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Abstract

In the context of inflationary model building it is well known that curvature and isocur-

vature perturbations can couple when more than one scalar field is present. It is also

known that multiple scalar fields arise naturally in String Theory models of Inflation. First

we review the necessary tools to extract predictions for the cosmological observables for

multi-field inflationary models. After testing the code with examples from the literature

we study a particular large-field toy model which is a low-energy effective theory that can

arise in various string compactifications. Generalizing the analysis in [1–7], in [8] the one-

loop corrections to the instanton action were included in the non-perturbative term of the

superpotential. In the example we study here, this induces periodic modulations in the

inflationary scalar potential. In particular, we consider Type IIB flux compactifications

where one field parameterizes the volume of a four-cycle in the compact manifold Y6 and

the other is the position modulus of a D7-brane, also wrapping a four-cycle. Finally, we

use data from the CMBR and LSS observations to study the viability of this model.
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1 Introduction

The Standard Model of Cosmology (SMC) [9–11] is a widely accepted model of the large scale
properties of the Universe, which is taken to be a perturbed Robertson-Walker space-time filled
with quantum fields. On large scales this model is accepted because it is able to explain consis-
tently observations from very different experiments such as CMBR observations from WMAP
[12] and Planck [13], Large Scale Structure surveys such as SDSS [14], Gravitational Lensing
CASTLES Survey [15] or type Ia supernovae [16]. On small scales it is accepted since the fun-
damental physics behind it is General Relativity (GR) plus a certain Quantum Field Theory
known as the Standard Model of Particle Physics (SM).

However, we know that GR and QFT are not compatible at a fundamental level, and the SMC,
as we know it, is expected to break down at an energy close to the Planck mass. Being based on
GR, the SMC inherits its UV inconsistencies such as non-renormalizability and also the (at best
unsettling) issue of the singularity at t = 0. For these reasons, it is widely believed that once
a Quantum Theory of Gravity is established, the SMC will emerge as an effective theory valid
only until an energy scale much smaller than the Planck mass. The periods preceding the SMC
are known as Inflation and Reheating. Inflation is often assumed to start its description a bit
below or at the Planck mass. The fundamental physics behind these periods is, at present, an
open problem. Furthermore, unlike the SMC, they are still not accessible by experiments. This
means that all evidence and experimental bounds we have on the physics of Inflation is based
on indirect evidence. A discovery of a stochastic background of Primordial Gravitational Waves
[17, 18] or B-modes in the CMB [19] in the future could provide key additional data. Although
unlikely in the next few years, this would put strong constraints on most of the inflationary
models studied so far.

The SMC is able to successfully account for almost all cosmological observations, but we
have seen that it cannot be extrapolated to the very early Universe. This problem shows up
in the form of unphysical, highly fine-tuned initial conditions. Namely, the SMC assumes that
the Universe was incredibly flat and homogeneous in the past. This assumption is a severe
shortcoming in the predictive power of the theory. Furthermore, since the comoving horizon is
always increasing during the SMC, it cannot explain why regions of the Universe which were not
in causal contact are observed to be homogeneous in up to 5 orders of magnitude. This problem
is known as the horizon problem.

The inflationary paradigm [20–22] provides an explanation for these initial conditions and for
the horizon problem through a period of almost exponential expansion in which the comoving
horizon is decreasing. According to the paradigm, the Universe is assumed to be filled with
scalar fields rolling down a certain potential. Like in the SMC, it is assumed to be isotropic
and homogeneous at first order. The only initial conditions needed in the classical sense are
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for the background quantities (i.e. the scalar fields and the geometry of the Universe). The
initial conditions for the inhomogeneities appear naturally as the ground state of Quantum
Mechanics. It is remarkable that the seeds of the CMB anisotropies and of all LSS may be the
quantum fluctuations of the perturbations of the metric and matter content of the Universe.
Unfortunately, as we have stated, there is still much uncertainty regarding the inflationary and
reheating epochs.

The homogeneous evolution during the SMC is explained by the ⇤CDM model, the acronym
referring to the Dark Energy (⇤) and the Cold Dark Matter (CDM) and components. At present
it remains to be seen whether SM physics (or a bit beyond it) will be sufficient to account for
these two components. Since there is much uncertainty regarding Inflation and Reheating, it is
remarkable that we have been able to find a set of fundamental parameters which are sufficient
to make predictions. For the homogeneous background we need to specify initial conditions: i)
for the metric (e.g. the Hubble parameter) and ii) for the particle, DM and DE content of the
Universe. In order to make statistical predictions about the CMB (anisotropies in the power
spectra) and Large Scale Structure (power spectra, BAO peak in the correlation function) we
need one more function: the primordial power spectra of perturbations (PPSP). This function
sets the initial conditions for the perturbations (including metric and density perturbations).
This function is predicted by Inflation and it is the one that will concern us in this work.

Observations of the CMB and LSS indicate that the PPSP is nearly Gaussian, adiabatic, nearly
scale invariant and weak in a sense that we will specify in the next section. These properties can
be found in simple single-field models [9] but there is no particular reason to believe that the
energy density during Inflation is dominated by a single field. Thus, a great deal of effort has
been placed on studying the new effects that may appear as a signature of multi-field Inflation.
In this work we will review tools sufficient to i) analyze multi-field Inflation, ii) compare it with
observations and iii) compare its predictions with those of single-field Inflation.

Arguably, the strongest candidate for a theory of Quantum Gravity available is Superstring
Theory. According to the theory, the fundamental constituents of the Universe are one-dimensional
objects known as strings, whose length, l

s

, is slightly above the Planck length (⇠ 10

�33 cm). In
order for the theory to be anomaly free they need to live in a 10-dimensional manifold. Six of
these dimensions are usually assumed to be compact and small enough to have avoided detection
so far. Often, as a byproduct of this process of compactification, we end up with the so-called
moduli : scalar fields which parameterize the size and the shape of the compact dimensions.
These moduli are massless at the classical level and in the absence of background fluxes. They
are usually unstable, since their potential is so flat that their vacuum expectation values can
become arbitrarily large. In this case, if they parameterize the size of the compact dimensions
then the compact space would decompactify dynamically, and we would have been able to ob-
serve the extra dimensions. Thus, they are problematic and one is usually forced to introduce
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additional sources of potential energy in the compact space (such as orientifold planes, fluxes or
Dp-branes) to keep them fixed at a certain value.

Obtaining reasonable inflationary models from String Theory is a highly non-trivial task which
we shall briefly review in section 5. The fundamental energy scale in String Theory is given by
the inverse of the string length: M

s

= l�1
s

. If the scale of Inflation, which is determined by the
Hubble constant H, was placed near this energy scale, knowledge of the full dynamics of String
Theory would be essential to describe it. Unfortunately, quantitative analysis of such a regime
of Inflation is out of reach at present [23]. For this reason, most of the models developed so
far are obtained by taking the so-called supergravity limit E ⌧ Ms of the Superstring Theory,
where E is the characteristic energy scale of the effective theory, E = H for Inflation.

After integrating out the ultraviolet degrees of freedom, incorporating the effects of fluxes,
localized sources and quantum corrections to the action, one generally arrives at a complicated
effective Lagrangian describing the different moduli. Although a subset of the moduli may
acquire large masses m

mod

� H, which renders them dynamically frozen, a common outcome
is that a significant number of moduli have masses m

mod

. H, and are therefore dynamically
active during Inflation. We recover the single field case when all the moduli have very large
masses except the inflaton. Since the predictions of single-field Inflation are in agreement with
observations, one is usually interested in studying multi-field scenarios where the inflaton is
surrounded by a few other weakly interacting scalar fields. In this way the models are able to
agree with observations and still include multi-field effects. These scenarios appear when the
masses of all moduli satisfy m

mod

� H.

From the last two paragraphs we see that the following hierarchy of energies is required:
Ms � m

mod

� H. Obtaining this hierarchy is probably the biggest challenge in String Inflation.
The process of model building can be divided into two main tasks: 1) determining the effective
Lagrangian and 2) computing the cosmological observables. In this thesis we will take up the
second task. In particular, we will consider the toy model introduced in [8] and study its
cosmological signatures in detail for the first time. In this reference, the corrections to the non-
perturbative term in the superpotential, which appear through the gauge-kinetic function were
presented for the first time.

The main goals of this project are:

• To review the tools necessary to study multi-field Inflation.

• To provide an introduction to model building in String Inflation, giving on overview of its
major challenges.

• To study in detail for the first time the corrections introduced in the model in [8]. This in-
cludes understanding the effects of the different parameters in the cosmological observables
and comparing with observations.

3



The structure of the thesis is as follows. In section 2 we include the basic knowledge of cosmology
and single-field Inflation. In section 3 we present in some detail the basics of multi-field Inflation,
with special attention to the two-field case, which is the main focus of this work. We test our
code with some examples from the literature and comment on the multi-field effects that can
arise as a result of the coupling between curvature and isocurvature. Many of the equations
obtained here are simple generalizations of the ones developed in section 2. In section 4 we
introduce the basics of String Theory and in section 5 we give an overview of model building
in String Inflation. In section 6 we introduce the model presented in [8], and explain which are
its innovative aspects. Then we solve numerically the dynamics of the model and use data from
cosmological observations to test it. Finally, we draw our conclusions in section 7.
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2 Cosmology

2.1 The Standard Model of Cosmology

As mentioned in the introduction, our Universe is well described by a flat FLRW metric:

ds2 = a2 (⌘)
⇥

d⌘2 � dx2 � dy2 � dz2
⇤

, (1)

where ⌘ denotes conformal time, related to the usual coordinate time by ad⌘ = dt.

In this work we use the conventions and notation from Ref. [20, 24]. In particular, we use
natural units and set the reduced Planck mass to unity: M

pl

= (8⇡G)

1/2
= 1. Moreover,

we denote derivatives with respect to the coordinate time with a dot and with respect to the
conformal time with a prime. According to the Einstein equations of GR the scale factor must
verify the following Friedmann equations:

H2
=

⇢

3

, (2)

ä

a
= �2

3

(⇢+ p), (3)

where we have introduced the Hubble parameter H ⌘ ȧ
a
. Matter is introduced through the

energy-momentum tensor, which is parameterized by the energy density ⇢ and the pressure p.
They are usually related by an equation state of the form p = w⇢, in which case the solution is

H = H0a
�3
2 (1+w), (4)

where H0 is the Hubble constant today. Defining the conformal-time version of the Hubble
constant H ⌘ a0

a
= aH, we can re-write the Friedmann equations using conformal time:

H2
= a2

⇢

3

, (5)

H2 �H0
=

1

2

a2(⇢+ p). (6)

2.2 The inflationary paradigm

During Inflation, instead of the usual time coordinate t, it is very convenient to use either
conformal time or Ne, the number of e-foldings the scale factor grows until the end of Inflation,

Ne = ln

a(tend)

a(t)
. (7)
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Inflation may be defined by the following equivalent conditions [22]

ä > 0, (8)

✏ < 1, (9)

w < �1

3

, (10)

d
dt

(aH)

�1 < 0, (11)

dln⇢
dlna

< 1, (12)

where we have introduced the parameter

✏ ⌘ �
˙H

H2
. (13)

The first condition simply says that the Universe is going through an accelerated expansion. The
second one tells us that H is approximately constant, which means the scale factor a increases
more or less like an exponential. The third one enables us to learn something about conformal
time using Eq. (4):

⌘ � ⌘i =

ˆ t

ti=0

dt0

a(t0)
=

ˆ a

ai=0

da0

H(t0)a2(t0)
=

ˆ a

ai=0

a
1
2 (�1+3w)da0

=

2

H0(1 + 3w)
a

1
2 (1+3w)

=

2

(1 + 3w)

1

a(t)H(t)
. (14)

Note that in our units conformal time is the same as the comoving particle horizon. It is often
the case that w ' �1, so that ⌘ ' �1

a(t)H(t) =

�1
H . The important quantity for solving the

homogeneity problem is the comoving Hubble radius H�1, which tells us the maximum distance
at which two particles can still have a non-negligible causal interaction. This is because H�1

is roughly the time the scale factor needs to change significantly. We have just seen that the
comoving Hubble radius and the comoving particle horizon are very similar during Inflation.
Condition (11) tells us that both were larger in the past. This means that causally disconnected
regions were in causal contact in the past. In this way Inflation solves the homogeneity problem.
It can be shown [22] that to solve the flatness problem one needs at least around 60 e-foldings.
Finally, the last condition tells us that the energy density is almost constant during Inflation.

These conditions can be satisfied if matter is described through N scalar fields 'a, where
a = 1, 2...N . In the particular case of a single Klein-Gordon field in a potential V the equations
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of motion are:

'00
+ 2H'0

+ a2V' = 0 (15)

H� 1
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1

2

'02
+ a2V'

�

= 0 (16)

H2 �H0 � '02

2

= 0. (17)

We refer to them as background equations since later we will introduce space-time dependent
perturbations and only the unperturbed quantities will follow them. The energy-momentum
tensor is given by:

T 0
0 = ⇢, T 0

i = 0, T i
j = �p�ij, (18)

with

⇢ =

1

2

@µ'@µ'+ V ('), (19)

p =

1

2

@µ'@µ'� V ('). (20)

Using these equations we see that w is given by:

w =

p

⇢
=

1
2@

µ'@µ'+ V (')
1
2@

µ'@µ'� V (')
. (21)

Since our Universe is homogeneous and isotropic to leading order, the unperturbed field does
not depend on spatial coordinates. Furthermore, we are often allowed to use the slow-roll
approximation '̈⌧ 3H'̇, '̇2 ⌧ 2V (') and in this case w ⇡ �1.

2.3 Cosmological perturbation theory

We have discussed that Inflation is so alluring not only because it solves the homogeneity problem
but also because it provides a mechanism to generate the primordial inhomogeneities required
for structure formation. To obtain the equations for the perturbed metric and the perturbed
scalar fields one needs Cosmological Perturbation Theory. The most general perturbation of our
physical system is given by:

ds2 = a2(⌘)
�

(1 + 2�) d⌘2 + 2Bid⌘dx
i � ((1 + 2D) �ij + 2Eij) dx

idxj
 

(22)

'a
(~x, ⌘) = 'a

(⌘) + �'a
(~x, ⌘). (23)

In the single-field case, the equation for the background field ' and for the scale factor a(t)

(unperturbed FLRW metric) are still given by Eq. (15). The equations for the perturbed
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variables are more difficult since we need to perturb Eq. (15), Einstein equations and collect
first-order terms. First of all, note that the metric can be re-written as:

ds2 = a2(⌘)
⇥

(1 + 2�) d⌘2 + 2 (@iB + Si) d⌘dx
i � ⇥(1 + 2 ) �ij + 2@ijE + 2@(iFj) + hij

⇤

dxidxj
⇤

,

(24)
with @iFi = 0, @iSi = 0, @ihij = 0 and hi

i = 0 . The perturbations can be classified using the
SO(3) symmetry of the background metric in: tensor perturbations (hij is divergenceless and
traceless), vector perturbations (Fi, Si are divergenceless) and scalar perturbations (�,  , B and
E). This decomposition is useful since the equations decouple for first order scalar, tensor and
vector perturbations.

Not all of these perturbations are meaningful since, for example, perturbations in one coordi-
nate system can disappear in another. There are two possible ways to proceed: one can either
fix a gauge or use only gauge-invariant quantities and work in any gauge one wants. One useful
choice [20, 24] for the gauge invariant quantities is: hij (the tensor perturbations are already
gauge invariant) and

� = ��� 1

a
[a (B � E 0

)]

0 (25)

 = � +

a0

a
(B � E 0

) (26)
¯Vi = Si � F 0

i . (27)

This means that only two of the scalar perturbations and two of the vector perturbations were
physical. We only need to consider the scalar perturbations � and  (known as Bardeen po-
tentials) and the tensor perturbations (gravitational waves) hij, since the vector perturbations
decay very fast during Inflation and we can forget about them. The most common choice in
inflationary model building is to use the Newtonian Gauge E = B = 0. This is the one used in
our main references for multi-field Inflation and it is the one we shall use. In this gauge the scalar
metric perturbations coincide with the gauge-invariant Bardeen potentials. Note, however, that
for the standard Big Bang Evolution it is more frequent to use the Synchronus Gauge.

In this work we are only concerned with first order perturbation theory. Our next step is to
introduce the perturbations in the scalar fields and the metric in the Einstein equations. This
is a rather laborious task, since one needs to perturb both the energy-momentum tensor of the
scalar fields and the Einstein tensor, but it presents no conceptual difficulty. One can show that,
because we are only interested in the first-order perturbations, the equations decouple for scalar,
tensor and vector perturbations. The final result of this process [20, 24] is, separating also the
scalar and tensor parts of an arbitrary energy-momentum tensor:
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• Scalar equations:

(00) r � 3H( 

0
+H�) =

a2

2

�T 0
0 (28)

(0i) @i( 
0
+H) =

a2

2

�T 0
i (29)

(ij)
n

 

00
+H(2 + �)

0
+ (2H0

+H2
)� (30)

+

1

2

r2
(�� )

o

�ij + (@i@j � 1

2

�ij)(�� ) =

�a2
2

�T i
j (31)

• Tensor equation:

h00
ij + 2Hh0

ij �r2hij = 2a2�T i
j (32)

2.4 Single-field Inflation

2.4.1 Classical theory

We denote with an over-line the unperturbed quantities. We consider a single Klein-Gordon
field:

S =

ˆ
d4x
p�g

⇢

R

2

� 1

2

gµ⌫@µ'@⌫'� V (')

�

. (33)

Introducing the so-called Mukhanov-Sasaki variable v ⌘ a�' + z�, with z ⌘ a'
H , the classical

equations can be simplified to the so-called Mukhanov-Sasaki equations:

• Scalar equations:

v00 �r2v � z00

z
v = 0 (34)

r2� =

1

2

H
a2

(zv0 � z0v). (35)

• Tensor equations for a symmetric, transverse and traceless polarization tensor eij(~k,�)

such that eij(�~k,�) = e⇤ij(~k,�),
P

� e
*

ij(
~k,�)eij(~k,�) = 4, hij = heij and ⌫ ⌘ 1p

2
h:

⌫ 00 �r2⌫ � a00

a
⌫ = 0. (36)

It is useful to consider these equations in Fourier space. We denote the Fourier transform with
a subscript k. Taking the far future limit in Eq. (34), when the scale is far outside the horizon,
r2 ⇠ �k2 and k ⌧ aH = H, the k term is negligible and the non-decaying solution is v / z.
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This suggests using a different quantity, known as the perturbation in the curvature of comoving
surfaces Rk = ��k�H �'k

'̇
= �vk

z
, which in this limit is constant: it does not evolve outside the

horizon. Since during Inflation the comoving Hubble radius aH is decreasing, all scales except
the very large ones (small k) eventually exit the horizon (k = aH). During the standard Big
Bang theory, the Hubble radius increases, so these scales eventually enter the horizon. The key
property we have just derived enables us to set initial conditions for the perturbations when
they enter the horizon. We have a mapping between Inflation and observations, which is not
affected by the unknown physics in between (such as the Reheating epoch).

2.4.2 Quantum theory

The next step is to canonically quantize the perturbations. This is done in very similar ways
for scalar and tensor perturbations, whose Mukhanov-Sasaki equation differ only by z  ! a,
v  ! ⌫. Thus, we will do it only for the scalar perturbations. First we promote the classical
variables to quantum field operators and impose canonical commutation relations. The conjugate
momentum is given by ⇡̂ = v̂0. The expansion of the field operator in terms of creation and
annihilation operator is:

v̂(⌘, ~x) =

ˆ
d3k

(2⇡)3

h

v(~k, ⌘)ei
~k~xâ(~k) + v⇤(~k, ⌘)e�i~k~xâ†(~k)

i

, (37)

and the commutation relations read:

[v̂(⌘, ~x), v̂(⌘, ~x0
)] = [⇡̂(⌘, ~x), ⇡̂(⌘, ~x0

)] = 0 (38)

[v̂(⌘, ~x), ⇡̂(⌘, ~x0
)] = i�(~x� ~x0

). (39)

We can neglect the vectorial nature of k since the Heisenberg equations for the fields, Eq. (34),
depend only on its absolute value. The next step is to set initial conditions. As usual in QFT
we use the Heisenberg picture, where the quantum states do not depend on time. The quantum
state of the system is usually assumed to be the ground state, |0i, such that: a(~k) |0i = 0 for all
~k and h0|0i = 1. This state is often called the Bunch-Davies vacuum. Now, the quantities we
want to compare with observations [9] are the Green Functions. In particular we will focus on
the two-point correlation function:

h0| ˆR(~x, ⌘) ˆR(~x0, ⌘)|0i = 1

z2
h0|v̂(~x, ⌘)v̂(~x0, ⌘)|0i = 1

z2

ˆ
d3k

(2⇡)3
|vk|2ei(~k�~

k

0
)~x, (40)

where we have used Eq. (37). Using Wick’s theorem we can now see that, since we are com-
puting vacuum expectation values, the classical random field we obtain is Gaussian [9]. Given
a homogeneous and isotropic Gaussian random field F(~x) whose k-dependent variance is �k, we
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define the power spectra as: P (k) =
�2
kk

3

(2⇡)2 , so the two-point correlation function reads:

hF(~x)F(~x)i =
ˆ 1

0

P (k)
dk

k
. (41)

Comparing Eq. (41) and (40) we find that the power spectra, once the perturbations have
become classical, are given by [20]:

PR(k, ⌘) =
k3

(2⇡)2
|vk|2
z2

. (42)

In parts of the literature their definition differ from ours by a factor of 1/2. We could obtain a
similar expression for the power spectra of tensor perturbations PT (k, ⌘). For simplicity we will
not give the details here and refer the interested reader to ref [9, 20].

2.4.3 Cosmological observables

We have mentioned that the quantity we compare with experiments is the primordial power
spectrum of perturbations (PPSP). In the case of single-field Inflation we only need to evaluate
it at horizon exit, since it does not evolve later on. We need to do it for scales that exit the
horizon between 50-60 e-foldings before the end of Inflation, since those are the ones relevant
for observations. We now define the four experimental quantities that shall concern us. We also
write the observational bounds from CMB and LSS observations [13, 14, 25], all with a 95%
confidence level except the last one, with 68%. The tilt of the scalar power spectra is defined as:

n
s

⌘ 1 +

d lnPR(k)
d ln k

= 0.968± 0.006, (43)

the running of the tilt

dn
s

d ln k
= �0.003± 0.007, (44)

the tensor-to-scalar ratio

r ⌘ PT (k)

PR(k)
< 0.07, (45)

and the amplitude of the scalar perturbations

A
s

⌘ PR(k) = (2.207± 0.076)⇥ 10

�9. (46)

It is straightforward to compute these quantities once we have obtained the power spectra
numerically. However, it is often the case in single-field Inflation that one can use the slow-roll
approximation '̈ ⌧ 3H'̇, '̇2 ⌧ 2V (') to obtain analytical expressions for the cosmological
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observables [10, 22]. We will use these expressions when we compare the multi-field and single-
field predictions. In this slow-roll limit the parameters ✏, ⌘SF ⌘ � '̈

H'̇
, � ⌘ ✏̇

✏H
,  ⌘ �̇

�H
and

⇠ = � ...
'
H'̈

are very small. It can be shown that these parameters are not only small but also
constant to a good approximation. The final formulas for the cosmological observables can be
written in terms of the parameters, without solving the Mukhanov-Sasaki equation:

PR (k) =

H2

8⇡✏

✓

k

aH

◆ns�1

, (47)

n
s

(k) = 1� 2✏� �, (48)
dns

d ln k
(k) = 2

�

⌘
SF

⇠ � ⌘2
SF

+ 4✏2 � 11⌘
SF

✏
�

, (49)

r (k) = 16✏⇤, (50)

where we have introduced the symbol ⇤, which means the quantity evaluated at horizon crossing.

It will be useful to re-write the Mukhanov-Sasaki equation (34) in Fourier space and in terms
of the slow-roll parameters. To do this we note that z2 = 2a2✏, so that z0

z
= aH(1 +

�
2 ). After

computing z00 we obtain:

v00k +


k2 � a2H2

✓

2� ✏+ 3�

2

� ✏�

2

+

�2

4

+

�

2

◆�

vk = 0 (51)

If the slow-roll approximation is valid then we can neglect second-order terms in the last equation
and, using � = 2(✏� ⌘

SF

), we arrive at:

v00k +


k2 � 1

⌘2
(2 + 6✏� 3⌘

SF

)

�

vk = 0. (52)

Finally, we shall remark that in any realistic model of Inflation the cosmological observables
barely depend on the initial conditions of the scalar fields. This is because the background
equations show a strong attractor behaviour. The attractor solution is known as the slow-roll
attractor.
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3 Multi-field Inflation

3.1 Classical theory

In this work we consider actions for several scalar fields with minimal coupling to gravity:

S =

ˆ
d4x
p�g

⇢

R

2

� 1

2

gµ⌫(x)�ab(')@µ'
a@⌫'

b � V (')

�

. (53)

We have introduced the metric � on the manifold M spanned by the scalar fields. Note Eq. (53)
is the multi-field generalization of Eq. (33). The scalar fields may be thought of as coordinates
in this manifold, with Christoffel symbols given by

�

a
bc =

1

2

�ad (@b�dc + @c�bd � @d�bc) (54)

and the Riemann tensor by

Ra
bcd = @c�

a
bd � @d�a

bc + �
a
ce�

e
db � �a

de�
e
cb. (55)

In the cases that are of interest here, it can be shown that the dynamics for the tensor pertur-
bations is very well approximated by the slow-roll, single-field formulas introduced before, with
a simple modification that we will explain later. For this reason we only need to study the full
dynamics of the scalar perturbations. The only changes between the SF and the MF case are:

i) The Background Equation for the scalar fields is no longer the Klein-Gordon equation, but:

¨'
a
+ �

a
bc
˙'
b
˙'
c
+ 3H ˙'

a
+ �ab

@V

@'b
= 0. (56)

Also, introducing ˙|'|2 = �ab ˙'
a
˙'
b, the Friedmann equations now read:

H2
=

1

3

✓

a2|'|02
2

+ V

◆

(57)

H2 �H0
=

|'|02
2

. (58)

ii) The expression for the energy-momentum tensor is more complicated. This means more
algebra is needed to compute its perturbation and introduce them in Eq. (29).

iii) The final equations for the perturbations are more complicated. For simplicity, the most
studied case in the literature is the two-field case. In this case one can decompose the pertur-
bations in two directions: Tangent (k) or Normal (?) to the background trajectory. These two

13



directions are determined by the two component vectors:

T =

1

˙|'|
⇣

˙'
1
, ˙'

2
⌘

(59)

N =

1

˙|'|p�
⇣

��22 ˙'2 � �12 ˙'1
, �11 ˙'

1
+ �21 ˙'

2
⌘

, (60)

where we have introduced the determinant of the metric in field space �. We will see that
this decomposition is useful since the perturbation along the tangent direction reduces to the
single-field perturbation in certain limits. There are now two Mukhanov-Sasaki variables:

Qa
= �'a

+

˙'
a
�

H
a = 1, 2. (61)

For convenience we multiply them by the scale factor and project them along the tangent and
normal directions. The coordinates of the vector aQ in the basis B = {T,N} then read:

aQ ⌘ (v, u) = a (TaQ
a, NaQ

a
) . (62)

The first-order equations for the two gauge-invariant perturbations va = (v, u) (they will corre-
spond to curvature and isocurvature perturbations) are:

v00 + 2⇣u0 � ⇣2v + ⇣ 0u+ k2v + ⌦11v + ⌦12u = 0, (63)

u00 � 2⇣v0 � ⇣2u� ⇣ 0v + k2u+ ⌦21v + ⌦22u = 0, (64)

where

⇣ = aH⌘?, (65)

⌦11 = �a2H2
(2 + 2✏� 3⌘k + ⌘k⇠k � 4✏⌘k + 2✏2 � ⌘2?), (66)

⌦12 = ⌦21 = a2H2⌘?(3 + ✏� 2⌘k � ⇠?), (67)

⌦22 = �a2H2
(2� ✏) + a2M2 (68)

and

M2
= VNN +H2✏R, R = TN bT cNdRabcd, (69)

VNN = NaN bDbVa, DbVa ⌘ @

@'b

@V

@'a � �a
bc

@V

@'c , (70)

where we have introduced the following parameters:

✏ ⌘ �
˙H

H2
=

˙|'|2
2H2

, (71)
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which is the multi-field generalization of Eq. (13), and

⌘k ⌘ �
¨|'|

H ˙|'|
, ⌘? ⌘ Na@aV

H ˙|'|
, (72)

⇠k ⌘ �
...
|'|
H ¨|'|

, ⇠? ⌘ � ⌘̇?
H⌘?

. (73)

Eq. (63) is the generalization of the single-field Eq. (34). Note that the equation is already in
Fourier space and that we are dropping the k-dependence in the subscripts of u and v. In section
2.5 we defined a set of parameters which were useful in single-field Inflation. It should be clear
that their multi-field generalization is given by the parameters ✏, ⌘k and ⇠k. The key property
of the single-field perturbation v

SF

is that it is proportional to z far outside the horizon, which
means that R tends to a constant. In general, this property does not appear in the two-field case,
due to the coupling between curvature and isocurvature, which can cause evolution far outside
the horizon. This coupling is controlled by the parameter ⌘?, which appears in ⌦11, ⌦12 and ⇣.
The parameter ⌘? has a simple geometrical interpretation: it measures the amount of bending
of the trajectory in field space. To be more precise, it can be written as |⌘?| = ˙|'|

H
�1, where  is

the radius of curvature of the trajectory in field space [26]. We can learn something about these
complicated equations by taking the so-called single-field, decoupling or weak-coupling limit
⌘? ! 0. If we identify ⌘

SF

with ⌘k, and notice that � = 2(✏�⌘k) and �
2 = 2✏2�⌘2k�3✏⌘k+⌘k⇠k,

then taking ⌘? = 0 in Eq. (63) we recover Eq. (51). This means that in the decoupling limit
the curvature perturbations are frozen on superhorizon scales, as in the single-field case, while
the isocurvature perturbations decay rapidly [27]. If we are also in the slow-roll regime, then
the equations reduce to:

v00 +
⇢

k2
+

1

⌘2
��2� 6✏+ 3⌘k

�

�

v = 0 (74)

u00
+

⇢

k2
+

1

⌘2

✓

�2 + M2

H2
+

✓

�3 + 2M2

H2

◆

✏

◆�

u = 0. (75)

The corresponding single-field equation for the curvature perturbation is Eq. (52).

3.2 Quantum theory

As in the single-field case, we expand the perturbations as a sum of Fourier modes:

v̂a(⌘,~x) =
ˆ

d3k

(2⇡)3

X

↵

h

va↵(~k, ⌘)e
i~k~xâ↵(~k) + va⇤↵ (

~k, ⌘)
i

e�i~k~xâ†↵(~k). (76)
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The index a = 1, 2 runs over the two perturbations while the index ↵ = 1, 2 runs over the
number of independent solutions of the differential equation. Notice that there are two types of
creation and annihilation operators, since there are two scalar quantum modes or independent
solutions. The first solution ↵ = 1 is (v1, u1) and the second one is (v2, u2). The directions T

and N are not necessarily the same as the directions of the quantum modes. Since the solutions
are linearly independent, both need to satisfy independently the classical MS equations:

v00↵ + 2⇣u0
↵ � ⇣2v↵ + ⇣ 0u↵ + k2v↵ + ⌦11v↵ + ⌦12u↵ = 0 (77)

u00
↵ � 2⇣v0↵ � ⇣2u↵ � ⇣ 0v↵ + k2u↵ + ⌦21v↵ + ⌦22u↵ = 0. (78)

Then we impose canonical commutation relations:
⇥

v̂a(⌘, ~x), v̂b(⌘, ~x0
)

⇤

=

⇥

⇡̂a
(⌘, ~x), ⇡̂b

(⌘, ~x0
)

⇤

= 0 (79)
⇥

v̂a(⌘, ~x), ⇡̂b
(⌘, ~x0

)

⇤

= i�ab(~x� ~x0
). (80)

Again, we work in the Heisenberg representation and choose as initial quantum state the ground
state. It can be shown that in the limit when the scale is far inside the horizon [26] the equations
of motion reduce to:

v00↵ + k2v↵ = 0 (81)

u00
↵ + k2u↵ = 0, (82)

which means that in this limit there is no mixing between different ↵-modes. As explained in
[26], appropriate initial conditions are then, for the two solutions:

v1(k, ⌘) =

1p
2k

eik⌘ u1(k, ⌘) = 0 (83)

v2(k, ⌘) = 0 u2(k, ⌘) =
1p
2k

eik⌘. (84)

3.3 Cosmological observables

After solving the equations numerically one time for each set of initial conditions, we are ready to
compute observables. As we anticipated v corresponds to the curvature and u to the isocurvature
perturbation:

R ⌘ v

z
=

H

a ˙|'|
v (85)

S ⌘ u

z
=

H

a ˙|'|
u. (86)
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Using the commutation relations of the ladder operators as we did in the single-field case, we
find that:

h0| ˆR(~x, ⌘) ˆR(~x0, ⌘)|0i = 1

z2
h0|v̂(~x, ⌘)v̂⇤(~x0, ⌘)|0i = 1

z2

ˆ
d3k

(2⇡)3

X

↵

|v↵(k)|2ei(~k�~k0)~x. (87)

This leads us to define the power spectra of each perturbation as:

PR(k, ⌘) =

k3

(2⇡)2
1

z2

X

↵

|v↵(k)|2 = k3

(2⇡)2
1

z2
(|v1(k)|2 + |v2(k)|2) (88)

PS(k, ⌘) =

k3

(2⇡)2
1

z2

X

↵

|u↵(k)|2 = k3

(2⇡)2
1

z2
(|u1(k)|2 + |u2(k)|2). (89)

Since the perturbations are coupled, they can evolve after horizon exit. In general this can be
a problem, since one would need to follow the evolution of both quantities all the way until the
scale re-enters the horizon during radiation or matter domination. However, if by the end of
Inflation the isocurvature perturbation has decayed fast enough- meaning that the system has
reached the adiabatic limit- one can still use Weinberg’s theorem [9, 22, 23]. Weinberg starts
by proving that whatever the constituents of the universe and the classical equations governing
them may be, these equations always have a physical solution for which R approaches a non-zero
constant R0 far outside the horizon. This solution is called the adiabatic mode. Then he shows
that in single-field Inflation this solution is always excited. He then concludes that the curvature
perturbations set up during single-field Inflation always remain conserved after Inflation. In the
same way, the adiabatic limit can be reached in multi-field Inflation, and we can still make
predictions. The only difference is that now we need to evaluate the curvature power spectra at
the end of Inflation, or at least once the adiabatic limit has been reached.

3.4 Numerical example

In this section we will consider a simple two-field potential:

V (',�) =
1

2

m2
''

2
+

1

2

m2
��

2, (90)

with canonical kinetic terms,

� =

 

1 0

0 1

!

. (91)

This example shows the essence of multi-field effects which could appear in the more complicated
potential we will consider in section 6, where they can be harder to study. We choose the
parameters in the model as in [28]: m' = 1.395 ⇥ 10

�6Mpl, m� = 7m','0 = �0 = 12M
pl

and
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the derivatives of the fields at their slow-roll values. In Fig. 1 we can see that the trajectory in
field space turns around N = 30. As expected, this corresponds to a peak in ⌘? in Fig. 2. We
can see in Fig. 3 that this causes super-horizon evolution. Before N = 30 both modes evolve
independently. Then the isocurvature transfers its power to the curvature, and that is why the
red curve decays very fast, while the black one enjoys a small bump. Therefore, it is only after
N = 30 that the adiabatic regime is reached. Note that Fig. 3 reproduces the results from Fig.
1 in [28].

� � � � � �� ��
�

�

�

�

�

��

�� �=��

�=��

�=	�

�=��

�=� �=�� �=���=
�

Figure 1: Potential and Trajectory in field space for the two-field square potential with param-
eters m' = 1.395 ⇥ 10

�6M
pl

, m� = 7m' and '0 = �0 = 12M
pl

. We observe a sharp turn at
N = 30, which is the cause of the coupling between curvature and isocurvature perturbations.
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�	�

Figure 2: ⌘?for the two-field square potential with parameters m' = 1.395⇥10�6M
pl

, m� = 7m'

and '0 = �0 = 12M
pl

.

� �� �� �� �� �� ����-��

��-��

��-��

��-��

��-�

��-�

Figure 3: Power spectra for the scale that exits the horizon at N = 60 at the end of Inflation.
PR is given by Eq. (88) and PS by Eq. (89). We can see a bump at N = 30, which corresponds
to the peak in ⌘? in Fig. 2 and the turn in Fig. 1.
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4 String Theory

4.1 Basics of String Theory

The fundamental objects of String Theory are no longer point particles, as in QFT, but one-
dimensional objects known as open and closed strings. The SM particles appear then as a small
set of the infinite vibrational modes of these strings. The world-line traced by the particles
is replaced by the two-dimensional worldsheet traced by the string. The worldsheet can be
parameterized by a finite spatial coordinate � and a time coordinate ⌧ . The coordinates of the
string are defined as a mapping between the worldsheet and the target d-dimensional spacetime
x

M

(�, ⌧) with M = 0, 1, ..., d � 1. Interactions no longer occur at points, but are smeared out
over spacetime in a smooth way. The length of the string l

s

determines the energy scale of
the massive excitations through Ms ⌘ (↵0

)

�1/2
= l�1

s

. It is the only renormalizable theory of
Quantum Gravity known at present. In order to explain why the quantum version of General
Relativity is non-renormalizable, String Theory must become effective before the Planck scale is
reached, so we must have M

s

< M
pl

. String Theory is potentially able to incorporate all known
forms of matter and interactions in a unified framework [29–31]. The theory is physically and
mathematically consistent only after including supersymmetry and extra dimensions. Namely,
a Supersymmetric String Theory (Superstring Theory) is anomaly free only if the number of
dimensions is ten. With these conditions there are only five possible theories: Type I, Type IIA,
Type IIB and the heterotic E8 ⇥ E8 and SO(32). We will only consider Type IIB in this work.

4.2 Type IIB Supergravity limit. Compactification. Moduli stabiliza-

tion.

Type IIB String Theory is, at present, among the most promising theories to connect string
theory with particle physics and cosmology, due to the presence, within its framework, of viable
solutions both to stabilize moduli and to build local Standard Model-like constructions. We will
shortly review how the four-dimensional effective theory is obtained from String Theory.

First of all, one starts by taking the low-energy limit of type IIB String Theory, E ⌧ M
s

.
In taking this limit we are ignoring massive string states and string loop effects. At this stage,
one is able to write an action corresponding to a ten-dimensional type IIB supergravity, which
has N = 2 supersymmetries and whose field content is given by the massless degrees of freedom
of the string. To go beyond this approximation one needs to include two types of corrections
to the leading order action. Firstly, at leading order we are considering only tree diagrams for
the strings. The perturbative expansion in the string loops is controlled by the string coupling
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constant g
s

. Secondly, there are ↵0 corrections, which are related to the ten-dimensional su-
pergravity equations themselves being only low-energy approximations to the full string theory.
They count higher-order derivative terms. The parameter ↵0

= M�2
s

controls this type of cor-
rections since they appear in powers M

x

/M
s

, where M
x

is an energy scale lower than the string
scale.

Then, usually one assumes that space-time is a product of the form R3,1 ⇥ X6, where X6 is
a six-dimensional Calabi-Yau manifold. It is often appropriate to take the further low-energy
limit E ⌧ M

KK

, where we have introduced the compactification scale M
KK

(sometimes called
M

c

), whose inverse determines the size of the compact dimensions. In this limit one keeps only
the zero-modes of the Kaluza-Klein tower, associated to each of the ten-dimensional states. One
ends up in four-dimensional type IIB supergravity with N = 2 supersymmetries. Finally, one
takes an orientifold projection of the Calabi-Yau manifold to reduce the supersymmetries to
N = 1.

The bosonic part of the resulting N = 1 low-energy four-dimensional Lagrangian can be
displayed in the standard supergravity form [32], in terms of a Kähler potential K, a holomorphic
superpotential W and a holomorphic gauge-kinetic function fab, where a, b run over the various
vector multiplets, and I, J runs over all the different moduli:

L
bos

=

M2
pl

2

R� 1

4

Re[fab(�)]F a
µ⌫F

bµ⌫� 1
4

Im[fab(�)]F
a
µ⌫

˜F bµ⌫�KIJDµ�
IDµ

�

J �V (�

I ,�J
). (92)

Here �I are chiral superfields, but we will always understand that we are focusing on the lowest
component �I |✓=0, so we can think of them as complex scalars. Fµ⌫F µ⌫ is the usual term for the
gauge bosons Aa

µ. Neither the gauge bosons nor the fermions in the theory play a role in this
thesis. The F -term contribution to the supergravity scalar potential V is given in terms of K
and W by:

VF = eK/M2
P

(

(K�1
)

IJDIWDJW
⇤ � 3

|W |2
M2

pl

)

, (93)

where KIJ is the inverse of the Kähler metric KIJ =

@
@�I

@

@�
J K(�,�) and the definition of the

Kähler covariant derivative is:

DIW = @IW +

1

M2
pl

(@IK)W. (94)

The D-term scalar potential reads:

VD =

1

2

Re[f(�)]�1 abDaDb, (95)
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where

Da =



@

@�I
W +

1

W

@

@�I
W

�

(Ta)IJ�J , (96)

and Ta denote the gauge group generators. There are many different moduli that can appear in
the resulting low-energy effective field theory. We will consider:

• Axio-dilaton modulus ⌧ , whose vev gives the string coupling.

• Complex structure moduli ⇣a, which parameterize the shape of the extra dimensions.

• Kähler moduli Ti, which parameterize the size of the extra dimensions.

• Open string modulus �, which is associated with the position of a D-brane.

The source of the moduli problem is that in the absence of internal fluxes the superpotential
vanishes [23], so only the Kähler potential contributes and the resulting potential is flat for all
moduli: they are massless. In addition to the fundamental strings, String Theory contains other
objects, like the so-called Dp-branes, which are hypersurfaces with p spatial dimensions and one
time dimension, to which open strings can be attached. The D stands for Dirichlet, referring
to the fact that open strings ending on a D-brane have Dirichlet boundary conditions in the
directions perpendicular to the brane. Their endpoints cannot leave the D-brane. However,
they have Neumann boundary conditions in the directions along the spatial dimensions, so the
endpoints are free to move in the D-brane. Their presence introduces non-vanishing background
fluxes, which contribute to the superpotential. In this way, by turning on background fluxes,
both the dilaton and the complex structure moduli can be stabilized at tree level [33]. However,
the part of the scalar potential which depends on the Kähler moduli, at tree level, usually goes as
V ⇠ 1/T 3, so they can easily go to infinity. In this thesis we will assume that all moduli except
the Kähler moduli have been stabilized in this way. Furthermore, we assume that their masses
are very large compared to the typical energy scales of the remaining scalar fields, so that we
can integrate them out at tree level. After integrating out the large massive moduli and ignoring
irrelevant constants in the Kähler potential, one arrives at the following tree-level expressions
for the Kähler potential and the superpotential, for the case of only one Kähler modulus:

K
tree

= �3 ln (T + T), (97)

W
tree

= W0, (98)

where W0 is a constant determined by the fluxes and the vacuum expectation values of the
heavy moduli. It is known that in N = 1 four-dimensional supergravity, the Kähler potential
receives corrections at every order in perturbation theory. The gauge-kinetic function f also
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receives corrections, but only at one-loop. However, the superpotential receives no corrections
in perturbation theory. The superpotential is then only affected by non-perturbative corrections
like those coming from instantons when D3 or D7-branes are present. The corrections therefore
take the general form:

K = K
tree

+K
p

+K
np

, (99)

W = W
tree

+W
np

, (100)

f = f
tree

+ f1L. (101)

It has been shown in the literature that these corrections can stabilize even all of the Kähler
moduli. Most prominently, this can be achieved through terms in W

np

, such that all the Kähler
moduli are stabilized in a supersymmetric AdS vacuum [34]. This is often known as KKLT
stabilization, the initials corresponding to the authors of [34]. The value of the potential in the
post-inflationary vacuum is the value of the cosmological constant, measured to be close to zero,
but positive. To match the observations it is necessary to "uplift" the Anti-de-Sitter solution
(spacetime with negative curvature) to a Minkowski (flat spacetime) or tiny de Sitter (positive
curvature) universe. For these reasons, it is useful to modify the system slightly, both to break
supersymmetry and to raise the vacuum energy to zero or positive values. The idea is to do so
in a way which does not ruin the success of the modulus stabilization just discussed. Following
[34], the solution we will use in this thesis is to include a term of the form V

up

= eK� to the
potential, where � is a constant parameter, which is tuned to obtain a Minkowski vacuum.
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5 String Inflation

5.1 Motivation

In many well-known models, the scale of Inflation lies around 10

15 GeV, which is relatively close
to the scale of quantum gravity, the Planck scale Mpl = (8⇡G)

1/2 ⇡ 10

18 GeV. It is then not
unreasonable to assume that the physics behind Inflation will incorporate a quantum theory for
gravity. At present, the theory which provides the best-developed and best-motivated framework
of quantum gravity is String Theory. This makes it an appealing laboratory for seeking realistic
inflationary models.

There are many other reasons why studying String Inflation is interesting. To begin with, it
can provide a framework to answer questions such as those regarding the naturalness of Inflation.
Inflationary models require relatively flat potentials and special initial conditions for the fields,
and it is unclear how special these requirements actually are. String Theory could provide, in
a natural way, flat potentials and the needed initial conditions for the fields. Another common
motivation is that, by limiting ourselves to single-field inflation, we may be making unnecessary
assumptions, and that by looking at Inflation from the String Theory point of view, many
interesting new insights will arise naturally. For example, it is often assumed that the inflaton
field remains a quantum state after inflation ends and still appears in the low-energy theory
describing the later SMC epoch. However, if the inflaton were the separation between a brane
and antibrane which mutually annihilate at the end of Inflation [35, 36], then the inflaton does
not even make sense as a field in the later universe. Finally, arriving at a successful String
Inflation model could pave the way for successful Reheating models, where one needs a strong
coupling between the inflaton and the SM particles and a weak coupling between the inflaton
and any other currently unobserved degree of freedom.

5.2 Energy scales and challenges in String Inflation

An ideal model of the early universe would include a theory of quantum gravity. Besides, it
would use only fundamental topological data as input and, in the low-energy limit, one would
be able to arrive at an effective field theory resembling the Standard Model via an explicit, well-
controlled computation. Moreover, it would imprint distinctive signatures on the cosmological
observables which would, of course, be consistent with current data, and would help us verifying
the theory. Unfortunately, such a model is not expected to be available in the near future.

The most common approach to obtaining low-energy effective theories from String Theory
was presented in the last section. There, we introduced two important energy scales: the string
scale M

s

and the compactification, Kaluza-Klein scale M
KK

. Furthermore, we explained that
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the following hierarchy is needed: M
pl

> M
s

> M
KK

. Now, by Eq. (2) and Eq. (57), we know
that the energy scale of Inflation is determined by the Hubble rate H. Applying what we have
explained in section 4 we conclude that the complexity of an inflationary model in String Theory
will depend crucially on how large H is, compared to M

s

and M
KK

:

• If Ms . H, then Inflation can only be studied using the whole apparatus of String Theory.
Particles with masses m  H can be produced, which correspond to nontrivial string
excitation modes. As explained in section 4, this regime is out of reach at the moment.

• If M
KK

⌧ H ⌧ M
s

, then we can use the ten-dimensional supergravity limit to study
Inflation. In this regime all the extra-dimensional physics is important, the KK modes
associated with the extra dimensions can be excited and it is still too difficult to work
with.

• H ⌧ M
KK

⌧ M
s

, then we can use all of the simplifications made in section 4, and study
Inflation using the 4-dimensional supergravity limit. The biggest drawback of this regime is
that most signatures from String Theory are highly suppressed, as far as CMB observables
are concerned [23].

Of course, we will assume that Inflation falls in the last regime. The moduli stabilization problem
introduced in section 4 is very relevant in String Inflation. To stabilize the moduli one needs
to introduce new sources of potential energy, which can contribute to the inflaton potential.
Therefore, one needs to study Inflation after all moduli have been stabilized. A simplifying
assumption is that the masses we have given to most of the moduli are much larger than H and
than the mass of the inflaton field m

mod

� m', H. In this case they can be integrated out and
the inflationary action will involve only a few scalar fields. In this thesis we study the simplest
case where there is only one companion to the inflaton field. We can summarize the hierarchy
needed in string-inflationary models by:

H ⌧ m
mod

⌧M
KK

⌧M
s

⌧M
pl

. (102)

At present, obtaining this hierarchy is probably the biggest challenge in String Inflation, since
there is little room to accommodate all these energy scales. Keeping in mind the ideal features
of a string inflationary model presented above, let us summarize the essential requirements that
a successful model must meet [23]:

• The energy hierarchy in Eq. (102) must be realized, so that we can perform computations.

• The inflaton action should be computed in an expansion around a metastable de Sitter
vacuum, with all approximations under control.
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• For every string theory object we introduce to stabilize moduli, we must know the corre-
sponding effect on the inflaton potential.

• The model needs to predict density fluctuations that are nearly scale-invariant, weak, Gaus-
sian and adiabatic, in agreement with the current data for the cosmological observables,
see Eq. (43-46).

• The inflationary phase must end and give way to a successful reheating of the Standard
Model, without overproduction of relics.
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6 Our Model

6.1 Motivation. Introducing one-loop corrections in Wnp.

We will study a particular case within the general setup of sections 4 and 5, including type
IIB String Theory with fluxes, orientifold and mobile D7-branes. Following [8], we consider toy
models with a single Kähler modulus T , which parameterizes the volume of a four-cycle in the
compact manifold Y6, and an inflaton multiplet �, which is the position modulus of a single
mobile D7-brane, also wrapping a four-cycle. As in section 4, we assume that all other moduli
have been given very large masses compared to the masses of T and � and that they have been
integrated out. The three functions, to be obtained from String Theory, that define the four-
dimensional supergravity are: the Kähler potential, the superpotential and the gauge-kinetic
function. The precise form of the Kähler potential is not crucial for our discussion as long as
it is shift-symmetric in the imaginary part of �, to guarantee enough flatness in the potential.
It is not important because higher-order terms in K do not affect the leading-order terms in V
that concern us here. Let us take the following ansatz for the Kähler potential:

K = �3 ln �T + T

�

+

1

2

�

�+ �

�2
. (103)

From Eq. (100) we know that W will be a sum of a constant term and a non-perturbative
term. The possibility to use this non-perturbative term to stabilize T has been studied in the
literature, where it was assumed to be of the form: W = W0 + Ae�↵T , with ↵ and A constant
parameters. However, the one-loop corrections to the gauge-kinetic function in Eq. (101) can
contribute to this non-perturbative term through [8]:

W = W0 + µ�2
+ Ae�f , (104)

f = ↵T +

1

4⇡2
ln g(�), (105)

where µ is a constant and g(�) is a periodic function of �, containing the perturbative corrections
to f . The constant piece of strength W0 and the quadratic term for �, of mass µ, appear at
tree level. The non-perturbative term which stabilizes T is the exponential, and it incorporates
the one-loop corrections to the gauge-kinetic function. These corrections were studied for the
first time in [8], where they were sourced by a gaugino condensate on a stack of D7-branes. The
different forms that this term can adopt are studied in this reference. In this thesis, we consider
the following example:

W = W0 + A [1 + � sinh (��)] e�↵T
+ µ�2, (106)
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where � and � are constant parameters and ↵ =

2⇡
5 . The amplitude of these corrections is

determined by �, and its frequency by �. The presence of the hyperbolic sine is determined
by the details of the model. It is found by computing the Pfaffian of the one-loop diagram
correcting the instanton action, which is a notoriously difficult task. Since the parameter � is a
one-loop coefficient, it should be smaller than 1. Typically, ��1 should correspond to the size of
a four-cycle that is wrapped by a D7-brane. This size is, of course, bounded from above in the
compact manifold. Its value depends on the explicit setup, but we always assume � > 1, again,
see [8] for more details.

We are always working under the reasonable assumption that all other moduli, especially the
complex structure and dilaton, have been stabilized at a high scale and play no role here. This
will be the case if there is a separation of scales such that we can integrate them out at some
higher scale. Then, in a specific example, µ would depend on the expectation values of the heavy
fields; but we are not interested in the details of its origin. Further discussion on the details on
the model can be found in [8] and references therein. The small size of the parameters W0 and
µ is related to the choice of fluxes, as explained in [7].

We obtain the scalar potential introducing Eq. (103) for K and Eq. (106) for W in Eqs. (93)
and (95). At this stage, our Lagrangian is given by Eq. (92). The gauge bosons play no role,
so we can forget about them. In section 4, we studied the general case, where a D-term appears
if the theory has an Abelian gauge symmetry. By Eq. (95), the D-term is proportional to the
charges of all the fields in the theory. In our case, there is no gauge symmetry, so the D-term
potential vanishes. The bosonic Lagrangian then contains only the two complex scalar fields
I = (�, T ):

L
bos

=

M2
P

2

R�KIJ@µ�
I@µ�J � V (�

I ,�J
). (107)

We denote the four scalar fields inside the two complex fields by: � = �+ i', T = ⌧ + i�. It can
be shown that the shape of the potential is such that the dynamics of � and � play no important
role. This means that they can be integrated out at the origin. It can be seen that there is a
stable AdS vacuum at ' = 0 and some value ⌧ = ⌧0. As explained in section 4, we must include
an uplifting term in the potential of the form V

up

= eK�, to tune the cosmological constant to
a small, positive value. By demanding the existence of a Minkowski vacuum at ' = 0 we can
eliminate the two parameters A and � in terms of the other parameters we have introduced plus
⌧0, which becomes a free parameter. We obtain:

A =

6e↵⌧0W0(1� ↵⌧0)
3�

2�2 + 4↵⌧0(2 + ↵⌧0)� 6

, (108)
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� = �2

p
3W0 [(�1 + ↵⌧0) (3�2�2 (1 + ↵⌧0) + 4↵2⌧ 20 (2 + ↵⌧0))]

1/2

(�6 + 3�

2�2 + ↵⌧0(2 + ↵⌧0))
. (109)

Following [8] we take ⌧0 = 10. We have arrived at the final expression for our two-field (', ⌧)

action, Eq. (53). Computing KIJ and comparing Eq. (107) with Eq. (53) we obtain:

�11 = 1 (110)

�22 =

3

(2⌧ 2)
(111)

�i 6=j = 0, (112)

while for the scalar potential we obtain:

V (', ⌧) =

(

e�2↵⌧
6W 2

0 (�1 + ↵⌧0)



e2↵⌧
⇥

3�

2�2 (1 + ↵⌧0) + 4↵2⌧ 20 (2 + ↵⌧0)
⇤

+ 3e2↵⌧0�2�2 (�1 + ↵⌧0) cos

✓

�

2'2

2

◆�

� 12e2↵(⌧0�⌧)W 2
0↵ (�1 + ↵⌧0)

2
⇣

�2� �2 + �2cos
⇣p

2�'
⌘⌘

⌧ (3 + ↵⌧)

+ µ2
��6 + 3�

2�2 + 4↵⌧0 (2 + ↵⌧0)
�2
'2

� 6e↵(⌧0�⌧)W0↵ (�1 + ↵⌧0)
��6 + 3�

2�2 + 4↵⌧0 (2 + ↵⌧0)
�

⌧
�

2W0 � µ'2
�

)

/

(

4

��6 + 3�

2�2 + 4↵⌧0 (2 + ↵⌧0)
�2
⌧ 3)

)

. (113)

In our example the metric is simple enough to allow for a field re-definition ⌧ ! � in such
a way that both fields are canonically normalized (�ij = �ij), at the expense of complicating
(even more) our scalar potential. Only four of the parameters of the potential are relevant
for the cosmological observables. The parameter W0 can (and will) always be used to set the
amplitude of the scalar perturbations equal to the experimental value. Both � and � measure
the strength of the oscillations induced in V by the corrections in the non-perturbative term
of the superpotential. � also measures the frequency of these oscillations. Finally, the ratio
µ
W0

(much less than unity), contributes to the flatness of the potential, and we will always tune
it to match the observations as best as possible. Besides these parameters, we also need to
choose the initial point for our trajectory, that is, initial conditions of the fields. If one chooses
carelessly the initial values of the fields and their velocities, one typically observes very large
initial oscillations of the fields around the attractor solution. Afterwards, the fields continue to
roll down smoothly along the slow-roll solution. These oscillations always take place before the
scales of cosmological interest enter the horizon (N > 60), so we can simply ignore them by
setting the time derivatives of the fields equal to their slow-roll values right from the start.
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W0 W0/µ � � '0 �0

0.006 290 0.096 1.31 15.2 2.91

Table 1: Set of parameters for small � and large �.

6.2 Numerical evaluation

One of our goals is to study the signatures of the corrections we introduced in the superpotential,
which appear as wavy modulations, parameterized by � and �, in the potential, see Eq. (113).
To put it simply, if these parameters are big enough, the scalar potential exhibits large and
fast oscillations. In this case, we would expect our field trajectory to bend around the peaks
in the potential, which would induce a large ⌘? and a large coupling between curvature and
isocurvature. Therefore, we will try to search for this kind of behaviour. Depending on how
large � and � are, it will be useful to divide the parameter space in three different regimes, which
we will now explore. For each regime, first, we will plot the potential and the trajectory in field
space in the same figure, so that we can see if there are modulations in the potential that can
lead to multi-field effects. Then, we solve numerically the Mukhanov-Sasaki equations, using
Mathematica. We have explained that, since more than one scalar field is present, the curvature
perturbation can, in principle, evolve outside the horizon. For this reason, we need to evolve the
system until it reaches the adiabatic limit.

6.2.1 Small � and large �

Let us begin with a comparably small value for � (remember that � > 1) and a value of � chosen
as large as allowed by the experimental bounds. In particular, we choose the set of parameters
given in Table 1. In this case, since � is small, the frequency of the oscillations is small, as seen
in Fig. 4. We can expect to observe multi-field effects only if ⌘? is as large as ⌘k (which is of the
order of 10�1). In the present case we can see in Fig. 5 that ⌘? is really small, and would be
negligible if plotted together with the rest of relevant parameters. Consequently, we are in the
decoupling limit. It is easy to check that all the slow-roll parameters are small, so we expect the
slow-roll, single-field formulas to match the numerical solutions quite well.
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Figure 4: Potential and trajectory in field space for small � and large �.
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Figure 5: ⌘? for the small � and large � case.

In Fig. 6 we can see the typical shape of the power spectra for a given scale, in this case the
one that exits the horizon at 57 e-folds. Since ⌘? is so small the system is decoupled and, as
expected, the adiabatic limit is reached as soon as the scale exits the horizon. In this limit,
the curvature perturbation is constant, and the isocurvature perturbation completely negligible.
The best way to obtain the constant towards which the curvature perturbation approaches is to
evolve the system until the end of Inflation and evaluate the power spectra then. In our model
the system is already deep in the adiabatic regime 20 e-foldings after horizon exit. We can
see that, at this time, the isocurvature perturbation is many orders of magnitude smaller than
the curvature perturbation. Unfortunately, this makes it very hard to perform computations
after that. The numerical precision required to perform computations is such that the necessary
computer time is too large. Nevertheless, we can clearly see that the system is barely evolving
by that time, so we can safely evaluate the power spectra 20 e-foldings after horizon exit. As
a further check one can solve the equations in the decoupling limit ⌘? ! 0, which is always a
good approximation in this thesis. In this limit it is easy to evolve the system until the end of
Inflation, and this has helped verifying our results.
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Figure 6: Power spectra for the small � and large � case for the scale that leaves the horizon at
N = 57. The adiabatic limit is reached as soon as the scale exits the horizon. A few e-foldings
after horizon exit the isocurvature perturbation is already 20 orders of magnitude smaller than
the curvature perturbation and due to limited computational time we cannot evolve the system
beyond this point. We have verified that the results can be extrapolated to the end of Inflation
by solving the equations in the decoupling limit, which is a very good approximation in all of
the cases we study.

After solving the Mukhanov-Sasaki equations for a large number of scales we obtain the power
spectra as a function of time (or N) and the scale k. For the reasons explained above, we need
to evaluate the power spectra and the rest of observables once the adiabatic limit is reached.
Thus, the cosmological observables are functions only of the scale k. Instead of having the scale
in the x�axis, the observables are usually plotted in terms of the number of e-foldings at which
the scale exits the horizon. In Fig. 7, Fig. 8 and Fig. 9 we have plotted the spectral tilt, its
running and the tensor-to-scalar ratio. We can see that the tilt and the running are inside the
observational bounds for the scales of interest. The tensor-to-scalar ratio is a little bit too large
to match the observations. This problem is frequent in large-field inflationary models. Among
these models, the one we are studying gives a very low r. If tensor modes were soon detected in
the CMB observations or through an stochastic background of gravitational waves in the near
future, more realistic models inspired in this toy model could still be viable.
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Figure 7: Spectral index at the scales of cosmological interest for the small � and large � case.
The oscillations in n

s

have a low frequency and a large amplitude.
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Figure 8: Running of the spectral index at the scales of cosmological interest for the small �
and large � case.
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Figure 9: Tensor-to-scalar ratio at the scales of cosmological interest for the small � and large
� case.

W0 W0/µ � � '0 �0

0.026 2000 0.001 10 17.8 2.82

Table 2: Set of parameters for large � and small �.

6.2.2 Large � and small �

Let us move on to the example with a larger frequency � in Table 2. We have chosen � as
small as required by the observations. Even though the oscillations are faster, they cannot be
observed in the potential without changing the scale of the plot in Fig. 10, because its amplitude
� has decreased a lot. The fast oscillations can be seen in ⌘? in Fig. 11. This is because we
have changed the scale of the plot. Indeed, if we compare it to Fig. 5, we realize that ⌘? has
decreased by a factor of 100. It is even smaller, so, again, we cannot expect to see multi-field
effects. We can also see that the oscillations in the spectral tilt, in Fig. 12, and its running, in
Fig. 13, have gotten faster. The numerical results agree quite well with the slow-roll predictions,
as expected. In Fig.14 we see that the tensor-to-scalar ratio is again a bit larger than the present
observational bounds.
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Figure 10: Potential and trajectory in field space for the case of large � and small �.

36



� �� �� �� �� �� ���������

�������

�������

�������

������	

�������

Figure 11: ⌘? for the large � and small � case.
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Figure 12: Spectral index at the scales of cosmological interest for the large � and small � case.
The oscillations in n

s

have a large frequency but a small amplitude.
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Figure 13: Running of the spectral index at the scales of cosmological interest for the large �
and small � case.
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Figure 14: Tensor-to-scalar ratio at the scales of cosmological interest for the large � and small
� case.

W0 W0/µ � � '0 �0

0.006 290 0.48 16.35 14.4 2.9

Table 3: Set of parameters for large � and large �.
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6.2.3 Large � and large �

Finally, we study an example where both the frequency � and the amplitude � (remember that
� should be smaller than 1) of the corrections are comparably large. The fast oscillations are
clearly visible in the potential in Fig. 15. Their effect on the trajectory in field space can also
be seen in this figure. As a result, large oscillations appear in ⌘? in Fig. 16. Nevertheless, if
we compare ⌘? with the rest of parameters in Eq. (63), we realize that it is not dominant, so
we do not expect to see multi-field effects. We have found that if one increases both � and �
at the same time, the fields can get stuck in a local minimum. The system would enter in an
eternal false-vacuum inflationary period, which would never give way to Reheating nor the SMC
periods. We have also found that, to obtain a large coupling between curvature and isocurvature,
one needs both large � and large �. Unfortunately, this predicament prevents us from obtaining
multi-field effects, as those obtained in the square potential of section 3.
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Figure 15: Potential and trajectory in field space for the case of large � and large �.
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Figure 16: ⌘? for the large � and large � case. It is higher than in the other two cases presented
above.

Since we are in the decoupling limit, PR is expected to be frozen far outside the horizon, and
this is what we observe in Fig. 17, where we plot the power spectra of curvature and isocurvature
perturbations for the scales that leave the horizon at 57 and at 57.25 e-folds. Comparing Fig. 17
and Fig. 6 we notice that in this new example we need to wait a few e-folds before the adiabatic
limit is reached. This is a sign that new physics is starting to become relevant. In fact, in Fig.18,
Fig. 19 and Fig. 20, where we have plotted the numerical and the slow-roll predictions for the
cosmological observables, we note that there is a strong disagreement between them. In this
case we are therefore forced to use the full MS equation to make predictions, since the slow-roll
approximation is not valid. Unfortunately, our prediction always crosses the experimental bounds
in tiny patches between 50 � 60 e-foldings. Thus, it would require a lot of fine-tuning of our
initial conditions to get the precise number of e-foldings to meet the observations. Furthermore,
these windows do not coincide for all the observables, they are actually mutually exclusive.
Consequently, this parameter regime is ruled out by observations.
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Figure 17: Power spectra for the large � and large � case for the scales that leave the horizon
at N = 57 and N = 57.25. Bunch-Davies initial conditions are imposed at 62 e-folds, when
the scales are well inside the horizon and the curvature and isocurvature perturbations coincide.
They starting evolving while being sub-horizon, in a wavy manner, expected from the oscillatory
nature of the potential. We need to wait around 3 e-folds until the adiabatic limit is reached.
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Figure 18: Spectral index at the scales of cosmological interest for the large � and large � case.
The experimental bounds are seen as a blue line, due to the exaggerated scale of the plot. The
patches where our prediction matches the observations are so small that a great deal of fine-
tuning would be needed to get the number of e-foldings right. The choice of parameters is, of
course, completely unphysical, but the plot illustrates well the fact that the slow-roll equations
cannot be used to predict observables. The oscillations in n

s

have a large frequency and a large
amplitude.
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Figure 19: Running of the spectral index at the scales of cosmological interest for the large �
and large � case. The experimental bounds are seen as a blue line, due to the exaggerated scale
of the plot as in Fig.18. The patches where our prediction matches the observations are so small
that a great deal of fine-tuning would be needed to get the number of e-foldings right. Again,
we observe a difference between the slow-roll and the numerical prediction.
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Figure 20: Tensor-to-scalar ratio at the scales of cosmological interest for the small � and large
� case. Again, we observe a mismatch between the slow-roll and the numerical prediction.

6.2.4 Comparing the examples

We have found that the model is able to match the observations only if the amplitude of the
oscillations is small. If we increase �, then we need to decrease � in such a way that the strength
of the oscillations remains constant. Otherwise, the predictions fall outside the experimental
window. In the first two examples we were able to produce realistic models. As can be seen
by comparing their parameters in Tables 1 and 2, in order to still be able to account for the
observations after increasing � by a factor of 10 one needs to decrease � by a factor of 100. The
importance of this result can be appreciated if we remember Eq. (106) for the superpotential:
if we include high-frequency corrections, then the experimental data forces them to be highly
suppressed.

In all of our examples we are in the decoupling limit. However, only in the last example we
have a disagreement between the numerical and the slow-roll prediction. In Fig. 21 we can see
the slow-roll parameter ⌘k for the three examples. Only the last example breaks the slow-roll
condition ⌘k ⌧ 1. This means that in this last case we cannot use the slow-roll formulas to make
predictions.
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Figure 21: Comparison of ⌘k for the three examples. The slow-roll approximation is valid in the
first two cases, but not in the last one.
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7 Conclusions

We have studied the cosmological observables predicted by the two-field toy model of [8]. Our
efforts were focused on studying the effects that the one-loop correction to the non-perturbative
term in the superpotential has on the cosmological observables. In particular, we have studied
the case where this term is given by simple sines and cosines.

• First, we were able to obtain realistic models with high-frequency but small-amplitude
oscillations and also with small-frequency but large-amplitude ones. In both cases the
fields are weakly coupled, which means that there are no multi-field effects associated with
the bends of the trajectory. Moreover, they are in the slow-roll regime, which means that
we can use the slow-roll, single-field equations and ignore all the other detailed predictions
which could have potentially appeared through the multi-field MS equations. In these
examples we have observed oscillations in the cosmological observables, induced by the
corrections we are interested in.

• Then, we went on exploring the parameter space, searching for signatures of multi-field
dynamics. Unfortunately, when we tried to make the corrections larger, so as to increase
⌘?, the fields started to get stuck on local minima. Thus, our perturbations remain always
weakly coupled. We were able to check that, as the corrections started to increase, the
slow-roll approximation started to fail. In our last example, it was necessary to solve
the MS equation to compute the cosmological observables. Approximately, at the same
time the slow-roll approximation started to fail, the predictions started to fall outside the
experimental windows.

Even though our model was not able to predict evidence for multi-field dynamics while correctly
predicting the cosmological observables, the findings of this project are still very interesting and
could pave the way for more sophisticated analyses. For example, we have been able to keep
our approximations under control, and have been able to understand when the full multi-field
equations are needed.

We have been able to appreciate the shortcomings of our model by fully understanding the
role of each parameter in the potential and its effects on the cosmological observables. Namely,
we have been able to understand the interplay between the amplitude and the frequency of these
oscillations: we can only match the experimental observations by keeping one of them small. In
addition, we have verified that the parameter W0 can be adjusted to give the scalar perturbations
its proper amplitude.

As a summary, to increase the coupling between curvature and isocurvature we need our
trajectory to bend, thus giving a large value of ⌘?. To do this, we would need faster (" �) and
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larger (" �, " �) oscillations, which would create wells in the potential deep enough to trap the
system in a local minima. Although this prevents us from observing multi-field effects, we can
still observe oscillations large enough to break slow-roll. However, in this case, our model is
excluded by observations, since it predicts fast and large oscillations in the tilt of the curvature
power spectra. This means that if we include high-frequency corrections in the superpotential,
then the experimental data forces them to be highly suppressed.

We believe that the physical insight gained in this project can be very useful in constructing
other similar models of Inflation. Let us summarize what assumptions of the thesis could be
changed, what other ideas may be introduced through further studies and to what extent our
findings can be applied to them.

• First of all, we have assumed that the one-loop corrections to the non-perturbative term
in W appear through a hyperbolic sine function, but in many scenarios it can be a more
complicated periodic function, such as ✓-functions. In other scenarios, also explored in
ref. [8], it can be non-periodic, and include exponentials and polynomial functions. For
example, in this reference it is shown that, if the coefficient is a polynomial, there can be a
single very sharp turn in the trajectory. In this case we expect ⌘? to peak there and help
us identify multi-field effects. If we are able to study several simple cases we may be able
to put them together in a realistic model full of string-theory, multi-field signatures.

• Secondly, it would also be interesting to search for setups without the tree-level contribution
µ�2 to W but some other power law, or even a more complicated function. Then, we can
ask ourselves how this affects the one-loop corrections. Regarding the perturbative terms,
it would be rewarding to gain a better understanding of the one-loop correction. To do this
we cannot start already with our toy model for the Kähler potential and the superpotential,
we need to go back and choose a specific scenario. This could be achieved by choosing a
simple manifold with fluxes, a certain D-brane configuration and then solving explicitly
the one-loop string diagrams.

• Finally, we have been assuming that the full moduli stabilization has been carried out. It
would be comforting to be able to do it for an explicit flux background and make sure that
nothing relevant changes.

Unveiling the physics behind Inflation is one of the most exciting open problems in Theoretical
Physics. At the moment, all we have are bounds on the tensor-to-scalar ratio, r. There are
many ongoing experiments like Advanced LIGO, Advanced VIRGO, KAGRA, LIGO India or,
in the next few decades, experiments like LISA, that will provide additional information and
decrease the experimental windows. Moreover, future experiments like PIXIE, COrE or BICEP3
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could determine the tensor perturbations of Inflation by studying the polarization of the CMB.
According to the simplest inflationary models, the detection of an inflation-related stochastic
background of Gravitational Waves will probably have to wait until the next-to-next-generation
of space-based observatories, like Big Bang Observatory (BBO) and maybe Deci-hertz Interfer-
ometer Gravitational wave Observatory (DECIGO) [18]. A detection of this background would
provide extremely useful information about the early Universe. It would help to differentiate
inflationary models, ruling out entire model families. It would also probe some aspects of the
quantum nature of fields and gravity.

As our understanding of String Theory improves, it may be possible to explore higher-energy
scenarios of Inflation. There is much to be learned by exploring these new regimes, where many
new signatures of the theory may eventually appear. String Theory could be the UV theory
behind Inflation and we need to keep learning as much as we can about it so as to be ready
when the experiments finally come through.
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