// B // C // 0

where C := coker(f). By hypothesis, Ĥ−1(H,A) = Ĥ−1(H,B) = 0 for every subgroup H ⊂ G.
Since G is finite, then H1(H,Z) = Hom(H,Z) = 0 for every subgroup H ⊂ G. By proposition
6.11, there is an exact sequence of the form

0 // Ĥ−1(H,C) // Ĥ0(H,Z)
f
// Ĥ0(H,B) // Ĥ0(H,C) // 0

Since f is clearly bijective for 0th dimension, then Ĥ−1(H,C) = Ĥ0(H,C) for every subgroup

H ⊂ G. By theorem 6.5, Ĥn(G,C) = 0 ∀n ∈ Z, so f is an isomorphism in every dimension.

Theorem 6.7. Let G be a finite group and let A be a G-module satisfying the following
properties

• For each subgroup H ⊂ G, we have H1(H,A) = 0.

• For each subgroup H ⊂ G, H2(H,A) is cyclic of the same order as H. If a generates
H2(G,A), the map

a ∪ : Ĥn(G,Z)→ Ĥn+2(G,A)

is an isomorphism.

Proof. The short exact sequences

0 // A // IndG(A) // A′ // 0

0 // A′ // IndG(A′) // A′′′ // 0

induce isomorphisms δ2 : Ĥn(H,A′′) → Ĥn+2(H,A), because of proposition 6.2. If a ∈
H2(G,A) is a generator of the group, then δ−2a is a generator of Ĥ0(G,A). By the definition
of cup-product, the following diagram is commutative:

Ĥn(G,Z)
δ−2a∪ //

Id
��

Ĥn(G,A′′)

δ2

��

Ĥn(G,Z)
a∪ // Ĥn+2(G,A)

Since the map δ−2∪ is bijective, then a∪ is also bijective.
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6.8 Cohomology of the p-adic Integers

We end this chapter by describing some cohomology groups when G is isomorphic to the p-adic
integers Zp. These results will be needed later in the study of the arithmetic of elliptic curves.

Proposition 6.20. Let p be a prime, let G ∼= Zp be generated by some γ ∈ G and let A be a
discrete, p-primary abelian group on which G acts continuously. Then

H1(G,A) ∼= A/(γ − 1)A

Proof. Defining Gn := Gp
n

, proposition 6.4 and corollary 6.8 imply that

H1(G,A) = lim−→
n

H1(G/Gn, A
Gn) = lim−→

n

kerNn/(γ − 1)AGn

where Nn : AGn → AGn denotes the norm map associated to G/Gn. By remark 6.4, it is clear
that direct limit homomorphisms are the maps induced by inclusions. Since direct limit is an
exact functor by proposition 4.3,

H1(G,A) =
lim−→n

kerNn

(γ − 1) lim−→n
AΓn

= A′/(γ − 1)A

where A′ = {a ∈ A : Nn(a) = 0 for some n ∈ N}. Just notice that δ-homomorphisms commute
with the change of groups, so the transition maps in the direct product are the inclusions.

Fix some a ∈ A. Since A is p-primary, there is some m ∈ N such that pma = 0. Moreover, there
is another n ∈ N such that γp

n

a = a because the action of Γ is continuous and proposition 4.7
is applied. Then

Nn+m(a) =

pn+m−1∑
k=0

γk(a) = pm
pn−1∑
k=0

γk(a) =

pn−1∑
k=0

γk(pma) = 0

Hence a ∈ A′ and
H1(G,A) = A/(γ − 1)A

Proposition 6.21. Let p be a prime, let G ∼= Zp and let A be a discrete, p-primary G module.
Then

H2(G,A) = 0

Proof. Since inflation commutes with ∂ then the inflation maps

H2
(
G/Gp

n

, AG
pn
)
→ H2

(
G/Gp

m

, AG
pm
)

where m ≥ n, corresponds to the homormorphism

AG
pn

/
(
NG/GpnA

)
→ AG

pm

/
(
NG/GpmA

)
induced by the norm map NGpn/Gpm . However, this is just the multiplication by pm−n. Since
A is p-primary then

H2 (G,A) = lim−→
n∈N

H2
(
G/Gp

n

, AG
pn
)

= 0
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Proposition 6.22. Let G be a group and let A be a G-module such that G ∼= Zp and A ∼=
(Qp/Zp)r as groups. Then H0(G,A) and H1(G,A) have the same Zp-corank. Furthermore, if
H0(G,A) is finite, then H1(G,A) = 0.

Proof. Let γ be a topological generator of G. By proposition 6.20, H1(G,A) ∼= A/(γ − 1)A.
Then consider the exact sequence:

0 // H0(G,A) // A
γ−1
// A // H1(G,A) // 0

It can be split in two short exact sequences

0 // H0(G,A) // A // (γ − 1)A // 0

0 // (γ − 1)A // A // H1(G,A) // 0

Since A is cofinitely generated, corollary 4.4 thus implies that

corankZpH
0(G,A) = corankZpA− corankZp(γ − 1)A = corankZpH

1(G,A)

If H0(G,A) is finite, then H1(G,A) ∼= A/(γ − 1)A is a divisible group of corank 0, so
H1(G,A) = 0.
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Chapter 7

The Local Reciprocity Law

In this chapter, we apply the cohomological theory of profinite groups to the case when G is a
Galois group, which is the case we are going to be interested in while studying the arithmetic
of elliptic curves. Then section 7.1 is dedicated to the main results about the cohomology of
Galois groups.

After that, we particularise to the case when the base field is p-adic. In section 7.2 we study
the cohomology of the unramified extensions while in section 7.3 we consider the ramified ones.

Finally, sections 7.4 and 7.5 expose a deep result, the local reciprocity law, which gives an
isomorphism of the Galois group of the maximal abelian extension of a p-adic field and the
profinite completion of the multiplicative group of that field. This isomorphism enable us to
study the cohomology of the absolute Galois group and will play a central role in the proof of
the corank lemma in chapter 8.

7.1 Galois Cohomology

Let L|K be a Galois extension. Since we have already seen in corollary 5.2 that GL|K is a
profinite group, we can apply the cohomological theory developed in chapter 6. From now on,
given a GL|K-module A, we will denote

Hn(L|K,A) := Hn(GL|K , A), Hn(K,A) := Hn(GK , A) = Hn(GK|K , A)

The most natural modules in which the Galois group acts are the additive group L and the
multiplicative group L∗. Notice that both actions are continuous since given x ∈ L, GL|K(x)

is an open subgroup by theorem 5.2. The additive group is cohomologically trivial because of
the existence of a normal basis.

Theorem 7.1. Let L|K be a Galois extension. Then

Ĥn(L|K,L) = 0 ∀n ∈ Z

Proof. By corollary 6.2 and remark 5.2, we can assume that L|K is finite.

By the normal basis theorem, there exists some a ∈ L such that {σ(a) : σ ∈ GL|K}. Hence

L ∼= Z[G]⊗K

is a coinduced module, so it is cohomologically trivial by proposition 6.12.

95
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The cohomology of the multiplicative group is slightly more interesting. However, the first
cohomology group also vanishes. This result is usually known as Hilbert Theorem 90.

Theorem 7.2. Let L|K be a Galois extension. Then

H1(L|K,L∗) = 0

Proof. Again using corollary 6.2 and remark 5.2 we can assume that L|K is finite.

Let ϕ : GL|K → L∗ be a 1-cocycle. Since the Galois automorphisms are linearly independent,
we can find some c ∈ L∗ such that

b :=
∑

σ∈GL|K

ϕ(σ)σ(c) 6= 0

Given some τ ∈ GL|K , using the characterisation of cocycles

τ(b) =
∑

σ∈GL|K

τ (ϕ(σ)) τ(σ(c)) =
∑

σ∈GL|K

ϕ(τ−1)ϕ(τσ)(τσ)(c) = ϕ(τ)−1b⇒ ϕ(τ) =
τ(b−1)

b−1

Hence ϕ is a coboundary and, therefore, H1(L|K,L∗) = 0.

Hilbert Theorem 90 has an interesting consequence using the long cohomological sequence

Corollary 7.1. Let L|K be a Galois extension and let µn ⊂ K be the multiplicative subgroup
of nth roots of unity. Then there is a canonical isomorphism

δ : K∗/(K∗)n → H1(K,µn)

where (K∗)n = {xn : x ∈ K}.

Proof. Consider the short exact sequence written in multiplicative notation

1 // µn // K
∗ n // K

∗
// 1

where the last arrow is given by the exponentiation up to the nth power. The long cohomological
exact sequence given in lemma 6.4 says that the following sequence is exact:

K∗
n // K∗

δ // H1(K,µn) // H1
(
K,K

∗)
By theorem 7.2, H1(K,K∗) = 1, so δ is surjective. Moreover, ker(δ) = (K∗)n, so the quotient
map is the desired isomorphism.

Remark 7.1. The map δ can be computed as follows: given some b ∈ K, choose some β ∈ K
such that βn = b. Then the cocycle associated to b is

σ 7→ βσ

β

Corollary 7.2. If K is a finite field and L|K is a finite Galois extension, then

Ĥn(L|K,L∗) = 0 ∀n ∈ Z

Proof. It comes form theorem 7.2 and proposition 6.16.
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7.2 Cohomology of Unramified Extensions

Let K be a local field and let L|K be a finite unramified extension whose residue field extension
is l|k. The main goal of this section is to show the existence of a canonical isomorphism

H2(L|K,L∗) ∼=
1

[L : K]
Z/Z

From now on, we will denote by ϕL|K the element of GL|K which induces the Frobenius
automorphism in Gl|k. We want to study the cohomology groups H2(L|K,L∗). For that
purpose, the following theorem is important.

Theorem 7.3. Let L|K be a finite unramified extension of p-adic fields and let UL be the ring
of integers of L. Then

Ĥn(L|K,UL) = 0 ∀n ∈ Z

Proof. Considering the exact sequence

1 // U1
L

// UL // l∗ // 1

Where UkL := 1 + πkLUL and πL is a uniformiser of L. Since GL|K = Gl|k and Ĥn(l|k, l∗) = 0

by corollary 7.2, then Ĥn(L|K,UL) ∼= Ĥn(L|K,U1
L) ∀n ∈ Z.

Moreover, the map
Uk−1
L → l+ : 1 + aπk−1

L 7→ a mod (πL)

induces an exact sequence

1 // UkL
// Uk−1
L

// l+ // 0

By theorem 7.1, Ĥn(L|K, l+) = 0 ∀n ∈ N, so lemma 6.4 gives isomorphisms Ĥn(L|K,UkL) ∼=
Ĥn(L|K,Uk−1

L ). For large enough n, the p-adic logarithm implies that UnL
∼= RL as GL|K

modules, where RL is the ring of integers of L. However, RL ∼= RK ⊗Z[GL|K ] because L|K is
unramified. In fact, any lifting to UL of some a ∈ l that generates a normal basis of l|k would
generate RL as a RK module. Hence RL is an induced module and, therefore, cohomologically
trivial.

Consider now the following short exact sequence

0 // UL // L∗
v // Z // 0

By theorem 7.3 and lemma 6.4, it induces an isomorphisms

v : H2(L|K,L∗)→ H2(L|K,Z)

Taking into account that Q is cohomologically trivial because of corollary 6.4, the short exact
sequence

0 // Z // Q // Q/Z // 0

induces an isomorphism
δ : H1(L|K,Q/Z)→ H2(L|K,Z)

Taking it into account and the fact that the Galois group acts trivially on Q/Z, we have an
isomorphism

invL|K : H2(L|K,L∗)→ Hom(GL|K ,Q/Z)
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SinceGL|K is cyclic of order [L : K] and generated by ϕL|K , every homomorphism is determined
by the image of this generator, which has to be an element whose order divides [L : K]. Hence
we can consider the following isomorphism, which is called invariant map.

invL|K : H2(L|K,L∗)→ 1

[L : K]
Z/Z (7.1)

Taking that background into account, it is easy to compute the cohomology group of the
maximal unramified extension by using corollary 6.2.

Corollary 7.3. Let K be a p-adic field and let Kunr be its maximal unramified extension.
Then

H2
(
Kunr|K, (Kunr)

∗)
= lim−→

n

1

n
Z/Z = Q/Z

7.3 Cohomology of Ramified Extensions

The goal of this section is to extend the previous one to ramified extensions. We are going to

see that the image of the inflation of H2(L|K,L∗) to H2
(
K,K

∗)
is the same for every Galois

extension of the same degree. Hence we can use the unramified extension of the same degree
to extend the invariant map to every finite Galois extension.

Lemma 7.1. Let K be a p-adic field and let L|K be a finite Galois extension. Then the order
of H2(L|K) divides [L : K].

Proof. Assume first that GL|K is cyclic of prime degree l = [L : K]. By theorem 6.3, we have
that

h(L∗)l−1 =
q0,l(K

∗)l

q0,l(L∗)

Since we know the structure of p-adic fields, then

q0,l(K
∗) =

(K∗ : (K∗)l)

K∗[l]
= l · qvK(l)

K

where qK is the number of elements in the residue field of K. Hence

h(L∗)l−1 =
llq

lvK(l)
K

lq
vL(l)
L

=
llq

lvK(l)
K

lq
f ·e·vK(l)
K

= ll−1 ⇒ h(L∗) = l

By theorem 7.2, H1(L|K,L∗) = 0, so

|H2(L|K,L∗)| = h(L∗) = l = [L : K]

For the general case, notice that the Galois group GL|K is solvable, so there is a subextension
M |K of prime degree. Since theorem 7.2 says that H1(L|M,L∗) = 0, theorem 6.2 gives the
following exact sequence:

0 // H2(M |K,M∗) Inf // H2(L|K,L∗) Res // H2(L|M,L∗)

Hence |H2(L|K,L∗)| divides |H2(M |K,M∗)||H2(L|M,L∗)| = [M : K] · |H2(L|M,L∗)|. We
can also assume by an inductive argument on the degree of the extension that |H2(L|M,L∗)|
divides [L : M ]. Hence the claim follows by the degree transitivity.
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Lemma 7.2. Let L|K and L′|K be finite Galois extensions such that L′|K is unramified and
let N = L · L′. If c ∈ H2(L′|K), then

invN |L(Res
N |K
N |L ◦ Inf

L′|K
N |K c) = [L : K]invL′|Kc

Proof. Let f and e be the inertia and ramification degrees of L|K and, since N |L is unramified,
consider the following diagram:

H2(L′|K,L′∗) vL∗ //

Inf

��

H2(L′|K,Z)
δ−1
//

Inf

��

H1(L′|K,Q/Z) //

Inf

��

1
[L′:K]Z/Z

i

��

H2(N |K,N∗)

Res

��

H2(N |K,Z)

e·Res

��

H1(N |K,Q/Z)

e·Res

��

1
[N :K]Z/Z

·[L:K]

��

H2(N |L,N∗) vN // H2(N |L,Z)
δ−1
// H1(N |L,Q/Z) // 1

[N :L]Z/Z

To complete the proof we just need to show that this diagram is commutative. Commutativity
of the left square is clear from the definitions, just taking into account that the inertia degrees
of N |L′ and L′|K are the same. Commutativity of the middle one is just the commutativity of
the connecting homomorphism δ with restrictions and inflations. To see that the right square
commutes, we have to take into account again thatN |L is unramified and that ϕN |L|L′ = ϕfL′|K ,

fact that is true because this identity also happens with the Frobenius automorphisms of the
residue fields. Then given χ ∈ H1(L′|K,Q/Z), we have that

[L : K]χ(ϕL′|K) = efχ(ϕL′|K) = eχ(ϕN |L|L′) = e(Res
N |K
N |L ◦ Inf

L′|K
N |K )χ(ϕL′|K)

Theorem 7.4. Let K be a p-adic field and let L|K be a finite Galois extension. Consider
then the unramified extension L′|K of the same degree. Then

InfL|KH
2(L|K,L∗) = InfL′|KH

2(L′|K,L′∗) ⊂ H2
(
K,K

∗)

Proof. Since the inflation maps are injective by theorems 6.2 and 7.2, using the isomorphism
invL|K appearing in equation 7.1 and lemma 7.1, we just need to prove that

Inf
L′|K
K H2(L′|K,L′∗) ⊂ Inf

L|K
K H2(L|K,L∗)

Since inflation is transitive, we can just prove it for inflations to the field extension N |K, where
N = LL′. Consider then the following short exact sequence given by theorem 6.1:

1 // H2(L|K,L∗) Inf // H2 (N |K,N∗) Res // H2 (N |L,N∗)

Hence the result is equivalent to

Res
N |K
N |L ◦ Inf

L′|K
N |K = 0

However, by lemma 7.2, that is

inv−1
N |L([L : K] · x) = 0 ∀x ∈ 1

[L′ : K]
Z/Z

which is clearly true since both L|K and L′|K have the same degree.
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Last theorem and corollary 7.3 compute the Brauer group.

Corollary 7.4. Let K be a p-adic field and let Kunr be its maximal unramified extension.
Then

H2
(
K,K

∗)
= H2

(
Kunr| (Kunr)

∗) ∼= Q/Z

We can also extend the invariant maps to ramified extensions using theorem 7.4

Corollary 7.5. Let K be a p-adic field and let L|K and L′|K be two finite Galois extensions
of the same degree such that L′|K is unramified. Then there is a canonical isomorphism

ψL,L′ : H2(L|K,L∗)→ H2(L′|K,L′∗)

given by the condition Inf
L′|K
K ◦ ψL,L′ = Inf

L|K
K .

Definition 7.1. Let K be a p-adic field and let L|K be a finite Galois extension. Then we
define the invariant map of L|K as the canonical homomorphism

invL|K = invL′|K ◦ ψL,L′ : H2(L|K,L∗) 7→ 1

[L : K]
Z/Z

where L′|K is the unramified extension of degree [L : K].

Proposition 7.1. Let K be a p-adic field and let N ⊃ L ⊃ K be a tower of finite Galois
extensions. Then

invL|K = invN |K ◦ Inf
L|K
N |K

Proof. By the definition of the invariant map for ramified extensions, we just need to prove
it for unramified extensions. Then the statement is clear tracing through the definitions by
taking into account the fact that ϕN |K |L = ϕL|K .

7.4 The Local Reciprocity Law

The local reciprocity law, which is an isomorphism between the abelianised group Gab
L|K and

certain quotient of K∗, now follows as a direct consequence of Tate’s theorem.

Theorem 7.5. Let K be a p-adic field and let L|K be a finite Galois extension. Then there
is a canonical isomorphism

Gab
L|K

uL|K∪
// K∗/NL|KL

∗

Proof. By proposition 6.13, GabL|K
∼= Ĥ−2(L|K,Z) canonically. By definition, K∗/NL|KL

∗ =

Ĥ0(L|K,L∗), the canonical isomorphism is given by theorem 6.7 using the generator

uL|K := (invL|K)−1

(
1

[L : K]
+ Z

)
∈ H2(L|K,L∗)

The inverse of these isomorphism is called norm residue symbol ( , L|K) and induces the exact
sequence

0 // NL|KL
∗ // K∗

( ,L|K)
//// Gab

L|K
// 1



7.4. THE LOCAL RECIPROCITY LAW 101

The next step is showing that the norm residue symbol satisfy certain commutative property
when considering towers of fields. It will be useful to generalise the reciprocity map to infinite
extensions by taking the inverse limit. The following lemma establishes a relation between the
norm residue symbol and the invariant map.

Lemma 7.3. Let K be a p-adic field, let L|K be a Galois extension, let a ∈ K∗ and a :=

a ·NL|KL∗ ∈ Ĥ0(L|K,L∗). Given a character χ ∈ H1(L|K,Q/Z), then

χ ((a, L|K)) = invL|K (a ∪ δ(χ)) ∈ 1

[L : K]
Z/Z

where δ is the following isomorphism induced by the long cohomological exact sequence:

δ : H1(L|K,Q/Z)→ H2(L|K,Z)

Proof. To simplify notation, we set σa := (a, L|K). By proposition 6.19,

a ∪ δχ = uL|K ∪ σa ∪ δχ = uL|K ∪ δ(σa ∪ χ)

By lemma 6.10, we have that

σa ∪ χ = χ(σa) =
r

n
+ Z ∈ 1

n
Z/Z = Ĥ−1(L|K,Q/Z)⇒ δ(χ(σa)) = r + nZ ∈ Ĥ0(L|K,Z)

where n := [L : K]. Therefore

a ∪ δχ = uL|K ∪ (r + nZ) = urL|K

Hence,

invL|K(a ∪ δχ) = r · invL|K(uL|K) =
r

n
+ Z = χ(σa)

Theorem 7.6. Let K be a p-adic field and let N ⊃ L ⊃ K be a tower of finite Galois
extensions. Then the following diagram is commutative

K∗
( ,N |K)

//

Id

��

Gab
N |K

π

��

K∗
( ,L|K)

// Gab
L|K

where π : GN |K → GL|K is the canonical projection.

Proof. Let χ ∈ H1(L|K,Q/Z) = Hom(GL|K ,Q/Z). By lemma 7.3 and proposition 7.1:

χ(π(a,N |K)) = Inf
N |K
L|K χ(a,N |K) = invN |K

(
a ∪ δ

(
Inf

N |K
L|K χ

))
invN |K

(
Inf

N |K
L|K (a ∪ δχ)

)
= invL|K (a ∪ δχ) = χ(a, L|K)

That is true for every character χ ∈ Hom(GL|K ,Q/Z) = Hom(GabL|K ,Q/Z). Since the profinite

group GabL|K is Hausdorff and the identity has a basis of neighbourhood formed by open

normal subgroups by proposition 4.5, for every element g ∈ GabL|K , there is a character

χ ∈ Hom(GabL|K ,Q/Z) such that χ(g) 6= 0. Hence we necessarily have that π(a,N |K) =

(a, L|K).
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Now we can identify the Galois group of the maximal abelian extension of a p-adic field with
certain inverse limit. For that, we need to define the norm subgroups in K∗.

Definition 7.2. Let K be a p-adic field. A subgroup H ⊂ K∗ is said to be a norm group if
there is an finite Galois extension L|K such that

H = NL|K(L∗)

Corollary 7.6. Let K be a p-adic field and let Kab be its maximal abelian extension. Then
there is an isomorphism

Gab
K = GKab|K = lim←−

H

K∗/H

where H runs through the norm groups of K.

7.5 The Existence Theorem

Since the Galois group of the maximal abelian extension of a p-adic field is the inverse limit of
all its finite abelian extensions, we want to know which subgroups of K are norm groups. We
will see that they are those being open and having finite index. Hence we will have that Gab

K

is the profinite completion.

Theorem 7.7. Let K be a p-adic field, and let Kab be its maximal abelian extension. Then
there is a canonical isomorphism

GKab|K ∼=
←−
K∗

where
←−
K∗ denotes the profinite completion of the multiplicative group K∗. This map is

commonly known as reciprocity map.

For proving theorem 7.7, we need to consider some lemmas as a preparation for a result that
states that the norm groups are exactly those being open and having finite index in K∗.
However, the open condition is suporfluous. In fact, a group of finite index contains (K∗)m,
which is open. Hence our group is a union of cosets of (K∗)m, so it is open.

Lemma 7.4. Let K be a p-adic field, let L|K be a Galois extension and let Lab|K be its
maximal subextension. Then

NL|KL
∗ = NLab|K

(
Lab
)∗

Proof. By theorem 7.5,

K∗/NL|KL
∗ ∼= Gab

L|K = GLab|K = K∗/NLab|K
(
Lab
)∗

Since these groups are finite and the inclusion NL|KL
∗ = NL|LabNLabKL

∗ ⊂ NLab|K
(
Lab
)∗

is

clear, we have that NL|KL
∗ = NLab|K

(
Lab
)∗

.

Last lemma, together with theorem 7.5, implies the following corollary.

Corollary 7.7. Let K be a p-adic field and let L|K be a finite Galois extension. Then
(K∗ : NL|KL

∗) divides [L : K] and the equality happens if and only if L|K is abelian.

Lemma 7.5. Let K be a p-adic field, let {Li|K : i ∈ I} be abelian extensions and let N be
the composition of all Li. Then

NN |KN
∗ =

⋂
i∈I

NLi|KL
∗
i
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Proof. The inclusion NN |KN
∗ ⊂

⋂
i∈I NLi|KL

∗
i is clear since for every i ∈ I we have that

NN |KN
∗ = NLi|K

(
NN |LiN

∗) ⊂ NLi|KL∗i
Conversely, let a ∈

⋂
i∈I NLi|KL

∗
i . Then (a, Li|K) = 1 ∀i ∈ I. Hence theorem 7.6 implies that

(a,N |K) = 1, so a ∈ NN |KN∗.

Lemma 7.6. Let K be a p-adic field and let L|K and M |K be two abelian extensions. Then

L ⊂M ⇔ NM |KM
∗ ⊂ NL|KL∗

Proof. The implication ⇒ is clear since

NM |KM
∗ = NL|K

(
NM |LM

∗) ⊂ NL|KL∗
Conversely, denote N := LM . Then we have by lemma 7.5 and corollary 7.7 that

NM |KM
∗ ⊂ NL|KL∗ ⇒ NN |KN

∗ = NM |KM
∗ ⇒ [N : K] = [M : K]⇒ N = M ⇒ L ⊂M

Lemma 7.7. Let K be a p-adic field and let H ⊂ K∗ be a subgroup that contains a norm
group. Then H is itself a norm group.

Proof. By hypothesis, there is a Galois extension L|K such that NL|KL
∗ ⊂ H ⊂ K∗. Moreover,

we can assume without loss of generality, because of lemma 7.4, that L|K is abelian.

By the isomorphism given in theorem 7.5, the finite set of subgroups of K∗/NL|KL
∗ is in

bijection with the subextensions of L|K, so both finite sets have the same cardinality. Moreover,
lemma 7.6 gives an injection M 7→ NM |KM

∗ from the subextensions of L|K to the subgroups
of K∗/NL|KL

∗ and it will be a bijection by the cardinality argument. Hence there has to be
an extension M |K such that

H = NM |KM
∗

Theorem 7.8. Let K be a p-adic field. Then the norm groups of K∗ are precisely the open
subgroups of finite index in K∗.

Proof. By corollary 7.7, every norm group NL|KL
∗ has finite index, so there is some m ∈ N

such that (K∗)m ⊂ NL|KL
∗. Hence NL|KL

∗ is a union of open cosets of (K∗)m, so it has to
be itself open.

Conversely, let H ⊂ K∗ be an open subgroup of finite index m. Then (K∗)m ⊂ H and, by
lemma 7.7, we just need to show that (K∗)m is a norm group.

We will assume first that K contains the mth roots of unity. Then consider the composition L
of every extension K( m

√
a), where a runs through the elements of K∗. Since (K∗ : (K∗)m) is

finite, then L|K is also finite and, by lemma 7.5, we have that

NL|KL
∗ =

⋂
a∈K∗

NK( m
√
a)|KK( m

√
a)∗

Since d = [K( m
√
a) : K] divides m, we have that

(K∗)m ⊂ (K∗)d ⊂ NK( m
√
a)|KK( m

√
a)∗ ⇒ (K∗)m ⊂ NL|KL∗
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On the other hand, theorem 7.2 gives an isomorphism

K∗/(K∗)m ∼= Hom(GL|K , µm)

Since L|K is an abelian extension of exponent dividing m by theorem 5.1, then the structure
theorem of finite abelian groups implies that |GL|K | = |Hom(GL|K , µm)|. Hence by theorem
7.5,

(K∗ : (K∗)m) = |GL|K | = (K∗ : NL|KL
∗) <∞⇒ (K∗)m = NL|KL

∗

Assume now that K does not contain the mth roots of unity. Let then K1 be the extension
obtained by adjoining the mth roots of unity to K. By what we have just proven, we know
that there is some extension L|K1 such that

NL|K1
L∗ = (K∗1 )m

Let L1 be the Galois closure of L|K. Then we have that

NL1|KL
∗
1 = NK1|K

(
NL1|K1

L∗1
)
⊂ NK1|K

(
NL|K1

L∗
)

=

NK1|K((K∗1 )m) =
(
NK1|KK

∗
1

)m ⊂ (K∗)m

By lemma 7.7, (K∗)m is itself a norm group.

Remark 7.2. We have mentioned above that every subgroup of finite index is open, so every
subgroup of finite index is a norm subgroup.

Now the proof of theorem 7.7 is complete. Moreover, we can see that the reciprocity map is
an isomorphism of Galois modules.

Proposition 7.2. Let K be a p-adic field and let L|K be a finite Galois extension. The
reciprocity map

Gab
L →

←−
L∗

is an isomorphism of GL|K-modules, where GL|K acts on Gab
L by inner automorphisms.

Proof. It is clear since conjugation commutes with cup product by dimension shifting and it
also commutes with the identification made in proposition 6.13.



Chapter 8

Corank Lemma

This chapter is dedicated to a deep result about the rank of the Pontryagin dual of some
cohomology groups as Zp-modules. This statement will play a central role in the proof of
Mazur’s control theorem.

The proof of this result is a good illustration of how can the theory of Iwasawa modules can
be applied to arithmetic problems. In this problem, we consider a Galois group as an Iwasawa
module. In fact, since the extension is abelian and pro-p, its Galois group is a Zp-module.
Moreover, there is an action of another Galois group isomorphic to Zp, so it can be seen as an
Iwasawa module due to proposition 2.9.

Theorem 8.1. LetK be a p-adic field. Suppose that A is aGK-module and that A ∼= Qp/Zp as
a group. Then H1(K,A) is a cofinitely generated Zp-module whose corank is [K : Qp]+δA(K),
where δA(K) = 1 if A ∼= Qp/Zp or A ∼= µp∞

1 as GK modules and δA(K) = 0 otherwise.

Proof. Assume first that GK acts trivially on A. Hence

H1(K,A) = Hom(GK , A) = Hom(Gab
K ,Qp/Zp)

where the last equality comes from the fact that A is abelian. Hence we can see that the pro-p
completion of GabK is the Pontryagin dual of H1(K,A).

By theorem 7.7 and [21], proposition II.5.7, there is an isomorphism

Gab
K
∼=
←−
K =

←−
Z × Z/(q − 1)× Z/pa × Z[K:Qp]

p = Z[K:Qp]+1
p × Z/(q − 1)× Z/pa ×

∏
q prime,q 6=p

Zq

where q is the cardinality of the residue field of K and a ≥ 0 is an integer. Hence

corankZpH
1(K,A) = rankZpG

ab,p
K = [K : Qp] + 1 = [K : Qp] + δA(K)

Now assume that A ∼= µp∞ as GKv -modules. Then proposition 6.4 and theorem 7.2 imply that

H1(K,A) ∼= H1

(
K, lim−→

n

µpn

)
= lim−→

n

H1 (K,µpn) ∼= lim−→
n

K∗/(K∗)p
n

Since K∗ ∼= Z× Z/(q − 1)× Z/pa × Z[Kv:Qp]
p by [21], proposition II.5.7, then

K∗/(K∗)p
n ∼=

 (Z/pn)
[K:Qp]+1 × Z/pa

Z/pa−n
if n ≤ a

(Z/pn)
[K:Qp]+1 × Z/pa if n > a

1µp∞ represents the direct limit of the groups µpn of pn-roots of unity in Qp.
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The transition maps restrict well to each factor and they are injective except in the last factor,
so

H1(K,A) ∼= (Qp/Zp)[K:Qp]+1 × Z/pa ⇒ corankZpH
1(K,A) = [K : Qp] + δA(K)

Now we will consider the case when δA(K) = 0. We saw in example 4.1 that

Hom (Qp/Zp,Qp/Zp) ∼= Zp ⇒ Aut (Qp/Zp,Qp/Zp) ∼= Z∗p

Hence the action of the Galois group on A can be described with a character

ψ : GK → Z∗p

The map ψ is continuous. In fact, remember that Hom(Qp/Zp,Qp/Zp) was endowed with
the compact-open topology, so consider a subbased open set V (T,U), where T ⊂ Qp/Zp is a
compact set and U ⊂ Qp/Zp is an open set. Since Qp/Zp has the discrete topology, T is a
finite set and

V (A,U) =
⋂
x∈A

⋃
y∈U

V ({x}, {y})


Hence we just need to check that φ−1 (V ({x}, {y})) is open for every x, y ∈ Qp/Zp. However,
that is clear since it is the inverse image of {y} via the continuous function

GK → Qp/Zp : σ 7→ σ(x)

Assume first that Im(ψ) is finite and p > 2. Using the p-adic logarithm, ∆ := Im(ψ) has to
be a cyclic group whose order divides p− 1. Then ker(ψ) is a closed normal subgroup of finite
index, so theorem 5.2 says that there is a finite extension F |K such that ker(ψ) = GF . Then
GF acts trivially on A, so H1(F,A) = Hom(GF , A). Then the exact sequence given in theorem
6.1 can be written as

0 // H1(F |K,A)
Inf // H1(K,A)

Res // HomGF |K (GF , A)
tg
// H2(F |K,A)

By proposition 6.8, Hn(F |K,A) = 0 ∀n ≥ 1, so the restriction map is an isomorphism. Hence

corankZpH
1(K,A) = corankZpH

1(GF , A)GF |K = corankZpHomGF |K (GF , A)

where GF |K acts on GF by inner automorphisms. It is clear that

HomGF |K (GF , A) = Hom(GψF , A)

where GψF is the maximal quotient of GF on which GF |K acts by the character ψ. That is the
quotient by the submodule generated by

σ(x) = ψ(σ)x ∀σ ∈ GF |K ∀x ∈ GF

By propositions 7.2 and 8.1 below,

corankZpH
1(K,A) = rankZp(GψF ) = [K : Qp] = [K : Qp] + δA(K)

In case p = 2, |∆| is either 1 or 2. Since we are assuming that ψ is not the trivial character,
then ∆ = {1,−1} ⊂ Z2, so by proposition 6.14, we have that

H2(F |K,A) ∼= Ĥ0(F |K,A) ∼= A∆/N∆(A) ∼= Z/2

Moreover, proposition 6.14. also implies that

H1(F |K,A) ∼= Ĥ−1(F |K,A) =N∆ A/IGA = A/− 2A ∼= Z/2
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The restriction map has thus finite kernel and cokernel. Again we have that

corankZpH
1(K,A) = corankZpH

1(GF , A)GF |K = corankZpHomGF |K (GF , A) =

corankZpHom(GψF , A) = rankZpG
ψ
F = [K : Qp] = [K : Qp] + δA(K)

Assume now that Im(ψ) is infinite and p > 2. Again using the p-adic logarithm, we find that
Im(ψ) ∼= ∆× Γ, where ∆ is still a cyclic group whose order divides p− 1 and Γ ∼= Zp. Again
ker(ψ) is a closed subgroup, so there is a field extension F∞|K such that ker(ψ) = GF∞ . Hence
G := GF∞|K

∼= ∆× Γ and the inflation-restriction sequence can be written as

0 // H1(G,A)
Inf // H1(K,A)

Res // H1(F∞, A)G
tg
// H2(G,A)

By proposition 6.21, we have that H2(Γ, A∆) = 0. Since Hn(∆, A) = 0 ∀n ≥ 1 by proposition
6.8, then theorem 6.2 implies that the following sequence is exact:

0 // H2(Γ, A∆)
Inf // H2(G,A)

Res // H2(∆, A)

Then H2(G,A) = 0.

For the study of H1(G,A), we need to consider separately two cases. In case |∆| = 1, then
G = Γ, so given a topological generator γ ∈ Γ,

H1(G,A) = H1(Γ, A) = A/(γ − 1)A

However, (γ−1)A is a division subgroup which does not vanish because Γ does not act trivially
on A. Thus (γ−1)A = A, so H1(G,A) = 0. In case |∆| > 0, then A∆ = 0 because |∆| contains
non-trivial roots of unity which do not fix any point. Then, inflation-restriction sequence

0 // H1(Γ, A∆)
Inf // H1(G,A)

Res // H1(∆, A)

implies that H1(G,A) = 0.

In case p = 2, then |∆| can be 1 or 2. In case |∆| = 1, the preceding argument applies.
However, in case |∆| = 2, subtle modifications are needed.

First of all, we have that
H1(∆, A) ∼= H2(∆, A) ∼= Z/2

Moreover,
H1(Γ, A∆) = A∆/(γ − 1)A∆, H2(Γ, A∆) = 0

Since A∆ ∼= Z/2, then inflation-restriction sequence implies that both H1(G,A) and H2(G,A)
are finite.

From now on, we will make no distinction between p = 2 and p > 2. In any case the restriction
map H1(K,A)→ H1(F∞, A)G = HomG(F∞, A) has finite kernel and cokernel, so

corankZp
(
H1(K,A)

)
= corankZp (HomG(F∞, A)) = corankZp

(
HomG(GFab,p∞

, A)
)

where we have used that A is abelian, so every homomorphism GF∞ → A vanish on the
commutator subgroup. Moreover, since A is p-primary, we have used that every homomorphism
has to factor through a pro-p quotient.

Let then M∞|F∞ be the maximal abelian extension pro-p of F∞. Notice that M∞|K is Galois
since σ(M∞)|F∞ would be an abelian pro-p extension for every σ ∈ K, so σ(M∞) ⊂ M∞.

Moreover, G acts on X = Gab,pF∞
= GM∞|F∞ by inner automorphisms. With this action, we
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have that X is a Zp module with a Zp-linear and continuous action of G. In particular, we can
consider only the action of Γ on X, which makes X into an Iwasawa module.

By theorem 5.2, Γ = GF∞|F0
for some field extension F0|K. Since Γ ∼= Zp it is topologically

generated by some γ ∈ Γ. Then there is exactly one subextension Fn|F0 of F∞|F0 such that
[Fn : F0] = pn, which will satisfy that GF∞|Fn = 〈γpn〉. For each n ≥ 0, define again Mn

as the maximal abalian pro-p extension of Fn. It is clear that F∞ ⊂ Mn ⊂ M∞ and that
Mn|Fn is the maximal abelian subextension of M∞|Fn. Hence GM∞|Mn

is just the closure of
the commutator subgroup (GM∞|Fn)′. Hence,

GM∞|Mn
= {γp

n

xγ−p
n

x−1 : x ∈ X} = {γp
n

(x)x−1 : x ∈ X}

because X is abelian and, therefore, the latter is a subgroup and it is closed since the map
x 7→ γp

n

(x)x−1 is a continuous map which sends the compact group X to a compact set. Using
the notation used to study Iwasawa modules, we have that

GM∞|Mn
= ωnX ⇒ X/ωnX = GMn|F∞

By proposition 7.2, GMn|Fn is a finitely generated Zp-module of rank

rankZpGMn|Fn = rankZp
←−
F ∗n = [Fn : Qp] + 1 = pn|∆|[Kv : Qp] + 1

Then, since F∞|Fn is also a Zp-extension, we have that

rankZpGMn|F∞ = rankZpX/wnX = pn|∆|[Kv : Qp]

Hence by proposition 2.8, X is a finitely generated Iwasawa module whose rank is

rankΛX = |∆|[Kv : Qp]

By proposition 8.2 below, H2(F∞,Z/p) = 0 and then multiplication by p induces a surjective
endomorphism in the cohomology group

H1(F∞,Qp/Zp) = Hom(X,Qp/Zp) = X̂

X will thus be a divisible group. It means that X̂ has not finite quotients, so X does not
contain finite Zp-submodules and, therefore, X is Zp-torsion-free.

Let Y = XΛ−tors and let W = X/Y . Since W is torsion-free, snake’s lemma 6.3 induces the
following short exact sequence:

0 // Y/wn // X/wn // W/wn // 0

Since proposition 2.2 implies that rankΛX = rankΛW = [Kv : Qp]|∆|, then proposition 2.8,
together with the fact that W is Λ-torsion free, implies that

rankZpX/wnX = rankZpW/wnW = pn[Kv : Qp]|∆|

Hence Y/wn must be finite and isomorphic to a subgroup of X/wn, what will be injected by
7.5 to µFn , the p-primary part of the roots of unity contained in Fn.

Assume that µp∞ 6⊂ F∞. Then µFn has bounded order as n→∞. Then

Y = lim←−
n

Y/(wn)

would be finite. However, since X had not non-trivial finite submodules, Y = 0. Thus X is
Λ-torsion-free.
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In case that µp∞ ⊂ F∞, then µFn = (X/wn)Zp−tors would be unbounded. Since W is
Λ-torsion-free and has rank r = |∆|·[Kv : Qp], by theorem 2.4 it has to be pseudo-isomorphic to
Λr and this pseudo-isomorphism has to be injective. In other words, there is a finite Λ-module
C such that the following short exact sequence is exact:

0 // W // Λr // C // 0

By snake’s lemma 6.3, there is another exact sequence

wnC // W/wn // (Λ/wn)
r

Since Λ/wn ∼= Zpnp has no Zp-torsion, then the Zp torsion of W/wn has order bounded by |C|.
Hence Y/wn is unbounded. Since Y/wn is isomorphic to a subgroup of µFn ⊂ µp∞ , then

Y = lim−→
n

Y/wn = lim−→
n

µFn = lim−→
m

µpn
2

To complete the proof, notice that

HomG(X,A) = Hom(Xψ, A)⇒ corankZpH
1(K,A) = rankZpX

ψ

If we denote by ψ∆ and ψΓ the restrictions of ψ to ∆ and Γ, respectively, it is clear that

Xψ =
(
Xψ∆

)ψΓ

By propositions 7.2 and 8.1 below, Xψ∆/wn has Zp-rank equal to pn[K : Qp], so proposition
2.8 implies that Xψ∆ is a finitely generated Λ-module of rank [K : Qp].

Now we are going to study the character restricted to Γ. If γ ∈ Γ is a topological generator,
its image determines all the character ψΓ. Hence

Xψ =
(
Xψ∆

)ψΓ
=

Xψ∆

(γ − ψ(γ))
=

Xψ∆

(T + 1− ψ(γ))

The decomposition made using the p-adic logarithm says that ψ(Γ) ∈ 1 + pZp, so T + 1−ψ(γ)
is a distinguished polynomial.

In case µp∞ 6⊂ F∞, then Xψ is pseudo-isomorphic to Λ[K:Qp], being that pseudo-isomorphism
injective. Hence,

rankZpX
ψ = rankZp

Xψ∆

(T + 1− ψ(γ))
= [K : Qp] = [K : Qp] + δA(K)

Otherwise, when µp∞ ⊂ F∞, then G acts on µp∞ by some character χ, which will be different
from ψ by hypothesis. If ψ∆ 6= χ∆, then Y ∩ Xψ∆ = ∅, so the above mentioned argument
applies. Otherwise, ψΓ 6= χΓ and, therefore,

Y

(T + 1− ψ(γ))

would be finite. Thus,

rankZpX
ψ = rankZp

Xψ∆

(T + 1− ψ(γ))
= [K : Qp] = [K : Qp] + δA(K)

2Although µFn does not necessarily coincide with µpn , it is true that µFn = µpm for some m ∈ N. Since we
have seen that µFn has unbounded order as n → ∞ and transition maps are the canonical projections, both
inverse limits are the same.
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Now we proof two facts used in the proof of the corank lemma. The first one is about the
corank of local fields.

Proposition 8.1. LetK be a p-adic field and let L|K be a finite extension such that ∆ := GL|K
is a cyclic group of order n.

1. If RK and RL denote the ring of integers of K and L, respectively, then

rankZpR
χ
L = rankZpRK = [K : Qp] ∀χ ∈ ∆̂

2. Moreover,

rankZp
←−
L∗χ =

{
[K : Qp] + 1 if χ is trivial.

[K : Qp] if χ is not trivial.

when we are understanding the ranks as the rank of their pro-p completions as Zp-modules.

Proof. 1. Let σ ∈ ∆ be a generator of the group and let a ∈ RL be a generator of a normal
basis. Then RK [∆][a] := RK + aRK + σ(a)RK + · · ·+ σn−1(a)RK is a Zp-module of the
same rank as RL, so (RL : RK [∆][a]) < ∞. Since the rank is an additive function, it is
clear that

rankZpR
χ
L = rankZpRK [∆][a]χ ∀χ ∈ ∆̂

The matrix that encodes the action of σ on RK [a] has each nth-root of unit as aen
eigenvalue of dimension 1. Hence it is easily seen that

rankZpRK [∆][a]χ ∼= RK ∼= Z[K:Qp]
p

2. Using p-adic logarithm one can see that L∗ contains a subgroup H of finite index
isomorphic to Z × RL, where ∆ acts trivially on Z and RL is the ring of integers of
L. Thus the statement is clear from what was proven on the first part.

The other unproven result used was about the p-cohomological dimension of the absolute Galois
group GK of an extension K|Qp whose degree is divisible by p∞.

Proposition 8.2. Let K|Qp be a field extension whose degree is divisible by p∞. Then

H2(K,Z/p) = 0

Proof. By proposition 4.6, we have that

H2
(
K,K

∗)
= lim−→

L

H2
(
L,K

∗)
(8.1)

where L runs through the finite Galois extensions of Qp and transition maps are restrictions.

We will see that H2
(
K,K

∗)
p

= 0. Suppose for the sake of contradiction that it contains an

element of p-torsion, so it has a representative in H2
(
L,K∗

)
, for some finite Galois extension

L|Qp. Let F |L be an extension of degree p such that F ⊂ K, whose existence is guaranteed

because p∞ divides [K : L]. Since H1
(
F,K

∗)
, theorem 6.2 gives an exact sequence

0 // H2 (F |L,F ∗) Inf // H2
(
L,K

∗) Res // H2
(
L,K

∗)
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By corollary 7.4, every element of order p is in the image of the inflation map, so it is restricted
to zero and, therefore, it represents the zero class in the direct limit of equation 8.1.

The exact sequence of GK modules

1 // µp // K
∗

// K
∗

// 1

induces another exact sequence by lemma 6.4:

H1
(
K,K

∗)
// H2 (K,µp) // H2

(
K,K

∗)
By theorem 7.2, H1

(
K,K

∗)
= 0. Since H2 (K,µp) is p-primary, it has to vanish because the

p-primary part of H2
(
K,K

∗)
does.

The preceding argument applies to every extension of K, so H2(H,µp) = 0 for every subgroup
H ⊂ GK , in particular that is true when H = Gp is a p-Sylow subgroup. Since Gp is a pro-p
group and Aut(µp) has p− 1 elements, then H acts trivially on µp, so

H2(Hp,Z/p) = H2(Hp, µp) = 0

If otherwise Hl is a l-Sylow subgroup, then H2(Hl,Z/p) = 0 by proposition 6.8.

By corollary 6.6, H2(K,Z/p) = 0.
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Part III

Arithmetic of Elliptic Curves
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Chapter 9

Elliptic Curves over Local Fields

The goal of this chapter is exposing the basic theory of elliptic curves defined over local fields.
We start in section 9.1 by defining the reduction map and stating some of its properties. In
this section, we have work in a slightly more general case and we only assume that the field is
complete with respect to a discrete valuation. In particular, we have studied some properties
of the elements in the kernel of this map and we have proved that it is surjective in case E
has good reduction. Even more, we have showed that, assuming we are working with fields
of characteristic 0, it is still surjective when restricted to the torsion subgroups of the original
and reduced curves.

In section 9.2 we state a precise characterisation of how the groups E(K) can be. In this case,
we do not try to be as general as possible and we will assume that K is a p-adic field. In
particular, we have proven that

E(K) ∼= Z[K:Qp]
p × T

where T is a finite group. After that, we have showed this behaviour under taking certain
tensor products, that will appear on chapter 11.

9.1 The Reduction Modulo π

Let K be a complete field with respect to a discrete valuation, being R its ring of integers,
m its maximal ideal and k = R/m its residue field of R. Let E/K be an elliptic curve whose
Weierstrass equation can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Since the change of coordinates (x, y) 7→ (u−2x, u−3y) leads to a replacement in the coefficients
of the preceding equation ai 7→ uiai, we can assume these coefficients belong to R. Then, we
will refer as a minimal Weierstrass equation to one of these equations having coefficients in R
that minimises the valuation v(∆) of its discriminant.

Proposition 9.1. A minimal Weierstrass equation is unique up to a change of coordinates

x = u2x′ + r, y = u3y′ + u2s+ t

with u ∈ R∗ and r, s, t ∈ R.

Proof. [27], Chap. VII. Prop. 1.3.

115
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Proposition 9.2. If (x, y) are coordinates of a Weierstrass equation whose coefficients are in
R, then any change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t

used to produce a minimal Weierstrass equation whose coordinates are (x′, y′) satisfies that
u, r, s, t ∈ R.

Proof. [27], Chap. VII. Prop. 1.3.

Consider a minimal Weierstrass equation for E and the surjective homomorphism R → k :
t 7→ t̃. Then the following equation defines an elliptic curve over k provided it is non-singular.

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

Proposition 9.1 tells us that the preceding equation is unique up to a standard change of
coordinates in k.

Given a point P ∈ E(K), we can find homogeneous coordinates (x0 : y0 : z0) such that
x0, y0, z0 ∈ R and at least one of them belongs to R∗. Then we can define the reduction map

E(K)→ Ẽ(k) : P = (x0 : y0 : z0) 7→ P̃ = (x̃0 : ỹ0 : z̃0)

It is also possible to define the reduction map for points the defined over the algebraic closure.
In fact, if P ∈ E(K), then P is defined over a finite extension L of K, which will be a complete
field over the extension of the valuation v, by [21], theorem II. 4.8. Hence, we can define the
reduction map in L, so the reduction map can be extended to the whole curve E(K).

The main problem that arises in this reduction is that the reduced curve Ẽ might not be
singular. In that case, we say that E has a bad reduction. Otherwise, we say that E has a good
reduction. Nevertheless, non-singular points of the reduced curve form a subgroup.

Lemma 9.1. The subgroup Ens of non-singular points of an elliptic curve E defined over a
perfect field K form a subgroup of the curve.

Proof. Clearly O ∈ Ens. On the other hand, let P,Q be two non-singular points of the curve
and let R be a singular one. We will show that P +Q 6= R.

Let S be the third point of intersection of the curve with the line through P and Q. Since R
is singular, then R 6= O and every line through R has double or triple multiplicity at R, so
S 6= R. By the same reason, the line through S and O cannot intersect R, so P +Q 6= R.

Similarly, the line through P and O cannot contain R, so R 6= −P . Therefore, non-singular
points constitute a subgroup of the curve.

We want to see that the reduction map is a group homomorphism onto non-singular points of
the reduced curve. Consider the following subgroups.

E0(K) := {P ∈ E(K) : P̃ ∈ Ẽns(k)}, E1(K) = {P ∈ E(K) : P̃ = Õ}

Lemma 9.2. Let P,Q ∈ E0(K) (not necessarily distinct) and L : ax+ by+ cz = 0 be the line

through them. Then L̃ = ãx̃+ b̃ỹ + c̃z̃ = 0 is the line through P̃ and Q̃.

Proof. Let E : f(x, y, z) = 0 be a minimal Weierstrass equation for the curve. If P̃ 6= Q̃, the
statement is clear. Moreover, if P = Q, then the tangent line through P has the equation

L =
∂f

∂x
(P )x+

∂f

∂y
(P )y +

∂f

∂z
(P )z = 0
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Then the tangent line of the reduced curve Ẽ through P̃ has the desired form.

The only case remaining is P 6= Q and P̃ = Q̃. If P̃ 6= Õ we can write

P = (α, β) ∈ E(K), Q = (α+ µ, β + λ) ∈ E(K)

where α, β, λ, µ ∈ R. The assumption P̃ = Q̃ means that λ, µ ∈ m. The fact that P̃ is a

non-singular point means that either
∂f̃

∂x̃
(P̃ ) 6= 0 or

∂f̃

∂ỹ
(P̃ ) 6= 0. Assume the latter. Since

f(α, β) = 0, there are a, b, c ∈ R such that

0 = f(α+ µ, β + λ) =
∂f

∂x
(α, β)µ+

∂f

∂y
(α, β)λ+ aµ2 + bµλ+ cλ2

Since we are assuming that
∂f̃

∂ỹ
(P̃ ) 6= 0, then v

(
∂f

∂y
(α, β)

)
= 0, so

v(λ) = v

(
∂f

∂y
(α, β)λ

)
= v

(
∂f

∂x
(α, β)µ+ aµ2 + bµλ+ cλ2

)
≥ min{v(µ), v(λ2)}

Since v(λ) < v(λ2) because λ ∈ m, then v(λ) ≥ v(µ) so λ
µ ∈ R. Then,

∂f

∂x
+
∂f

∂y

λ

µ
≡ 0 mod m

Then, tangent line through P̃ has equation

y − β̃ =
λ̃

µ̃
(x− α̃)

which is clearly the reduced line L̃ of the line through P and Q. The case when
∂f̃

∂x̃
6= 0 is

similar.

Finally, the case P̃ = Q̃ = Õ is analogous considering the inhomogeneous coordinates x
y and

z
y .

Corollary 9.1. The reduction map E0(K)→ Ẽns(k) is a group homomorphism.

Last group homomorphism can be understood as part of the following short exact sequence.

Proposition 9.3. The following exact sequence of abelian groups is exact.

0 // E1(K) // E0(K)
π // Ẽns(k) // 0

Proof. The statement is clear except for the surjectivity of π. Since clearly Õ = π(O) ∈

π(E0(K)), let P̃ = (α̃, β̃) ∈ Ens(k) \ {Õ}. Since it is non-singular, then either
∂f̃

∂x̃
6= 0 or

∂f̃

∂ỹ
6= 0. Assume without lost of generality the latter and choose any x0 ∈ R such that

x̃0 = α̃. Then the polynomial f̃(x̃0, y) ∈ k[[T ]] has a simple root at y = β̃. By Hensel’s lemma,

shown in proposition 2.1, there is some y0 ∈ R such that ỹ0 = β̃ and f(x0, y0) = 0. Then,

π((x0, y0)) = (α̃, β̃), so π is surjective.
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We can also study the kernel of the reduction map using the theory of formal groups. Let
F ∈ R[[X,Y ]] be the power series describing its formal group law as in section 3.5. Given
z ∈ m, lemma 2.1 implies that there is a unique w = w(z) ∈ m such that (z, w) ∈ E(K),
provided that the change of coordinates described in section 3.5 has been made. If F(m) is
the group associated to (F , F ), then the map:

F(m)→ E1(K)

is a group isomorphism, since formal development of power series expansion can be done
explicitly in this case because convergences are guaranteed. Thus next proposition comes from
the general theory of formal groups.

Theory of formal groups enable us to compute some torsion points belonging to the kernel of
the reduction map.

Proposition 9.4. Let m ∈ N which is not a power of p = char(k). Then the subgroup E1(K)
has no non-trivial points of order m.

Proof. It comes from proposition 3.2.

Proposition 9.5. Let E/K be an elliptic curve and let m ∈ N be prime to char(k). Assume
further that the reduced curve is not singular. Then the reduction map

π : E(K)[m]→ Ẽ(k)

is injective, where E(K)[m] denotes the subgroup of m-torsion points of E(K).

Proof. The kernel of this map has to be contained in E1(K). Since E1(K) contains no torsion
points of order m by proposition 9.4, the kernel has to be trivial.

Up to know, we have studied torsion elements whose orders are prime to p = char(k). For the
general case, there are more difficulties but we have the following theorem.

Theorem 9.1. Let K be a complete field respect to a discrete valuation v and let R be its
ring of integers. Let E/K be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with all ai ∈ R. Let P ∈ E(K) be a point of exact order m ≥ 2.

• If m is not a power of p, then x(P ), y(P ) ∈ R.

• If m = pn and r =

⌊
v(p)

pn − pn−1

⌋
, then

π2rx(P ), π3ry(P ) ∈ R

where π is a uniformizer in K.

Proof. If (x′, y′) are coordinates of a minimal Weierstrass equation, proposition 9.2 implies
that

v (x(P )) ≥ v (x′(P )) , v (y(P )) ≥ v (y′(P ))

Therefore, we can assume the given Weierstrass equation is minimal. If x(P ) ∈ R, there is
nothing to prove, so we will assume that v (x(P )) < 0. By the ultrametric inequality,

3v (x(P )) = 2v (y(P )) = −6s

for some s ∈ N. Writing P =

(
x(P )

y(P )
, 1,

1

y(P )

)
= (−z(P ), 1− w(P )), we see that P ∈ E1(K).

Then, the order of P has to be a prime power by proposition 3.2.
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In that case, theorem 3.1 implies that

s = v

(
−x(P )

y(P )

)
= v (z(P )) ≤ v(p)

pn − pn−1
⇒ s ≤ r

Then, π2rx(P ) and π3ry(P ) ∈ R.

There is a slightly stronger result about the surjective of the reduction map which says that is
is still surjective when restricted to the torsion points of the curve.

Theorem 9.2. Let E be an elliptic curve defined over K. Assume E has good or multiplicative
reduction at K. Then the reduced map restricted to the torsion subgroup

π : E[m]→ Ẽns[m]

is surjective.

Proof. Call F := ker(π). The operation in F can be described by a formal group defined
over the ring of integers R of K and its associated group defined on the maximal ideal m of
the ring of integers of the algebraic closure K. Since Ẽns has finite p-torsion, then F has
finite height. Hence corollary 3.2 implies that F is divisible. Consider then the following
commutative diagram in which the rows are exact:

0 // F //

[m]

��

E
π //

[m]

��

Ẽns
//

[m]
��

0

0 // F // E
π // Ẽns

// 0

Since F is [m] divisible, then multiplication by m is surjective in F , so snake lemma gives an
exact sequence

0 // F [m] // E[m]
π // Ẽns[m] // 0

In particular, π remains surjective when restricted to E[m].

Corollary 9.2. The restricted map

π : Etors(K)→ Ẽ(k)

is surjective.

Proof. It comes from theorem 9.2 and the fact that Ẽ(k) is torsion.

Corollary 9.3. The restricted map

π : E[p∞]→ Ẽ[p∞]

is surjective and kerπ ∼= Qp/Zp.

9.2 The Structure of Mordell-Weil groups

The main goal of this section is to give a description of the group E(K), when now K is a
p-adic field. First we are going to see that the group E0(K) has finite index.

Theorem 9.3. Let E be an elliptic curve defined over a local field K. Then E0(K) has finite
index in E(K).
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Proof. We can assume that the elliptic curve is given by a minimal Weierstrass equation in
P2(K), so we can give E(K) ⊂ P2(K) the subspace topology, where the topology in P2(K) is
the quotient topology inherited from K3 \ {0}.

Since K is compact, then K2 is also compact by Tychonoff’s theorem. Calling ϕ the quotient
map, we find that

P2(K) := ϕ
(
(K ×K × {1}) ∪ (K × {1} ×K) ∪ ({1} ×K ×K)

)
Thus P2(K) is a compact set.

Let E(K) be given by the Weierstrass polynomial f(x : y : z) = 0. Since product and sum are
clearly continuous functions K ×K → K, then the polynomial

f : K3 → K : (x, y, z) 7→ f(x, y, z)

defines a continuous function. Hence f−1({0}) ⊂ K3 is a closed subset so

E(K) = {(x : y : z) : f(x, y, z) = 0}

is a closed in the compact space P2(K) because ϕ−1 (E(K)) = f−1({0}) was also closed and
it is the definition of quotient topology. Hence E(K) is also compact.

It can also be seen that E(K) is a topological group with the addition given by the group law.
In fact, the sum is clearly a continuous function at every point different from

(P, P ), (P,−P ), (P,O), (O,P ) ∀P ∈ E(K)

since it is defined by polynomial functions of the coordinates. To see the continuity at a point
(P,O) we just need to consider how a basis of neighbourhoods of O is. We can define them as

U (n) = {(a : 1 + b : c) : a, b, c ∈ mn} =

{(
a

1 + b
: 1 :

c

1 + b

)
: a, b, c ∈ mn

}
∪ {O} = F(mn)

If P ∈ F(m), formal group law implies that the sum is continuous at (P,O). Otherwise, choose
some Q ∈ F(m), so the sum can be computed as

(A,B) 7→ (A+Q,B −Q) 7→ (A+Q) + (B −Q) = A+B ∀A,B ∈ E(K)

Then the sum map is continuous at (P,O) for being a composition of continuous functions.

To see the continuity at (P, P ) and (P,−P ), we choose some Q ∈ E(K) \ {P,−P,O} and sum
P + R = (P +Q) + (R −Q). The fact that the inversion is also a continuous function comes
from its definition as polynomial functions in the coordinates. The extension to O is proven
similarly using the formal law.

The reduction π : E(K) → Ẽ(k) is clearly continuous provided that Ẽ(k) is endowed with
the discrete topology. In fact, the reduction map π : R3 \ m3 → k3 \ {(0, 0, 0)} is continuous
and continuity behaves well after considering the quotient map. Hence E0(K) is an open
subgroup of E(K). Since the cosets is an open cover of E(K), the compactness implies that
(E(K) : E0(K)) <∞.

Theorem 9.4. Let K be a finite extension of Qp and let n = [K : Qp]. Then E(K) contains
a subgroup of finite index that is isomorphic to Znp which is contained in E1(K).

Proof. By theorem 9.3 the factor group E(K)/E0(K) is finite. Moreover, E0(K)/E1(K) ∼=
Ẽns(k) is also finite.

Since E1(K) is isomorphic to the associated group of some formal group F(m), we just need
to see that F(m) has a group of finite index which is isomorphic to Znp . However, we know
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that the factor groups F(mi)/F(mi+1) ∼= mi/mi+1 are finite for every i ∈ N and that for large
enough r, theorem 3.2 guarantees that the formal logarithm map

logF : F(mr)→ Ga(mr) = πrR+ ∼= R+

is an isomorphism, where R+ is the additive group of the ring of integers R of K. Since
R+ ∼= Znp , the proof is complete.

Corollary 9.4. Let K be a finite extension of Qp. Then E1(K) is a Zp module isomorphic to

Z[K:Qp]
p × T , where T is a finite Zp-module.

Proof. First we will see that E1(K) ∼= F(m) can be endowed with a structure of Zp-module.
To define that structure, let α ∈ Zp and let (an) ⊂ Z a sequence converging to α. Then (an) is
a Cauchy sequence in the p-adic topology, which means that for every k ∈ N there exists some
N ∈ N such that ai ≡ aj mod pk for every i, j ≥ N .

Since corollary 3.4 implies that [p](T ) = pf(T )+g(T p), then [pk](y) ∈ F(mk) ∀y ∈ F(m). Now
fix some x ∈ F(m). Then

[ai](x) + F(mk) ≡ [aj ](x) + F(mk) ∀i, j ≥ N

Hence ([ai](x)) is a Cauchy sequence in F(m) and, by completeness, it will converge to some
value, which will be by definition, [α]x ∈ F(m). One could check easily that this definition
does not depend on the sequence (ai) chosen and that it satisfies the axioms of the definition
of Zp-module.

By theorem 9.4, E1(K) has a subgroup of finite index which is isomorphic to Z[K:Qp]
p . In

particular, E1(K) is a finitely generated Zp-module and has rank [K : Qp]. Then the structure
theorem of finitely generated modules over principal ideal domains states that

E1(K) ∼= Z[K:Qp]
p × T

where T is a finite torsion Zp-module.

In case E has good reduction, it is possible to extend the direct product structure to the
Mordell-Weil group.

Theorem 9.5. Let K be a finite extension of Qp and let E be an elliptic curve having good

reduction at Kv. Then E(K) ∼= Z[K:Qp]
p × T (as groups), where T is a finite group.

Proof. Since Ẽ(k) is a torsion group, we can split it into its p-primary and non p-primary
parts:

Ẽ(v) = E(k)p × Ẽ(k)∼p

Then we define E−1(K) the subgroup of E(K) consisting of points such that its reduction
belongs to E(k)p. Then for every Q ∈ E−1(K), [pn]Q ∈ E1(K) ∼= F(m) for n large enough.
Then we can define a Zp-module structure like in corollary 9.4. To do that, given α ∈ Zp we
can find some a ∈ Z and β ∈ Zp such that α = a+ pnβ. Hence we define

αQ = aQ+ β(pnQ)

which is well defined because pnQ ∈ F(m).

Since E−1(K) has a subgroup of finite index isomorphic to Z[K:Qp]
p , then structure theorem of

finitely generated modules guarantees that there is a finite group S such that

E−1(K) ∼= Z[K:Qp]
p × S
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Then consider the following short exact sequence:

0 // E−1(K) // E(K) // Ẽ(k)∼p // 0

This short exact sequence splits. In fact, Ẽ(k) is a finite abelian group, so the structure
theorem gives an isomorphism

Ẽ(k)∼p ∼= C1 × · · · × Cr

where each Ci is a finite cyclic group whose order is called ni and which are generated by some
element Qi. Notice that every ni is prime to p because the order of Ẽ(k)∼p was prime to p
too.

By theorem 9.2, there is some element Pi ∈ E[ni] such that P̃i = Qi. Suppose by contradiction
that Pi /∈ E(K). Then the orbit of Pi under the action of the Galois group would contain more

than 1 element, so the reduction map E[ni]→ Ẽ[ni] would not be injective. Since ni is prime
to p, then the reduction map would not be either surjective, because it is a map between two
finite sets having the same cardinality, which contradicts theorem 9.2.

Hence Pi ∈ E(K) and the map

Ẽ(k)→ E(K) : Qi 7→ Pi ∀i = 1, . . . , n

is a splitting map. Then

E(K) ∼= E−1(K)× Ẽ(k)∼p = Z[K:Qp]
p × S × Ẽ(k)∼p

We end up this section by showing how behaves the Mordell-Weil group when tensoring with
Qp/Zp. It may seem meaningless, but it will be useful for studying the Selmer group and
proving Mazur’s control theorem.

Theorem 9.6. Let E be an elliptic curve defined over a finite extension K of Qp. Then
E(K)⊗ (Ql/Zl) = 0, where l 6= p is a prime.

Proof. By theorem 9.4, there is a finite group T and a short exact sequence

0 // Z[K:Qp]
p

// E(K) // T // 0

Since tensoring with Ql/Zl is a right-exact functor, we have the following exact sequence

Z[K:Qp]
p ⊗Ql/Zl // E(K)⊗Ql/Zl // T ⊗Ql/Zl // 0 (9.1)

However, Z[K:Qp]
p ⊗ Ql/Zl = 0 since Zp is a l-divisible group and Ql/Zl is l-primary. In fact,

given a × b ∈ Z[K:Qp]
p ⊗ Ql/Zl, the order of b in Qp/Zp is ln for some n ∈ N. Then there is

some x ∈ Z[K:Qp]
p such that lnx = a and

a⊗ b = lnx⊗ b = x⊗ lnb = x⊗ 0 = 0

Furthermore T ⊗Ql/Zl = 0 too because T is finite and Ql/Zl is divisible. In fact, let n = |T |
and let a ∈ T and b ∈ Ql/Zl. Then there is some x ∈ Ql/Zl such that nx = b and

a⊗ b = a⊗ nx = na⊗ x = 0⊗ x = x

Hence, by the exactness property appearing on equation 9.1, E(K)⊗Ql/Zl = 0.
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Last statement can be generalised to infinite extensions of Qp.

Corollary 9.5. Let E be an elliptic curve defined over an algebraic extension K of Qp. Then
E(K)⊗ (Ql/Zl) = 0, where l 6= p is a prime.

Proof. Since
E(K) = lim−→

L

E(L)

where L runs through the finite subextensions of K|Qp. By proposition 4.4 and theorem 9.6,

E(K)⊗Ql/Zl = lim−→E(L)⊗Ql/Zl = 0

Theorem 9.7. Let E be an elliptic curve defined ver K = C or K = R. If l is a prime number,
then

E(K)⊗ (Ql/Zl) = 0

Proof. If K = R, then either E(K) ∼= R/Z or E(K) ∼= R/Z × Z/2Z, because [28], corollary

V.2.3.1. Otherwise, if K = C, then E(K) = (R/Z)
2

due to [27], proposition VI.3.6. In any
case

R/Z⊗Ql/Zl = Z/2Z⊗Ql/Zl = 0⇒ E(K)⊗Ql/Zl = 0

Theorem 9.8. Let K be a finite extension of Qp. Then E(K)⊗Qp/Zp is cofinitely generated
and has corank equal to [K : Qp].

Proof. By lemma 9.5, E(K) = Z[K:Qp]
p × T as groups, where T is a finite group. Hence

E(K)⊗ (Qp/Zp) = (Qp/Zp)[K:Qp]
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Chapter 10

Mordell-Weil Theorem

The content of this chapter shows a proof for a central theorem in the study of the arithmetic
of elliptic curves: the Mordell-Weil theorem. It states that the group E(K), where K is a
number field, is finitely generated. The proof is divided in two big steps.

We start proving, in section 10.1, the weak Mordell-Weil theorem, which says that the factor
groups E(K)/mE(K) are finite for every m ∈ N. The proof procedure we have chosen is based
on Galois cohomology. That is a really strong way to attack different related problems, since
the strength of cohomological tools and Galois theory can be applied.

That condition does not imply a priori that a group is finitely generated, although it does for
the group of rational points in an elliptic curve, as it is sketched in section 10.2. The proof
uses descent theorem, which needs to define a height function on the elliptic curve.

The computation of a Mordell-Weil group can be divided in two steps: computing the torsion
and computing the rank. Section 10.3 shows how to calculate the torsion in a process that
requires few computational time. The situation for computing the rank is much harder and,
although there is not known method to compute it in a general elliptic curve, this problem can
be addressed with the content included in chapter 11.

Throughout this chapter, let K be a number field and let MK the set of inequivalent valuations
on K. Let further M∞K be the subset of archimedean valuations and M0

K the subset of
non-archimedean ones.

For every valuation v, let Kv the completion of K at v, let Rv be the ring of integers of Kv,
let mv be its maximal ideal and let kv be its residue field.

10.1 The Weak Mordell-Weil Theorem

Our main goal in this section is to prove the weak Mordell-Weil theorem, which states that, in
an elliptic curve E defined over a number field K, the factor group E(K)/mE(K) is finite for
every m ≥ 2.

Theorem 10.1. (Weak Mordell-Weil theorem) Let K be a number field, let E/K be an elliptic
curve defined over K and let m ≥ 2 be an integer. Then

E(K)/mE(K)

is a finite abelian group.

We will expose a prove that uses cohomological techniques. As [m] is a non-constant isogeny,
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it is surjective and we can consider the following short exact sequence of GK-modules.

0 // E[m] // E
(
K
) [m]

// E
(
K
)

// 0

Since the Galois invariant points are those defined over K, the long cohomology sequence can
be written as follows.

0 E(K)[m] E(K) E(K)

H1(K,E[m]) H1(K,E) H1(K,E)

[m]

δ

[m]

Here, we are denoting by A[m] the m-torsion points of an abelian group A. From the middle
part of this sequence, we can extract a short exact sequence, commonly known as Kummer
sequence for E/K

0 // E(K)
mE(K)

// H1 (K,E[m]) // H1 (K,E) [m] // 0

The connecting homomorphism δ given by lemma 6.3 could be described as follows. Given a
point P ∈ E(K) representative of an element in the factor group E(K)/mE(K), choose an
element Q ∈ E

(
K
)

such that [m]Q = P . Then, Q induces a cocycle in the cohomology group
H1 (K,E) given by the equation σ 7→ σQ−Q. This cocycle can be considered as a cocycle in
H1(K,E[m]), which will be the image of P via the connecting homomorphism.

At this point, we can make the first reduction of the proof of the weak Mordell-Weil theorem.

Lemma 10.1. Let L|K be a finite Galois extension. Assume that E(L)/mE(L) is finite. Then
E(K)/mE(K) is also finite.

Proof. On the one hand, there is a map

E(K)/mE(K)→ E(L)/mE(L) : P +mE(K) 7→ P +mE(L)

which is clearly well defined. Being Φ its kernel, we can consider the following exact sequence:

0 // Φ // E(K)/mE(K) // E(L)/mE(L)

On the other hand, we can consider the inflation-restriction exact sequence applied to the
Galois groups

0 // H1 (L|K,E(L)[m])
Inf // H1 (K,E[m])

Res // H1 (L,E[m])

The injections given in the Kummer sequence form the following commutative diagram.

0 // Φ //

δ

))��

E(K)/mE(K) //

δ

��

E(L)/mE(L)

δ

��

0 // H1 (L|K,E(L)[m])
Inf // H1 (K,E[m])

Res // H1 (L,E[m])

In this diagram, the map δ : Φ→ H1 (K,E[m]) is obtained by restriction of the injection from
E(K)/mE(K). Since this diagram is clearly commutative, δ(Φ) ⊂ ker(Res) = Im(Inf), so the
δ homomorphism from Φ factors through H1 (L|K,E(L)[m]). Moreover, δ|Φ is also injective
because δ : E(K)/mE(K)→ H1 (K,E[m]) was.
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Then, there is an injection Φ ↪→ H1 (L|K,E[m]). Since both GL|K and E(L)[m] are finite,

there is a finite number of 1-cocycles, so H1
(
GL|K , E(L)[m]

)
is also finite. Thus, Φ is finite

too.

Then, (E(K)/mE(K)) /Φ is isomorphic to a subgroup of E(L)/mE(L), so it has to be finite.
Since Φ was finite, then E(K)/mE(K) is also finite.

In the weak Mordell-Weil theorem, we can consider the field

L = K (E[m])

formed by the composition of fields of the coordinates of the points T ∈ E[m] over K. Since
E[m] is finite, then L|K is finite too. Moreover, L|K is Galois since GK maps E[m] to itself.
Then, if we prove the weak Mordell-Weil theorem for L, it will be also true for K, so we can
assume that E[m] ⊂ E(K).

Under that assumption, GK acts trivially on E[m], so H1 (K,E[m]) = Hom (GK , E[m]). Hence
there is an injection:

E(K)/mE(K) ↪→ Hom(GK , E[m]) : P 7→ σQ−Q

where Q is some arbitrary element of E
(
K
)

such that [m]Q = P . This injection could be seen
as a bilinear mapping, called Kummer pairing.

κ : E(K)/mE(K)×GK → E[m] : (P, σ) 7→ σQ−Q

Lemma 10.2. When considering the Kummer pairing as an homomorphism

ψ : GK → Hom

(
E(K)

mE(K)
, E[m]

)
,

its kernel is GL, where L = K([m]−1E(K)) is the composition of all fields K(Q), the minimum
field that contains K and the point Q is defined over K(Q), as Q ranges over the points in
E
(
K
)

satisfying that [m]Q ∈ E(K).

Proof. Given σ ∈ GL, then κ(P+mE(K), σ) = σQ−Q, where Q is a point such that [m]Q = P .
Since Q ∈ E(L) by definition, then σQ = Q, so ψ(σ) maps every point P ∈ E(K) to O.

Conversely, if σ ∈ GK satisfies that κ(P + mE(K), σ) = O ∀P ∈ E(K), then every point
Q ∈ [m]−1E(K) satisfies that σQ = Q. Since L is the composition of K(Q) over all Q ∈
[m]−1E(K), then σ fixes L, so σ ∈ GL.

Going backwards through this process, we can substitute GK by GL|K in the Kummer pairing.
Therefore, the injection stated above can be written as

E(K)/mE(K) ↪→ Hom(GL|K , E[m]) : (P, σ) 7→ σQ−Q (10.1)

Corollary 10.1. Let L = K([m]−1E(K)). Then L|K is an abelian extension of exponent
dividing m.

Proof. L|K is a Galois extension since GK maps [m]−1E(K) to itself, because the Galois
group fixes E(K) and commutes with the group operation defined on the elliptic curve. Since
GL|K = GK/GL, lemma 10.2 gives an injection

GL|K ↪→ Hom(E(K)/mE(K), E[m])

Then, GL|K is isomorphic to a subgroup of Hom(E(K)/mE(K), E[m]). The latter is abelian
and has exponent dividing m because these properties are inherited from E[m]. Therefore,
GL|K is abelian and has exponent dividing m.
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Proposition 10.1. Let L = K
(
[m]−1E(K)

)
and let

S = {v ∈M0
K : E has a bad reduction at v} ∪ {v ∈M0

K : v(m) 6= 0} ∪M∞K

Then L|K is unramified outside S, i.e., it is unramified for every valuation v ∈MK such that
v /∈ S.

Proof. Let v ∈MK \ S, let Q ∈ E
(
K
)

be such that [m]Q ∈ E(K) and let K ′ = K(Q). Let v′

be a place of K ′ that extends v. Since E has good reduction at v, reduction at v′ is the same as
reduction at v and kv ⊂ k′v′ , non-singularity of Ẽ(kv) implies non-singularity of Ẽ(k′v′). Hence
E0(K ′) = E(K ′).

Let Iv′|v ⊂ GK′|K be the inertia group, i.e., the subgroup of Galois automorphisms that acts
trivially on k′v′ . For every σ ∈ Iv′|v, corollary 9.1 implies that

˜σQ−Q = σ̃Q− Q̃ = Õ

However, the fact that [m]Q ∈ E(K) implies that

[m](σQ−Q) = σ([m]Q)− [m]Q = O

Hence σQ − Q is an m-torsion point which is in the kernel of the reduction map modulo v′.
Since v 6∈ S, then v(m) = 0, so m is prime to char(kv) = char(k′v′) and proposition 9.5 implies
that σQ = Q.

Thus Iv′|v fixes K(Q), so K(Q)|K is unramified at v. Since L is the composition of every
K(Q), as Q varies over [m]−1E(K), then L is unramified at v by [21], corollary II.7.3.

Remark 10.1. In last proposition, the set of valuations S ⊂ MK is finite because, given
a Weierstrass equation, E has good reduction at every valuation v such that v(∆) = 0 and
v(ai) ≥ 0 ∀i = 1, 2, 3, 4, 6.

Proposition 10.2. Let K be a number field, let S ⊂ MK be a finite set of valuations that
contains M∞K and let m ≥ 2 be an integer. Let L|K be the maximal abelian extension of K
having exponent dividing m and unramified outside S. Then L|K is a finite extension.

Proof. First, if the proposition is true for some finite extension K ′ of K, it has to be also true
for K. In fact, the set S′ of valuations lying above S is finite too and LK ′|K ′ is an abelian
extension of exponent dividing m, because GLK′|K′ is isomorphic by restriction to a subgroup
of GL|K , and it is unramified outside S′ ([21], proposition II.7.2.). Then, LK ′|K ′ would be
finite, so L|K would be finite too. Thus we can assume without loss of generality that K
contains the primitive mth roots of unity µm.

Let L|K be an extension satisfying all the hypothesis of the proposition and let R be the ring
of integers of K. Let also a1, . . . , ah be representatives of the class group of K and v1, . . . , vh
be their associated valuations. Define S̃ := S ∪ {v1, . . . , vh} and the ring of S̃-integers

RS̃ =
{
a ∈ K : v(a) ≥ 0 ∀v ∈MK \ S̃

}
Since R = {a ∈ K : v(a) ≥ 0 ∀v ∈MK} ([5], Theorem 10.3.1.) and there is a bijection between
M0
K and Spec(R), considering RS̃ is the same as localising in the multiplicative set

Q =
⋂

p∈Spec(R)\S̃

pc

where, in an abuse of notation, we are identifying the valuations in S̃ with their associate prime
ideals. In both RS̃ and in Q−1R, we are allowing denominators not belonging to any prime
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ideal in Spec(R) \ S̃, i.e., elements which generate an ideal whose prime factorisation contains

only elements of S̃.

RS̃ is a principal ideal domain because, given an ideal b of RS̃ , then b∩R is an ideal in R. Then,
there is a representative of the class group ai and some element c ∈ K such that b∩R = c · ai.
Since every ideal in a localization is an extended ideal, b = (b ∩ R)RS̃ = caiRS̃ = cRS̃ since
the extended ideal of ai is RS̃ because of proposition 2.11.

By corollary 5.1, L is the maximal subextension of K( m
√
a : a ∈ K) unramified outside S̃.

Given some a ∈ K, if K( m
√
a)|K is unramified outside S̃, then for every v ∈MK \ S̃ and every

ṽ ∈MK( m
√
a) lying above v, we get

ṽ( m
√
a) ∈ Z⇒ v(a) ∈ mZ

When adjoining mth roots to construct the maximal m-Kummer extension, we just need to
consider one representative of each class of K∗/(K∗)m, so we define the set

TS̃ =
{
a ∈ K∗/(K∗)m : v(a) ∈ mZ ∀v ∈MK \ S̃

}
1

Then, it is clear that
L ⊂ K

(
m
√
a : a ∈ TS

)
so L|K would be finite provided that TS is also finite.

Now consider the map

ψ : R∗
S̃
/
(
R∗
S̃

)m
→ TS̃ : a

(
R∗
S̃

)m
7→ a (K∗)

m

which is clearly well defined since v(a) = 0 ∀a ∈ Rm
S̃
∀v ∈MK \S. Furthermore, it is surjective.

In fact, given a ∈ K∗, since RS̃ is a principal ideal domain, there is some b ∈ K such that

aRS̃ =

 ∏
p∈MK\S̃

pvp(a)/m

m

= (bRS̃)m = bmRS̃

Hence there is some u ∈ R∗
S̃

such that a = ubm, so ψ(u) = a (K∗)
m

.

By corollary 2.7, RS̃ is a finitely generated group, so R∗
S̃
/
(
R∗
S̃

)m
is finite. Since ψ is surjective,

TS̃ is finite too. By what was commented above, L|K is a finite extension.

We can now complete the proof of theorem 10.1. Let L = K
(
[m]−1E(K)

)
. By corollary 10.1

and proposition 10.1, L|K in an abelian extension of exponent dividing m which is unramified
outside a certain finite set of valuations S, that contains M∞K , so it has to be contained in the
maximal abelian extension of K having exponent dividing m and unramified outside S, which
is finite by 10.2. Then, L|K has to be finite too.

Since E[m] is finite, then Hom(GL|K , E[m]) is a finite group too. Then, injection given in
equation 10.1 implies that E(K)/mE(K) is also finite.

10.2 The Mordell-Weil Theorem

This section is dedicated to sketch a proof for the Mordell-Weil theorem.

Theorem 10.2. (Mordell-Weil) Let E be an elliptic curve defined over a number field K.
Then the group E(K) is finitely generated.

1Note that the condition does not depend on the representative chosen because v(a) ∈ mZ ∀a ∈ (K∗)m, ∀v ∈
MK .
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The weak Mordell-Weil theorem states that the quotients E(K)/mE(K) are finite. However,
this condition is not enough to guarantee that an abelian group is finitely generated, being the
additive group of Q a counter-example. To conclude that for the Mordell-Weil group, we need
to use the theory of height functions.

Theorem 10.3. Let A be an abelian group. Suppose that there exists a height function

h : A→ R

with the following properties:

1. For every Q ∈ A, there is a constant CQ such that

h(P +Q) ≤ 2h(P ) + CQ ∀P ∈ A

2. There are an integer m ≥ 2 and a constant Cm such that

h(mP ) ≥ m2h(P )− Cm

3. For every constant D, the set

{P ∈ A : h(P ) ≤ D}

is finite.

If further the factor group A/mA is finite, then A/mA is finitely generated.

Proof. Let R = {Q1, . . . , Qr} be a system of representatives of A/mA and let P ∈ A be an
arbitrary element. Define inductively P0 := P and Si+1 be the representative of Pi + mA in
R. Hence we can define Pi+1 as a solution of the equation

Pi = mPi+1 + Si+1

For each i ∈ N we have that

h(Pi) ≤
1

m2
(h(mPi−1) + Cm) =

1

m2
(h(Pi−1 − Si+1) + Cm) ≤ 1

m2
(2h(Pi−1) + C + Cm)

where C := max{C−Q1
, . . . , C−Qr}. Using this inequality repeatedly,

h(Pn) ≤
(

2

m2

)n
h(P ) +

(
1

m2
+

2

m4
+ · · · 2

n−1

m2n

)
(C + Cm) <(

2

m2

)n
h(P ) +

C + Cm
m2 − 2

≤ 1

2n
h(P ) +

1

2
(C + Cm)

If n is large enough, then h(Pn) ≤ 1 + 1
2 (C + Cm). Since

P = mnPn +

n−1∑
j=0

mjSj+1

and P was an arbitrary point, then A is generated by the finite set

R∪
{
Q ∈ A : h(Q) ≤ 1 +

1

2
(C + Cm)

}

In order to define a height function on the Mordell-Weil group E(K), we start by defining it
in the projective space Pn(K).
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Definition 10.1. Let K be a number field and let P = (x0 : · · ·xn) ∈∈ PnK. Then the height
of P relative to K is

HK(P ) :=
∏

v∈MK

max{|x0|v, . . . , |xn|v}

where MK is the set of inequivalent normalised valuations in K.

Proposition 10.3. Let P ∈ PnK. The height HK(P ) does not depend on the choice of the
homogeneous coordinates for P .

Proof. By [21], proposition III.1.3, we have the following identity∏
v∈MK

|λ|v = 1

Hence,∏
v∈MK

max{|λx0|v, . . . , |λxn|v} =
∏

v∈MK

|λ|vmax{|x0|v, . . . , |xn|v} =
∏

v∈MK

max{|x0|v, . . . , |xn|v}

Proposition 10.4. Let K be a number field and let L|K be a finite extension. Then for every
P ∈ PnK, we have

HL(P ) = HK(P )[L:K]

Proof. From [21], proposition II.8.4, we have that

[L : K] =
∑

w∈ML,w|v

[Lw : Kv]

Hence

HL(P ) =
∏

w∈ML

max{|x0|w, . . . , |xn|w} =
∏

v∈MK

∏
w∈ML,w|v

max{|x0|w, . . . , |xn|w} =

∏
v∈MK

max{|x0|v, . . . , |xn|v}[L:K] = HK(P )[L:K]

Last proposition gives us the possibility of extending the definition of our height function to
the algebraic closure Q.

Definition 10.2. Let P ∈ Pn
(
Q
)
. The absolute height of P is

H(P ) = HK(P )
1

[K:Q]

where we take the positive root and where K is any number field over which P is defined.

Definition 10.3. Let E/K be an elliptic curve and let f ∈ K(E) be a rational function. The
height of E relative to f is the function

hf : E
(
K
)
→ R : P 7→ log(H(f(P )))

The fact that hf satisfies the hypothesis of theorem 10.3 when f ∈ K(E) is an even rational
function, i.e., f ◦ [−1] = f , is proven in [27], theorem VIII. 6.7. Hence the rational function
f(P ) = x(P ) can be used to proof Mordell-Weil theorem 10.2.
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Remark 10.2. It is also important to analyse whether the Mordell-Weil theorem is effective.
The main difficulty would be finding the generators of E(K)/mE(K), which will be commented
in next chapter.

Once we know them, the constants and the finite set of theorem 10.3 are effectively computable.
Assuming we can now a system of generators of E(K)/mE(K), the proof of theorem 10.3
provides a method for computing the generators of the Mordell-Weil group. Unfortunately, up
to now there is any known general method for computing E(K)/mE(K), although it can be
done in some particular cases.

10.3 The Torsion Subgroup

Given an elliptic curve E/K, the torsion subgroup E(K)tors is easyly computable. First,
theorem 9.1 can be restated as follows.

Theorem 10.4. Let E be an elliptic curve defined over a number field K whose Weierstrass
equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 are in the ring of integers R of K. Let P ∈ E(K) be a torsion point of
exact order m ≥ 2.

1. If m is not a prime power, then x(P ), y(P ) ∈ R.

2. If m = pn is a prime power, then for each v ∈M0
K , defining

rv :=

⌊
v(P )

pn − pn−1

⌋
Then,

v(x(P )) ≥ −2rv, v(y(P )) ≥ −3rv

This theorem has a corollary, which was proven independently by Lutz and Nagell, which
reduces the calculation of the torsion of an elliptic curve over Q to a finite amount of computations.

Corollary 10.2. Let E/Q be an elliptic curve with Weierstrass equation

y2 = x3 +Ax+B

where A,B ∈ Z. If P ∈ E(Q) is a non-trivial torsion point whose order is m, then

1. x(P ), y(P ) ∈ Z.

2. Either [2]P = O or else y(P )2 divides 4A3 + 27B2.

Proof. If m = 2, then y(P ) = 0 and hence X(P ) is the root of a monic polynomial with integer
coefficients, so it is an integer. If m > 2, all the quantities rv vanish, so x(P ) and y(P ) are
integers.

For the second part, if P /∈ E[2], then x(P ), y(P ) and x([2]P ) are integers. Defining the
polynomials

φ(X) = X4 + 2AX2 − 8Bx+A2, ψ(X) = X3 +AX +B

the duplication formula computed in [27] reads

x([2]P ) =
φ(x(P ))

4ψ(x(P ))

Taking into account that y(P )2 = ψ(x(P )), a computation shown in [27], corollary VIII.7.2
implies that

y(P )2
((

12x(P )2 + 16A
)
x([2](P ))− 3x(P )3 − 5Ax(P )− 27B

)
= 4A3 + 27B2
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Remark 10.3. Corollary 10.2 reduces to a finite number of candidates to be torsion elements
of E(Q)tors. Moreover, its possible orders can also be bounded by proposition 9.5. Hence
E(Q)tors can be computed in finite time.

Moreover, there is a deeper result, whose proof is unfortunately out of the scope of this work,
which reduces the possible torsion subgroups to one of the following fifteen possibilities.

Theorem 10.5. (Mazur) Let E/Q be an elliptic curve. Then the torsion subgroup E(Q)tors

is isomorphic to one of the following fifteen groups

Z/NZ, with 1 ≤ N ≤ 10 or N = 12; Z/2NZ× Z/2Z, with 1 ≤ N ≤ 4.

Proof. See [18].

We end this section by showing two examples of the computation of the torsion subgroup
E(Q)tors.

Example 10.1. Let E/Q be the elliptic curve defined by the Weierstrass equation

y2 = x3 + x

The discriminant of this curve is ∆ = −64. It can be easily computed that

#Ẽ(F3) = 4, #Ẽ(F5) = 4, #Ẽ(F7) = 4

Let q ∈ Z be a prime number greater than 2. By proposition 9.5, there is an injection

π : E(Q)[q] ↪→ E(Fp)

where p is a prime different from 2 and q. In particular we can consider some p ∈ {3, 5, 7}, so
E(Q)[q] can be injected in a group of 4 elements. Since every non-trivial element in E(Q)[q]
has order q, then E(Q)[q] = {O} ∀q ≥ 3.

For q = 2, observe that

Ẽ(F3) = {O, (0, 0), (2, 1), (2, 2)} ∼= Z/4Z

Ẽ(F5) = {O, (0, 0), (2, 0), (2, 0)} ∼= (Z/2Z)2

Then for every n ∈ N, there is are injections

E(Q)[2n] ↪→ Ẽ(F3) ∼= Z/4Z, E(Q)[2n] ↪→ Ẽ(F5) ∼= (Z/2Z)2

Then, it has to be an injection E(Q)[2n] ↪→ Z/2Z.

Hence it can be only one non-trivial torsion element, which is (0, 0). Thus

E(Q)tors = {O, (0, 0)}

Example 10.2. (Mordell Curves) Let E be the elliptic curve over Q defined by the Weierstrass
equation

y2 = x3 +D

where D ∈ Z. We can assume without loss of generality that D is sixth power free since
otherwise we could make a change of coordinates in order to reduce the problem to that case.

Consider a prime number p ∈ N such that p ≡ 2 mod 3 and such that E has a good reduction
when considered as a curve defined over Qp. It is possible to find that prime because, given a
Weierstrass equation with integer coefficients, ∆ /∈ pZ for every prime but a finite amount of
them and E/Qp has good reduction for any of those primes at which p 6 |∆.
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The reduced curve Ẽ(Fp) has p + 1 points. In fact, since #(F∗p) /∈ 3Z, the homomorphism
x 7→ x3 is injective in the group of units, so it has to be an isomorphism. It can be extended
to 0 7→ 0 and thus the map

Fp → Fp : x 7→ x3 +D

is a bijection. Then given some y ∈ Fp there is a unique x ∈ Fp such that y2 = x3 + D.

Counting the point at infinity, Ẽ(Fp) has exactly p+ 1 points.

Let q ≥ 5 be another prime number. Since E has a good reduction at almost every prime
number, it is posible to find, because of Dirichlet’s theorem, a prime number p ∈ 3Z + 2 such
that E has a good reduction at p and that q 6 |p+ 1. By proposition 9.5, there is an injection

E(Q)[q]→ Ẽ(Fp)

In case that E(Q)[q] is not the trivial group, it has by Lagrange’s theorem an order which is
a multiple of q, so it cannot be injected in a group of p− 1 elements. Hence E(Q)[q] = {O}.

For q = 3 we can find a prime number p such that E has good reduction at p and that p ≡ 2
mod 9. If we consider the injection E(Q)[3] ↪→ E(Fp) and the fact that the latter has p + 1
elements, we see that E(Q)[3] has order at most 3. For q = 2, we can deduce that E(Q)[2] has
order 1 or 2 by looking for a prime p ≡ 5 mod 12 at which E has good reduction.

Hence E(Q)tors is an abelian group of at most 6 elements, so it is isomorphic to one of the
following.

E(Q)tors = {O}, E(Q)tors
∼= Z/2Z, E(Q)tors

∼= Z/3Z, E(Q)tors
∼= Z/6Z

For each value of D we want to see to which group is isomorphic E(Q)tors. For that purpose
we just need to see whether E has torsion points of order 2 and 3.

E has 2-torsion if and only if the equation 0 = x3 +D has a solution in Q and this is equivalent
to D being a cube. The fact that E(Q) has a non-trivial 3-torsion group is equivalent to
the existence of some P ∈ E(Q) such that its tangent line intersects the curve at P with
multiplicity 3. This happens if and only if one of the following identities is satisfied.

x(P ) = 0, 3x(P )3 = 4y(P )2

The first happens if and only if D is a square and the latter is equivalent to the following
equations have rational solutions.

x3(P ) = 4D, y2(P ) = −3D

This happens if and only if D = −432n6, where n ∈ Z. In conclusion

E(Q)tors
∼=



Z/6Z, if D = 1

Z/3Z, if D 6= 1 is a square.

Z/3Z, if D = −432.

Z/2Z, if D 6= 1 is a cube.

{O}, otherwise.



Chapter 11

Mazur’s Control Theorem

In chapter 10, we have proved that the group E(K) is finitely generated and we have showed
a method for computing the torsion. Moreover, there were another method for computing the
rank of this group assuming we knew a system of generators of the group E(K)/mE(K). A
method for finding this generators is based on the Selmer groups defined in 11.1. However,
the reader should be warned that it is difficult to compute this method in particular cases.
This section also generalises the weak Mordell-Weil theorem to prove that the cokernel of an
arbitrary isogeny defined over K in the group of rational points is finite.

In section 11.2, we give another definition of the Selmer group which also bounds the rank of
Mordell-Weil group. Moreover, it is conjectured that this bound is exactly the rank. The study
of this object will be the content of Mazur’s Control theorem, in section 11.4. This result has
interesting consequences, which are exposed in section 11.5. Among them, we highlight the
control of the growth of the rank of the Mordell-Weil group in a Zp-extension.

11.1 Selmer Groups for Isogenies

In this section we are going to introduce the Selmer group for an isogeny between elliptic
curves and the Tate-Shafarevich group. These concepts will generalise the weak Mordell-Weil
theorem to arbitrary isogenies. It is important to notice we are going to define this objects in
an abstract way, although we will be interested mainly in the case when K is a number field.
The reason why we do that is because this objects will sometimes appear when studying the
rational points defined over an infinite algebraic extension of Q.

Throughout this section, let K be a perfect field. Let also E and E′ be two elliptic curves
defined over K and let φ : E → E′ be a non-zero isogeny defined over K. Since φ is surjective
when considering the curves in the algebraic closure K, we can consider the following short
exact sequence of GK-modules:

0 // E[φ] // E // E′ // 0

where E[φ] denotes the kernel of the isogeny φ.

It induces a long cohomological exact sequence:

0 E(K)[φ] E(K) E′(K)

H1(K,E[φ]) H1(K,E) H1(K,E′)

φ

δ

φ

135
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From this long exact sequence, we can obtain a short exact sequence, which is analogue to the
Kummer sequence appearing in the proof of the weak Mordell-Weil theorem:

0 // E′(K)/φ(E(K))
δ // H1(K,E[φ]) // H1(K,E)[φ] // 0

where H1(K,E)[φ] denotes the kernel of the map induced by the isogeny φ in the cohomology
groups.

Let v be a valuation in K. Then the Kummer sequences for K and Kv can be adjoined in the
following commutative diagram:

0 // E′(K)/φ(E(K))
δ //

��

H1(K,E[φ]) //

��

H1(K,E)[φ] //

��

0

0 // E′(Kv)/φ(E(Kv))
δ // H1(Kv, E[φ]) // H1(Kv, E)[φ] // 0

In this diagram, the first vertical arrow is induced by inclusion E′(K) ⊂ E′(Kv), which factors
through the quotient groups since φ(E(K)) ⊂ φ(E(Kv)), and the other two vertical arrows are
defined as cohomological restrictions by identifying GKv as a fixed decomposition subgroup of
GK , because of corollary 5.3.

In order to show that this diagram is commutative, it is worthy to see how the Kummer map
δ is defined. Let P ∈ E′(K). Since φ is surjective, there is some Q ∈ E such that φ(Q) = P .
Then the 1-coboundary

ψ : GK → E : σ 7→ σQ−Q

takes only values in E[φ]. In fact, since φ is defined over K,

φ(σQ−Q) = φ(σQ)− φ(Q) = σ(φ(Q))− φ(Q) = σP − P = O

As a cochain in C1(K,E), ψ is not a coboundary anymore, since Q does not necessarily belongs
to E[φ], but it is still a cocycle, so it represents an element in H1(K,E). Hence tracing through
the definitions the commutativity of the previous diagram is clear.

In the last row we can consider different valuations and we can also consider the direct product
of some of them, since the exactness and the commutative property of the diagram remain true.
In particular, we will consider the direct product over all the set of inequivalent valuations in
K, which will be denoted by MK . In that case, the commutative diagram can be written as
follows:

0 // E′(K)/φ(E(K))
δ //

��

H1(K,E[φ]) //

��

H1(K,E)[φ] //

��

0

0 //
∏

v∈MK

E′(Kv)/φ(E(Kv))
δ //

∏
v∈MK

H1(Kv, E[φ]) //
∏

v∈MK

H1(Kv, E)[φ] // 0

(11.1)

Now we can define the Selmer group for the isogeny φ and the Tate-Shafarevich group.

Definition 11.1. Let E/K and E′/K be two elliptic curves and let φ : E → E′ be a non-zero
isogeny defined over K. The φ-Selmer group of E/K is the kernel of the following diagonal
map appearing in the diagram in equation 11.1:

Sφ(E/K) := ker

{
H1(K,E[φ])→

∏
v∈Mk

H1(Kv, E)[φ]

}
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Definition 11.2. Given an elliptic curve E/K, the Tate-Shafarevich group is defined as

XE(K) := ker

{
Res : H1(K,E)→

∏
v∈MK

H1(Kv, E)

}

Remark 11.1. The definition of Selmer and Tate-Shafarevich groups are independent of
the inclusion K ↪→ Kv chosen, since a different one will give a conjugate subgroup GKv =
(GK)v ⊂ GK . However, proposition 6.5 states that conjugation induces the identity map in
the cohomology groups, so the kernels SelE(K) and XE(K) are independent of the chosen
valuation.

Selmer and Tate-Shafarevich groups can be encapsulated in a short exact sequence with the
cokernel of φ : E(K)→ E′(K).

Theorem 11.1. Let E/K and E′/K be two elliptic curves and let φ : E → E′ be an isogeny
defined over a number field K. Then there is an exact sequence

0 // E′(K)/φ(E(K))
δ // Sφ(E/K)

i //XE(K)[φ] // 0

where XE(K)[φ] denotes the elements of the Tate-Shafarevich group which belong to the
kernel of the induced map φ : H1(K,E)→ H1(K,E′).

Proof. It is clear from the commutativity of the diagram in equation 11.3 that this maps are
well defined, and the first one is clearly injective, so the sequence is exact at E′(K)/φ(E(K)).

It is also clear that i ◦ δ = 0 because the maps in the original diagram satisfied that relation.
Furthermore, ker(i) ⊂ Im(δ) because the first row in the previous diagram was exact, so this
sequence is also exact at Sφ(E/K).

Finally, given some y ∈ XE(K)[φ], the exactness of the original diagram implies that there
is some x ∈ H1(K,E[φ]) which can be identified with y as a cocycle in H1(K,E). However,
commutativity property of the diagram and the definition of Tate-Shafarevich group imply
that x is in the kernel of the diagonal map, so x ∈ Sφ(E/K). Hence, i is surjective and this
sequence is also exact at XE(K)[φ].

There is an analogue result to the weak Mordell-Weil theorem which states the finiteness of
the Selmer group providing K is a number field. The procedure of the proof will be the same,
since we will first proof that the elements of a cohomology group which are unramified outside
certain set of valuations is finite and then will proof that the Selmer group is contained in that
unramified part of the cohomology group.

Lemma 11.1. Let K be a number field, let M be a finite abelian GK-module and let S ⊂MK

be a finite set of places containing M∞K . Then

H1(K,M ;S) :=
{
ξ ∈ H1(K,M) : ξ is unramified outside S

}
is finite.

Proof. Since the action of GK in M is continuous, for every m ∈M there is an open subgroup
that fixes M . Since M is finite, the intersection of all of these stabilizers is also an open
subgroup, which is identified by infinite Galois theory with the absolute Galois group GL of
a finite extension L|K. Now inflation-restriction sequence appearing in theorem 6.1 gives an
exact sequence as follows:

0 // H1(L|K,M)
Inf // H1(K,M)

Res // H1(L,M)
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Since GL|K and M are both finite and 1-cocycles of L|K with values in M can be identified
with functions GL|K →M satisfying certain condition, then H1(L,K) is finite.

It is clear that restriction map sends cocycles unramified at certain valuation to cocycles
unramified at every valuation dividing v. Hence

Res
(
H1(K,M ;S)

)
⊂ H1

(
L,M ; S̃

)
where S̃ is the finite set of valuations in L lying over a valuation in S. Since the action of GL
on M is trivial,

H1(L,M ;S) = Hom(GL,M ;S)

Let m be the exponent of M and let F be the maximal abelian extension of L having exponent
dividing m and unramified outside S, which is finite by proposition 10.2. Calling π : GL →
GF |L to the canonical projection, there is a natural map

ψ : Hom(GF |L,M ;S) ↪→ Hom(GL,M ;S), φ 7→ φ ◦ π

Moreover, ψ is also surjective because every homomorphism from GL to M has to vanish
in the conmutator of GL, since M is abelian, and has to factor through a quotient of GL
having exponent dividing m. Taking that into account and noticing we are only considering
homomorphisms vanishing on the invertia groups Iv for every valuation outside S, then factors
through GF |L. Hence ψ is an isomorphism and, since F |L is finite, the proof is complete.

Theorem 11.2. Let K be a number field and let E/K and E′/K be two elliptic curves and
let φ : E → E′ be an isogeny defined over a number field K. The Selmer group Sφ(E/K) is
finite.

Proof. Let ξ ∈ Sφ(E/K) and let v ∈ MK be a finite place of K such that v(deg(φ)) = 0 and
such that E/K has good reduction at v. We are going to see that ξ is unramified at v.

Let Iv ⊂ Gv be the inertia group of some extension of v to the algebraic closure. By definition,
ξ is a coboundary when restricted to a cocycle in H1(Kv, E), so there is a point P ∈ E

(
Kv

)
such that

ξσ = σP − P ∀σ ∈ Gv

Notice that σP −P has to be contained in E[φ] because ξ represents a cocycle in H1(K,E[φ]).

However, Iv acts trivially on the reduced curve Ẽv, so

˜σP − P = σP̃ − P̃ = Õ ∀σ ∈ Iv

Then σP − P is in the kernel of the reduction map. However, it is also contained in E[φ]

and the equation [m] = φ̂ ◦ φ implies that E[φ] ⊂ E[m]. Then ξσ ∈ E[m], but we know from

proposition 9.5 that E(K)[m] injects into Ẽv, so

ξσ = σP − P = O ∀σ ∈ Iv

Hence Sφ(E/K) is unramified outside a finite set of places S, consisting of the archimedean
ones, those at which E/K has bad reduction and those such that v(deg φ) 6= 0. The finiteness
of the Selmer group comes thus from lemma 11.1.

Last theorem implies that the weak Mordell-Weil theorem can be applied to arbitrary isogenies.
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Corollary 11.1. Let K be a number field, let E/K and E′/K be two elliptic curves and let
φ : E → E′ be an isogeny defined over K. Then the factor group

E′(K)/φ(E(K))

is finite.

Proof. By theorem 11.1, E′(K)/φ(E(K)) injects into SelE(K), which is finite by theorem
11.2.

Remark 11.2. Corollary 11.1 applied to the isogeny [m] proves the weak Mordell-Weil theorem.

11.2 The Selmer Group

In last section, we have introduced Selmer and Tate-Shafarevich groups. While Tate-Shafarevich
group did not depend on the isogeny φ chosen for doing that construction, Selmer group did.
In this section, we want to construct a Selmer group whose definition depends only on the
elliptic curve E and the number field K over which it is defined. As we will see later, it is not
a new object but it is a way of grouping the Selmer groups defined in the previous section for
the isogenies [m], when m runs through the natural numbers.

For that purpose, given an elliptic curve defined over a perfect field K, we can generalise
the Kummer sequence used to prove the weak Mordell-Weil theorem in the following sense.
Consider the Kummer homomorphism

κ : E(K)⊗Q/Z→ H1
(
K,E

(
K
)

tors

)
defined as follows. Given P ⊗ m

n ∈ E(K)⊗Q/Z, where m,n ∈ Z, we choose some Q ∈ E
(
K
)

such that [n]Q = [m]P , which exists because the isogeny [n] is surjective when defined over
E
(
K
)
. Then we define

κ
(
P ⊗ m

n

)
(σ) := σQ−Q ∀σ ∈ GK|K

It is well defined since it does not depend on the chosen Q. In fact, if we had chosen a different
point Q′, then Q − Q′ would be a torsion point and the result would differ in a coboundary.
It does not depend either on the representative of the equivalence class in Q/Z chosen, since
in case we take an integer the chosen Q would be defined over K and it will induce the null
cocycle. Moreover, the images are cocycles since

κ
(
P ⊗ m

n

)
(στ) = στQ−Q = στQ− σQ+ σQ−Q =

σ(τQ−Q) + (σQ−Q) = σ
(
κ
(
P ⊗ m

n

)
(τ)
)

+ κ
(
P ⊗ m

n

)
(σ)

so Kummer map is well defined.

Proposition 11.1. Given an elliptic curve defined over a perfect field K, the following
sequence, which is called Kummer sequence is exact.

0 // E(K)⊗Q/Z κ // H1
(
K,E(K)tors

) λ //// H1
(
K,E(K)

)
// 0

Proof. Let x ∈ kerκ. It is easy to see that x = P ⊗ m
n for some P ∈ E(K) and m,n ∈ Z. Let

Q ∈ E(K) satisfying that [n]Q = [m]P , so

κ
(
P ⊗ m

n

)
(σ) = σQ−Q ∀σ ∈ GK|K
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is a coboundary, so there is some R ∈ E(K)tors such that

σR−R = σQ−Q ∀σ ∈ GK ⇒ σ(Q−R) = Q−R ∀σ ∈ GK ⇒ Q−R ∈ E(K)

Let l ∈ N be the order of R. Then [lm]P = [ln]Q = [ln](Q−R) ∈ E(K). Since Q−R ∈ E(K),

x = P ⊗ m

n
= P ⊗ lm

ln
= [lm]P ⊗ 1

ln
= [ln](Q−R)⊗ 1

ln
= (Q−R)⊗ 1 = 0

Then κ is injective, so the sequence is exact at E(K)⊗Q/Z.

By construction, λ ◦κ = 0, since the result of the composition is the coboundary σ 7→ σQ−Q.
Conversely, if ϕ ∈ kerλ, then there is some Q ∈ E(K) such that

ϕ(σ) = σQ−Q ∀σ ∈ GK

Since this cocycle takes values on E
(
K
)
tors

then for every σ ∈ GK there is some nσ ∈ N such
that

nσ(σQ−Q) = O ⇒ σ([nσ]Q) = [nσ]Q (11.2)

Hence for every n ∈ N we can define the subgroup

Gn := {σ ∈ GK : σ([n]Q) = [n]Q}

It is easy to see that Gn is the subgroup of Galois automorphisms that fix K([n]Q) and, since
K([n]Q)|K is finite, then Gn is an open subgroup. By equation 11.2, {Gn : n ∈ N} is an open
cover of the compact space GK , so it has to admit a finite subcover {Gn1 , . . . , Gns}. Define
N := lcm(n1, . . . , ns). Then Gni ⊂ GN ∀i = 1, . . . , s, so G = GN . Then [N ]Q ∈ E(K) and
ϕ = κ

(
[N ]Q⊗ 1

N

)
∈ Im(κ). Hence the sequence is exact at H1

(
K,E

(
K
)

tors

)
.

Finally, the map λ appears in the long cohomological exact sequence given in lemma 6.4.

H1
(
K,E

(
K
)
tors

) λ // H1
(
K,E

(
K
))

// H1
(
K,E

(
K
)
/E
(
K
)

tors

)
However, E

(
K
)
/E
(
K
)

tors
is a uniquely divisible group, so it is cohomologically trivial by

corollary 6.4. Hence λ is surjective and the original sequence is also exact atH1
(
K,E

(
K
))

.

Now choose any valuation v of K and fix some inclusion K ↪→ Kv, which determines an
inclusion GKv ⊂ GK by corollary 5.3 and consider the following commutative diagram:

0 // E(K)⊗ (Q/Z)
κ //

av

��

H1
(
K,E

(
K
)

tors

) λ //

bv

��

H1
(
K,E

(
K
))

//

cv

��

0

0 // E(Kv)⊗ (Q/Z)
κv // H1

(
Kv, E

(
Kv

)
tors

) λv // H1
(
Kv, E

(
Kv

))
// 0

(11.3)

At this moment, we can define similarly the Selmer group by considering in the second exact
row the direct product of all primes of K.

Definition 11.3. Given an elliptic curve E/K, its Selmer group is defined as follows.

SelE(K) =
⋂

v∈MK

ker(cv ◦ λ) ⊂ H1
(
K,E

(
K
)

tors

)
where the intersection is taken along all the primes v of K. Looking at diagram 11.3 it is also
possible to reinterpret the Selmer group.

SelE(K) = ker

(
Res : H1

(
K,E

(
K
)

tors

)
→
∏
v

(
H1
(
Kv, E

(
Kv

)
tors

)
/Im(κv)

))
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Again, remark 11.1 applies to this definition, so the Selmer group is also well defined.

The short exact sequence exposed for the φ-Selmer group and the kernel XE(K)[φ] can be
generalised to the Selmer group, but considering in this case the whole Tate-Shafarevich group.

Theorem 11.3. Let E/K be an elliptic curve. There is a short exact sequence

0 // E(K)⊗ (Q/Z)
κ // SelE(K)

λ //XE(K) // 0

Proof. From the diagram appearing in equation 11.3, it is clear that the maps κ and λ are well
defined, that κ is injective and that Im(κ) = ker(λ). Finally, given ϕ ∈XE(K), there is some
ψ ∈ H1(K,Etors) such that λ(ψ) = φ. It is also clear from the diagram that ψ ∈ SelE(K), so
the sequence is exact.

Taking into account the identity

corankZpE(K)⊗ (Q/Z) = rankZE(K)

we see that corankZpSelE(K) is an upper bound for this rank, because of corollary 4.4. It is
conjectured that this upper bound is an equality when E is defined over a number field, which
is equivalent to the following statement.

Conjecture 11.1. Let E be an elliptic curve defined over a number field K. Then the
Tate-Shafarevich group XE(K) is finite.

The Selmer group can be expressed in terms of the Selmer groups of the isogenies [n].

Proposition 11.2. Let E be an elliptic curve defined over a number field K. Then the
following identity is satisfied:

SelE(K) = lim−→
n

Sn(E/K)

Proof. It is clear by proposition 6.4 that

H1(K,Etors) = H1

(
K, lim−→

n

E[n]

)
= lim−→

n

H1(K,E[n])

where the transition maps are induced by the inclusions E[n] ⊂ E[m] whenever n|m. Since
these transition maps commute with restrictions, they induce maps between the Selmer groups

Sn(E/K)→ Sm(E/K)

Hence it is not difficult to see that

SelE(K) = lim−→
n

Sn(E/K)

Another important property of Selmer groups is that, given a field extension L|K, the restriction
map sends the Selmer group SelE(K) to SelE(L). Showing that this map has finite kernel and
cokernel in case L|K is a Zp-extension will be the content of Mazur’s control theorem

Proposition 11.3. Let L|K be a field extension and let E be an elliptic curve defined over K.
Then the restriction Res : H1(K,Etors)→ H1(L,Etors) induces a map in the Selmer groups:

SelE(K)→ SelE(L)GL|K
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Proof. Let w be a prime of L lying over a certain prime v of K. Since the following diagram
is clearly commutative

E(Kv)⊗ (Q/Z)
κv //

i

��

H1(Kv, Etors)

Res

��

E(Lw)⊗ (Q/Z)
κw // H1(Lw, Etors)

Then ResKvLw(Im(κv)) ⊂ Im(κw). Now consider another commutative diagram:

H1(K,Etors)
Res //

Res

��

H1(Kv, Etors)

Res

��

H1(L,Etors)
Res // H1(Lw, Etors)

Denoting by
Sv(K) = ker

(
H1(K,Etors)→ H1(Kv, Etors)/Im(κv)

)
we see that if ϕ ∈ Sv(K) then ResKKv (ϕ) ∈ Im(κv), so(

ResLLw ◦ ResKL
)

(ϕ) =
(

ResKvLw ◦ ResKKv

)
(ϕ) ∈ Im(κw)

Therefore, ResKL (ϕ) ∈ Sw(L).

Let ψ ∈ SelE(K) =
⋂
v Sv(K). For any arbitrary prime w of L, there is a prime v of K such

that w lie over v. Then ResKL (ψ) ∈ Sw(L) for every prime w of L, so ResKL (ψ) ∈ SelE(L)
Moreover, ResKL (ψ) is invariant by the Galois group because it is in the image of the restriction
map.

Since the Selmer group is torsion by corollary 6.5, we can study its p-primary parts separately.

Proposition 11.4. The p-primary part of Hn(K,Etors) is Hn(K,E[p∞]).

Proof. It is proposition 6.9.

Since E(K)⊗ (Qp/Zp) is the p-primary part of E(K)⊗ (Q/Z) and the maps κ and κv can be
restricted to the p-primary parts, we can consider the following commutative diagram:

0 // E(K)⊗ (Qp/Zp)
κ //

av

��

H1 (K,E[p∞])

bv

��

0 // E(kv)⊗ (Qp/Zp)
κv // H1(Kv, E[p∞])

Then the p-primary part of the Selmer group is

SelE(K)p = ker

(
H1 (K,E[p∞])→

∏
v

H1 (Kv, E[p∞]) /Im(κv)

)

because κv factors through the p-primary and not p-primary direct summands.

Remark 11.3. Given a field extension K ⊂ L, the canonical map SelE(K)→ SelE(L) induces
a natural map between the p-primary parts of the Selmer groups.

We end this section with a comment about Tate-Shafarevich conjecture 11.1. Although it is
not known whether Tate-Shafarevich group is finite or not, there is a result due to Cassels that
states that its order has to be a perfect square in case it is finite.
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Theorem 11.4. Let E be an elliptic curve defined over a number field K. Then there is an
alternate bilinear pairing

XE(K)×XE(K)→ Q/Z

whose kernel is precisely XE(K)div.

Proof. See [2].

In case that XE(K) is finite, then XE(K)div = 0, so the above mentioned bilinear pairing
is non-degenerate. In that case, XE(K) and Hom(XE(K),Q/Z) have the same number of
elements, so the bilinear map induces an isomorphism between them.

By the structure theorem of finite abelian groups, there exists cyclic groups C1, . . . , Cr such
that

XE(K) ∼= C1 × · · ·Cr
If Ĉi := Hom(Ci,Q/Z), then

Hom(XE(K),Q/Z) = Ĉ1 × · · · × Ĉr

The bilinear map pairs C1 with a cyclic subgroup of Hom(XE(K),Q/Z) of order |C1| and

disjoint of Ĉ1. In the previous identification, it will correspond to a cyclic subgroup Di of the
same order and disjoint to Ci. Taking the quotients under Ci ·D1 and applying an inductive
argument, we deduce that |XE(K)| is a prefect square.

Corollary 11.2. Let E be an elliptic curve defined over a number field K. If XE(K) is finite,
then its order is a perfect square. Similarly, given a prime number p, if XE(K)p is finite, then
its order is also a perfect square.

11.3 The Image of the Kummer Map

As a preparation for the proof of Mazur’s control theorem, it is interesting to describe the
images κv for each valuation v ∈MK .

If K is an algebraic extension of Q, by theorems 9.6 and 9.7, Im(κv) = 0 for every archimedean
valuation and non-archimedean not dividing p. For valuations lying over p, the description is
more subtle, but in case K is a number field we know that Im(κv) has corank [Kv : Qp] by
theorem 9.8.

Assume that E has good ordinary reduction at some prime v lying over p, i.e., the reduced
curve Ẽ is non-singular and contains p-torsion defined over the algebraic closure kv.

By theorem 9.2, there is a short exact sequence

0 // F [p∞] // E[p∞]
π // Ẽ[p∞] // 0

where F [p∞] is the p-primary part in the kernel of the reduction map and is isomorphic to
Qp/Zp as a group. It induces another exact sequence in the first cohomology groups

H1 (Kv,F [p∞])
εv // H1 (Kv, E[p∞])

πv // H1
(
Kv, Ẽ[p∞]

)
Then, we will describe Im(κv) as the division subgroup of Im(εv). First we show that one is
contained in the other.

Proposition 11.5. Let Kv be a p-adic field and let E/Kv be an elliptic curve having good
reduction at v. Then

Im(κv) ⊂ Im(εv)
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Proof. Since Im(εv) = ker(πv), the preceding inclusion is equivalent to πv ◦ κv = 0. Let
P ⊗ m

n ∈ E(Kv)⊗Qp/Zp. Then

κv

(
P ⊗ m

n

)
= σQ−Q

where Q ∈ E(Kv) is such that [n]Q = [m]P . Then

(πv ◦ κv)
(
P ⊗ m

n

)
= σQ̃− Q̃ ∈ H1

(
Kv, Ẽ[p∞]

)
where Q̃ := π(Q). It is clearly a coboundary in H1

(
Kv, Ẽ

)
. However, Ẽ(kv) is a torsion

group, so its p-primary component E[p∞] is a direct summand. By proposition 6.9, then

(πv ◦ κv)
(
P ⊗ m

n

)
is also a coboundary in H1

(
Kv, Ẽ[p∞]

)
.

We want to identify Im(κv) with the divisible subgroup of Im(εv). To do that, we need to
apply theorem 8.1.

Corollary 11.3. Assume that E has good, ordinary reduction when defined over Kv. The
image subgroup Im(εv) is cofinitely generated and has corank r.

Proof. We apply theorem 8.1 to A = F [p∞] ∼= Qp/Zp. The action of GKv on A can be
described by a character

ϕ : GKv → Z∗p
because we have seen in example 4.1 that Zp ∼= Hom (Qp/Zp,Qp/Zp). Similarly, the action of
GKv on µp∞ can be described by another character

χ : GKv → Z∗p

We can also consider the action of the Galois group on the quotient E[p∞]/F [p∞] ∼= Ẽ[p∞].
It would be described by a character

ψ : GKv → Z∗p

Using the Weil pairing shown in [27], proposition III. 8.1, we see that

ϕψ = χ : GKv → Z∗p

Since ψ describes the action of the Galois group on Ẽ[p∞], it is clearly non-trivial because

Ẽ(kv) is finite.

Hence ϕ 6= χ independently of the generators of F [p∞] and µp∞ chosen, so F [p∞] is not
isomorphic to µp∞ as a GKv -module. Moreover, ϕ is not trivial either, since the torsion of
E(Kv) is finite by proposition 9.5, so it cannot contain F [p∞]. Then theorem 8.1 implies that

corankZpH
1 (Kv,F [p∞]) = [Kv : Qp]

However, we can consider the cohomological long exact sequence

H0
(
Kv, Ẽ[p∞]

)
δ // H1 (Kv,F [p∞])

εv // H1 (Kv, E[p∞])

However, H0
(
Kv, Ẽ[p∞]

)
is the p-primary part of Ẽ(kv), so it is finite. Then ker(εv) is finite

too and we can consider the following short exact sequence

0 // ker(εv) // H1 (Kv,F [p∞])
εv // Im(εv) // 0
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Since ker(εv) is finite, its Pontriagyn dual is finite too by 4.2, so corankZp = 0. Then by
corollary 4.4,

corankZpIm(εv) = corankZpH
1 (Kv,F [p∞]) = [Kv : Qp]

Theorem 11.5. Assume Kv is a finite extension of Qp and that E/Kv has good, ordinary
reduction at Kv. Then Im(κv) = Im(εv)div.

Proof. By proposition 11.5, Im(κv) ⊂ Im(εv). Since κv is injective, then Im(κv) ∼= E(Kv) ⊗
(Qp/Zp)

Since both Im(κv) and Im(εv) have the same corank. By corollary 4.4, the factor group

T = Im(εv)/Im(κv) has corank 0, so its Pontryagin dual T̂ is Zp-torsion and finitely generated,
so it is finite and, therefore, T is finite too.

Since Im(κv) ∼= (Qp/Zp)[Kv :Qp], then it is a division subgroup, so Im(κv) ⊂ Im(εv)div. Then
Im(εv)div/Im(κv) is a finite division group, so it only contains one element. Hence Im(κv) =
Im(εv)div.

We have just seen that Im(κv) is a subgroup of finite index in Im(εv). Next theorem controls
that index but this proof uses a result about Poitou-Tate duality which is out of the scope of
this work.

Theorem 11.6. If Kv is a finite extension of Qp, and if E is an elliptic curve defined over
Kv with good ordinary reduction, then Im(κv) has finite index in Im(εv) and the quotient

Im(εv)/Im(κv) is a cyclic group whose order divides
∣∣∣Ẽ(kv)p

∣∣∣, where kv is the residue field of

v. In particular, if p 6 |
∣∣∣Ẽ(kv)

∣∣∣, then Im(κv) = Im(εv).

Proof. We are going to use a result whose proof is out of the scope of this thesis (see [23],
theorem 7.2.6). Given a finite GKv module M such that |M | = pn for some n ∈ N, then
H2(Kv,M) is the Pontryagin dual of H0 (Kv,Hom(M,µp∞)).

Since Weil pairing E[pm] × E[pm] → µpm is alternating by [27], proposition III. 8.1, and
because E has good ordinary reduction at Kv, it induces another non-degenerate pairing
F [pm]× Ẽ[pm]→ µpm , which means that there is an injection

Ẽ[pm] ↪→ HomGKv
(F [pm], µpm) ↪→ Hom (F [pm], µpm)

Since both Ẽ[pm] and Hom (F [pm], µpm) have pm elements, then Ẽ[pm] ∼= Hom (F [pm], µpm).

Since Ẽ(kv) is finite, then Ẽ(kv)[p
m] = Ẽ(kv)p for large enough m. For this m, then

Ẽ(kv)p ∼= H0 (Kv,Hom (F [pm], µpm)) ∼= H2(Kv,F [pm])

where the last isomorphism is not canonical and comes from proposition 4.11.

However, H1 (Kv,F [p∞]) has corank [Kv : Qp] by theorem 8.1, so

H1 (Kv,F [p∞]) ∼= (Qp/Zp)[Kv :Qp] × T

where T is a finite p-group. If pm ≥ |T |, then

H1 (Kv,F [p∞])div = pmH1 (Kv,F [p∞])

Now consider the exact sequence

0 // F [pm] // F [p∞]
·pm
// F [p∞] // 0
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It induces an exact sequence in the cohomology groups

H1 (Kv,F [p∞])
·pm
// H1 (Kv,F [p∞]) // H2 (Kv,F [pm])

Then there is an injection

H1 (Kv,F [p∞]) /H1 (Kv,F [p∞])div = H1 (Kv,F [p∞]) /pmH1 (Kv,F [p∞]) ↪→ H2 (Kv,F [pm])

Therefore, H1 (Kv,F [p∞]) /H1 (Kv,F [p∞])div is a cyclic group whose order divides the one of

Ẽ(kv)p.

Moreover, the map εv induces a surjection

H1 (Kv,F [p∞]) /H1 (Kv,F [p∞])div � Im(εv)/Im(εv)div = Im(εv)/Im(κv)

It is thus clear that Im(εv)/Im(κv) is cyclic and its order divides the order of Ẽ(kv)p.

In case Ẽ(kv) has no p-torsion or, equivalently, p 6 |Ẽ(kv), then Im(εv) = Im(κv).

We can generalise last result to infinite extensions of Qp whose profinite degree divides p∞.

Theorem 11.7. Let E be an elliptic curve defined over an algebraic extension Kv of Qp with
finite residue field kv. Assume that E has good ordinary reduction at Kv. Assume also that
the profinite degree of GKv|Qp is divisible by p∞. Then Im(κv) = Im(εv). In particular, this is
true if Kv is a ramified Zp-extension of Fv, where Fv is a finite extension of Qp.

Proof. We can write Kv as a union of finite extensions of Qp, i.e., Kv :=
⋃
i∈I F

(i)
v . Then

proposition 4.6 implies that

H1 (Kv, E[p∞]) = lim−→
i

H1
(
F (i)
v , E[p∞]

)
where the transition maps are cohomological restrictions. Moreover, we can write

Im(εv) = lim−→i
Im(ε

(i)
v ), Im(κv) = lim−→i

Im(κ
(i)
v )

By proposition 11.5, Im
(
κ

(i)
v

)
⊂ Im

(
ε

(i)
v

)
for every i ∈ I. Therefore, Im(κv) ⊂ Im(εv).

Furthermore, direct limit is an exact functor by proposition 4.3, so

Im(εv)/Im(κv) = lim−→
i

Im(ε(i)
v )/Im(κ(i)

v )

Nevertheless, by theorem 11.6 the orders of the quotients Im
(
ε

(i)
v

)
/Im

(
κ

(i)
v

)
are uniformly

bounded by |Ẽ(kv)p|, so the order of the direct limit has the same bound.

Now we are going to show that Im(εv) is a divisible group. For that purpose, we just need
to show that H1 (Kv,F [p∞]) is divisible. It is clearly divisible by every prime q 6= p, because
multiplication by q is an isomorphism in F [p∞]. For q = p, consider the short exact sequence

0 // F [p] // F [p∞]
·p
// F [p∞] // 0

It induces another exact sequence in the cohomology groups:

H1 (Kv,F [p∞])
·p
// H1 (Kv,F [p∞])

δ // H2 (Kv,F [p])

Analogously to proposition 8.2, one can deduce H2 (Kv,F [p]) = 0, so H1 (Kv,F [p∞]) is also
p-divisible.

Therefore, Im(εv)/Im(κv) is a finite division group, so it has to be trivial.
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11.4 Mazur’s Control Theorem

Now we are able to prove the above mentioned Mazur’s Control Theorem.

Theorem 11.8. (Mazur, 1972) Let F be a number field and let E be an elliptic curve defined
over F . Assume that p is a rational prime such that E has good, ordinary reduction at all
primes of F lying over p. Assume also that F∞ is a Zp-extension of F and denote by Fn the
unique subextension such that [Fn : F ] = pn. Then the natural maps

SelE(Fn)p → SelE(F∞)
GF∞|Fn
p

have finite kernels and cokernels whose orders are bounded as n→∞.

As a matter of notation, we will write for every algebraic extension K of Q and every prime v
of K

HE(Kv) = H1(Kv, E[p∞])/Im(κv)

where we have chosen any extension of every prime v to the algebraic closure. The product
along every prime of K will be written as

PE(K) =
∏
v

HE(Kv)

By definition, the p-primary part of the Selmer group is

SelE(K)p = ker
(
H1(K,E[p∞])→ PE(K)

)
Then defining

GE(K) := Im
(
H1 (K,E[p∞])→ PE(K)

)
we can consider the following commutative diagram with exact rows

0 // SelE(Fn)p //

sn

��

H1(Fn, E[p∞]) //

hn

��

GE(Fn) //

gn

��

0

0 // SelE(F∞)Γn
p

// H1(F∞, E[p∞])Γn // GE(F∞)Γn

Here sn is the natural maps between Selmer groups, which is well defined by proposition 11.3.
Moreover, gn is defined in each factor by:

rvn : HE((Fn)vn)→ HE((F∞)η)

where η is any prime arbitrarily chosen among those lying above vn and rvn is the cohomological
restriction.

Snake’s lemma 6.3 gives an exact sequence:

0 // ker(sn) // ker(hn) // ker(gn) // coker(sn) // coker(hn) (11.4)

Lemma 11.2. ker(hn) is finite and has bounded order as n→∞.

Proof. Consider the inflation-restriction sequence given by theorem 6.1

0 // H1(Γn, E(F∞)p) // H1(Fn, E[p∞])
hn // H1(F∞, E[p∞])Γn
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where Γ := GF∞|F
∼= Zp and Γn := Γp

n

= GF∞|Fn . Then ker(hn) ∼= H1(Γn, E(F∞)p). Let
A := E(F∞)p be the p-primary subgroup of E(F∞). If γ is a topological generator of Γ then
proposition 6.20 implies that

H1(Γn, A) = A/(γp
n

− 1)A

Since E(Fn) is finitely generated by Mordell-Weil theorem 10.2 and the kernel of γp
n−1 acting

on A is E(Fn)p, then H0(Γn, A) is finite.

Since A is a subgroup of E[p∞] ∼= (Qp/Zp)2
, it is cofinitely generated. By remark 4.7 and

proposition 6.22,
(
γp

n − 1
)
Adiv = Adiv. Then,

Adiv ⊂
(
γp

n

− 1
)
A ⊂ A

Again, remark 4.7 says that Adiv has finite index in A. Moreover, H1(Γn, A) ∼= A/(γp
n − 1)A

has order bounded by [A : Adiv], which does not depend on n.

Lemma 11.3. coker(hn) = 0 ∀n ∈ N

Proof. Using inflation-restriction sequence given in theorem 6.1 applied to GF∞ ⊂ GFn , we see
that the sequence

H1(Fn, E[p∞])
hn // H1(F∞, E[p∞])Γn // H2(Γn, A)

where A is again A = E(F∞)p. Since Γn ∼= Zp, then proposition 6.21 implies that H2(Γn, A) =
0, so hn is surjective.

In order to study ker(gn) we can do it separately on each factor by studying ker(rvn). In
case v is archimedean, then v splits completely because Zp has no subgroups of order 2, so
(F∞)η = Fv for every η|v. Therefore, rvn is the identity map, so ker(rvn) = 0.

For the non-archimedean case, we consider separately when v 6 |p and v|p.

Lemma 11.4. Suppose that v is a non-arquimedean prime not dividing p. Then ker(rvn) is
finite and has bounded order as n tends to infinity. Moreover, if either E has good reduction
at v or v splits completely in F∞|F , then ker(rvn) = 0.

Proof. If v splits completely in F∞|F , then the lemma is clear since (F∞)η = Fv, where η is
any extension of v to F∞.

Otherwise, Γv has finite index in Γ and Γv ∼= Zp. Let M be the maximal abelian pro-p
extension of Fv. By proposition 7.2, GM |Fv

∼= Zp×T , where T is a finite group. Hence Fv has
only one Zp-extension, which will be (F∞)η|Fv. Therefore, (F∞)η|Fv will be the unramified
Zp-extension of Fv.

Let Bη := E((F∞)η)[p∞], which is cofinitely generated, let Γvn := G(F∞)η|(Fn)vn
∼= Zp and let

γvn be a topological generator of Γvn . Since Im(κvn) = 0 and Im(κη) = 0 by corollary 9.5,
consider the inflation-restriction sequence given by theorem 6.1:

0 // H1(Γvn , Bη) // H1 ((Fn)vn , E[p∞])
rvn // H1 ((F∞)η, E[p∞])

Hence,
ker(rvn) ∼= H1(Γvn , Bv)

∼= Bη/(γvn − 1)Bη

Just as in the proof of lemma 11.2, (Bv)div ⊂ (γvn − 1)Bv, so

|ker (rvn)| ≤ (Bv : (Bv)div)
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and this bound does not depend on n.

Assume now that E has good reduction at v. We have seen that (F∞)η is the unramified
Zp-extension of Fv. On the other hand, Fv(E[p∞]) is also unramified since the reduction map

E[p∞]→ Ẽ[p∞] is a bijection because v does not divide p. Moreover,

Fv(E[p∞]) = lim−→
n

Fv(E[pn]) ⊂ lim−→
n

Fv
(
[pn]−1E(Fv)

)
By corollary 10.1, whose proof does not require Fv to be a number field, Fv

(
[pn]−1E(Fv)

)
|Fv

is an abelian extension of exponent dividing pn and, therefore, its profinite degree divides
p∞. Moreover, Fv(E[p∞]) has to be an infinite extension since every finite extension of Fv
contains only finitely many p-primary torsion points by proposition 9.5. Hence Fv(E[p∞]) is
the unramified Zp-extension, so Fv(E[p∞]) ∼= (F∞)η.

Therefore, Bv = E((F∞)η)[p∞] = E[p∞] is divisible, so ker(rvn) = 0 ∀n ∈ N.

Lemma 11.5. Suppose that v is a prime dividing p. Assume that E has good ordinary
reduction at v. Then ker(rvn) is finite and has bounded order as n tends to ∞.

Proof. If v splits completely in F∞|F , then (F∞)η = Fv and ker(rvn) = 0 ∀n ∈ N.

Otherwise, the decomposition subgroup of v has finite index in Zp. Assume first that v ramifies
in F∞|F . The inertia group is thus a non-trivial closed subgroup of Zp, so it has finite index.
Then the ramification degree of (F∞)η|Fv is finite, so the residue field fη of (F∞)η is also finite.
By theorem 11.7, rvn can be written as the composition of the following two maps:

an : H1 ((Fn)vn , E[p∞]) /Im(κvn)→ H1 ((Fn)vn , E[p∞]) /Im(εvn)

bn : H1 ((Fn)vn , E[p∞]) /Im(εvn)→ H1 ((F∞)η, E[p∞]) /Im(εη)

Since an is surjective,

| ker(rvn)| = | ker(an)| · | ker(bn)|

However, ker(an) = Im(εvn)/Im(κvn) has order bounded by |Ẽ(fη)p|, due to theorem 11.6. On
the other hand, we can consider the short exact sequence

0 // F [p∞] // E[p∞] // Ẽ[p∞] // 0

whose long cohomological exact sequence can be included the following commutative diagram:

0 // H1 ((Fn)vn , E[p∞]) /Im(εvn)
πvn //

bn

��

H1
(

(Fn)vn , Ẽ[p∞]
)

cn

��

0 // H1 ((F∞)η, E[p∞]) /Im(εη)
πη

// H1
(

(F∞)η, Ẽ[p∞]
)

where cn is just the cohomological restriction. Then πvn injects ker(bn) into ker(cn), which
means that | ker(bn)| ≤ | ker(cn)|. However, inflation-restriction sequence given in theorem 6.1
says that

ker(cn) ∼= H1
(

(F∞)η|(Fn)vn , Ẽ(fη)p

)
∼= Ẽ(fη)p/(γvn − 1)Ẽ(fη)p

where γvn is a topological generator of G(F∞)η|(Fn)vn
. Here we have used that G(F∞)η|(Fn)vn

∼=
Zp because v is finitely decomposed and therefore the Galois group is isomorphic to a subgroup
of finite index in Zp. Then we have applied proposition 6.20.
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Hence | ker(cn)| is bounded above by |Ẽ(fη)p| and thus

| ker(rn)| ≤ |Ẽ(fη)p|2

Finally, suppose that v is unramified in F∞|F but it does not split completely. Then the
decomposition group of v is a non-trivial closed subgroup of Zp, so it is also isomorphic to Zp.
Therefore, (F∞)η is the unramified Zp-extension of Fv.

Denoting Fvn := (Fn)vn , we claim that H1 (Fvn |Fvm , E (Fvn)) = 0 for every natural numbers
m and n. In fact, since E has good reduction at v, we can consider the exact sequence,

0 // F(mn) // E (Fvn) // Ẽ(fn) // 0

where mn is the maximal ideal in the ring of integers of (Fn)vn and fn is the residue field of
(Fn)vn . It induces an exact sequence in the cohomology groups

H1 (Fvn |Fvm ,F(mn)) // H1 (Fvn |Fvm , E (Fvn)) // H1
(
Fvn |Fvm , Ẽ(fn)

)
Then it is enough to prove that both H1 (Fvn |Fvm ,F(mn)) and H1

(
Fvn |Fvm , Ẽ(fn)

)
are

trivial.

For the first one, we can consider the filtration F(mn) ⊃ F(m2
n) ⊃ F(m3

n) · · · . By remark 3.5,
F
(
min
)
/F
(
mi+1
n

) ∼= fn, so there is an exact sequence

H1
(
Fvn |Fvm ,F

(
mi+1
n

))
// H1

(
Fvn |Fvm , F

(
min
))

// H1 (Fvn |Fvm , fn)

However, since Fvn |Fvm is unramified, then by theorem 7.2

H1 (Fvn |Fvm , fn) ∼= H1(fn|fm, fn) = 0

so the first arrow in the preceding exact sequence was surjective. Composing them, for each
i ∈ N there is a surjection

H1
(
Fvn |Fvm ,F

(
min
))

� H1 (Fvn |Fvm ,F (mn))

Then it is enough to prove that the comology group vannishes for some i. However, for large
enough i, theorem 3.2 says that F(mi) ∼= Rn, where Rn is the ring of integers of Fvn . However,
since Fvn |Fvm is unramified, then Rn = Rm ⊗ Z[GFvn |Fvm ] is a coinduced module, so its
cohomology vanishes. Therefore,

H1 (Fvn |Fvm ,F(m)) = 0

On the other hand,

H1
(
Fvn |Fvm , Ẽ(fn)

)
∼= H1

(
fn|fm, Ẽ(fn)

)
Theorem 6.1 says that H1

(
fn|fm, Ẽ(fn)

)
is isomorphic to a subgroup of H1

(
fm, Ẽ

(
fm
))

,

we just need to see that the latter vanishes. Since Ẽ
(
fm
)

is torsion, we have that

Ẽ
(
fm
)

=
∏

q prime

Ẽ[q∞]

so it is enough to check that H1
(
fm, Ẽ[q∞]

)
= 0 for every prime number q. Since fm is finite,

Gfm
∼= Ẑ ∼=

∏
q prime

Zq
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Calling Hq :=
∏
l 6=q Zl and using theorem 6.1 again,

0 // H1
(
Zq, Ẽ[q∞]Hq

)
Inf // H1

(
Ẑ, Ẽ[q∞]

)
Res // H1

(
Hq, Ẽ[q∞]

)
By proposition 6.8, the latter cohomology group vanishes, so

H1
(
Zq, Ẽ[q∞]Hq

)
∼= H1

(
Ẑ, Ẽ[q∞]

)
In case q 6= p, we saw in the proof of lemma 11.4 that fm(Ẽ[q∞]) is the only Zq extension of

fm, so Ẽ[q∞]Hq = Ẽ[q∞]. In case q = p, one can also prove similarly that Fvm(E[p∞])|Fvm has

profinite degree dividing p∞ and so does its residue extension fm(Ẽ[p∞])|fm. Then Ẽ[p∞]Hp =

Ẽ[p∞].

In any case, H0(Zq, Ẽ[q∞]) = Ẽ(fm)q is finite, so proposition 6.22 implies that

H1
(
Ẑ, Ẽ[q∞]

)
= H1

(
Zq, Ẽ[q∞]Hq

)
= 0

Once we have proven the claim, denoting by Fη := (F∞)η we have by corollary 6.2 that

H1 (Fη|Fvm , E (Fη)) = lim−→
n

H1 (Fvn |Fvm , E (Fvn)) = 0

Hence theorem 6.1 says that the following restriction map is injective.

Res : H1 (Fvn , E)→ H1 (Fη, E) (11.5)

We can use Kummer sequences to build the following commutative diagram with exact rows

0 // E (Fvn)⊗Qp/Zp
κn //

��

H1 (Fvn , E[p∞])
λn //

Res

��

H1 (Fvn , E)

Res

��

// 0

0 // E (Fη)⊗Qp/Zp
κ∞ // H1 (Fη, E[p∞])

λ∞ // H1 (Fη, E) // 0

Then let ϕ ∈ H1 (Fvn , E[p∞]) be a representative of a class belonging to ker(rvn) ⊂ HE ((Fn)vn).
Then Res(ϕ) ∈ Im(κ∞) = ker(λ∞), so

λ∞ ◦ Res(ϕ) = 0 = λn ◦ Res(ϕ)

By equation 11.5, λn(ϕ) = 0, so ϕ ∈ Im(κn) and thus represents the zero class in HE ((Fn)vn).

Now we can complete the proof of theorem 11.8.

Proof of theorem 11.8. Using the exact sequence given in equation 11.4, we get that

| ker(sn)| ≤ | ker(hn)| ≤ [E(F∞)p : E(F∞)p,div]

which is bounded for all n ∈ N. Moreover, ker(gn) is the direct product of ker(rvn), where vn
runs through every valuation in Fn. Moreover, by lemma 11.4 ker(rvn) = 0 for every valuation
but those dividing p and being finitely decomposed in F∞ or those finitely decomposed at which
E has bad reduction. Hence the set of valuations in Fn such that ker(rvn) 6= ∅ is bounded as
n→∞. Furthermore, lemma 11.5 says that ker(rvn) is bounded for every valuation, so ker(gn)
is also bounded. Using again the exact sequence of equation 11.4 and lemma 11.3, we get that

|coker(sn)| ≤ | ker(gn)|

is uniformly bounded.
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A natural question that arises is when the map sn is injective and surjective. For the injectivity,
a sufficient condition is that E(F ) does not contain p-torsion. In that case E(F∞) will have
no p-torsion. In fact, assume the contrary and let Fn be the minimal subextension containing
E(F∞)[p]. If γ is a topological generator of GF∞|F , then γp

n

would act trivially on E(F∞)[p].
However, E(F∞)[p] has to be isomorphic to Z/p or to Z/p× Z/p.

In the first case γ can be identified with an element in GL1(Fp) ∼= F∗p, so the only possibility

for γp
n

acts trivially on the p-torsion is that γ does the same.

In the latter case, γ ∈ GL2(Fp) will have an eigenvalue α ∈ Fp which will satisfy that αp
n

= 1.
Hence α = 1 and ker(γ − 1) will be non-trivial, which means that E(F )[p] 6= {O}.

Thus E(F∞)p = {O}, so the proof of lemma 11.2 imply that

|ker(sn)| ≤ |ker(hn)| ≤ (E(F∞)p : E(F∞)p,div) = 1

There is more subtle result about the injectivity of sn whose proof is out of the scope of this
thesis.

Proposition 11.6. Let E be an elliptic curve defined over a number field F and let F∞ be
a Zp-extension of F . Assume that E has good ordinary reduction at all primes lying over p
and that there is at least one prime v of F lying over p satisfying that the ramification index
e(Fv : Qp) ≤ p− 2. Then the map

sn : SelE(Fn)p → SelE(F∞)p

is injective for every n ∈ N ∪ {0}.

Proof. [10], proposition 3.9.

There is another result that characterises the surjectivity of the map sn and states an implication
about the vanishing of the Selmer group SelE(F∞). Before stating it, we need to define the
anomalous primes for an elliptic curve as those satisfying that the reduced curve has the same
cardinality as the residue field

Proposition 11.7. Let E be an elliptic curve defined over a number field F such that E has
good, ordinary reduction at al primes of F lying over p. Assume that SelE(F )p = 0, that none
of the primes of F over p are anomalous for E and that E(Fv)p = 0 for all primes of F where
E has bad reduction. Then SelE(F∞) = 0.

Proof. We want to show first that the map sn is surjective in this case. By lemma 11.3, we
just need to show that ker(g0) = 0, which is equivalent to ker(rv) = 0 ∀v ∈MF .

Assume v does not divide p. If E has good reduction at v, then ker(rv) = 0 by lemma 11.4.
Otherwise, E(Fv)p = {O} and the argument given while studying the injectivity of sn implies
that E ((F∞)η)p = {O}, so the proof of lemma 11.4 also implies that ker(rv) = 0.

In case v divides p, we can assume that v ramifies since otherwise lemma 11.5 implies that
ker(rv) = 0. In case v is ramified, then fη is a finite p-extension of fv. Again, the fact

that Ẽ(fv)p =
{
Õ
}

implies that Ẽ(fη)p =
{
Õ
}

. Hence the proof of lemma 11.5 shows that

ker(rv) = 0.

Therefore, SelE(F ) = 0, implies that SelE(F∞)Γ = 0. Then its Pontryagin dual X/TX = 0,
where X = Hom (SelE(F∞),Qp/Zp). From proposition 2.6 one could deduce that X = 0, so
SelE(F∞)p = 0.
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11.5 Consequences of Mazur’s Theorem

Mazur’s control theorem has interesting corollaries concerning the growth of the rank of the
Mordell-Weil groups.

Corollary 11.4. Let E be an elliptic curve defined over a number field F and let p be a prime
number such that E has good, ordinary reduction at all primes of F lying above p. Let also
F∞|F be a Zp-extension. If SelE(F )p is finite, then Sel(F∞)p is Λ-cotorsion. Consequently,
rankZ(E(Fn)) is bounded as n→∞.

Proof. Theorem 11.8 implies that SelE(F∞)Γ
p is finite. Then X := Hom(SelE(F∞)p,Qp/Zp)

is a Λ-module and X/TX is the maximal quotient of X on which Γ := GF∞|F acts trivially.
Hence the Pontryagin dual of X/TX is the maximal subgroup of SelE(F∞)p on which Γ acts
trivially, i.e., its dual is SelE(F∞)Γ

p . Thus X/TX is a finite quotient, so proposition 2.8 implies
that X is a finitely generated torsion Λ-module.

Then X/XZp−tors is a finitely generated Zp-module, so the structure theorem states that
X/XZp−tors

∼= Zλp for some λ ≥ 0. Hence SelE(F∞)p is cofinitely generated, so remark 4.7
implies that

(SelE(F∞)p)div
∼= (Qp/Zp)λ

Since SelE(F∞)Γn ⊂ SelE(F∞), then theorem 11.8 again implies that

(SelE(Fn)p)div
∼= (Qp/Zp)tn , where tn ≤ λ

Since
E(Fn)⊗ (Qp/Zp) ∼= (Qp/Zp)rank(E(Fn))

injects into (SelE(Fn)p)div, we deduce that rank (E(Fn)) ≤ λ ∀n ≥ 0.

Under the conditions of last corollary, one could check the finiteness of the rank of Mordell-Weil
group E(F∞) just by checking whether its torsion subgroup is finite, which is usually easier.

Theorem 11.9. Let K be a Galois extension of a number field F and let E be an elliptic
curve defined over F . Assume that E(K)tors is finite and that rankZE(L) is bounded as L
varies over all finite subextensions of K|F . Then E(K) is finitely generated.

Proof. Let t := |E(K)tors| <∞. Choose a subextension L|K such that rankZE(K) is as large
as possible. Since the rank is an additive function, E(K)/E(L) must be a torsion group. Hence
for each P ∈ E(K) there is a natural number nP ∈ N such that nPP ∈ E(L). Given σ ∈ GK|L,
then

[nP ](σ(P )− P ) = σ([nP ]P )− [nP ](P ) = O

Hence σ(P )− P ∈ E(K)tors, so [t] (σ(P )− P ) = O. Thus,

σ ([t]P ) = [t]P ∀σ ∈ GK|L ⇒ [t]P ∈ E(L)

We can thus define the following homomorphism

ϕ : E(K)→ E(L) : P 7→ [t]P

Since ker(ϕ) = E(K)tors, then E(K) is finitely generated and rankZE(K) is the maximum of
rankZE(L)as L varies over all finite subextensions of K|F .

All we have done can be summed up in the following result.

Corollary 11.5. Let E be an elliptic curve defined over a number field F and let p be a prime
number such that E has good, ordinary reduction at all primes of F lying above p. Let also
F∞|F be a Zp-extension. If SelE(F )p is finite and E(F∞)tors is finite, then E(F∞) is finitely
generated.
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Mazur’s control theorem has an interesting result concerning the growth of Tate-Shafarevich
group.

Corollary 11.6. Let E be an elliptic curve defined over a number field F such that E has
good, ordinary reduction at all primes of F lying above p. Let F∞|F be a Zp-extension and
call Fn the unique subextension of degree pn. If both E(Fn) and XE(Fn)p are finite for every
n ∈ Z, there are λ, µ ∈ N ∪ {0} depending only on E and F∞|F such that

|XE(Fn)p| = pλn+µpn+O(1)

Proof. Again let X = Hom(SelE(F∞)p,Qp/Zp) the Pontryagin dual of the Selmer group. We
have seen in the proof of corollary 11.4 that X is an Iwasawa module. X/wnX is thus the
Pontryagin dual of SelE(F∞)Γn , since it is the maximal quotient on which Γn acts trivially.
By theorem 11.8, we have that

|SelE(Fn)p|
|X/wnX|

= pen

where |en| is bounded as n→∞. By proposition 2.7, we have that |X/wnX| = pµp
n+λn+O(1).

Using that E(Fn) is finite, we have by theorem 11.3 that

|XE(Fn)p| = |SelE(Fn)p| = pµp
n+λn+O(1)

Remark 11.4. By corollary 11.2, µpn +λn+O(1) has to be an even number for every n ∈ N.

In the last corollary, the invariants λ and µ can be positive. Although under the conditions of
proposition 11.7, λ = µ = 0, there are elliptic curves in which that does not happen. Here we
show an example where the constant µ is 1.

Example 11.1. We will now show an example where the µ-invariant is positive. Consider the
prime number p = 5 and the elliptic curve E = X0(11) defined over the rationals Q and given
by a Weierstrass equation

y2 + y = x3 − x2 − 10x− 20

Its discriminant is ∆ = −115. One can find in Cremona tables [7] that E(Q) ∼= Z/5Z and that
E[5] ∼= Z/5Z× µ5 as GQ-modules.

Let Q∞ be the cyclotomic Z5-extension of Q. Taking into account the Kummer isomorphism
given in corollary 7.1, we can consider the following map

U∞ → H1(Q∞, µ5) : b 7→ σ(β)

β

where U∞ is the group of units of the ring of integers of Q∞ and β ∈ Q is some element
satisfying that β5 = b. It is easy to see that the kernel of this map is U∞ ∩ (Q∞)5 = U5

∞.
Hence H1(Q∞, µ5) contains a subgroup isomorphic to

U∞
U5
∞

= lim−→
n

Un
U5
n

where Un is the group of units in the ring of integers of Qn := Q(µ5n). Since Qn is totally real
and contains 5-torsion for n ≥ 1, by Dirichlet’s unit theorem 2.5 we have that

Un
U5
n

∼= (Z/5)
n
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One could see that the Pontryagin dual of U∞U5
∞

is isomorphic to

lim←−
n

(Z/5)
n ∼= lim←−

n

Zp[[T ]]

(wn, 5)
∼= Zp[[T ]]/(5)

which has µ-invariant µ = 1. Since the µ-invariant is an additive function by remark 2.4, then
H1(Kv, µ∞) has positive µ-invariant.

The kernel of the reduction map E[5]→ Ẽ[5] must be a Galois module, so the only possibilities

are Z/5 and µ5. It is just a computation to check Ẽ(F5) contains 5 torsion and that the
reduction map is injective in Z/5, so µ5 must be contained in the kernel of the reduction map

E[5∞]→ Ẽ[5∞]. Hence the inclusion

µ5 ↪→ E[5∞]

induces a cohomological map

ε :
U∞
U5
∞
↪→ H1(Q∞, µ5)→ H1(Q∞, E[5∞])

where Q∞ is the cyclotomic extension of Q.

The image of ε is contained in the Selmer group SelE(Q∞)5. In fact, we have to check that
the cohomological restriction belongs to Im(κv) for every valuation in MQ∞ .

If v is archimedean, then G(Q∞)v = GR has two elements because Q∞ is totally real. Then
H1 ((Q∞)v, E[5∞]) = 0 by proposition 6.8.

Assume now that v is non-archimedean and it is different from 5. By [23], Proposition 11.1.1,

(Q∞)v|Qv is the unramified Z5-extension of Qv. Let b ∈ U∗∞/ (U∗∞)
5
. If β ∈ Q∗ satisfies that

β5 = b, then Q∞(β)|Q∞ is an unramified extension of degree dividing 5, so the only possibility
is that β ∈ Q∞

ϕ(σ) =
σ(β)

β
= 1 ∀σ ∈ GQ∞

Finally, in case that v = 5, the cohomological restriction is contained in Im(κv) because of
theorem 11.7.

The kernel ker(ε) is isomorphic to H0(Q∞, E[5∞]/µ5), which is a subgroup of E[5∞]/µ5 and,
therefore, is Zp-cofinitely generated, which means that the coinvariant is µ = 0.

By remark 2.4, Im(ε) has coinvariant µ = 1, so the Selmer group has positive µ-invariant. It
is shown in [10] that the invariant µ takes the value 1 in this case.

The behaviour of these invariants λ and µ is still an active research issue. For instance, we
state the following open problem concerning some cases when µ = 0.

Conjecture 11.2. Let E/Q be an elliptic curve. Assume that SelE(Q∞)p is Λ-cotorsion.
Then there exists a Q-isogeneous elliptic curve E′ such that µ = 0. In particular, if E[p] is
irreducible as a Z/p representation of GQ, then µ = 0.

Last conjecture would imply that there would be elliptic curves with arbitrary large values of
the invariant λ.

Theorem 11.10. Let p ∈ Z, then λ+µ is unbounded when E runs through the elliptic curves
defined over Q with good, ordinary reduction at p. If furthermore conjecture 11.2 is true, then
λ is unbounded.

Proof. [10], corollary 5.6.
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Is is also possible that the rank remains unbounded in the Zp-extension. In any case, assuming
conjecture 11.1, there must be some regularity in the growth of the rank.

Corollary 11.7. Let E be an elliptic curve defined over a number field F having good,
ordinary reduction at all primes of F lying over p. Let F∞|F be a Zp-extension. Let r =
corankΛSelE(F∞)p. Then

corankZp(SelE(Fn)p) = rpn +O(1) ∀n ∈ N

In particular, if XE(Fn)p is finite for all n ∈ N, then

rank(E(Fn)) = rpn +O(1) ∀n ∈ N

Proof. Let X := Hom(SelE(F∞)p,Qp/Zp). Then by theorem 11.8 and proposition 2.8,

corankZp (SelE(Fn)p) = corankZp
(
SelE(F∞)Γ

p

)
= rankZp(X/wnX) = rpn +O(1)

We will finish this work with a comment about the necessity of the hypothesis of good ordinary
reduction in Mazur’s control theorem 11.8 at the primes of F lying above p.

Assume first that E has good supersingular reduction at a prime of F lying over p. If F∞|F
is ramified at such prime, it can be shown that SelE(F∞)p = H1(F∞, E[p∞]) has positive
corank. There are examples in which E(Fn) and XE(Fn)p are finite for every n ∈ N, so
corollary 11.4 would say that rankZE(Fn) would remain bounded, contrary to corollary 11.7.
Therefore, theorem 11.8 does not hold in case there are primes of F lying over p which E has
supersingular reduction at.

Otherwise, if we let E have multiplicative reduction at some primes of F lying above p, it is
conjectured that the conclusion of theorem 11.8 remains true. It can be proved for F = Q and
it is done, assuming certain condition, in [10].
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