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Abstract

In this master thesis, a detailed study of the reaction N+(3PJA) + H2(X
1Σ+

g )
−→ NH+(X2Π,4Σ) + H(2S) is performed. This reaction of astrochemical rel-
evance not only serves as a model system for three-atom insertion reactions,
but also allows to unveil the underlying principles of reactivity and quan-
tum dynamics models. The formal derivation of the Hamiltonian of the sys-
tem is presented, along with the construction of suitable symmetry-adapted
basis functions that account for the asymptotic reactants and products ar-
rangements. The concept of resonance is carefully explored, at first in a
one-dimensional Eckart potential to analyse its general features, and after-
wards applied to the actual system of study. The dynamic simulations of
the reaction is made by means of a statistical method, with both adiabatic
and quantum approaches, implemented in the program aZticc developed by
the present research group. By comparison with accurate time-dependent
wavepacket propagation methods, one concludes that the statistical approach
is as a powerful time-independent alternative for reactions with a long-lived
intermediate complex. An evaluation of the influence of the different sim-
ulation parameters on the results is then performed, such as the angular
momenta or isotopic mass effects, and only considering a single adiabatic elec-
tronic potential energy surface (PES) for simplicity. Finally, an introduction
to the quantitative determination of reaction cross-sections and thermal rate-
constants is presented, this time considering non-adiabatic couplings between
the different spin-orbit states of the system with an optimal set of PES.
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Resumen

En este trabajo de fin de máster, se lleva a cabo un estudio detallado de la
reacción N+(3PJA) + H2(X

1Σ+
g ) −→ NH+(X2Π,4Σ) + H(2S). Esta reacción

de relevancia astroqúımica no solo sirve como un sistema modelo para reac-
ciones de inserción de tres átomos, sino que también permite desentrañar los
principios subyacentes de los modelos de reactividad y dinámica cuántica.
La derivación formal del Hamiltoniano del sistema es presentada, junto con
la construcción de unas adecuadas funciones de base adaptadas a la simetŕıa
para los canales de reactivos y productos. El concepto de resonancia es ex-
plorado minuciosamente, inicialmente en un potencial de Eckart monodimen-
sional para analizar sus caracteŕısticas generales, y posteriormente aplicado al
auténtico sistema de estudio. Las simulaciones dinámicas de la reacción se ll-
evan a cabo mediante un método estad́ıstico, tanto adiabático como cuántico,
implementado en el programa aZticc desarrollado por el presente grupo de
investigación. Al comparar con métodos precisos dependientes del tiempo de
propagación de paquetes de onda, se concluye que el método estad́ıstico es
una poderosa alternativa independiente del tiempo para aquellas reacciones
con un complejo intermedio duradero. A continuación, se evalúa la influen-
cia de los distintos parámetros de simulación, como los momentos angulares
o efectos isotópicos de la masa, y considerando solo una única superficie
de enerǵıa potencial (PES) adiabática por simplicidad. Finalmente, se pre-
senta una introducción a la determinación cuantitativa de secciones eficaces
de reacción y constantes cinéticas, esta vez considerando acoplamientos no
adiabáticos entre los diferentes estados esṕın-órbita del sistema con superfi-
cies PES óptimas.
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Chapter 1

Theoretical Introduction

1.1 Reactions in the Interstellar Medium

The study of the evolution of the abundances of molecular species allows
the probe of physical conditions along the stellar evolution in space — from
the parent molecular cloud to the star system, passing through intermediate
stages such as cold and hot cores, or the protoplanetary disk.

Among the most abundant elements, nitrogen deserves a special considera-
tion, because it predominately occurs in the form of N2 and atomic nitrogen
— rather difficult to detect, specially in cold cores. For this reason, the abun-
dance of nitrogen is established by other molecules as NHn, CN, HCN/HNC
or N2H

+, which requires the construction of increasingly more accurate chem-
ical networks [1,2]. Therefore, the formation of hydrides, the first step of the
chemistry in space, is particularly important for the study of nitrogen in as-
trochemistry — in fact, ammonia was one of the first polyatomic molecules
to be detected in the interstellar medium (ISM) [3].

In photodissociation regions (PDR), hydrides of more electropositive ele-
ments like O, C, S, are usually formed from the successive addition of hy-
drogen atoms to the element cation, followed by dissociative recombination
with electrons. In spite of this, the ionization step of nitrogen hydrides is
more difficult due to the larger ionization energy of nitrogen than hydrogen,
unlike the more metallic elements — nitrogen hydrides present a compara-
tively smaller number of reactions in the chemical networks, with a smaller
population of N+. The alternative route to form nitrogen hydrides involves
only neutral species — N with OH or CH [1].

The rate constants involved in the first steps of chemical networks have
an enormous influence in the relative abundances, ortho/para ratios and
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deuteration fractions of many nitrogen-containing molecules [4]. In conse-
quence, numerous experiments have been performed to study the following
reaction [5–8].

N+(3PJA) + H2(X
1Σ+

g ) −→ NH+(X2Π,4Σ) + H(2S) (1.1)

The main problem is that the experiments are in different conditions, so the
exact thermalization conditions of the reaction are unknown, and an analysis
on the influence of the fine structure of N+(3PJA) is needed.

Various theoretical attempts to characterize this reaction have already been
made [9–11], involving dynamical calculations on the ground adiabatic elec-
tronic state potential, but ignoring the fine structure of nitrogen — with both
classical [11, 12] and quantum approaches [13, 14]. Although these studies
did not completely solve the problem, they have revealed important features
about this reaction. For instance, the reaction dynamics of the ground adia-
batic state is mediated by many long-lived resonances because of the presence
of a deep insertion well in the potential energy surface (PES). This suggests
that the reaction may proceed statistically, and the latest models focus on
this assumption [15,16].

The main goal of this work is to study in detail the already mentioned re-
action of astrochemical interest — nitrogen cation hydrogenation — from a
theoretical point of view, as a model example of insertion reactions with a
deep well.

A formal derivation of the thermal rate constant k(T ) —naturally arising
from the reaction cross-section σ — will be presented through this study. It
starts from the definition of the Hamiltonian operator for a body-fixed Jacobi
coordinate system, followed by general aspects of the ab initio calculation of
the electronic Potential Energy Surface (PES) and its diabatization procedure
for non-adiabatic dynamical studies.

Finally, the focus is placed on the estimation of the reaction cross section
within the statistical quantum capture model —solving the close-coupling
equations—. The validity of this approach is carefully explored by intro-
ducing the concept of resonance, and a comparison with the standard time-
dependent wavepacket propagation method will prove it to be a powerful
alternative to the latter.
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1.2 System Hamiltonian

1.2.1 System Coordinates

The system of interest, NH2
+, has three atoms, which implies a total number

of 9 nuclear degrees of freedom —the electronic coordinates, which have to
refer as well to the nuclear coordinates, are collectively treated separately in
an electronic Hamiltonian (unlike the standard Born-Oppenheimer approx-
imation, for which they are treated implicitly within the potential). In a
generic space-fixed frame, these can be accounted by the three-dimensional
Cartesian coordinates of each atom:

r⃗ sf
N =


xsf
N

ysfN

zsfN

 r⃗ sf
HA

=


xsf
HA

ysfHA

zsfHA

 r⃗ sf
HB

=


xsf
HB

ysfHB

zsfHB

 (1.2)

It is useful to factor out the motion of the Center of Mass of the total system
R⃗CM —which only matters for a global translation of the whole system—
and focus on the six relative internal degrees of freedom.

R⃗ sf
CM =

∑
a

ma

M
r⃗ sf

a with M =
∑
a

ma (1.3)

For convenience, the remaining internal degrees of freedom can be easily
expressed in terms of Jacobi coordinates [17]. To do that, it is essential to
understand the system as a diatomic molecule with an atom (A + BC).

Depending on the actual diatomic and atomic fragments considered, there
are three possibilities: (a) H2 + N+, (b) NH+

A + HB or (c) NH+
B + HA. How-

ever, since HA and HB are chemically identical, possibilities (b) and (c) are
equivalent. From now on, (a) will be denoted as the reactant arrangement,
while both (b) and (c) will be the product arrangement — see Figure 1.1.
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Figure 1.1: Jacobi Coordinates of the reactant arrangement H2 + N+ (left)
and product arrangement NH+ + H (right)

In general, the internal nuclear vector coordinates are chosen as R⃗ (from
the atom to the center of mass of the diatom) and r⃗ (internal vector of the
diatomic fragment), both expressed in spherical coordinates [18].

R⃗ =

 R sin θ cosϕ
R sin θ sinϕ
R cos θ

 r⃗ =

 r sin γ cosχ
r sin γ sinχ
r cos γ

 (1.4)

Although there are six scalar internal coordinates to consider, three of them
can be identified with the effect of rotations on the whole system (ϕ, θ, χ).
These three angular coordinates are the well-known Euler Angles [19] (as
seen in Figure 1.2), and their net effect can be parametrized by a general
spatial rotation matrix R(ϕ, θ, χ) —product of three successive rotations.

R(ϕ, θ, χ) = Rz′′(χ) Ry′(θ) Rz(ϕ) (1.5)

Rz′′(χ) =

 cos χ sin χ 0
− sin χ cos χ 0

0 0 1


Ry′(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Rz(ϕ) =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


9



Figure 1.2: Schematic effect of the three Euler angles ϕ, θ, χ.

The application of the rotation matrix allows us to define a new rotating
body-fixed frame to which all the vectors are referred —for convenience, R⃗ is
aligned with the body-fixed z-axis. For the Cartesian expressions of R⃗ and r⃗,
the relationship between both frames is given by the following relations.

R⃗ bf = R(ϕ, θ, χ)R⃗ sf r⃗ bf = R(ϕ, θ, χ)r⃗ sf (1.6)

As a consequence, there are only three degrees of freedom left to specify,
{R, r, γ}, which will be the actual internal coordinates to refer to in this
study.

Finally, for each vector coordinate it is possible to define a reduced mass and
recast them as a mass-scaled coordinates. In the general case of A + BC,
these are given by the following expressions.

R̃ = R
√
µ µ =

(
1

mA

+
1

mB +mC

)−1

(1.7)

r̃ = r
√
µBC µBC =

(
1

mB

+
1

mC

)−1

(1.8)

Using this new formulation, it is possible to define for each vector coordinate
an associated angular momentum operator, which will be useful for the final
construction of the Hamiltonian operator.

ℓ⃗ = −iℏ ˜⃗
R× ∇⃗R̃ j⃗ = −iℏ ˜⃗r × ∇⃗r̃ (1.9)
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Up to now, all the coordinate definitions have been limited to the motion of
the three nuclei, completely neglecting the presence of the electrons of the
system —as it is expected for the ordinary Born-Oppenheimer approxima-
tion. However, the angular momentum arising from the electrons, as well
as non-adiabatic features of the electronic motion are of great significance,
hence they will be explicitly covered while describing the electronic potential
of the system.

1.2.2 Kinetic Energy Operator

The total kinetic energy operator T̂ is factored into a translational kinetic
energy T̂CM and an internal kinetic energy operator T̂int. The latter describes
the motion of the molecule regardless global translations, and thus is the most
important one.

T̂ = T̂CM + T̂int T̂int = −ℏ2

2
∇2 (1.10)

∇2 =
∑
α,β

1√
|g|

∂

∂qα

(√
|g| g−1

α,β

∂

∂qβ

)

The total internal Laplacian (∇2) is obtained from the partial derivatives
of all the internal coordinates, weighted by the metric matrix g associated
to the algebraic space spanned by the generalized mass-scaled coordinates
(qα, qβ).

Following the rigorous construction of the Laplacian operator [17], it is
possible to rewrite the internal kinetic energy operator as a purely radial-
dependent part T̂rad(dependent of R, r) and an angular part T̂ang(related to
the angular momenta of each coordinate). If the electronic degrees of free-
dom are neglected and taken appart in their own operator, the expression
of the internal kinetic energy operator, expressed in Jacobi coordinates, has
the following form.

T̂int = T̂rad + T̂ang (1.11)

T̂rad = − ℏ2

2µ

(
2

R

∂

∂R
+

∂2

∂R2

)
− ℏ2

2µBC

(
2

r

∂

∂r
+

∂2

∂r2

)
T̂ang =

ℓ2

2µR2
+

j2

2µBCr2
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1.2.3 Potential Energy Operator

Following the Born-Oppenheimer approximation, the total internal Hamil-
tonian Ĥ is separated into a nuclear term Ĥnuc and an electronic potential
term Ĥ tot

el .

Ĥ = Ĥnuc + Ĥ tot
el Ĥnuc ≡ T̂int Ĥ tot

el ≡ V̂ (1.12)

The nuclear motion is already described by the previous section (kinetic en-
ergy operator), which implies that there is only left the detailed specification
of the total electronic Hamiltonian (potential energy operator). The total
electronic Hamiltonian operator can be decomposed into the non-relativistic
electronic Hamiltonian Ĥel and the spin-orbit Hamiltonian ĤSO.

V̂ = Ĥel + ĤSO (1.13)

The non-relativistic electronic Hamiltonian can be better described by a per-
turbative decomposition [20], where the zero-order term Ĥ0

el corresponds
to the asymptotic limit of separated atom A and diatomic BC fragments
(R → ∞), and the perturbation Ĥ1

el is just the interaction of both frag-
ments.

Ĥel = Ĥ0
el + Ĥ1

el (1.14)

The explicit form of the electronic potential operator with its matrix elements
is detailed in section 2.2.5.

Electronic angular momentum contribution

The derivation of the purely nuclear kinetic energy terms shown in section
1.2.2 only account for the angular momenta originated from the motion of
the nuclei alone — i.e. structureless point masses a priori. However, the
electronic motion does indeed contribute to the total angular momentum
of the whole system. For this reason, it is important to recast the angular
momenta used in the previous equations to include the electronic angular
momenta for the subsequent definition of meaningful basis functions [17].

In general, the angular momentum operator j⃗ is associated to the diatomic
fragment BC asymptotically, so it can be decomposed into the rotational
angular momentum arising from the motion of the diatomic nuclei N⃗ , plus
the total electronic angular momentum of the diatom j⃗e —the sum of the
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diatomic orbital angular momentum L⃗BC and spin S⃗BC— with a total pro-
jections on the body-fixed diatomic internuclear axis ΩBC (of j⃗e), ΛBC (of

L⃗BC) and ΣBC (of S⃗BC).

j⃗ = N⃗ + j⃗e j⃗e = L⃗BC + S⃗BC ΩBC = ΛBC + ΣBC (1.15)

On the other hand, although the atomic fragment A has not nuclear rota-
tion contribution, it has an asymptotically defined total electronic angular
momentum J⃗A —sum of the atomic orbital angular momentum L⃗A and spin
S⃗A—, with a total projection on the body-fixed z-axis ΩA (of J⃗A), ΛA (of L⃗A)

and ΣA (of S⃗A).

J⃗A = L⃗A + S⃗A ΩA = ΛA + ΣA (1.16)

If the nuclear spin angular momentum is neglected, the total angular mo-
mentum of the system J⃗ can be asymptotically (for R → ∞) be written as
the sum of all the previously mentioned angular momenta.

J⃗ = ℓ⃗+ j⃗ + J⃗A (1.17)

Analogously, the projection of J⃗ on the z-axis are respectivelyM (space-fixed)
and Ω (body fixed).

Recalling the actual system of study, the final angular momenta to consider
are slightly easier to treat than the general case. For instance, in the reactant
arrangement, the diatomic fragment H2(X

1Σ+) has no electronic angular
momentum (je = 0), so j only comes from the rotational contribution.

1.2.4 Total Wavefunction: Diabatic Basis Set

According to the postulates of quantum mechanics [21], the whole system can
be described by a total wavefunction Ψ —which is a priori unknown in its
exact form. However, what really matters from a practical point of view are
the energy eigenstates of the system ΨE, which have a well-defined energy —
i.e. eigenfunctions of the Hamiltonian operator—. Since this system involves
the dynamical motion of all atoms in reactive collisional events, the energy
eigenfunction spectrum is expected to form a continuum, being the definite
energy E one of the few labels to characterize each of the eigenstates. In
order to properly obtain as much information as possible for each state, it is
required to find those operators which commute with the Hamiltonian and
adopt their well-defined eigenvalues as additional labels for the wavefunction.
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This is the case of the Total Angular Momentum J , which is conserved for
isolated systems by definition, as well as the symmetry operators —in case
of having any point symmetry. Additionally, given that the total angular
momentum has a well-defined value J , its z-axis projections M (space-fixed)

or Ω (body-fixed) can also take definite values, since operators Ĵ2 and Ĵz
commute to each other [19, 21] —though not invariant, as they depend on
the actual rotational configuration of the system (Ω is not conserved). This
leaves us with a total nuclear wavefunction labelled as ΨJ

E(R, r, γ, ϕ, θ, χ)
which results from a linear combination of all the possible Ω values of the
system (Ω = 0,±1, . . . ,±J).

The next suitable step is to represent the wavefunction ΨJ
E by two radial-

dependent functions Φ(R), φ(r) and another purely angular-dependent func-
tion denoted as W(γ, ϕ, θ, χ). This separation is possible due to the unique
properties of the Jacobi coordinates [17] —note that it is not the case of the
electronic coordinates, which are implicit variables for all the three functions,
but omitted for convenience.

ΨJ
E(R, r, γ, ϕ, θ, χ) =

∑
Ω

Φ(R)

R

φ(r)

r
WJΩ(γ, ϕ, θ, χ) (1.18)

It is worth to mention that each radial-dependent function is divided by
its own coordinate in order to simplify the expression of the radial matrix
elements of the Hamiltonian — the Jacobian reduces from R2 dR to simply
dR.

Up to now, the wavefunction is general and applicable for all three-atom
systems. However, it is even more important to consider the asymptotic
limit for independent atom A and diatom BC fragments, because it plays
a fundamental role in the final identification of the reactant and product
arrangements —the final objective of this study after all. For this reason, it
is useful to rewrite the total wavefunction in terms of asymptotically well-
defined observables, briefly described below.

The atomic electronic angular momentum JA with its projection ΩA only
contribute to the angular part of the wavefunction, so their associated eigen-
function |JAΩA⟩ is included in WJΩ. Conversely, the diatomic rotational
angular momentum j has a certain contribution in the r-dependent function
too. Hence, φ(r) is identified as the diatomic rovibrational eigenfunctions of
the diatomic fragment φjv(r)—with a vibrational quantum number v. Tak-
ing this new asymptotic basis [17], the final expansion of the wavefunction
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becomes a superposition of all possible channels —collectively denoted with
the global quantum number α ≡ {Ω, JA,ΩA, j, v}.

ΨJ
E(R, r, γ, ϕ, θ, χ) =

∑
α

Φα(R)

R

φjv(r)

r
WJΩ

jJAΩA
(γ, ϕ, θ, χ) (1.19)

Of course, the body-fixed angular function WJΩ
jJAΩA

can be related to its space-
fixed counterpart YJM

jJAΩA
taking into account the effect of the rotations of

the three Euler angles. This is achieved via Wigner’s rotation matrices
DJ

MΩ(ϕ, θ, χ) [19, 22] — factorizable in individual rotation matrices e−iMϕ,
dJMΩ(θ) and e

−iΩχ .

WJΩ
jJAΩA

(γ, ϕ, θ, χ) =

√
2J + 1

8π2
DJ∗

MΩ(ϕ, θ, χ)YJM
jJAΩA

(γ, 0) (1.20)

DJ
MΩ(ϕ, θ, χ) ≡ e−iMϕ dJMΩ(θ) e

−iΩχ

Where YJM
jJAΩA

is just the product of the atomic electronic eigenfunction
|JAΩA⟩ and the space-fixed spherical harmonics of the diatomic fragment
Yjλ.

YJM
jJAΩA

(γ, 0) = Yjλ(γ, 0) |JAΩA⟩ (1.21)

As a matter of nomenclature, the body-fixed angular basis WJΩ
jJAΩA

is finally
written as |JΩjJAΩA⟩.

The only last consideration to take into account for the definition of the
wavefunction is the presence of symmetries in the system. In three-atom sys-
tems such as the one of this study, NH+

2 , there is a symmetry plane operator
σ̂xz which is expected for the body-fixed frame. Conceptually, this body-fixed
symmetry plane is a natural consequence of the space-fixed inversion operator
E∗ [17].

E∗ (R, θ, ϕ) → (R, π − θ, ϕ+ π) E∗ (r, γ, χ) → (r, γ, π − ϕ) (1.22)

E∗ |JΩjJAΩA⟩ = (−1)J+JA+L |J − ΩjJA − ΩA⟩

In order to make the angular basis functions to be eigenfunctions of the
inversion operator, it is only required to take linear combinations of the
predefined basis functions [17].
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|JΩjJAΩAp⟩ = cΩΩA

[
|JΩjJAΩA⟩+ p(−1)J+JA+L |J − ΩjJA − ΩA⟩

]
(1.23)

cΩΩA
=

√
2− δ0Ωδ0ΩA

4
p = ±1

This way, there are two main families of functions depending on their parity
eigenvalue p = ±1.

E∗ |JΩjJAΩAp⟩ = p |JΩjJAΩAp⟩ (1.24)

Figure 1.3: Symmetry plane of the system in the body-fixed frame

With all these considerations, the diabatic basis functions are fully charac-
terized for any arbitrary three-atom system.

The nuclear spin has been neglected systematically during the present deriva-
tions, since its effect is assumed to be reasonably small in general. However,
in the system of study NH+

2 , in the reactant arrangement, there is the di-
atomic molecule H2, which is strongly affected by its nuclear spin — it is pos-
sible to distinguish between the nuclear triplet state o-H2 (ortho hydrogen)
and the nuclear singlet p-H2 (para hydrogen) [23, 24]. Taking into account
the permutational symmetry of the two identical hydrogen atoms, the o-H2

corresponds to symmetric nuclear spin functions (|↑↑⟩,|↓↓⟩, 1√
2
[|↑↓⟩+ |↓↑⟩])

and p-H2 to antisymmetric nuclear spin functions ( 1√
2
[|↑↓⟩ − |↓↑⟩]).

The two possible spin isomers of hydrogen have significant implications in
the final allowed values of the diatomic angular momentum j [24]. The two
hydrogen nuclei are particles of spin I = 1

2
, subject to the usual permutational

antisymmetry requirement of fermions for the diatomic wavefunction [21].
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For that reason, recalling the permutational symmetry of the two nuclear
spin isomers, we conclude that the o-H2 only has odd j values, while p-H2 is
restricted to even j values.

Of course, this additional diatomic parity restriction only applies to the reac-
tant arrangement with H2, but not for the product arrangements — nor for
a general ABC system.

1.2.5 Matrix elements

Once the wavefunction is completely defined, there is only left to evaluate
the matrix form of the Hamiltonian operator in the chosen basis set.

Ĥint = − ℏ2

2µ

(
2

R

∂

∂R
+

∂2

∂R2

)
− ℏ2

2µBC

(
2

r

∂

∂r
+

∂2

∂r2

)
(1.25)

+
ℓ2

2µR2
+

j2

2µBCr2
+ Ĥel + ĤSO

ΨJ
E =

∑
α

Φα(R)

R

φjv(r)

r
|JΩjJAΩAp⟩

Radial Elements

The radial functions Φα(R) are initially unknown, since they depend on all
the quantum numbers of each function of the diabatic basis set. As a conse-
quence, they are numerically obtained in the resolution of the close-coupling
equations [25–27], which will be properly described later in the next sections.

− ℏ2

2µ

〈
Φα′

R

∣∣∣∣ ( 2

R

∂

∂R
+

∂2

∂R2

) ∣∣∣∣Φα

R

〉
= − ℏ2

2µR2
⟨Φα′ | ∂2

∂R2
|Φα⟩ (1.26)

On the other hand, the diatomic radial functions φjv(r) are easy to obtain
numerically, by application of the standard procedures for diatomic molecules
— see section 2.2.2.

− ℏ2

2µBC

〈φj′v′

r

∣∣∣ (2

r

∂

∂r
+

∂2

∂r2

) ∣∣∣φjv

r

〉
= − ℏ2

2µBCr2
⟨φj′v′|

∂2

∂r2
|φjv⟩ (1.27)
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Angular Elements

The angular Elements of the Hamiltonian are relatively simple to obtain,
since the selected angular basis is defined to include the eigenfunctions of
the angular momentum operators — as shown by Jouvet et al. [20].

1

2µBCr2
⟨JΩ′j′J ′

AΩ
′
Ap| j2 |JΩjJAΩAp⟩ ⇒ ⟨Yj′λ′| j2 |Yjλ⟩ = ℏ2j(j+1)δjj′δλλ′

(1.28)

For the angular momentum associated to R, the same deductions are made
if its expression in terms of the total angular momentum is written.

1

2µR2
⟨JΩ′j′J ′

AΩ
′
Ap| ℓ2 |JΩjJAΩAp⟩ (1.29)

For the special case of the angular momentum ℓ⃗, it is usually preferred to
replace it in terms of the total angular momentum J⃗ .

J⃗ = ℓ⃗+ j⃗ + J⃗A ⇒ ℓ⃗ = J⃗ − j⃗ − J⃗A (1.30)

ℓ2 = J2 + j2 + J2
A − 2

(
J⃗ · j⃗ + J⃗ · J⃗A − j⃗ · J⃗A

)
⇒

⟨JΩ′j′J ′
AΩ

′
A| J2 |JΩjJAΩA⟩ = ℏ2J(J + 1)δΩΩ′

⟨Yj′λ′| j2 |Yjλ⟩ = ℏ2j(j + 1)δjj′δλλ′

⟨J ′
AΩ

′
A| J2

A |JAΩA⟩ = ℏ2JA(JA + 1)δJAJ ′
A
δΩAΩ′

A

The coupling terms between angular momenta are solved using the ladder
operators Ĵ+ and Ĵ− [19] —for a generic angular momentum, Ĵ+ = Ĵx+ iĴy

and Ĵ− = Ĵx − iĴy.

⟨JΩ′j′J ′
AΩ

′
Ap| ℓ2 |JΩjJAΩAp⟩ = δjj′δJAJ ′

A
{δΩΩ′δΩAΩ′

A
ℏ2 × (1.31)[

J(J + 1) + j(j + 1) + JA(JA + 1)− 2Ω2 − 2Ω2
A + 2ΩΩA

]
−dΩΩ′ΩAΩ′

A
⟨JΩjJAΩAp| ℓ2coup |JΩjJAΩAp⟩}

ℓ2coup ≡ J+j− + J−j+ + J+JA− + J−JA+ − j+JA− − j−JA+

The coefficient dΩΩ′ΩAΩ′
A
can adopt the value

√
2 if either Ω,Ω′,ΩA or Ω′

A are
zero, but otherwise dΩΩ′ΩAΩ′

A
= 1.

For the sake of simplicity, the analytical expression of the ladder operators is
not explicitly written, yet their evaluation is trivial if their general definition
is considered.

Ĵ± |JΩ⟩ = ℏ
√
J(J + 1)− Ω(Ω± 1) |JΩ± 1⟩ (1.32)
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Potential Elements

The potential matrix elements are obtained, in analogy with the kinetic el-
ements, by representing the electronic potential energy operator V̂ in the
already defined basis functions of the system |JΩjJAΩAp⟩. Although the
final evaluation in the chosen basis is not very different from the previous
cases, the electronic potential is considerably more complex to obtain. The
selection of a specific methodology to calculate the potential is often condi-
tioned to the way the main problem is addressed. Hence, to let the reader
have a deeper understanding of the main topic of this study, the explicit form
of these matrix elements will be shown later in section 2.2.5.

1.3 Reaction Dynamics: Quantum Models

From a microscopic point of view, any chemical reaction can be understood
as a collisional process in which there is a change in the arrangement of the
atoms of the system (i.e. there is a change in the chemical species). For a
given asymptotic arrangement, the internal state of all species is completely
determined by the collection of quantum numbers that define the wavefunc-
tion. This is what is known as a reaction channel [17]. In the present system
of study, the channels are defined as follows within a given arrangement —in
the asymptotic electronic state labelled as ie and parity p.

α ≡ {ie, j, v, JA,ΩA} with constant the values of {E, J, p} (1.33)

Note that this nomenclature excludes the total energy E, total angular mo-
mentum J and parity p from the channel labels α. They are expected to be
conserved for all involved channels as they correspond to definite eigenvalues
of the complete set of commuting operators of the system [21] — i.e. the

Hamiltonian Ĥ, the total angular momentum Ĵ2 and the inversion operator
E∗.

For the reactant arrangement, there is one additional feature which strongly
affects the nature of the channels. It is a consequence of the nuclear spin
configuration of the H2 fragment (either ortho or para). In this study, the
hyperfine interaction terms are not included because of their small magni-
tude. Nonetheless, as the nuclear spin function is exactly separable for a
diatomic molecule (two nuclei system), the diatomic permutation symmetry
is indeed rigorously covered. It is introduced a posteriori by taking its ef-
fects on the diatomic rotational quantum number j —the configuration p-H2
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only allows even values of j, while the o-H2 only allows odd values. For this
reason, an artificial quantum number pd is introduced corresponding to this
diatomic parity — ’pd = even’ means even j values, yet ’pd = odd’ allows
odd j values [24].

Although many different channels may exist for a certain arrangement, the
system can only access with a certain probability some of them for a given
total energy E — called open channels as opposed to the inaccessible closed
channels [28].

The probability of starting from a specific reactant channel α and ending
in another product channel α′ is represented by the so-called state-to-state
reaction probability P Jp

αΩ α′Ω′(E) [29]. The estimation of this probability is the
central motivation of the theoretical simulations and approximations of this
study, as it is carefully explored in the next sections.

The state-to-state reaction probabilities P Jp
αΩ α′Ω′(E) can be used to obtain

the useful state-to-state cross-section σαα′(E) from a partial wave summation
over the total angular momentum J .

σαα′(E) =
π

(2j + 1)(2JA + 1)k2α(E)

∑
J p

∑
ΩΩ′

(2J + 1) P Jp
αΩ α′Ω′(E) (1.34)

with

kα(E) =

√
2µ(E − Eα)

ℏ
(1.35)

Although the microscopic behaviour of the reaction is already characterized
by the state-to-state cross-section σαα′(E) , it is often preferred to handle
macroscopic magnitudes such as thermal rate constants K(T ) [5, 7]— yet
cross-sections can also be experimentally measured if desired [6]. Conse-
quently, it is needed to build the state-to-state rate constants Kαα′(T ) by
performing Boltzmann averages over the total energy E, and finally estimate
the macroscopic mean thermal rate constant K(T ) assisted by an average
arising from statistical mechanics [15].

Kαα′(T ) =

√
8

πµ(kBT )3

∫
dE E σαα′(E) e−E/kBT (1.36)

K(T ) =
∑
v j ie

wα(T )
∑
α′

Kαα′(T )

wα(T ) =
(2IBC + 1)(2j + 1)(2JA + 1)e−Eα/kBT∑
α′′(2IBC + 1)(2j + 1)(2JA + 1)e−Eα′′/kBT
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1.3.1 Resonance-driven reactions

As a matter of fact, there are two possible ways for a reaction to take place.
These are either going from a specific channel to another open channel —
a direct, classical process —, or ending in an initially closed channel which
has been coupled to other accessible channels — indirect, quantum process.
The latter mechanism is known as a resonance [30–32], and occurs when
the system gets trapped in potential wells forming a collision complex —
long-lived collision complexes imply a loss of information of the initial state.
Depending on the nature of the coupled channels, one can distinguish between
Feshbach resonances — coupling different channels (electronic, vibrational,
rotational . . . ) — , or orbital resonances — coupling unbound continuum
sates with bound vibrational states within the same channel (quasi-bound
states supported by a centrifugal barrier).

Following with what is described in the next section, the reaction probability
P (E) can be equivalently expressed in terms of the scattering matrix S(E).
As it will be shown in section 2.1.4, the origin of this magnitude lies in the
heart of the quantum collisional process. Therefore, it is not surprising that
the scattering matrix can be conceptually decomposed into the two possible
reaction mechanisms — according to W. H. Miller [30].

S(E) = Sbg

(
1− iA

E − Er + iΓ

)
(1.37)

The background direct mechanism contribution Sbg arises from the interac-
tions of the open channels. However, the second resonance indirect term
depends on the coupling between open and closed channels (A). For a res-
onance to occur, a specific energy Er is required, with a specific lifetime
related to its width Γ. What is clear is that the resonances are the poles of
the scattering matrix in the complex plane.

In systems where there are many different channels close to each other in
energy, the importance of the resonances becomes critical. In the system of
this study, there are multiple channels in an intermediate region where a deep
well in the Potential Energy Surfaces occurs — the system gets ”trapped” in
the well for a while [7, 15].

For this reason, this particular insertion reaction is said to be a resonance
driven reaction. Additionally, under these conditions the statistical model
is expected to give accurate descriptions of the system, since all coupled
channels become almost equally probable — the system looses its ”memory”,
and gets an unbiased capture in a certain channel once it leaves the well.
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1.3.2 Statistical method: Capture model

In view of the previous section, the only difficulty is how to estimate the state-
to-state reaction probabilities P Jp

αΩ α′Ω′(E) — or equivalently, the so-called

state-to-state scattering matrix SJp
αΩ α′Ω′ , related as P Jp

αΩ α′Ω′(E) = |SJp
αΩ α′Ω′ |2

[30]. This quantity can be calculated in many different ways, but the chosen
statistical approach is characterized by using capture probabilities for each
channel CJp

αΩ.

P Jp
αΩ α′Ω′(E) = CJp

αΩ BJp
α′Ω′(E) BJp

α′Ω′(E) =
CJp

α′Ω′∑
α′′Ω′′ C

Jp
α′′Ω′′

(1.38)

where BJp
α′Ω′(E) is the branching ratio accounting on all the accessible chan-

nels from all the possible arrangements.

The calculation of the capture probabilities is performed in this study in two
different approaches: quantum statistical and adiabatic statistical models.

The adiabatic statistical method [28, 33, 34] simply imposes a classical ap-
proximation — either completely opened or closed channels, no intermediate
probabilities. For a specific adiabatic eigenvalue of the total potential ma-
trix, if the highest energy barrier is denoted as Eb, the capture is given by
equation (1.39).

CJp
αΩ =

{
1 ⇔ E ≥ Eb

0 ⇔ E < Eb
(1.39)

On the other hand, the quantum statistical approach [26, 27, 29, 35] assigns
a certain probability to each channel (between 0 and 1), which is found by
solving a set of inelastic close-coupled equations for each arrangement, as
described in section 2.2.
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Chapter 2

Methodology

The main focus of this study is to stress the importance of resonances in
the reactivity of simple systems such as in the model reaction N+ + H2 −→
NH+ + H, as well as its implications for the system to behave in a statistical
way. For this reason, the first part of this study is dedicated to the proper
illustration of the concept of resonance for a simple one-dimensional case
(section 2.1), along with the description of the numerical methods applied
in the actual implementation of the time-independent Schrödinger equation.
Then, the system of interest is fully explored and discussed by a generaliza-
tion of the previously seen concepts, with a program developed for solving
the so-called close-coupling equations and get a quantum-statistical model for
the dynamics. The validation of this methodology is presented as well, by
comparing the obtained results with those given by a complete numerically-
exact time-dependent method, analysing both their strengths and weaknesses
— the latter actually treats both the direct and indirect (resonance mediated)
reaction mechanisms.

2.1 Numerical methods and Resonances

2.1.1 One-dimensional model potential

As it was stated before in section 1.3.1, resonances play a fundamental role in
the reactivity of some systems which behave statistically due to the coupling
between open channels and closed channels [30]. Although they exhibit their
greatest power in multi-dimensional systems, such as the one of interest in
this study {R, r, γ}, the visualization of their basic nature is rather achieved
for simple one-dimensional cases.

Taking this argument as a foundation, in this section it is considered as a
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model system a simple Eckart potential [36], the ”smooth” equivalent to a
step potential (V0) at R0, with a barrier (Vb) of width L — see Figure 2.1.

V = V0
−ξ
1− ξ

+ Vb
−ξ

(1− ξ)2
ξ ≡ − exp

(
2π
R−R0

L

)
(2.1)

Figure 2.1: Generic Eckart potential

Note that the exact barrierless step potential is just the limit case of the
Eckart potential when L → 0 and Vb → 0 — the limit of interest in this
simplification.

It is worth to mention that, in analogy to the more complex system of study

NH+
2 , there is a certain rotational barrier ℏ2ℓ(ℓ+1)

2µR2 arising from the angular
momentum ℓ. This introduces an additional distortion on the potential, so
that the effective potential V must account on it.

V = V +
ℏ2ℓ(ℓ+ 1)

2µR2
(2.2)

As we are interested in obtaining the eigenstates of the system (Φ), the
resolution of the time-independent Schrödinger equation is required, as usual.

Φ′′ =
2µ

ℏ2
(V − E) Φ (2.3)

24



for which it is expected to find both bound |Φi⟩ and continuum solutions
|ΦE⟩, so the general closure relation holds [21].∑

i

|Φi⟩ ⟨Φi|+
∫
dE |ΦE⟩ ⟨ΦE| = 1 (2.4)

2.1.2 Discrete representations

Before any numerical method is applied to solve this equation, it is needed
to take a discrete space-representation of the functions by introducing a grid
for the coordinate R with a spacing of ∆ [17].

|Rk⟩ =


0 ⇔ R��∈

(
Rk − ∆

2
, Rk +

∆
2

)
√

1/∆ ⇔ R ∈
(
Rk − ∆

2
, Rk +

∆
2

) (2.5)

lim
∆→∞

⟨Rj|Rk⟩ = δ(Rj −Rk)

The wavefunction is expanded in the new discrete basis, as well as the po-
tential —which is assumed to be quasi-constant between two adjacent grid
points.

Φ =
∑
k

Φk |Rk⟩ (2.6)

⟨Rj| V |Rk⟩ = δjkV(Rk) ≡ Vk

By working in the new discrete representation, it is possible to introduce nu-
merical approximations which can be implemented in actual computer pro-
grams. This way, it is possible to find numerical solutions to the discretized
time-independent Schrödinger equation.

Φ′′
k =

2µ

ℏ2
(Vk − E)Φk (2.7)

The numerical techniques used in this study (i.e. Numerov and Givens) are
both based on Taylor expansions of the coefficients of the wavefunction in
the discrete basis, which are assumed to be continuous in all intervals —
as well as their derivatives, forming the postulates of the Finite Difference
method [37].

Φk±1 = Φk ±∆Φ′
k +

∆2

2!
Φ′′

k ±
∆3

3!
Φ′′′

k +
∆4

4!
Φiv

k + · · · (2.8)
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The actual factorization and manipulation of these equations are the starting
points for the approximations to be done in the different numerical methods
of this study. For this one-dimensional case, the Numerov method will be
applied.

2.1.3 Numerov method

Within the Numerov method [17,37], the Taylor expansion of the wavefunc-
tion is truncated up to sixth order O(∆6), and some summations are per-
formed taking the Taylor expansion of the wavefunction and its derivatives.

Φk+1 + Φk−1 ≈ 2Φk +∆2Φ′′
k +

∆4

12
Φiv

k

−∆2

12

(
Φ′′

k+1 + Φ′′
k−1

)
≈ −∆2

6
Φ′′

k − ∆4

12
Φiv

k

⇒ (2.9)

(Φk+1 + Φk−1)−
∆2

12

(
Φ′′

k+1 + Φ′′
k−1

)
≈ 2Φk +

5∆2

6
Φ′′

k ⇒

Substituting the second-derivatives by their definition in the discretized time-
independent Schrödinger equation, the final expression becomes as seen in
equation (2.10).

αk−1Φk−1 + βkΦk + γk+1Φk+1 ≈ 0 (2.10)

αk−1 = 1− ∆2

12
λk−1 βk = −2− 10∆2

12
λk γk+1 = 1− ∆2

12
λk+1

λk =
2µ

ℏ2
(Vk − E)

With this key equation of the method, a propagator Rk is defined to inter-
relate the wavefunction at two adjacent grid-points.

Φk = RkΦk+1 Rk = − [αk−1Rk−1 + βk]
−1 γk+1 (2.11)

This way, once the suitable boundary conditions are imposed on the asymp-
totic regions (R → 0 and R → ∞), the wavefunction is completely known
at all grid points — two boundary conditions are required to fully character-
ize the solutions of the second-order differential equation. The propagation
is developed from the left asymptote (R → 0), and when the last point is
reached (R → ∞), the right boundary condition is imposed too.
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Of course, the algorithm presented above corresponds to the one-dimensional
version of Numerov’s method. In practice, when multiple channels are in-
volved, the equations are recast into a matrix form —as shown in section
2.2.

2.1.4 Boundary conditions

The proper definition of the boundary conditions strongly depends on the
potential considered, which determines the actual form of the wavefunction
of the system. As usually happens for most typical molecular potentials,
in the asymptotic regions of the reactants and products arrangements, the
potential becomes flat and the wavefunction behaves asymptotically as the
ordinary solutions of a step potential.

In the case of a one-dimensional potential with an isolated centrifugal barrier,
the radial Schrödinger equation adopts the form seen in equation (2.12).

[
−ℏ2

2µ

d2

dR2
+

ℏ2ℓ(ℓ+ 1)

2µR2
− (E − V )

]
Φℓ

E = 0 (E − V ) =
ℏ2k2

2µ
(2.12)

After a small manipulation of the previous equation, when V = 0 (i.e. long
distances for which V → 0 faster than R−2), one can finally conclude that
its solutions are the well-known spherical Bessel functions of first (jℓ) and
second kind (yℓ) — called regular and irregular solutions, respectively [38].

Φℓ
E =


AkR jℓ(kR)

AkR yℓ(kR)

=
R → ∞


A sin

(
kR− ℓ

π

2

)
−A cos

(
kR− ℓ

π

2

) (2.13)

These are real stationary solutions, but it is also possible to get incoming
and outgoing complex solutions by taking linear combinations of them (i.e.

Bessel functions of third order h
(1)
ℓ = jℓ + iyℓ and h

(2)
ℓ = jℓ − iyℓ) [38].

Φℓ±
E =


A±kR h

(1)
ℓ (kR)

A±kR h
(2)
ℓ (kR)

=
R → ∞


iA± e−i(kR−ℓπ

2 )

−iA± ei(kR−ℓπ
2 )

(2.14)
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These last asymptotic solutions are by definition eigenfunctions of the linear
momentum operator — as well as eigenfunctions of the Hamiltonian —, as
seen in equation (2.15).

p̂ = −iℏ ∂

∂R
p̂ Φℓ±

E (R) = ±ℏk Φℓ±
E (R) (2.15)

The norm factor A is trivially obtained by imposing the energy normalization
condition.

〈
Φℓ±

E

∣∣Φℓ±
E′

〉
= δ(E − E ′) A± =

√
µ

2πkℏ2
(2.16)

If we work with the real stationary solutions instead of the complex incoming
and outgoing waves, the norm factor is multiplied by two (A = 2A±), as they
involve the combination of two exponential functions.

Although this example is just constrained to a one-dimensional potential for
the sake of simplicity, the exact same boundary conditions can be generalized
to the multi-dimensional case for more complex systems as the one chosen
for this study, NH+

2 .

Recalling the case of a one-dimensional Eckart potential [36], there are two
boundary conditions to consider. Suppose a hypothetical particle approach-
ing the barrier from the right-hand side.

The left asymptote Φ
ℓ (I)
E (R → 0) imposes the condition of an outgoing

wave, leaving the barrier in the right. Conversely, in the right asymptote
Φ

ℓ (II)
E (R → ∞) , the wavefunction is a superposition of transmitted and

reflected functions.

Φ
ℓ (I)
E = NI e

−ikIR Φ
ℓ (II)
E = NII

[
e−ikIIR − S eikIIR

]
(2.17)

Where S is the scattering matrix. As stated before, it is a fundamental mag-
nitude because it keeps the most relevant information of the whole dynamical
process, and is often needed for the obtention of other important magnitudes
like the reaction cross-section — as in the NH+

2 reaction.

There are alternative formulations of the scattering matrix [17], which arise
from the general expression of the wavefunction —matching equations (2.17).

Φℓ
E(R) = N [sin(kR) +K cos(kR)] = N ′ sin(kR + δ) (2.18)

S = ei2δ = [1− iK]−1[1 + iK]
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This way, it is clear that the scattering matrix conceptually emerges from
the energy-dependent phase δ, or equivalently the so-called reaction matrix
K = tan(δ). Despite this simple origin, they give crucial information about
the effect of the potential on the asymptotic behaviour of the dissociative
eigenstates (i.e. reaction channels).

2.1.5 Numerical Propagation

The numerical method begins with the forward propagation of the wave-
function in the discrete grid defined in 2.1.2. Taking the asymptotic right
boundary condition [38], if the effective potential at R → 0 is sufficiently
higher than the energy, and if the grid step is small enough, the propagator
can be easily initialized using that Φk = RkΦk+1.

R1 = 0 (V ≫ E) (2.19)

Then, applying the Numerov method [37], the forward propagation is achieved
using equations (2.10) and (2.11) at each point.

Rk = − [αk−1Rk−1 + βk]
−1 γk+1

Once the forward propagation has reached the last grid point, it is time
to perform a backward propagation too, as part of Numerov’s method. At
the right asymptote, the wavefunction is fully characterized, so that the
scattering matrix is trivially found from Φn−1 = Rn−1Φn.

S =
Rn−1e

−ikIIRn − e−ikIIRn−1

Rn−1eikIIRn − eikIIRn−1
(2.20)

Note that, for a certain potential and a rotational barrier arising from a fixed
angular momentum ℓ, the scattering matrix is a unique function which only
depends on the energy.

Since the propagator is already know at all grid points, the final recovery of
the wavefunction and the scattering matrix is possible by the inverse propa-
gation mechanism — Φk = RkΦk+1.

With this simple one-dimensional example in section 2.1, all the details con-
cerning Numerov’s method are already shown. They are exactly the same
for the general multi-dimensional problems — recast in a matrix formulation
though.
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2.2 Time-independent approach

2.2.1 Multi-dimensional potential and grids

The main focus of this study is devoted to the theoretical modellization of
the system NH+

2 , being its asymptotes the reactants (N+ + H2) and products
(NH+ + H) arrangements — which are calculated separately, but later com-
bined in the statistical method. Although it consists in a multi-dimensional
potential problem — i.e. three internal coordinates {R, r, γ} —, the formal
treatment is analogous to what has been described in section 2.1. Note that
all the explained methodology was implemented into a computer program
called aZticc [39] which is briefly described in section 2.2.5.

Let us recall the chosen expansion of the total nuclear wavefunction of the
system

ΨJ
E(R, r, γ, ϕ, θ, χ) =

∑
α

Φα(R)

R

φjv(r)

r
WJΩ

jJAΩA
(γ, ϕ, θ, χ) (2.21)

The angular basis WJΩ
jJAΩA

is exactly known from the expression of the spher-
ical harmonics and Wigner rotation matrices [22], hence there is only left to
numerically compute the radial functions Φα(R) and φjv(r). In any case, the
actual application of the wavefunction in computer codes encourages us to
discretize the functions by introducing discrete grids on the selected coordi-
nates of the system {r, R, γ}.

The ab initio potentials are also subject to the discretization of the coor-
dinates, but they are rather saved in a Discrete Variable Representation
(DVR) [37]. It is just the selection of optimized grid points which corre-
spond to the roots of selected expansion functions in which the potential
is integrated for storage — in this case, Gauss-Legendre integration with
associated Legendre polynomials as expansion functions.

It is time to explain how the numerical methods of this study are imple-
mented. Let us illustrate the procedure with a general discretized function
|ψ⟩ =

∑
k ψk |k⟩, yet the discussion is valid both for Φα(R) and φjv(r). By

definition of the finite difference method [37], the grid elements are separated
by a step ∆, in which both the wavefunction (i.e. its coefficients ψk) and its
derivatives are assumed to be continuous. Then, the Taylor expansion of the
coefficients is performed in the finite grid.
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This expansion is combined with the actual numerical problem that must
be solved, the discretized expression of the time-independent Schrödinger
equation.

ψ′′
k =

2µ

ℏ2
(Vk − E)ψk (2.22)

The factorization and manipulation of these two equations are the starting
points for the approximations to be done in the different numerical methods
of this study.

2.2.2 Given’s method

The diatomic function φjv(r) is found by application of the Given’s method
[17,37] to solve the discretized time-independent Schrödinger equation of the
diatomic fragment — φ′′

k =
2µ
ℏ2 (Vk−E)φk. The Taylor expansion is truncated

at fourth order O(∆4), and the summation φk+1 + φk−1 is performed to
eliminate the odd powers of ∆.

φk+1 + φk−1 ≈
(
2 +

2µ

ℏ2
(Vk − E)

)
φk (2.23)

If we define Hk ≡ −2− 2µ∆2

ℏ2 Vk, the matrix form of the equation becomes.


H1 1 0 · · · 0
1 H2 1 · · · 0
0 1 H3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Hn




φ1

φ2

φ3
...
φn

 ≈


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

λ


φ1

φ2

φ3
...
φn


(2.24)

λ =
−2µ∆2

ℏ2
E

where the Hamiltonian matrix has a tridiagonal form trivially diagonalized
by standard subroutines — e.g. the TQLI algorithm [37].

2.2.3 Numerov-Fox-Goodwin method

The radial coefficients Φα(R), which depend on the main reaction coordinate
R, are found by application of the multi-dimensional version of Numerov
method (Numerov-Fox-Goodwin) [40, 41] to solve the discretized radial time-

independent Schrödinger equation for the whole system — Φ
′′
k = 2µ

ℏ2 (Vk −
EI)Φk.
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Note that the parameters αk−1, βk and γk+1 are now matrices, and the wave-
function Φk is actually a vector, accounting on all the possible channels within
each arrangement.

αk−1Φk−1 + βkΦk + γk+1Φk+1 ≈ 0 (2.25)

αk−1 = 1− ∆2

12
λk−1 βk = −2− 10∆2

12
λk γk+1 = 1− ∆2

12
λk+1

λk =
2µ

ℏ2
(
Vk − EI

)
The propagator matrix Rk is defined, so that Φk = RkΦk+1, and again

Rk = −
[
αk−1Rk−1 + βk

]−1
γk+1. This way, once the suitable boundary con-

ditions are imposed on the asymptotic regions (R → ∞), the wavefunction
is completely known at all grid points.

As in the one-dimensional case, the propagation of the wavefunction is per-
formed from both asymptotes by imposing the suitable boundary conditions,
which allows the numerical resolution of the problem.

2.2.4 Boundary conditions

The calculations of the reactant and product arrangements are performed
separately, under the assumptions of a capture model once the system escapes
from the deep potential well. As a consequence, the boundary conditions
to impose for each asymptotic channel are quite similar to those already
described in the one-dimensional case — combinations of third order Bessel
functions h

(1)
ℓ and h

(2)
ℓ [38].

Φℓ
E =


AkR h

(1)
ℓ (kR)

AkR h
(2)
ℓ (kR)

=
R → ∞


iA e−i(kR−ℓπ

2 )

−iA ei(kR−ℓπ
2 )

(2.26)

In the left (reactant) asymptote, for the adiabatic diagonalized potential V d
α ,

an outgoing solution is imposed for open-channels, but it vanishes for closed
channels, in agreement to the postulates of the capture model — remember

that the capture probability is |Sα(E)|2 and kα =
√

2µ(E−V d
α )

ℏ2 .

1Φα(R < R1) =

{
0 ⇔ E < V d

α

−i
√

2µ
πℏ2kαSα(E)e

−ikαR ⇔ E ≥ V d
α

(2.27)
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In the right (product) asymptote, the usual superposition of incoming and
outgoing solutions is imposed as shown below.

Φα(R > RN) =

{
e−i|kα|R ⇔ E < Vα,α

i
√

2µ
πℏ2kαSα(E)

[
e−ikαR−ℓπ

2 − Sαβ e
ikαR−ℓπ

2

]
⇔ E ≥ Vα,α

(2.28)

As a matter of fact, the spherical Bessel functions are built for a well-defined
value of the angular momentum quantum number ℓ, which is only fulfilled
for a space-fixed frame. Unfortunately, all the formal treatment of the prob-
lem has been developed in a body-fixed coordinate system to facilitate the
computation of the basis functions and matrix elements. For this reason, the
aZticc program [39] roughly estimates an average value of ℓ by diagonaliz-
ing its corresponding Coriolis matrix (of eigenvalues ℓd) and rounding to the
closest integer value.

ℓd ≈ ℓ(ℓ+ 1) ⇒ ℓ ≈ 1

2

[
−1 +

√
1 + 4ℓd

]
(2.29)

The quality of this rough approximation is ensured by checking the predicted
ℓ value from the energy difference at the right asymptote — only the Coriolis
terms may present significant discrepancies.

∆E ≈ ℏ2ℓ(ℓ+ 1)

2µ

[
1

RN−1

− 1

RN

]
(2.30)

2.2.5 The ’aZticc’ program

The main theoretical concepts and numerical methodology of this study has
been implemented in the FORTRAN [42] code aZticc — Adiabatic Com-
plex Time-Independent Close-Coupling solver —, specially developed by O.
Roncero [39] for this work. Its final objective is to estimate the capture
probabilities by solving a set of inelastic close-coupled equations for each
arrangement separately to be further used in statistical calculations.

Its core approximations are, apart from the capture model and both adiabatic
and quantum statistical approaches, the Numerov propagation [40] with an
adiabatic-by-sectors representation [43–45].

The power of this adiabatic-by-sectors technique for the Numerov propagation
lies in the possibility to reduce the number of channels without drastically
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affecting the quality of the approximation. Unlike the diabatic channels, the
adiabatic channels are ordered by their energy Eρ(R), so it is possible to only
keep those channels with an energy below the imposed truncation energy
Ecut (Eρ(R) < Ecut).

A complete description of this methodology will not be provided in this
master thesis, but it can be found in the upcoming reference article Gómez-
Carrasco et al. [39] by this research group.

Potential Energy selection

In this section, a more detailed explanation about the potential elements is
given. There are two sets of potential energy surfaces (PES) that have been
used in this study, each of them for different purposes.

The first set, corresponding to the ones obtained by Nyman et al. [12] is
just a collection of two adiabatic ground-state PES — one optimal for each
arrangement. Each of them are complete surfaces from the reactant to the
product asymptotic arrangements, without skipping the intermediate regions,
but they lack any spin-orbit considerations.

This considerable simplification makes this set of PES only suitable for minor
qualitative calculations such as the study of the effect of the different basis
parameters, or the comparison with time-dependent approaches — validation
calculations and mostly didactic purposes.

The second set of PES has been developed by the present research group,
which not only introduces long-range corrections to the numerous adiabatic
spin-orbit states — later diabatized as explained below —, but also accounts
on the actual spin-orbit splittings for each of them. This increases the number
of total electronic states to 9 in the reactant arrangement, and 11 in the prod-
uct arrangement. The complexity of this set of PES makes it the ultimate
choice for accurate quantitative results of cross-sections and rate constants
— the one used in the upcoming article Gómez-Carrasco et al. [39]. In view
of this, only this last PES set will be described in the present section.

It is important to stress that, despite that the complete spin-orbit states are
considered, the PES developed by the present research group are limited to
only the reactant and product arrangement regions. The statistical approx-
imation makes possible to treat each arrangement separately for simplicity,
which allows a more detailed description of those regions. After all, for the
statistical model, it is all which is required, and for this reason it can be said
that it is a more detailed PES — without forgetting the particularities of
both PES sets.
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As long as the optimal definition of the Jacobi coordinates differ for the
reactant and product arrangements, two distinct PES were developed (one
for each arrangement) with slightly different features. Anyway, they share
common basic steps, so that their discrepancies are indicated when needed.
In all cases, the final PES have all been classified according to their symmetry
properties (i.e. the body-fixed reflection plane σ̂h)

Let us recall the electronic potential energy operator as constructed in section
1.2.3 [20].

V̂ = Ĥel + ĤSO Ĥel = Ĥ0
el + Ĥ1

el (2.31)

The first issue to deal with is the calculation of the non-relativistic electronic
Hamiltonian Ĥel. It was achieved using the software MOLPRO [46] for ab
initio calculations (SA-CASSCF/MRCI in the VTZ-F12 basis) to obtain the
adiabatic PES for the correlated to the corresponding asymptotic arrange-
ments — N+ (3PJA) + H2 (X 1Σ+

g ) for the reactant arrangement, but HN+

(X 2Π 3
2
, 1
2
) + H (2S) and HN+ (4Σ−) + H (2S) for the product arrangement.

Note that from the eight total states converging to this last asymptotic ar-
rangement, those corresponding to 5A′′ in the Cs group (i.e. 5Σ−) have been
excluded on purpose. This is because they have repulsive potentials and
hence their associated reaction channels are expected to be closed for the
studied case.

The product arrangement has been treated with adiabatic ab initio calcu-
lations for the complete specification of the adiabatic spin-orbit states (8
correlated to the former asymptote, and 3 to the latter) — their couplings
are ignored for the products.

Conversely, once the adiabatic non-relativistic PES of the reactant arrange-
ment have been calculated — states 1 3A′′, 1 3A′ and 2 3A′′ in the Cs group
(i.e. two 3Π and one 3Σ− in the C∞v group) —, they are adapted to a
preferable diabatic atomic basis |LAΛASAΣA⟩, which contemplates the non-
adiabatic couplings between them [47].

⟨LAΛASAΣA| Ĥel |LAΛASAΣA⟩ =

 E−1 Vc 0
Vc E0 Vc
0 Vc E1

 (2.32)

Where, the already calculated adiabatic energies are just its eigenvalues.

E1 = E−1 = E13A′′ (2.33)
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E0 = E13A′′ + E23A′′ − E13A′

Vc =

√
(E13A′′ − E23A′′)2 − (E1 − E0)

2

8

Although this diabatic representation is very useful, the chosen electronic
basis was the spin-orbit adapted basis |JAΩA⟩. Their relationship is mediated
by the 3-j symbols [19], which are mere generalizations of the Clebsh-Gordan
coefficients in angular momentum coupling cases.

|JAΩA⟩ =
∑
Λ,Σ

(−1)LA−SA+ΩA
√
2JA + 1

(
LA SA JA
ΛA ΣA −ΩA

)
|LAΛASAΣA⟩

(2.34)

Provided that the non-relativistic coupling term is slightly more complicated
to study, it is expanded in a basis of spherical harmonics YkΛ′−Λ, so that the
coefficients V k

ΛΛ′ in the diabatic basis set |LAΛASAΣA⟩ are known.

⟨LAΛASAΣA| Ĥ1
el |LAΛASAΣA⟩ = δΣAΣ′

A

∑
k

V k
ΛΛ′(R, r)Yk Λ′−Λ(γ, 0) (2.35)

Applying the conversion into the original basis set, the final matrix elements
are given by the following expression.

⟨JΩ′j′J ′
AΩ

′
Ap| Ĥ1

el |JΩjJAΩAp⟩ = δΩΩ′ cΩ|ΩA−Ω′
A| (2.36)

×
∑
Λ,Λ′

∑
Σ

∑
k

(−1)k+j+j′+Ω−Ω′
A V k

ΛΛ′(R, r)

√
[JA][J ′

A][k][j][j
′]

4π

×
(
LA SA JA
ΛA ΣA −ΩA

)(
LA SA J ′

A

Λ′
A ΣA −Ω′

A

)(
j k j′

0 0 0

)
×

(
j′ k j

Ω− Ω′
A Ω′

A − ΩA ΩA − Ω

)
with

cΩ|ΩA−Ω′
A| =

√
2− δΩ0|δΩA0 − δΩ′

A0|

2

[JA] ≡ 2JA +1 [J ′
A] ≡ 2J ′

A +1 [k] ≡ 2k+1 [j] ≡ 2j +1 [j′] ≡ 2j′ +1
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After introducing minor corrections like long-range interaction terms (e.g.
charge-induced dipole, induced quadrupole), there is only left to find the

spin-orbit interactions of ĤSO. To do that, two reasonable assumptions were
made: the spin-orbit coupling originates exclusively from the N+ cation, and
it is considered to be constant through all the PES. Indeed, in the chosen spin-
orbit adapted basis, this operator ⟨JAΩA| ĤSO |JAΩA⟩ is diagonal. Thus, the
experimental spin-orbit splittings were taken from the NIST database [48].

After all, the central topic of this study is the dynamical study of the selected
reaction, hence it is not worth to give further explanations about the con-
struction of the potential energy surfaces. If one were interested in additional
information regarding this specific topic, please go to the reference article by
Gómez-Carrasco et al. [39].

2.3 Time-dependent validation

2.3.1 The ’Madwave3’ program

Up to now, all the explained methodology corresponds to the dynamical
study of the system in a time-independent fashion. Although this approach
is completely legitimate by definition, there is no guarantee that the taken
approximations (statistical capture method) hold properly for the case of
study.

A proposed way to ensure the validity of the model is to compare the cal-
culated results with those obtained with a more exact calculation. This is
the case of the time-dependent approach, which is based on the propaga-
tion of a wavepacket Ψ(t) through the potential energy surface (PES) of the
system by solving the time-dependent Schrödinger equation [49]. Since the
wavepacket is not a stationary state in general, it is interpreted as a dy-
namical linear combination of eigenstates of the Hamiltonian ΦE (stationary
states) — for the present dynamic calculations, these are actually continuum
unbound eigenstates.

iℏ
∂Ψ(t)

∂t
= ĤΨ(t) Ψ(t) =

∫
dE c(E) e−iEt/ℏ ΦE (2.37)

Using the Fourier transform (and its inverse), the time-dependent wavepacket
is decomposed into its energy spectrum and the stationary eigenstates are
thus found. This way, the final results obtained in the time-dependent ap-
proach are completely analogous to those based in time-independent perspec-
tives.
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The program used for the time-dependent validation is Madwave3, developed
by O. Roncero. It applies the time-dependent approach for the modellization
of three-atom reactions and estimation of reaction probabilities, among other
features — for a complete description of the program, please refer to the
source publication [50,51].

Needless to mention that, as it is natural, the time-dependent approach also
has its limitations (i.e. high computational cost), yet it is a numerically exact
method. For this reason, this stage of the study is just devoted to have an
initial qualitative comparison of results, using the simplified set of PES IV
by Nyman et al. [12]

The propagation performed by Madwave3 has a particularity which makes
it different from an ordinary time propagation. The core of this approach

consists in expanding the evolution operator e
iĤt
ℏ in Tk(Ĥ, t) Chebyshev poly-

nomials of degree k [37, 52].

e
iĤt
ℏ =

∑
k

ak Tk(Ĥ, t) Ψ(t) =
∑
k

ak ϕ(k) (2.38)

This kind of expansion is also applied to the time-dependent wavefunction
Ψ(t), ensuring a unique representation ϕ(k) in terms of Chebyshev propaga-
tion steps [52]. It starts with Ψ(t = 0) = ϕ(k = 0), and then the rest of the
propagation steps are recursively obtained by means of Chebyshev recurrence
relations [52].

No further details will be provided in the present thesis, since the main point
of using the Madwave3 program is just for validation purposes — it is an
intermediate tool, but not relevant by itself in this context. If one wanted to
know more details about theMadwave3 program, or the theoretical principles
sustaining it, please go to the reference publication by O. Roncero [50, 51].
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Chapter 3

Results and Discussion

3.1 One-dimensional problem

3.1.1 Simulation parameters

As stated in section 2.1, the effective potential V considered for the simplified
model of the one-dimensional problem is an Eckart potential plus a centrifugal
barrier originated from an angular momentum ℓ — taken by convention as
ℓ = 20 in this specific case.

V = V +
ℏ2ℓ(ℓ+ 1)

2µR2
(3.1)

V = V0
−ξ
1− ξ

+ Vb
−ξ

(1− ξ)2
ξ ≡ − exp

(
2π
R−R0

L

)
The parameters of the Eckart potential have been chosen to emulate, as
much as possible, a step potential (L → 0, Vb → 0). Keeping that in mind,
the actual values of the parameters are, in atomic units, V0 = 500 Eh, Vb =
0.01Eh, R0 = 1a0, L = 0.05a0. As it is clear, the limit case which is intended
to emulate — regardless the centrifugal barrier — with this set of parameters
corresponds to a step potential of V0 = 500 Eh centred at R0 = 1 a0. The
discrete grid for the radial coordinate R has been defined between 0.25 a0
and 6.0 a0, with a constant step ∆R = 0.001 a0 — small enough to minimize
numerical imprecision.

The numerical resolution of the time-independent Schrödinger equation was
performed for a unit mass (µ = 1me) with several values for the total energy
E. As long as we are interested in the continuum unbound solutions, all the
studied energies were taken above the asymptotic value of the potential step
(E > V0).
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3.1.2 Analysis of the wavefunction and resonances

The continuum unbound wavefunctions show sinusoidal patterns both in the
real and imaginary parts, as it is expected for an incoming wave from the
right asymptote to the barrier. Depending on the selected energy of the
system, slight differences can be appreciated in the wavefunction.

When the total energy is below the effective potential barrier (Fig. 3.1),
the wavefunction is not able to cross the barrier and remains in the right-
hand side without falling into the step well — in accordance with the classical
behaviour for a totally reflected particle unable to cross the potential barrier.
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Figure 3.1: Ordinary behaviour of the unbound continuum wavefunctions
for energies below the potential barrier. The amplitude has been increased a
factor of 50 for a better visualization — arbitrarily centered at their corre-
sponding energy value.

As the energy gets higher, the tunnelling effect [53] becomes more important,
and the penetration of the barrier becomes more seizable, even allowing some
non-negligible probability of crossing the barrier (Fig. 3.2).
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Figure 3.2: Illustration of tunnelling effect. The amplitude has been in-
creased a factor of 50 for a better visualization — arbitrarily centered at
their corresponding energy value.
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Once the energy becomes higher than the barrier (Fig. 3.3), the system
moves freely through all the available space, except for the infinite barrier
at very short radial distances for which the wavefunction vanishes — arising
from the centrifugal terms in the effective potential.
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Figure 3.3: Ordinary behaviour of the unbound continuum wavefunctions
for energies above the potential barrier. The amplitude has been increased a
factor of 50 for a better visualization — arbitrarily centered at their corre-
sponding energy value.

All the described cases correspond to the ordinary behaviour one may expect
from the continuum unbound wavefunctions of the system. However, as
it was introduced in previous sections, there are some specific energies for
which the continuum unbound states are coupled to several bound states of
lower energy — i.e. orbiting resonances. That is the case, for instance, at
E ≈ 557.2013 Eh, shown in Fig. 3.4.
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Figure 3.4: Resonant behaviour of the wavefunction at E ≈ 557.2013 Eh.
No scale factor has been introduced to the amplitude of the wavefunction —
arbitrarily centered at their corresponding energy value.

The first interesting feature that is seen for the resonant wavefunction is that
the amplitude is considerably bigger than the rest of the unbound states —
around one order of magnitude bigger. This already indicates that this is
not an ordinary solution.

Unlike the usual sinusoidal patterns at the right asymptote, the wavefunction
is exclusively localized in the effective potential well and it does not extend
outside that region — the wavefunction is ’trapped’ in the potential well,
and the barrier prevents it from escaping. Furthermore, both the real and
imaginary parts of the wavefunction present a concrete number of crests,
originating nodes between them (two nodes in this case). This resembles
the well-known rovibrational wavefunctions of anharmonic one-dimensional
molecular potentials (such as for the diatomic molecules), which would cor-
respond to a vibrational quantum number v = 2 function (two nodes) —
though expected to appear at much lower energies.

In other words, at that specific energy, a resonance is coupling the continuum
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solutions to the rovibrational bound state with v = 2 — here is why this state
is usually called a quasi-bound state [17].

The ultimate criterion for elucidating whether that state corresponds indeed
to a resonance or not is the careful examination of the scattering matrix.
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Figure 3.5: Real and Imaginary parts of the scattering matrix S, with a detail
in the resonance region at E ≈ 557.2013 Eh.
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As it was mentioned in section 1.3.1, a resonance implies that there is a pole
of the scattering matrix at that energy [30]. This is exactly what is observed
in Fig. 3.5 at E ≈ 557.2013 Eh, where there is a clear discontinuity in the
real and imaginary parts.

Outside the exact energies where a resonance occurs, the scattering matrix is
a smooth unitary function whose real and imaginary parts oscillate between
0 and ±1 — so that the norm is held constant to the unity. Starting around
500 Eh — the asymptotic right energy of the potential —, the oscillations
are quite fast, but as the energy is increased, the fluctuations are gradually
slowed — with wider crests and less frequent sign changes. This pattern is
kept until the effective potential barrier is overcome around E ∼ 670Eh, when
the wavefunction is no longer constrained by the barrier, and a significant
change in its shape appears. Then, for even higher energies, the oscillatory
patterns are recovered, slowly widening as before.

The analysis of the discontinuities in the scattering matrix is a useful way to
elucidate the presence of resonances in the system. Unfortunately, it may be
extremely hard if the resonance width is too small — such as in this case. For
that reason, a more systematic alternative is applied to characterize not only
its energy (Er), but also its half-width (Γ) — as described in Ref. [17,31].

This alternative method is based in the analysis of the overlap integrals
⟨Φv|ΦE⟩ between a bound state function Φv (v = 2 in this case), and the
continuum solutions ΦE for all desired energies — or equivalently, for complex
functions like these, | ⟨Φv|ΦE⟩ |2.

As indicated in section 1.3.1, the resonance contribution to the scattering
matrix is described by a quotient of the form iA

E−Er+iΓ
. Similarly, it can be

shown that the overlap of the bound and unbound wavefunctions follow a
Lorentzian pattern L(E) [17, 31].

L(E) = A

(E − Er)2 + Γ2
(3.2)

Therefore, if the overlap data are fitted to the Lorentzian distribution, an
accurate value of the energy (Er) and half-width (Γ) of the resonance is
obtained.
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Figure 3.6: Overlap values of the bound v = 2 function with the continuum
solutions for each energy. The obtained Lorentzian fit parameters are A =
3.0730 · 10−6 a.u., Er = 557.2012812 a.u., Γ = 8.3370 · 10−7 a.u.

In view of Fig. 3.6, it can be said that the overlap results describe a
Lorentzian pattern. The value of the fitted resonance energy Er has been
found at 557.2012812Eh, which perfectly matches the previous estimation of
557.2013 Eh.

As for the resonance half-width, no wonder the fitted value is so small, as its
characterization by the former method is a challenging task — it was first
noticed when the energy resolution was augmented to the fourth decimal
digit.

3.2 Time-dependent method validation

Now that the concept of resonance has been properly illustrated in the pre-
vious section by means of a simplified one-dimensional model problem, it
is time to get back to the system of interest in this study — the reaction
N+ +H2 → NH+ +H.
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The first aspect to discuss is, as anticipated in section 2.3, how the results
obtained by the time-independent statistical approach (central to this study)
are compared with those obtained with a reference time-dependent method.
Given the qualitative nature of this part of the study, the simpler potential
energy surfaces by Nyman et al. [12] were used.

3.2.1 Simulation parameters

The simulation of the time-dependent method has been performed with the
Madwave3 program — developed by O. Roncero [50].

The same potential energy surfaces (Nyman et al. [12]) have been used in the
time-dependent and time-independent calculations. The coordinates used in
this last program are also Jacobi coordinates {R, r, γ} . Although the discrete
grids for each coordinate are not exactly the same in both calculations, their
differences are negligible for qualitative purposes like this.

The radial coordinate r is defined taking 512 points between 0.2 Å and 20
Å, while for R there are 768 points between 0.001 Å and 21 Å. The angu-
lar coordinate γ goes from 0 to π radians, taking 120 points. The initial
wavepacket to propagate is a Gaussian wavepacket centered at r = 13.0 Å
with a mean energy of 0.35 eV , and a spreading of 0.2 eV .

The propagation starts from concrete reactant channels, and allowing the
system to reach as many product channels as possible — j ⩽ 25, v ⩽ 5. The
entrance channel includes states from v = 0 to v = 3, and from j = 0 to
j = 25 — including the ’pd = even’ or ’pd = odd’ restrictions. The values of J
and Ω are tuned depending on the actual simulation conditions to reproduce.

As it will be shown in section 3.2.3, the validation of the statistical method
has been performed for the case J = 0, p = 0, pd = even. Despite their
analogous nature, the employed basis are not exactly the same, as there
are less restrictions on the simulated product channels in Madwave3 [50].
Furthermore, the reactant channels simulated by aZticc [39] are restricted to
j ⩽ 20, v ⩽ 2, and not j ⩽ 25, v ⩽ 3. The aim for this is mainly oriented
to save computational resources and analyse the same statistical results in
the following sections. As will be later demonstrated, the net effect of this
truncation is not very drastic for these qualitative validations, and in fact
the comparison between both methodologies is still perfectly achievable —
see Fig. 3.8 of the next sections.
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3.2.2 Time-dependent convergence

Although the time-dependent approach is a numerically exact method, the
greatest issue of this kind of calculations is related to the actual conver-
gence of the results. Only when full convergence is achieved, the results are
truly reliable — non-converged results are not yet the final numerically exact
outcomes of this method.

As it is shown in Fig. 3.7, the higher propagation steps are reached, the
more converged is the obtained reaction probability — by definition, larger
Chebyshev propagation steps are asymptotically proportional to larger sim-
ulation times [17]. For that reason, only once the convergence is achieved, a
reliable result is found.

One interesting feature of the dynamical calculations is that, for the higher
energies, the convergence is easier and faster than in the low energy range.
This is natural, as a higher kinetic energy corresponds to a faster collisional
process, and thus the reaction takes place sooner.
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Figure 3.7: Convergence of the reaction probability calculated by Madwave3
for J = 0, p = +1, pd = even. The Chebyshev propagation steps are labelled
as k.

3.2.3 Validation of the statistical method

Assuming that all the calculations performed within the time-dependent ap-
proach are well converged — with minor numerical imprecision at lower ener-
gies as they need longer propagations and better absorption conditions (i.e.
larger radial grids) —, their results act as a reliable reference to validate other
methods. For this reason, from now on, the results of the time-dependent ap-
proach will be designated as ’exact’.

By definition of the statistical method, one may expect the reaction proba-
bility to be an average of the actual ’exact’ results. The more statistically the
reaction behaves, the more accurate the approximation. Following this idea,
a hypothetical NH+

2 system with three equal masses — mass-analogous to
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H+
3 — was considered in both calculation approaches of this study — ’exact’

and ’statistical’.
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Figure 3.8: Comparison of the reaction probability calculated by Madwave3
[50] (red) and aZticc [39] (blue) for J = 0, p = +1, pd = even (equal masses).

As it can be seen in Fig. 3.8, the statistical (adiabatic) results match really
well to the average of the ’exact’ reaction probability — i.e. the reaction
behaves in a statistical way. This can be understood if we recall the requisites
for a reaction to approach the statistical regime.

The potential energy surfaces of the system NH+
2 , as it has been mentioned

before, present a deep well (> 6 eV ) between the reactants (H2 + N+) and
products (NH+ + H) asymptotes — see Fig. 3.9 for an illustration of it.
For not very high collision energies, when the system enters the well, it gets
’trapped’ for a certain time. This long-lived reaction intermediate has ’lost’
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its previous history, and thus it can finally exit through any of the available
channels with no previous bias, which imposes a statistical behaviour.
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Figure 3.9: Adiabatic R-dependent potential energy curves for J = 0, p =
+1, pd = even, j = 0 (equal masses). They have been estimated by aZticc
from the raw surfaces of Nyman et al. [12]

Going back to Fig. 3.8, a slight tendency could be observed regarding the
energy ranges. Within the studied energy range, the agreement between both
approaches is excellent — same threshold energy and overall evolution —.
However, if really high energies would be considered, probably the results
would deviate more and the model would become less accurate.

This is perfectly justified, since the long-lived reaction intermediate is only
effectively formed if the system does not have very high collision energies. In
case the reaction took place at really high energies, it is not likely that the
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potential well could trap the system any more, and the intermediate complex
would not last at all.

There is one additional consideration which is extremely important for the
reaction to behave statistically. Up to now, the system has been taken as
if the three atoms had the same mass, which suits perfectly for an equally
statistical treatment for the three masses.

On the other hand, when the system has different masses, the statistical
behaviour is expected to be less accurate due to the unequal bias introduced
for each mass. This is why, for the real system of study NH+

2 (not equal
masses), the results obtained by aZticc [39] do not match the ’exact’ results
as well as in the previous idealized case (Fig. 3.10).

The statistical approximation is no longer a perfect average of the ’exact’
results, but still shows its main features, such as the same threshold, or the
same overall shape — i.e. a similar distribution of channels being opened,
as will be explained. For not very high energies, the approximation can be
viewed as a not-so-bad choice, with just a slight tendency to overestimate
the reaction probability — which may be later compensated by averaging
over all the channels. Thus, for the lower energies, the statistical method
gives reasonable results and it can be perfectly applied up to 0.2− 0.3 eV —
despite the reaction is still mediated by resonances even above that range.

Despite that the statistical approximation can still be reasonably applied for
the system of this study NH+

2 (given its unique potential), this is not true
in general for very different masses in presence of potential energy surfaces
without very deep wells — e.g. this is reported by Alexander et al. [29] for
the analogous system OH2.
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Figure 3.10: Comparison of the reaction probability calculated by Madwave3
[50] (red) and aZticc [39] (blue) for J = 0, p = +1, pd = even (real masses).

The statistical method has been proven to be a valid approximation to prop-
erly model the reaction of interest in this study — assuming a certain error
intrinsic to the method itself, but still not too high. Although at first sight
one may prefer the time-dependent ’exact’ methodology to avoid the inherent
imprecision of the statistical approximation, there are plenty of reasons to
rather use the latter.

Recalling what was said at the beginning of this section (3.2.2), the most hin-
dering issue of the time-dependent methods is the problem of convergence.
For these methods to give reliable results, the propagation times must be
long enough to reach full convergence in all the selected energy ranges. In
other words, the total calculation times can be extremely large, and can even
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be unreachable in most cases — as for high total angular momenta J . The
computational cost is definitely the main shortcoming of that approach, and
is not a general cost-effective useful method except for a reduced number
of conditions. For example, the actual calculations performed in this com-
parative study (J = 0, p = +1, pd = even) took around one month for
the time-dependent propagation, but only a few minutes for the complete
time-independent statistical method. Furthermore, at really low energies
(1 − 10meV ), the time-dependent methods are extremely costly, since they
require very long propagations and grids to ensure a proper description of
the low linear momenta and adequate absorption regions [17,50].

This is the main reason why, although the statistical approach is not absent
of some imprecision, it is by far much cheaper than the ’exact’ methods, and
without great discrepancies in the final results.

What is more, there is even one additional feature about the statistical
method which is not found for the ’exact’ method. The reaction probability
profile obtained with the statistical approach is characterized by several small
discontinuities which rise or lower a little the probability. These correspond
to previously closed channels which become open as the energy is increased,
which are efficiently traced at each calculation step by the aZticc program.
A detailed analysis of this will be covered in the next section (3.3.2).

3.3 Time-independent method

The general justification of the time-independent statistical method has been
shown in the previous sections, where its main advantages and shortcomings
are described. In this section, the results obtained with the aZticc program
will be analysed, paying special attention to the effect which have the different
magnitudes of the system on the results — using the simplified potentials by
Nyman et al. [12]. Afterwards, a brief presentation of the final cross-sections
and rate-constants will be shown — using the complete spin-orbit potential
energy surfaces developed by the present research group [39].

3.3.1 Simulation parameters

The simulation of the time-independent statistical method, as implemented
in the aZticc program, calculates the capture probability of all the available
channels, taking each arrangement separately — H2 + N+ (reactant arrange-
ment) and NH+ + H (product arrangement).
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It is worth to mention that although the adiabatic and quantum capture prob-
abilities were calculated for both arrangements, the final reaction probabilities
only consider the adiabatic capture of the products in the statistics — i.e.
there are only pure adiabatic-adiabatic and mixed quantum-adiabatic results.
The reason behind this concerns the small differences of both approaches
compared to their unmatched computational cost — see the next sections
for more details.

The real isotopic masses of each atom are taken (1H, 14N), except for a
few calculations oriented towards the analysis of their modification. These
include the previously shown equal-mass idealization, and the replacement of
hydrogen by deuterium.

All the energies considered in this study are referred to the bottom of the
H2 potential energy surface, for which the reactant v = 0, j = 0 channel
has an energy of 2166 cm−1. This way, the energy range selected in this
study corresponds to moderate energies between 2166 cm−1 (0.269 eV ) and
10311 cm−1 (1.278 eV ), with steps of 5 cm−1 (0.0006 eV ). In this range
the statistical approximation is expected to be acceptable — not very high
energies. The diabatic basis has been truncated at 15000 cm−1 (1.86 eV ),
but its adiabatic counterpart is reduced to 8000 cm−1 (0.99 eV ).

The system coordinates {R, r, γ} are discretized in optimal grids to fully cover
the relevant regions of the simulated space — note that, as each arrangement
is treated separately, the different definitions of the Jacobi coordinates are
not a problem. The reaction coordinate R is divided in 6000 equidistant
points from 3 a0 to 120 a0, while the internal diatomic distance r takes 1000
equidistant points between 0.3 a0 and 2.8 a0. For the angular coordinate
γ, there are two grids depending on the calculated arrangement. For the
product arrangement, 50 points between 0 and π radians were taken, while
only 30 points between 0 and π

2
because of the symmetry — i.e. 60 points

between 0 and π radians.

The rest of the simulation parameters are related to quantum numbers of the
basis functions, dependent on the specific calculations which are performed,
and are tuned according to the desired conditions to emulate. There are some
general trends which have been extensively used as a common reference for all
the calculations presented in this study. For example, the electronic angular
momenta of the atom are always set to LA = 1, SA = 1, as the nitrogen atom
is in the 3PJA state.
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Unless otherwise stated, the upper truncation limits of the diatomic vibra-
tional and rotational quantum numbers are also fixed to v = 0 and j = 20,
respectively. Of course, for the reactant arrangement, the hydrogen exchange
parity pd prunes the final values of j — considering either only even or odd
values of j.

The last parameters to specify are the global parity p and the total angular
momentum J , as well as the truncation of its projections Ω. The values of
J and p are taken for a broad variety of combinations, without any formal
restriction other than an excessive computational cost. With respect to the
projections Ω, they are in general not truncated (i.e. from −J to J) unless
for preliminary convergence studies.

It is important to mention that the complete spin-orbit PES does take into
account the values of JA and ΩA, which are all contemplated in the aZticc
program. However, for the single adiabatic PES by Nyman et al. [12], those
values are no longer well-defined — nor LA, SA. As this PES is only used to
analyse the performance in all the calculations of section 3.3, the proposed
solution in the aZticc program is to impose all the undefined values to zero
when building the basis functions — JA = 0, ΩA = 0 (LA = 0, SA = 0). Of
course, this is not true in the reactant arrangement of real system N+ (3PJA)
+ H2 (X

1Σ+
g ). In any case, it is not relevant just for these minor calculations

as long as the correct simplified adiabatic potential is applied. Needless to
say that the quantitative results obtained with the spin-orbit advanced PES
do not suffer from this problem, as all the required quantum numbers are
well-defined.

There are a few peculiarities regarding the symmetry of the basis functions
which must be taken into account. This is the case, for instance, of the
wavefunction associated to J = 0, p = −1.

|JΩjJAΩAp⟩ = cΩΩA

[
|JΩjJAΩA⟩+ p(−1)J+JA+LA |J − ΩjJA − ΩA⟩

]
(3.3)

In view of equation (3.3), it is clear that the wavefunction vanishes if the sign
factor p(−1)J+JA+LA gives a minus, and simultaneously the two non-adapted
functions have the same value |JΩjJAΩA⟩ = |J − ΩjJA − ΩA⟩ — achieved
when Ω = 0 and ΩA = 0.

Going back to the case when J = 0 (ΩA = 0), if we impose JA = 0 and LA = 0
(adiabatic simplified PES convention), the sign factor gives a minus, and
hence that wavefunction is symmetry forbidden. Note that this restriction
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only applies for the reactant arrangement and the mentioned conditions, as it
is not present for the product arrangement or other calculations with J = 0,
p = −1 but JA ̸= 0, LA ̸= 0 or ΩA ̸= 0.

There are other peculiarities which also derive from this very principle, which
have been observed in practical calculations too. For example, a generaliza-
tion of the J = 0 (p = −1) anomaly occurs whenever there is JA = 0, LA = 0
and ΩA = 0. If J is an even number, then only p = +1 is allowed under
those conditions — and the opposite for odd J values.

3.3.2 Analysis of the open and closed channels

The simulation parameters have been presented in the previous section. Be-
fore going further in the different analysis of the results, it is time to explain
in more detail the influence of opening and closing channels on the reaction
probability.

Let us recall the previous reference case of NH+
2 (with its real masses), with

J = 0, p = +1, pd = even. Since the vibrational quantum number has
been constrained to v = 0 for simplicity, the only magnitude which remains
unspecified within each arrangement is the diatomic angular momentum j.
It is precisely what characterizes the different asymptotic channels for this
case, and their corresponding asymptotic energies are estimated by the aZticc
program — as shown in Fig. 3.11. Truncating the basis up to j = 20, the
total found channels are 8 for the reactant arrangement (j = 0, 2, 4 . . .) and
21 for the product arrangement (j = 0, 1, 2, 3, 4 . . .).
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Figure 3.11: Asymptotic energies of the channels for each arrangement, cor-
responding to different values of j.

As a matter of curiosity, the energies of the channels within each arrangement
describe a perfect parabolic distribution. This is because of the quadratic
form of the kinetic energy terms associated to the angular momentum j, pro-
portional to ℏ2

2µBCr2
j(j+1). It can be easily checked by performing parabolic

fits E ∼ a0 + a1 j + a2 j
2 over the energy data, and focusing on the ratio

of the a2 values — a2 ∼ 0.00582 eV for reactants, and a2 ∼ 0.001738 eV
for products, so that their product/reactant ratio is around 0.30. This ratio
should be equivalent to the quotient of the kinetic energy terms associated
to j, approximating the variable r to the equilibrium geometry re of the two
diatomic species — re (H2) ∼ 0.7414 Å, re (NH+) ∼ 1.0362 Å, as published by
the NIST [54].

ℏ2
2µNH+r2

e (NH+)

j(j + 1)

ℏ2
2µH2

r2
e (H2)

j(j + 1)
=

µH2 r
2
e (H2)

µNH+ r2e (NH+)

∼ 0.27 (3.4)

As expected, the roughly estimated quotient agrees with the ratio of the
fitted parabolic parameters, so the origin of the energy distribution of the
channels is demonstrated.

Going back to the reaction probability, it is possible to rationalize the small
’jumps’ of the probability in terms of the open and closed channels. Accord-
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ing to the adiabatic statistical method, a channel is opened only when the
total energy of the system can access that energy — so it is for the quantum
statistical method, but with a smooth transition between being opened or
closed. Hence, as the energy is gradually increased, more channels become
open, and consequently a variation in the reaction probability is originated.
If a formerly closed product channel opens, there is more chance that the sys-
tem ends in the product arrangement, so the reaction probability increases.
On the contrary, if the newly opened channel is a reactant channel, the re-
action probability decreases.
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Figure 3.12: Correspondence between the fluctuations of the reaction prob-
ability (blue) and the opening of different channels (dotted green and red
lines) — for J = 0, p = +1, pd = even (j = 0). The solid lines are the
centrifugal barrier energies in the associated adiabatic potentials.
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In view of Fig. 3.12, the influence of opening reactant and product channels
is clear. For example, in the range below 1.2 eV , there are 7 of the total 8
modelled reactant channels which are opened in the end — being the first
one always open. Their associated effect on the reaction probability is a
consequent decrease, which are the 6 falls observed — the first reactant
channel was opened before any of the product channels started to open. All
the total 21 modelled product channels become opened in the end of the
energy range below 1.2 eV , and thus 21 probability ’jumps’ (increases) are
found.

It is worth to mention that the channels of the product arrangement are closer
in energy and less spaced than those of the reactants. This is not surprising,
since the energies of the channels are inversely proportional to the reduced
mass of the diatomic molecule as said above. As the molecule NH+ is more
massive than H2, the spacing for the product channels is expected to be
smaller.

If the correspondence between the probability ’jumps’ and the asymptotic
energies of the channels is carefully analysed, one may realize that their
agreement becomes worse as the channel energy is increased — i.e. higher
values of j. This is completely normal, as any channel becomes opened
when its centrifugal barrier is overcome, not when the asymptotic energy is
surpassed. Hence, only for low j values, the barrier is small and the opening
energy is almost the asymptotic energy.

3.3.3 Analysis of the capture probabilities

Although the reaction probabilities are the final desired result from the sta-
tistical method — the precursor for the reaction cross-section and the rate
constant —, the actual primary outcomes of the calculations are the capture
probabilities.

The adiabatic and quantum capture probabilities are similar to each other,
but present small differences by construction, since the latter admits a grad-
ual opening of the channels.
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Figure 3.13: Adiabatic and Quantum capture probabilities for the reactant
arrangement (left) and the adiabatic R-dependent effective potentials for
both arrangements (right) — J = 0, 2, 10, 20, p = +1, pd = even. Note that
all the capture curves for J = 0 and J = 2 practically overlap.

As it is clear from Fig. 3.13 (left), the value of the total angular momentum
J strongly affects the similarity between the adiabatic and quantum capture
probabilities, as for J = 2 they are practically the same, but for J = 20 the
differences are more obvious — the higher the angular momentum J , the
greater differences between them. The justification for this can be found if
the working potentials are carefully analysed — Fig. 3.13 (right).

The effective potential energy curves present the expected centrifugal barriers
— higher barriers for higher values of J . As it was seen in the one-dimensional
example, the presence of the centrifugal barriers facilitate the occurrence of
orbiting resonances and quasi-bound states. They are only contemplated in
the quantum capture model, but completely neglected for the adiabatic model
— which only cares about the height barrier. For this reason, the greater the
barrier, the more different the results of the two capture models are — note
that J = 2 is almost barrierless, yet J = 20 has a very pronounced barrier.

The final reaction probabilities are, in consonance to the capture results,
almost identical in the adiabatic and quantum approaches, as seen in Fig.
3.14 — there is slightly less agreement for J = 20.
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Figure 3.14: Comparison of the pure adiabatic and mixed quantum-adiabatic
reaction probabilities for J = 0 (left) and J = 20 (right) — p = +1,
pd = even. The product arrangement is always taken within the adiabatic
approximation.

Given that the adiabatic and quantum probabilities are quite similar in many
of the selected cases, most of the figures shown in this comparative study
only show the adiabatic probabilities for the sake of simplicity and cleanness.
However, for the real quantitative studies of cross-sections and rate constants,
the quantum capture is always taken into account when needed — see section
3.3.7.

Note that the energy range for the quantum probabilities are shorter than
their adiabatic counterparts, but the reason for this is quite simple. The
adiabatic capture probabilities may extend indefinitely, as it becomes 1 for
all energies above the opening threshold. Conversely, the quantum capture
probability is only defined for a given effective energy range, which strongly
depends on the available collisional energy. As the different entrance states
have different energies, the final remaining energy employed in the collision
is less than the original one. This is clear in Fig. 3.15, where the effect of
increasing the quantum number j on the entrance state is explored. It is
obvious that the last energies for which the quantum reaction probability
is defined do indeed follow a quadratic distribution dependent on j — i.e.
dependent on the energy loss at that level, proportional to j2 as usual.

62



 0

 0.2

 0.4

 0.6

 0.8

 1
j = 0
j = 2
j = 4
j = 6
j = 8

R
e
a
ct

io
n
 p

ro
b

a
b

ili
ty

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Collision Energy / eV

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8
La

st
 d

e
fi
n
e
d

 e
n
e
rg

y
 /

 e
V

Diatomic angular momentum (j)

Last energies
f(x) = a·x2 + b·x + c

Figure 3.15: Comparison of the mixed quantum-adiabatic reaction probabil-
ities (left) for different entrance states with increasing j values — J = 0,
p = +1, pd = even. Their last definition energies (right) are fitted to a
parabolic function, with a = −0.0066 eV , b = −0.0092 eV and c = 0.617 eV .

Let us recall the capture probabilities at different values of J in Fig. 3.13
(left). One aspect that still has not been discussed is that the threshold en-
ergies are closer to each other as the total angular momentum J is decreased
— J = 0 and J = 2 are practically overlapped. The explanation for this
concrete distribution lies in the centrifugal terms of the Hamiltonian, with
quadratic terms J(J + 1) — as well as others like −2Ω2. This quadratic
distribution of the energies with J is perfectly reflected in the position of the
capture thresholds.

3.3.4 Truncation of the ro-vibrational basis

One important issue to study is how important is the effect on the final results
when the basis functions are truncated. In this section, the truncation of the
ro-vibrational diatomic quantum numbers j and v is explored.

In view of Fig. 3.16, it is obvious that the less restrictive the truncation is,
the more detailed is recovered in the final reaction probabilities. The more
channels are simulated, the higher the overall probability gets, as there are
more product channels being opened in the same energy range.

It is also possible to have an initial estimation of the energy range for which
the different truncations are reliable. All the curves start following the same
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path, but then at a certain energy, those with more severe truncations start
to deviate from the rest — due to the absence of some channels that are
present for the others. If the case for j ⩽ 20 is taken as a reference, the first
deviation energies are 0.035 eV (j ⩽ 0), 0.113 eV (j ⩽ 5), 0.284 eV (j ⩽ 10)
and 0.548 eV (j ⩽ 15).
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Figure 3.16: Comparison of the mixed quantum-adiabatic reaction proba-
bilities for different truncations with increasing j values — J = 0, p = +1,
pd = even. The vibrational quantum number is always truncated to v ⩽ 0

Let us now have a look on the truncation of the vibrational quantum number
v — Fig. 3.17. As it was the case for the truncation of the rotational quan-
tum number j, all the probability curves start together, but when a certain
channel is absent for the stricter truncations, they take different directions.
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Figure 3.17: Comparison of the mixed quantum-adiabatic reaction probabil-
ities for different truncations with increasing v values — J = 0, p = +1,
pd = even. The rotational quantum number is always truncated to j ⩽ 10.

In this case, as the diatomic vibrational states are more separated in en-
ergy, their opening becomes clearer when analysing the reaction probability
— a significant curvature appears due to the multiple newly available ro-
vibrational states. This takes place at energies 0.394 eV (opening of v = 1),
and 0.756eV (opening of v = 2). In fact, if it was inteded to be a quantitative
study, it seems reasonable to take v from 0 to 2 for the chosen energy range
below 1.2 eV (v = 3 remains closed in this range). However, as these kind
of calculations are mere qualitative studies to analyse the performing of the
statistical model, it will be limited to just v = 0 — yet more states will be
involved for the final quantitative studies in the last result section.

The final selected truncation for the validation calculations of this thesis has
been set to j ⩽ 20 and v ⩽ 0, unless otherwise indicated. It is reasonably
big to cover most of the low-lying diatomic rotational states, but it still does
not demand too much computational resources.
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3.3.5 Truncation of the helicity

The projection of the total angular momentum Ω — also known as helicity
—, plays a fundamental role in the definition of the different channels. As
it was mentioned in section 3.3.1, it can take integer values between −J and
J — there are 2J + 1 possibilities. The problem with this arises when large
values of J are considered, as the total number of channels becomes huge
with an overwhelming computational cost.

Although the quantitative results of this study take all the possible values
for more exactness, a reasonable choice would be to establish a truncation
limit for the Ω values in the simulation. For this reason, the effect of different
truncations has been analysed for J = 20, setting the upper limit in absolute
value to | Ω |⩽ 0, 5, 10, 20.

H2 + N+ (pd = even)
|Ωmax| time / s ncl nop ntot

20 51881 28 36 64
10 34174 22 36 58
5 10676 12 27 39
0 212 2 6 8

H2 + N+ (pd = odd)
|Ωmax| time / s ncl nop ntot

20 72492 30 42 72
10 42549 22 41 63
5 13686 12 30 42
0 243 2 6 8

H2 + N+ (total)
|Ωmax| time / s ncl nop ntot

20 124374 58 78 136
10 76724 44 77 121
5 24362 24 57 81
0 456 4 12 16

NH+ + H
|Ωmax| time / s ncl nop ntot

20 2588278 0 231 231
10 886675 0 176 176
5 210290 0 111 111
0 1655 0 21 21

Table 3.1: Comparative results for J = 20, p = +1 for different truncations
|Ωmax|. The CPU times are presented, along with the number of open nop,
closed ncl and total channels ntot at the highest simulated energy (1.278 eV ).

As seen in table 3.1, the number of channels within a specific arrangement
gets considerably decreased as the number of projections Ω is reduced, as
expected. Both the pd = even and pd = odd alternatives for the reactant
channel have a similar tendency, so their mean behaviour can be directly
analysed from their summed values — H2 + N+ (total).

In the reactant arrangement, the ratio between open and closed channels is
slightly increased as the truncation is more severe — from ∼ 57% (|Ω| ⩽ 20)
to ∼ 75% (|Ω| ⩽ 0) for the reactant arrangement. Although this tendency is
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not observed for the product arrangement, all the simulated product channels
are opened at that energy with all truncations — it is not possible to increase
the open-channel ratio. The reason behind this predisposition towards the
open channels for tighter truncations is not strange. When the number of
total channels is pruned, the differences in number between open and closed
channels become more relevant, as there are fewer options among which
to choose. Equivalently, for a greater number of total channels, the small
differences between open and closed channels are numerically attenuated in
the division.

In order to have an objective criterion about the efficiency of the truncations,
one possibility is to work in terms of relative magnitudes. As it is seen in Fig.
3.18, both the reactant and product arrangements have similar behaviours
in terms of relative computation times and percentual recoveries of the total
unpruned channels. Of course, we are only speaking about relative quantities,
since the absolute number of channels is bigger for the product arrangement
(as explained in previous sections), and so is its computational cost.
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Figure 3.18: Relative computational cost (left) and percentual recovery of the
total number of channels (right) for different truncations on the projections
Ω — for J = 20, p = +1. The reference values are those obtained for the
non-truncated calculations.

The relative evolution of the computational cost is reasonable as more projec-
tions Ω are pruned, but the number of channels decreases more slowly. This
is the case for the truncation |Ω| ⩽ 10, which recovers more than 75% of the
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channels with a huge decrease of the computational cost — up to 62% and
34% of the total cost, respectively for reactant and product arrangements.

 0

 0.2

 0.4

 0.6

 0.8

 1

|Ωmax| = 0 
|Ωmax| = 5 

|Ωmax| = 10 
|Ωmax| = 20 

R
e
a
ct

io
n
 p

ro
b
a
b
ili

ty

-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4

 Collision Energy / eV

Figure 3.19: Effect of the truncation of projections Ω on the reaction proba-
bility — for J = 20, p = +1, pd = even (j = 0).

One of the most important factors to take into account is the final effect of the
truncation on the quality of the probability results. In view of Fig. 3.19, one
can easily understand that the more restrictive the truncation is, the lower
the quality of the final results — due to the pruning of the reactive channels
considered. The greater the number of unpruned channels, the smoother the
probability becomes, and its magnitude grows closer to the complete case.

The highest discrepancy between the truncated and the complete results
occurs at the highest energies, as it is natural. Greater energies involve
more open channels, which after all are the ones which originate the direct
reaction mechanisms. For that reason, when some open channels are missing
due to the pruning, their absence is more notorious for the final reaction
probability. This also makes the convergence easier for lower energies, and
hence less severe truncations last longer in good agreement with the complete
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calculation. Consequently, the energies at which the probabilities start to
differ correspond to the abscence of an open channel absent for that pruning
— e.g. at 0.279 eV , the v = 0, j = 11 product channel opens, and since it
is absent for |Ωmax| ⩽ 10, a deviation from the |Ωmax| ⩽ 20 curve begins to
appear.

The interesting conclusion to extract from this section is that, although
the statistical method requires much less computational cost than a time-
dependent complete calculation, it can be sometimes useful too to find a
reasonable way to reduce the calculation times without compromising the
quality of the results.

There is one more way for extreme cases when the computational cost is still
unbearable. It consist in skipping the calculation of the quantum probabil-
ities and just work with the adiabatic probabilities, since their magnitudes
are really similar in most cases. However, this is discouraged because it is
expected to give less accurate results a priori— see the final results of section
3.3.7.

3.3.6 Analysis of the mass

As it was shown at the early stages of this study, the masses of the atoms
have a great impact on the accuracy of the statistical approximation — it
dramatically affects many properties of the system. For this reason, it is
worth to study the effect of the isotopic substitution of the hydrogen atoms
for their deuterated analogues.

It is important to mention that, from a theoretical point of view, both NHD+

and ND+
2 are legitimate species to study. However, in order to keep the hy-

drogen exchange parity of the reactant arrangement, this section only focuses
on the comparison of NH+

2 and ND+
2 — with analogous symmetry properties.

As seen in Fig. 3.20, the number of channels within the same energy range
is considerably higher for the deuterated system. This is because the higher
mass of the deuterium atoms make the energy levels to be closer in energy —
and its zero-point-energy (ZPE) is lower too. Since there are more product
channels with lower energies, the reaction threshold is slightly lowered too.

At first sight, one may conclude that the reaction probability of the deuter-
ated system is partially decreased for the higher energy range. However,
this is a consequence of the chosen truncation of the basis functions —

69



j ⩽ 20, v ⩽ 0. In the ordinary hydrogenated system NH+
2 , there are fewer ro-

vibrational levels in the high energy range, so the truncation is less aggressive
for the final probability result.

On the other hand, the numerous levels of the deuterated system are severely
affected by the truncation, specially with a significant loss of higher energy
product channels. This implies that above 0.5 eV , only reactant channels
are simulated and a fall appears in consequence — all the product channels
within the truncation are already opened.
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Figure 3.20: Effect of the deuteration on the reaction probability — for J = 0,
p = +1, pd = even (j = 0). Note that the energy scale is conventionally
refered to the non-deuterated reactant channel (∼ 0.269 eV ).

Regardless the notorious differences due to the different isotopic masses of
the hydrogen, it is also observed that, at least for the lower energy range,
there are still some reminiscences in the evolution of the reaction probability
for both cases — after all, they are analogous in most features (e.g. the
symmetry properties).

3.3.7 Further application of the method

The aim of this final section is to provide a taste of the final cross-section
and rate-constant results for the reaction of study. This is by no means a
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detailed presentation of them, as they are fully covered and analysed in the
upcoming publication Gómez-Carrasco et al. [39] by this research group.

As it was previously explained, for these quantitative results, detailed spin-
orbit potential energy surfaces (PES) were developped for the reactant and
product arrangements — the statistical approach does not require a descrip-
tion of the intermediate region with the deep well. The PES for the reactant
arrangement explicitly treats the diabatization of spin-orbit states, while for
the product arrangement the adiabatic ab-initio spin-orbit states are directly
taken.

The aZticc program was applied again with these new PES, imposing the
following optimal simulation parameters — chosen for accurate but not too
time-consuming calculations. The reactant arrangement was limited to v = 0,
and j ⩽ 21 — selecting only even or odd values depending on pd —, yet for
the product arrangement v ⩽ 1, and j ⩽ 30. Simulations with a total angular
momentum from J = 0 to J = 80 were performed. In both cases, the upper
bound for the total angular momentum projections was set to Ω ⩽ 11. The
studied energy interval ranges from 0.26 eV to 0.85 eV , in steps of 0.5meV .
The energy cutoff for the adiabatic-by-sectors basis was set to 1 eV .

Regarding the numerical resolution of the close-coupled equations, there is a
subtle issue to take into account about the radial integration grid. Initially,
4000 equidistant grid points between R = 3 a0 and R = 80 a0, which implies
that the left asymptotic boundary conditions are imposed at 3.0 a0 — i.e.
the capture radius is Rc = 3.0 a0. This criterion was also used through all
the previous qualitative studies explained in this thesis.

During the optimization process for the quantitative study, among the dif-
ferent capture radii that were tried, Rc = 4.0 a0 had particularly interesting
implications on the final results. For this reason, this alternative is also
considered just for comparison.

The statistical models used for the quantitative work are the same as for
the qualitative preliminary study, either pure adiabatic-adiabatic (AS) or
mixed quantum-adiabatic (QAS) — designated as reactants-products. In the
case of the mixed quantum-adiabatic approach, the results for Rc = 3.0 a0
and Rc = 4.0 a0 are presented for comparison, namely QAS3 and QAS4,
respectively.

As it can be seen in Fig. 3.21, the thermalised total cross-sections ob-
tained with the mixed quantum-adiabatic method are always below the pure
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adiabatic-adiabatic ones, since the adiabatic capture probabilities are always
the unity once the potential barrier is surpassed — i.e. it systematically
overestimates the reaction probability.
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Figure 3.21: Thermal reactive cross-section at T = 105 K (up) and T =
305K (down) for the adiabatic-adiabatic (AS) and quantum-adiabatic (QAS)
models, along with the experimental results of Ref. [6]. The dotted lines are
the convoluted results with Doppler broadening — as indicated by Chantry
[55].
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Unlike the simple case of only one electronic state, for multiple spin-orbit
states like these the many quantum non-adiabatic effects become fundamen-
tal and the discrepancy with pure adiabatic models are more notorious —
even more for higher energies.

In the energy range below 0.03 eV , the purely adiabatic results (AS) seem to
reproduce better the experimental data of Ref. [6]. Then, for higher energies,
the adiabatic model overestimates the total reactive cross section and the
actual experimental data are in between the results of the AS and QAS
theoretical stimulations — being the results for Rc = 4 a0 the most suitable.

Although the mixed quantum-adiabatic results for Rc = 3 a0 are too low in
the studied simulation conditions, it does not mean that they are inherently
less accurate than the results for Rc = 4 a0, or even the adiabatic ones. The
fact that these last two methods give similar outcomes is only because the
capture probabilities in those conditions are near to the unity in both cases —
which leads to non-negligible overestimations at higher energies. Probably, if
the product channel was treated in more detail like the reactant arrangement
(e.g. non-adiabatic couplings), more balanced results would be obtained, but
it is far beyond the scope of this work.

The effect of the temperature is also relevant, as the results for T = 305K are
better reproduced than those at the temperature of T = 105 eV , for which
the estimated cross-sections are lower. Anyway, the experimental results
have also certain degree of error due to the ion energy spread — specially
for the lower energies. For this reason, other experimental sources should be
checked as well, such as the rate-constant results by Marquette et al. [5] and
Zymak et al. [7]

The most straight forward calculation of the thermal rate constants of the
study assumes that the H2 species are pure ortho or para species. However,
for the comparison with experimental results, mixtures of both species must
be considered, for which the total ortho fraction f is taken into account while
weighting the simulation results. For example, the natural n-H2 corresponds
to a fraction of f = 0.75 (3:1 ratio). For simplicity, in this section the
fractions f = 0.75 and f = 0.005 are shown in Fig. 3.22.

The agreement between the simulated and experimental rate constants is
excellent. The QAS3 model with reproduces best the results by Zymak et
al. [7] with f = 0.005, and below 50 K, for f = 0.75 it lies between the
experimental data from different sources — yet it is significantly lower for
higher temperatures. Conversely, the AS and QAS4 models are always in
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between the different experimental data for the selected temperature range
— QAS4 is in general closer to the results by Fanghanel et al [8]. This is
the most significant proof that the applied theoretical methods work properly
for the quantitative modellization of the reaction — the ultimate objective of
this thesis. For a complete discussion of the results, refer to Gómez-Carrasco
et al. [39].
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Figure 3.22: Thermal rate constants obtained within the three models for the
two limiting experimental ortho fractions, f = 0.005 and f = 0.75 (n-H2).
Symbol legend: circles (Zymak et al. [7]), squares (Marquette et al. [5]),
triangles (Fanghanel [8]).
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Chapter 4

Conclusions

The chosen nitrogen-containing insertion reaction has been studied in detail
from a theoretical point of view. Starting from the basic concepts concerning
coordinate definitions and the construction of the Hamiltonian operator, the
formal derivation of reaction dynamics, cross-sections and rate-constants has
been presented through this work.

The importance and main features of resonances have been analysed, from
a simple one-dimensional model system, to the most advanced and sophisti-
cated systems including spin-orbit couplings and non-adiabatic transitions.

The time-independent close-coupling method has been investigated as a suit-
able and reliable alternative to the popular time-dependent methodologies.
For not very high energies and systems with similar characteristics to this
one (NH+

2 ), the statistical approximation is a powerful way to obtain accurate
results with a considerable decrease of computational costs.

The adiabatic and quantum statistical methods have been implemented and
studied as reliable choices. In the case of only one adiabatic electronic state,
the results obtained with the two approaches are quite similar to each other,
and resonances become only significant when big centrifugal barriers are en-
countered. On the other hand, when multiple coupled spin-orbit states are
considered, resonances become particularly important to the dynamics, since
they can be seen as mediators for non-adiabatic transitions.

As a conclusion, a complete study of the statistical method has been suc-
cessfully achieved, in the context of a real system of great relevance in astro-
chemistry. The initial objectives of this work are thus fulfilled.
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[10] M. González, A. Aguilar, and R. Sayós. “Low energy dynamics, isotopic
effects and detailed microscopic reaction mechanism of the ion-molecule
reaction N+ (3P)+ H2 → NH+ + H”. J. Chem. Phys., 132(1-2):137–151,
1989.

[11] U. Wilhelrnsson and Nyman G. “A low energy quasiclassical trajec-
tory study of N+ + H2, N

+ + D2. Dynamics, cross sections and rate
constants”. J. Chem. Phys., 96:5198, 1992.

[12] U. Wilhelrnsson and Nyman G. “A low energy quasiclassical trajectory
study of N+ + H2. Potential energy surface effects”. J. Chem. Phys.,
96:1886, 1992.

[13] C. L. Russell and D. E. Manolopoulos. “Time-dependent wave packet
study of the N+ + H2 reaction”. J. Chem. Phys., 110:177, 1999.

[14] Z. Yang, S. Wang, J. Yuan, and M. Chen. “Neural network potential
energy surface and dynamical isotope effects for the N+(3P) + H2 →
NH+ + H reaction”. Phys. Chem. Chem. Phys., 21(40):22203–22214,
2019.

[15] T. P. Grozdanov and R. McCarroll. “Statistical Theory of Low-Energy
Reactive Collisions of N+ Ions with H2, D2, and HD Molecules”. J.
Phys. Chem. A, 119(23):5988–5994, 2015.

[16] T. P. Grozdanov, R. McCarroll, and E. Roueff. Reactions of the N+(3P)
ions with H2 and HD molecules at low temperatures. Astron. Astrophys.,
589:A105, 2016.

[17] O. Roncero. “Simulaciones cuanticas en fisica molecular”. Master de
simulaciones en procesos moleculares. IFF (CSIC), 2010.

[18] A. Lichnerowicz. “Elementos de cálculo tensorial”. Aguilar, 1972.

[19] R. N. Zare. “Angular Momentum”. John Wiley & Sons, 1988.

[20] C. Jouvet and J. A. Beswick. “Fine-structure electronic predissociation
in van der Waals molecules. I. Theory”. J. Chem. Phys., 86(10):5500–
5508, 1987.

77



[21] C. Cohen-Tannoudji, B. Diu, and F. Laloe. “Quantum Mechanics”.
Wiley-VCH, 1:898, 1986.

[22] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. “Quantum
theory of angular momentum”. World Scientific, 1988.

[23] P. Atkins and J. de Paula. “Physical Chemistry”. Oxford University
Press, 8:798, 2006.

[24] R. R. Reeves and P. Harteck. “Ortho and parahydrogen in interstellar
material”. Z. Naturforsch. A, 34(2):163–166, 1979.

[25] D. W. Schwenke, D. G. Truhlar, and D. J. Kouri. “Propagation method
for the solution of the arrangement-channel coupling equations for reac-
tive scattering in three dimensions”. J. Chem. Phys., 86(5):2772–2786,
1987.

[26] Edward J Rackham, Fermin Huarte-Larranaga, and David E
Manolopoulos. “Coupled-channel statistical theory of the N (2D)+ H2

and O (1D)+ H2 insertion reactions”. Chem. Phys. Lett., 343(3-4):356–
364, 2001.

[27] E. J. Rackham, T. Gonzalez-Lezana, and D. E. Manolopoulos. “A rig-
orous test of the statistical model for atom–diatom insertion reactions”.
J. Chem. Phys., 119(24):12895–12907, 2003.

[28] M. Quack and J. Troe. “Complex formation in reactive and inelastic
scattering: Statistical adiabatic channel model of unimolecular processes
III”. Ber. Bunsenges. Physik. Chem., 79(2):170–183, 1975.

[29] M. H. Alexander, E. J. Rackham, and D. E. Manolopoulos. “Product
multiplet branching in the O (1D)+ H2 → OH(2Π)+ H reaction”. J.
Chem. Phys., 121(11):5221–5235, 2004.

[30] W. H. Miller. “Study of the statistical model for molecular collisions”.
J. Chem. Phys., 52(2):543–551, 1970.

[31] A. Uma-Maheswari, P. Prema, S. Mahadevan, and C. S. Shastry. “Quasi-
bound states, resonance tunnelling, and tunnelling times generated by
twin symmetric barriers”. Pramana, 73(6):969–988, 2009.
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