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Abstract

Synchronization Measures (SM) are a common tool to quantify the relationship between

brain regions, and serve as a first step to build functional networks, as studied in the field

of Complex Networks. SM o↵er robust and reliable results only when the signal exhibit

certain mathematical properties: linearity, stationarity and a good Signal to Noise Ratio.

Due to filtering procedures, brain signals are sampled, and it is common practice to rejoin

them to obtain a larger dataset. Here we present four SM, measured over the timeseries as

a whole, and broken into samples, checking their mathematical properties, and looking for

di↵erences in SM depending on whether or not those properties are met. It is concluded

that is preferable to conduct connectivity analysis over samples than over the whole time

series, although in any case the signal meets completely the required properties.



1 | Introduction: Brain Networks

In the present work we will show general concepts from the field of brain networks and

brain data analysis, and a statistical analysis on synchronization measures will be con-

ducted. Synchronization measures are used to build functional brain networks from neural

data, as we will show, and are the main topic of this work.

Functional brain networks are studied from the complex networks perspective, which

is based on statistical physics and graph theory. To get insights in the topic and conduct

further analysis, first, we will define di↵erent brain networks (or graphs), their uses, origins

(from di↵erent types of neural data) and representation. Then, a brief introduction to the

foundations of complex sciences and nonlinearity will be provided. We will also present

four synchronization measures commonly used to build functional brain networks, and,

at last, statistical comparisons between them will be conducted.

It is common practice to conduct functional network analysis, given as a matter of fact

that the basic conditions needed to get robustness and reliability are met. The goal of this

study is to assess those mathematical assumptions under which coordination measures

are based, to better understand the relationships between the required conditions and

coordination measures.

1.1 | Dynamic, Non-Linear, Complex Systems

Classically, science has been articulated through Reductionist Materialism, the philosophi-

cal position that states that everything is material, and reductible to its components. This

perspective is the landmark of the western cosmology, the way in which the universe and

its living forms are studied and analyzed. The components that comprise a system (and

the system itself) are mechanisms, thus knowing the parts and their rules of motion is

enough to understand a system, predict it, and describe its previous states, because the

system is nothing more than the sum of its parts. This conceptual framework - a clockwork

universe - has been applied to every system studied in the known universe, from rocks

to human beings. It was set by Kepler, Galileo and Newton, and develops in parallel to

Descartes’ (and before him, Plato’s) onthology. It is the signature of Rationalism. Its

scientific counterpart is characterized by (linear) causality, determinism, continuity and

reversibility (Érdi, 2008). Throughout history, it seemed that all kind of dynamic phe-
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nomena could be reduced to mechanical motions, that Newtonian principles could unify

every motion, from planet’s orbits to human behavior; that is, that the same Laws of

Nature govern every phenomena.

Linear causality, determinism, continuity and reversibility are appropriate concepts to

describe simple systems, where the linear approximation is good enough, and are mile-

stones in classical mechanics. But nature doesn’t act this way. Whenever parts of a system

interfere, cooperate o compete, there are nonlinear interactions going on. Fluctuations

from the average cannot be neglected, and the principle of superposition, by which a linear

system can be solved breaking it into solveable parts to later recombine them, fails sis-

tematically. The linear aproximation is very bad, and new mathematical tools are needed

to characterize the system (Strogatz, 1994). There are uncountable examples of nonlinear

systems, where a holistic approach can o↵er better results. It is not only a matter of non-

linearity, as, for example, linear regressions can modelize power-two equations, linearizing

the system with the link function. Neither is only a matter of the number of variables,

as many problems with infinite variables (or degrees of freedom) are treatable with linear

mathematical tools [Fourier decomposition series, for instance; (Strogatz, 1994)]. The gist

is the emergence of complexity, of new properties not accounted by the individual parts

composing the system. That is precisely what the science of complexity studies. Quoting

Érdi: “the science of complexity suggests that while life is in accordance with the laws

of physics, physics cannot predict life. Therefore, in addition to reductionism, a more

complete understanding of complex dynamical systems requires some holism” (Érdi, 2008,

p.4). Hence, it is said that the whole is greater than the sum of its parts, and the studied

systems are called to be complex. Here, complexity is put as an opposite to to simplicity.

An airplane, though complicated, is not complex, because its parts don’t interact, and

there are not emergent properties (Mart́ınez Huartos, 2015). But, how do system’s proper-

ties arise from interactions among the system’s components? This is a never-ending quest

in Complex Sciences. In this context, last century’s sciences developed many new concepts

- or renewed older ones - , in an attempt to explain this macro-behaviors, inexplicable

from a micro perspective. Is in this direction that complexity is defined.

Complexity is a key concept in the study of dynamical, non-linear systems, from

physical oscillators to brain function, economics (econophysics), social emerging patterns,

disease spreading or opinion formation, to name a few, because it is known that when

systems are complex, new properties emerge. Mathematically, complexity has to do with
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the ratio of order-randomness, and has been studied, mainly, from two perspectives. The

first one, set by Kolmogorov, accounts for the (im)possibility to reduce any given string of

numbers to a pattern. If the reduction is maximum or minimum, the pattern is completely

ordered or completely random, thus not complex. The second approach explores this idea

of randomness-order from a structural perspective, in graphs. Both extremes (complete

randomness and complete order) are considered as not complex, and are relatively easy to

produce artificially. As expected, the systems complex sciences deal with are in-between,

not purely random nor ordered. Structural complexity is measured statistically, quanti-

fying the di↵erence between a system’s characteristic’s distribution to the expected if it

were completely random, and comparing it to it’s entropy (that has to do with the degrees

of freedom and disorder of the system). This concepts have been used as a guide to build

models of systems and networks, that serve as a starting point for many real systems

simulations. The most commonly known examples of this are the Barabási-Albert Net-

work, and the Erdos-Renyi Network, both departing from lattice or completely random

networks and evolving to plausible real-world networks. (Sporns, 2011; Érdi, 2008).

The structure of a system has to do with the way in which its elements are arranged

and connected. The dynamics of a system is the precise way in which those elements

interact and exchange information, leading to the emergence of new functions and macro

states impossible to explain studying only the components of the system independently.

The big mystery is how simple elements, interacting together, can adapt to a changing

environment, self-organizing and self-correcting to seek stable goals on a macro level.

As this perspective evolved, structural properties, shared by networked systems and

not dependant on the particularities of the system, were unveiled. One of them was

discovered by social psychologist Stanley Milgram, and states that we live in a small world.

It means that the friends of the friends of the friends of my friends turns out to be the

whole population (Érdi, 2008). This is due to the formation of clusters or communities

(as the friends of my friends tend to be also my friends) and low shortest paths (on

average), which is the number of steps needed to go from one node to any other (Newman,

2010). Another ubiquitous network property is the extremely high variance of node degree

(number of nodes a node is connected to). Some nodes has very few connections and are

almost isolated. A few are extremely highly connected, the so-called hubs. The vast

majority of nodes are somewhere in between. These networks exhibit power-law degree

distribution, and are often called scale-free, as they have no characteristic scale for node
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degree: every kind of node is present, and there is no such thing as a “typical node” (Érdi,

2008). At first, these and other common properties were thought to be present only in

some well known systems. But, later on, many other non-related networks (the brain,

for instance) were discovered to be also organized in such a manner, with nodes forming

communities, some of them extremely connected (hubs), and every node being reached by

any other node in only a few steps. The brain is not an exception: from the complexity

of the neuron level to that of the graph structure at whole-brain level, brain networks

reveal high small-worldness, power-law degree distributions and hubs (even hubs of hubs,

the “rich club”), related to association and integration processes (Papo et al., 2015).

1.2 | Networks

Complex Sciences, concretely complex networks analysis, are based on graph theory and

statistical mechanics, and study systems composed by interacting parts. Examples of

this systems can be social interactions, bird flock formation, or the brain. In such cases,

systems’ functions, although conditioned by the structure of the system, emerge from it’s

components’ interactions, and no unique agent can be identified as direct cause of the

observed functions and behaviors. That is the reason why Complex Sciences focuses on

whole systems, and not on the individual parts that compose it. In order to do that,

systems’ components and relations are projected on graphs.

A graph is an abstraction of any N given elements, represented by points (nodes),

connected by L lines (edges). In its simplest form, it is a collection of points joined together

in pairs by lines (Newman, 2010; Estrada, 2011)(example in figure 1.1 ). Graphs can be

used every time a system composed of individual parts or components linked together in

some way is represented or analyzed. Thus, it is useful to visualize and analyze a broad

range of physical, social or biological systems. Depending on the system, a graph may

represent interactions among individuals, where each person is a node, and interactions

between them are edges (this can be applied to physical or virtual social networks), public

transport usage, where each station is a node, and the edges are the connections between

them, or any other relation among any pair of elements. Graphs can be of very di↵erent

nature (that of the system represented), and notation also changes depending on the

field of study. Nodes and edges are called sites and bonds in physics, nodes and links in

computer science, or actors and ties in sociology (Newman, 2010), to name a few.

The concept of graph originally comes from Euler, who tried to solve the popular
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problem of the seven bridges of Königsberg. The town was set on both sides of the Pregel

River, with two large islands connected to each other by seven bridges. The problem was

to devise a walk through both mainland portions, crossing the seven bridges once, and

only once. Euler proved it was impossible, and to do so, he represented the portions of

land as nodes or vertices, each one connected to one another by edges or lines representing

the bridges. This was the foundation of graph theory (Bullmore & Sporns, 2009; Sporns,

2011).

Figure 1.1: Simple graph.

Some fields of study are more focused on the elements;

others, on the link between them. In any case, there is

a third aspect to these interacting systems, whose im-

portance, although neglected sometimes, is almost always

crucial to the behavior of the system: the pattern of

connections between components (Newman, 2010). It is

known that the pattern of connections has deep e↵ects on

the overall functioning of the network, contributing to the

emergence of global characteristics observed in the graph

(Érdi, 2008; Strogatz, 2001). There are complex relations between structure and func-

tion. A particular structure favour the emergence of concrete patterns, and not others,

and those patterns are closely related to the emergence of global functions the system

may exhibit. The field of complex networks studies, among other things, these relations

between structure, the emergence of patterns, and function, with special attention to

the importance of characterizing the anatomy of the network (as structure always a↵ects

function).

Complex Networks analysis, based on this graph perspective, and making use of statis-

tics, tries to explain global properties and functions emerging from individual interactions

between the elements of the system (Érdi, 2008). From microscopic phenomena, hierarchi-

cally organised, emerge statistical, macroscopic properties, impossible to predict without

a wholistic framework analysis (Papo et al., 2015). Nevertheless, it is always a simplified

version of reality, an aproximation, thus some information is always lost (Newman, 2010).

Nowadays, graph/network analysis are common practice in biology, sociology, chem-

istry, physics and neuroscience. A molecule, a diagram of interactions between people,

protein interactions and many other phenomena can be represented by graphs. Despite

this conceptualization has led to great advances in every field, many systems are still
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unpredictable. For instance, Caenorhabditis Elegans ’ connectome (map of neural wiring)

is completely identified, yet its behavior remains impossible to predict (Sporns, 2011).

1.2.1 Classification and notation

Networks can be classified attending to several characteristics of nodes or edges. After

nodes are identified (depending on the scale of observation), and edges calculated, the

network can be represented in a matrix, whose rows and columns correspond to nodes,

and the cells inside contain the value of the edge that links those nodes. In the present

work we will show only a few variations on edge characteristics, and we’ll provide the

most general and common classification of networks and its notation, focusing on its

applications on the study of the brain.

Edges represent a relationship between a pair of nodes, and can be binary or un-

weighted if have a value of zero or one, or weighted if the value has a range of decimal

intervals (Newman, 2010). Depending on the number of edges equal to zero, the ma-

trix (graph) is said to be dense or sparse. Edges can also be directed or undirected

depending on whether direction (which implies causality) from one node to another is

imposed. When that happens, it is assumed that information flows from one node to an-

other. That is, one node’s output is another node’s input. It is also possible that a node’s

output serves as an input for itself, generating a loop. The presence or not of self-edges

determines if the network is cyclic or acyclic.

To represent a network in a adjacency matrix, nodes are numbered and assigned to a

column and a row, and edges, representing the value of the connection between nodes, are

placed in the cell of the matrix through which that node’s row comes across the others.

We can define any adjacency matrix Ai j with elements ai j as follows:

ai j =

8
>><

>>:

w if there is an edge between vertices i and j,

0 otherwise.

(1.1)

In the simplest case, when the graph is unweighted (or binary) and undirected, w can

only have a value of 1 (if there is an edge between nodes) or 0 (if there is not). For
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example, the adjacency matrix of the graph represented in figure 1.1 is:

A=

0

BBBBBBBBBBB@

0 1 0 0 1 0

1 0 1 1 0 0

0 1 0 1 1 1

0 1 1 0 0 0

1 0 1 0 0 0

0 0 1 0 0 0

1

CCCCCCCCCCCA

(1.2)

Where the element in column’s ith position corresponds to the ith node, the element

in row’s jth position corresponds to the jth node, and the i jth position in the matrix

correspond to the edge between them.

It is always a square matrix, and in undirected graphs, the matrix is also symmetric,

since if there is an edge between i and j then there is an edge between j and i. Symmetry

is a very desirable property when calculating further network properties, and it reduces

the time needed to compute the matrix by half. It is also worth noting that if the network

has no self-edges, all elements in the diagonal are zero, and it is called an acyclic network

(Newman, 2010).

Nevertheless, things can be much more complicated. Graphs can be weighted, directed,

and with self edges; its adjacency matrix will not be symmetric, and diagonal elements

could have values di↵erent from zero. In such case, w (in def. 1.1) is the weight of the

edge from i to j, and will have a value di↵erent from 1. Instead, w will have a range

that depends on the concrete calculation of the correlation between nodes. In this case,

the matrix is commonly named weighted connectivity matrix. Also, if we allow j = i then

diagonal elements are non-zero and we have a cyclic network. The adjacency/connectivity

matrix, then, captures the direction and the weight of the interaction or coordination

between nodes.

1.3 | Networks of the Brain

Analyzing the brain in a complex-network fashion requires the projection of anatomical

or dynamical brain properties in a graph. Nodes can be neurons, groups of neurons, com-

plete brain regions, or sensors (that measure brain’s activity), depending on the scale of

observation. In our case, nodes will be sensors from a MEG machine, and links will be
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the value from coordination measures, that capture dynamical synchronization between

nodes. The rationale is that if two brain regions are working together, there must be sim-

ilarities in their registered activity. Due to the fact that neural coupling processes are not

well understood, and probably work under several mechanisms, similarities can be found

in the frequency domain, in amplitude, and/or in phase and di↵erent measures capture

di↵erent aspects or mechanisms of synchronization. After recording the brain activity

through sensors, coordination measures are used as a mean to quantify the relationship

between nodes, and will be the weight of the link between those nodes. Depending on

whether the network is capturing the anatomical structure of the brain, or its functional

activity, we can define Anatomical Connectivity (AC ) and Functional Connectivity (FC ).

When the edge from one node to another is not the same in reverse the network is said

to be directed (Estrada, 2011; Newman, 2004). This implies causality inference, and the

interpretation is about information flowing from one region to another, thus one region’s

state causing others’ state, at least partially. That is called E↵ective Connetivity (EC ).

Common measures of FC are Phase Lag Index, Coherence or Mutual Information

(Bullmore & Sporns, 2009), and are based on properties of the signal, being those physical

(amplitude, phase), or statistical (entropies). FC studies correlations, the similarities of

phenomena occurring at the same time, or the extent to which phenomena co-occur.

Subsequently, the networks built in FC are “virtual”; that is, the network does not exist

physically, as it is based on dynamic processes in the brain, on the association between

regions doing similar things at the same time (synchronously). An adjacency matrix

of a Functional Network is nothing more than a snapshot of a brain dynamic process

that changes over time. The relationship between Anatomical Networks, that are the

underlying physical substrate of dynamical processes, and Functional Networks, extracted

from the association of those processes, is a complete field in itself (Sporns, 2011).

Common measures of EC are Granger Causality (parametric) or Transfer Entropy

[non-parametric (Maestú, Pereda, & del Pozo, 2015)]. This statistic measures try to

quantify the amount of directed (time-asymmetric) transfer of information between two

random processes [time series obtained by sensors, the brain data signals to be analyzed;

Friston, Moran, and Seth (2013), Seth, Barrett, and Barnett, 2015]. It is important to

note that in this particular case (causal modelling for neural data series), EC is based on

Norbert Wiener’s concept of causality, that states the importance of temporal succession

when stating causality. He defined causality in a statistical manner: let X and Y be two
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simultaneous measured time-dependent magnitudes. If the accuracy with which we predict

X ’s future values increases more when adding past information from Y , in comparison to

predictions provided only by past values of X , then we can say there is a causal relationship

from Y to X (Wiener, 1956, cited in Maestú et al., 2015). That is, to some exent, Y causes

X . This concept is important because is based on statistical logic, and avoids obscure

assumptions on physical causality in the brain dynamics, as measured by MEG/EEG, for

instance. Following this line of thought, Granger formalised the concept in the context

of linear regression modelling (L. Barnett & Seth, 2014; L. Barnett & Seth, 2011). The

idea behind Granger Causality and Transfer Entropy is fundamentally the same: a linear

regression model is adjusted estimating the coe�cients with past direct values of Y to

predict X (Granger Causality, parametric), or with past entropies of Y , to predict X

(Transfer Entropy, not parametric). A general revision of this terms and mathematical

tools can be found in Maestú et al. (2015), and a deeper one in Cohen (2014) or Friston

et al. (2013).

Although directed networks are probably more accurate to brain’s reality, it is more

common to work with undirected ones (Sporns, 2011). It is more plausible that brain

regions connect to each other in di↵erent ways, and that information flows di↵erentially

in reverse. But, when networks are undirected, the adjacency matrix is symmetric, which

is very convenient for connectivity calculations and makes computation notably faster.

Undirected networks are reflecting synchronization processes in the brain, regions working

together. Directed networks are reflecting information flow, and probably dominance,

from one region to another.

Edges will take a value in the range of the coordination measure used to capture the

relationship among nodes. Commonly, normalizations and transformations are carried

out to set that range between 0 and 1, but other regular ranges are �1 to 1, or 0 to •.

The interpretation of the results vary depending on the range of the measure and the

correspondance between the synchronized/associated characteristic and the brain process

behind it. This makes interpretation di�cult, and it is not clear what a value of, for

example, 18.9 means when edges can take values up to • and nodes are sensors and

not brain regions directly. When edges take the value of the synchronization measure,

the graph is weighted. In many contexts, it is common practice to binarize weights for

calculation and interpretation purposes (Sporns, 2011), leading to unweighted or binary

networks.
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1.4 | Neural Data: MEG Registers

In the present work, neural data obtained from Magnetoencephalography (MEG) will

be analyzed through several types of coordination measures, whose results will form a

connectivity matrix from which to get network parameters.

MEG is a well established technique based upon brain’s magnetic fields. It is not

exempt from problems of noise, volume conduction, signal interferences and many other

technical issues. Given the prize of the equipment, its use is far less common than EEG,

although it presents many advantages over the latter. In this section we will discuss

brain magnetic fields origins, as measured by MEG, properties of the machine, and some

pitfalls needed to be taken into account while recording magnetic data. We will also

review - roughly - the problem of sources reconstruction, an open question in brain data

signals.

In brain data techniques (fMRI, (M/E)EG, DTI, etc) there is always a trade-o↵ be-

tween spatial and temporal resolution (Carretie, 2011). Haemodynamic-based machines,

such as fMRI, resolve spatial resolution up to 3mm (and increasing with technical develop-

ments), but, given the slow speed of the underlying mechanisms measured (metabolic and

water support to working brain areas), its temporal resolution cannot go further 1 second.

On the other hand, techniques based on magnetic fields or electric currents, as MEG and

EEG respectively, can resolve extremely accurate temporal intervals, at the cost of spatial

resolution (Maestú et al., 2015). For example, at a sampling rate of 1000 Hz, a thousand

values in fT (10

�15 tesla) are measured (in the case of magnetic fields, with MEG), in one

second. The records are obtained noninvasively, and in MEG/EEG signals, brain activity

can be broken down to the milisecond, providing an almost real-time snapshot. Given this

framework, some techniques are more appropiate to assess certain mental processes than

others. If the studied processes are inherently dynamical (e.g., attentional shifts among

probe stimuli), MEG and EEG are the preferred choice. On the contrary, if the process

has to do with structural connections or slow mental tasks (e.g., sustained attention),

fMRI or DTI are more appropiate. There is nothing as the perfect solution, and due to

each technique virtues, the best option depends on the task. Regarding the brain, it is

known that it works at several temporal and spatial scales, with some processes and states

supported by fast frequencies, (e.g., information integration and reasoning), and others

by slow ones, [relaxation states, sleep and coma; (Maestú et al., 2015)].
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1.4.1 Brain Signals

It is known that when an electric current goes on, a perpendicular and proportional

magnetic field can be found associated with it. Neurons, among other mechanisms, com-

municate through electric currents. The idea, then, is to measure those currents (EEG),

or their associated magnetic fields (MEG). These currents/magnetic fields are so weak,

that the signal must be cleaned for artifact noises with di↵erent origins. For instance, a

car at a distance of fifty meters emits a stronger signal that will interfere the measure-

ment. Earth’s magnetic field is also a problem, as it is magnitudes stronger than brain

signals (Carretie, 2011). To solve this issue, an isolated room is needed to conduct the

registers. Signals are so weak, that deep brain areas are inaccessible, and so EEG/MEG

only captures superficial information (Maestú et al., 2015). Even more, as information

can flow from deep brain regions to cortical ones, the signal obtained is a sum (the exact

way currents and fields are joined through brain layers is unknown), and nothing more

than the final result, in cortical areas, is captured. It is known that the field decay pro-

portionally to the distance, so the farther the source, the weaker the signal (Maestú, Ŕıos,

& Cabestrero, 2008). Given the anatomical topology of the cortex, a lot of information

is lost, and only a proportion of the emitted field is captured. Concretely, only axonal

activity, localized in cortex folds can be reached. This is due to the fact that neurons

on the folds of the cortex send electric currents that flow parallel to the scalp. As the

magnetic field is perpendicular to the current, only those fields will be detected (because

the field flows to the outside). Neuronal populations whose current is perpendicular to

the scalp (and their magnetic field parallel) won’t be detected. Figure 1.2, obtained from

the Human Connectome web page, shows this idea qualitatively.

As one could expect, in order to detect a so-weak field, very specialized magnetometers

are needed, whose maintenance is not easy nor cheap (that is why a MEG machine is

that expensive). These sensors are called Superconducting Quantum Interference Devices

(SQUIDs), and work under the principle that, when taken almost to the freezing point

(�270

�), some metallic materials amplify extremely their electric/magnetic conductivity

(Carretie, 2011). Those materials are called superconductors, and are commonly used

in other fields. To maintain such a low temperature, hundreds of litres of liquid helium

(the most expensive substance on Earth) are needed. SQUIDs are attached to one or two

coils (called single or double coiled SQUIDs), and an electric current is passed through
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it (them). The current produces a magnetic field, and any perturbation of this field

is sensed by the SQUIDs integrated in the circuit. Perturbations may come from many

sources (Earth’s magnetic field, nearby electrical devices...), but if the sources are isolated,

it can be assumed that they have a brain origin (Maestú et al., 2015; Carretie, 2011).

Each sensor, then, is a channel that captures variations on the magnetic field, o↵ering

a time series to be filtered and analyzed. This is the way MEG technique captures brain

information. The number of sensors depends on the machine’s model, and generally vary

from 124 up to 512. In our analysis, each sensor or channel will be a variable that produces

a time series of observations. Connectivity measures are based on correlations among this

series.

Figure 1.2: SQUID sensors, cortical surface, origins and orientation of the magnetic
fields as measured by MEG. Obtained from http://humanconnectome.org/study/hcp-young-
adult/project-protocol/meg-eeg

The aforementioned artifact noises have an external origin, and can be avoided filtering

the signal. In this sense, isolated rooms acts as a filter. The position and distance of the

coils also serves to that purpose, and is not a minor issue, as it allows to cancellate

fields of certain frequencies, that precisely depend on the distance of the coils(Maestú

et al., 2008). Nevertheless, noise interferences from other sources are common. Head

movements, eye blinking and volume conduction are major examples of this interferences,

impossible to avoid by physical or analog filters. EEG and MEG su↵er from it, but in

the case of EEG the problem is more pronounced. This poor conditions have led to the

development of sophisticated digital filtering techniques, that aim to maximize the signal-

to-noise ratio [SNR, (Carretie, 2011)]. In the process, a lot information is lost. The topic

is not trivial, and is a highly technical field leaded by engineers and physics. Roughly

speaking, interferences (noise or artifacts) can be divided into two groups (independently

of the source of the noise): constant or cyclic and momentary (often modelled as random).
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The former is relatively easy to filter, because it is present in all the sample, hopefully

through all channels, and occur in a predictable manner. Eye blinking is an example of

this type of artifact, and is easily removable (Maestú et al., 2015). Others are not, but

even in that case, if the interference a↵ects everything (all the data) in the same way,

many measures based on proportional relationships among time series will still o↵er good

results, as proportions are preserved when the noise is constant. Robustness to noise

depends on the nature of the measure, as we will see. When the noise is not constant, its

presence is not predictable, nor are its e↵ects, and it may be impossible to remove from

the data (it can be impossible to distinguish what is signal and what is noise). Examples

of this kind of noise are head movements or body adjustment to the machine. Solutions

spin around the quest of, at least, a suitable SNR, even though it may imply some loss of

information (which is certainly the case).

Yet there is another kind of disturbance that deserves special attention, not necessarily

constant if present, from internal origin, and specially problematic: volume conduction.

It is a major issue in brain data signal processing, and, hovewer many improvements

have been achieved, it’s still not resolved. Volume conduction occurs when two or more

sensors (generally two) get the same or very similar information not due to coordination

phenomena between brain regions. It can be caused because a common, deeper source,

is provoking the observed signal in the scalp through two di↵erent pathways, each one

measured by one sensor, or because sensors are placed between two areas and the received

signal is a mixture of the common source and any other one, di↵erent for each sensor.

Both situations can be found in near sites, and, though hard to solve, the case is relatively

easy to detect. When it is due to the location of the sensors (and not from a common

source), the perturbance will be present along the entire dataset, thus drawing an implau-

sible coordination profile. As brain synchronization is dynamic and changes over time, it is

relatively easy to distinguish and remove. Yet there is another possibility, in which volume

conduction is present in very separated sites. It is the less reported case, and certainly

the hardest to detect and assess. It is due to the fact that deep brain regions can connect

separated cortex neuronal populations through long-range pathways, not necessarily di-

rect (they can be connected via a third involved region), causing the volume conduction

problem. Given the lack of a proper brain connectivity model assessing this phenomena,

its occurance is unpredictable and highly problematic. Even more, as brain connectivity

is inherently dynamic, the issue is not necessarily constant, so detection and removal is

almost impossible. The visible part of the quandary is that two sites, separated or not,
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acquire a very similar signal, which is precisely how synchronization phenomena mani-

fest. In other words, real brain coordination and volume conduction have the same face.

As coordination measures look for similarities in the time series, the score will be high

when synchronization or volume conduction occur. When volume conduction is detected,

smoothing methods that penalty correlation among sites or umbralization are preferential

options (Maestú et al., 2015). If the correlation is too high (under a certain criterion),

it is weighted or set to zero. This solutions always come at the expense of some loss of

information (when the criterion is too conservative), or a worse SNR (when criterion is

too relaxed).

All in all, the next question would be, where does this activations come from? where

is the source of the observed data? That is the problem of source reconstruction. It is an

inverse problem, with no unique solution, very technical and based upon mathematical

algorithms (Carretie, 2011). For many scientist, the problem cannot be assesed with

today’s technology, and solutions are not reliable. For others, the solutions o↵ered by the

latests algorithms are, at least, biologically plausible (Maestú et al., 2015). Many models

of brain functioning exists, as there is no unified vision of it. Mathematical algorithms

that solve the inverse problem are based on those models, thus results vary from one

algorithm to another. The mathematical solutions maximize a criteria (extracted from

known brain region’s communication rules), at the cost of others. Roughly speaking, if the

model predicts that brain areas tend to activate together, at the same time, to carry on a

function, the algorithm will probably be based on PCA (Principal Components Analysis)

and derivatives of it. On the contrary, if it predicts individual and isolated activations,

ICA and stem from it will be preferred. In some others prevail energy cost of activation, or

information flow e�ciency (Carretie, 2011). The methods are also accompanied by brain

atlases, and, to tune the model parameters as finer as possible, compared with estimations

of explained variance. Examples of this algorithms are (e/s)LORETA, Minimum Norm

or Beamforming, to name a few (Maestú et al., 2008; Carretie, 2011).

To sum up, each MEG sensor will get magnetic information associated with electric

currents going on in large neuron populations located in folds of the cortex. Many prob-

lems of di↵erent origins are associated with the measurement, and analog and digital

filters are applied in an attempt to solve them. There are also great e↵orts trying to un-

derstand where, and by which pathways, deep structures sends information to the cortex,

from which we obtain MEG data.
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2 | Objectives and Hypothesis

Synchronization measures are mathematical procedures designed to capture correlations

between dynamical processes. Di↵erent measures outline di↵erent mechanisms of coordi-

nation; for example, Phase indexes (PLI, PLV) are based on di↵erences between instanta-

neous phases of a pair of time series, thus capturing phase couplings. Spectral Coherence

is based on the covariances of the spectra of frequencies of time series, and Mutual In-

formation extends the notion of joint entropy to measure coordination as the probability

of getting two values simultaneously from two variables. Nowadays, these measures are a

standard in neuroscience and signal processing. In the case of brain records, time series

come from variations in the hemodynamic response as measured by precession movements

of hydrogen spins (Magnetic Resonance), variations in electric currents (EEG) or in their

associated magnetic fields [MEG; (Carretie, 2011)], to name a few. The measured source

produces a time series, composed of as many variables as sensors, that record a set of

values evolving over time. All of the aforementioned synchronization measures try to

capture the likeness of those signals or its properties, bivariately or multivariately. Each

measure will be described in more detail in the next section.

In this work, the coordination measures considered are Phase Locking Value (PLV),

Mutual Information (MI), Spectral Coherence (k) and Pearson Correlation Coe�cient

(r). The choice comes from the fact that the first three are widely used in the field, and

so their properties, advantages and disadvantages are well known. r has been chosen

due to its ubiquity in statistics, although its use in neuroscience is not so common (more

sophisticated measures are preferred over r).

Likewise any other statistical procedure, coordination measures work under certain

mathematical assumptions. These measures are so well established that more often than

not, those assumptions are not checked when analyzing neural time series.

Coherence correlation, a classical measure of coordination, is a linear correlation in

the frequency domain, thus relying on the linearity of the spectrum of frequencies. The

same can be said of Pearson Correlation Coe�cient, applied to the time domain. PLV

is calculated as the averaged di↵erence of phases of two signals, so if the distribution

of di↵erences is not symmetric, the mean won’t be a good representation of it. Even

more, extraction of instantaneous phases (and power spectra) to be compared requires
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the calculation of Fourier Transforms and then Hilbert transforms (or wavelet instead).

Both procedures are reliable only if stationarity can be assumed (Cohen, 2014), so PLV,

indirectly, and Coherence, directly, depend also on stationarity. Mutual Information is

very sensitive to sample size (not a problem in this case) and SNR (signal to noise ratio).

In (E)MEG signals, di↵erencing what is signal and what is noise unambiguously is impos-

sible. The only possible solution is an estimation of SNR, calculated as a ratio between

average and standard deviation (Cohen, 2014). The properties to be studied, then, are:

linearity, normality, signal to noise ratio and stationarity. These properties are a

basic characterization of any time series and have a direct e↵ect on coordination measures.

Brain signals are measured by sensors, and then filtered to clean the signal from ar-

tifacts and noise. Too noisy or faulty segments are removed. Thus, the whole signal

is chopped into samples for further analysis. However, it is common practice to re-join

them (after sampling) to get a larger time series, expecting to enhance the robustness

of the statistical analysis (see below). It is not a di↵erent experimental condition, but

a methodological necessity. The time gap between samples is unknown, and its tempo-

ral continuity is not assured; thus joining all together (concatenated samples) means to

combine di↵erent fragments, with, possibly, di↵erent dynamical regimes and properties.

Statistical properties of the signal, like stationarity or linearity, may change when joining

all the time series, thus a↵ecting the robustness of the analysis and the validity of results.

Then, the questions to be assessed are: does the dataset meet the assumptions made

by the coordination measures? are there any di↵erence between the joined data and the

sampled data? if so, how does the violation of the mathematical assumptions a↵ect co-

ordination measures?. To answer these questions we’ll study both conditions, sampled

time series and joined time series. The properties of the signal will be studied in both

cases, and the connectivity matrices (coordination between sensors) will be calculated, in

an attempt to observe the di↵erences in the results as a function of the properties of the

signal and the violation or not of the statistical assumptions. Hence, the TWO MAIN

OBJECTIVES OF THIS WORK ARE:

1. ASSESSING THE MATHEMATICAL ASSUMPTIONS THAT UNDERLIE CON-

NECTIVITY MEASURES, and

2. SEE IF THERE ARE DIFFERENCES WHEN DATA IS SAMPLED AND RE-

JOINED.
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3 | Methods

3.1 | Data Collection

In this study, only resting-state MEG data, from one healthy subject, will be analyzed.

No task is required during data acquisition, and the participant must be awake. This

experimental design is called resting-state, and serves to the purpose of understanding

the basal level of functioning of the brain, as opposed to task designs, in which a concrete

function or impairment (and thus, concrete brain pathways and regions) are studied.

Neural data has been acquired from The Human Connectome Project’s open database

(HCP1). The project o↵ers open acces to all data, and due to the collection procedure,

any identification is impossible. The HCP has a huge goal: map the human connectome

as accurately as possible, in normal adults. A connectome is a wiring diagram, a map of

the neural conections of any nervous system (Sporns, 2011). The paradigmatic example

of a connectome is the one extracted from the C. Elegans, a nematode (roundworm) that

lengths about 1mm, whose nervous system is completely mapped. In order to discover

this map in human beings’ brain, neuroscientists from several research centers have been

collecting neural data from Magnetic Resonance in two complementary modalities, di↵u-

sion imaging and resting-state functional Magnetic Resonance Imaging (fMRI), and from

Electroencephalogram (EEG) and Magnetoencephalogram (MEG).

Data were recorded on a whole-head MAGNES 3600 scanner (4D Neuroimaging, San

Diego, CA, USA), and belongs to the HCP MEG2 release (Larson-Prior et al., 2013), in

which 67 subjects were recorded in resting state. At the end, 61 subjects are available

for analysis. The other six recordings didn’t pass the quality control checks, that consist

in tests for excessive SQUID jumps, correlations between sensors, and su�ciently well-

behaved recording channels (Colclough et al., 2016). The room was shielded to avoid

magnetic noises, and the scanner is composed of 248 magnetometers and 23 reference

channels (5 gradiometer, and 18 magnetometer). In addition, 5 current coils are used in

combination with structural imaging data and head surface tracings, in order to localize

the brain in relation to the magnetometers. The coils also serve to the purpose of mon-

itoring and correcting head movements. More detailed information can be found in the

1http://www.humanconnectome.org/
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web page of the project.

Resting-state MEG data are recorded in three consecutive sessions, with little or no

break in between, for six minutes each. Then, data is preprocessed with a pipeline that

removes artifactual segments of time, identifies faulty channels and applies a zero-phase

anti-aliasing filter. The criteria is based on Independent Component Analysis: when a

segment is identified as an independent component in the ICA decomposition, with clear

artifactual signatures (eye blinks or cardiac interference, for instance), it is removed. The

sampling frequency is set to 508.12 Hz, meaning that in each second, each sensor captures

508 values (in the order of the femtotesla in MEG signals). This filtering and removal

procedures lead to a data file with several samples of time series recorded by sensors.

The exact time gap between samples is unknown. Even though, in order to get a bigger

data set and maximize results, it is common practice to join all samples and conduct the

analysis.

In this work, we will only analyze the subject 100307, first session, that corresponds

to a healthy female between 22 and 35 years. Each sensor or channel is one variable,

recording a time series, a set of values or observations over time. Sensors are placed all

around the scalp. That means that all brain cortex’s surface is recorded at the same time.

For the purpose of the analysis, and given that the subject was recorded in resting-state,

it does not matter where sensors are concretely placed in relation to brain areas. No

analysis on brain regions will be conducted. The analysis will focus on the basal level of

brain’s activity, and not in concrete areas related to certain tasks.

All dataset (every recorded session) o↵ered by the HCP is divided into samples of

equal length. This is a common procedure, derived from artifact removal and criteria

established for time series. Every recording is processed to look for problems of volume

conduction, magnetic interferences, head movements, etc (as stated before). This means

that some fragments of the time series will be removed (precisely to clean it from the

aforementioned problems), leading to a set of smaller time series, denominated samples

or trials, that are set to be of equal length. It is impossible to assure the continuity of the

samples, or the time gap between them. This is a necessary step for reliability, and does

not imply any change in the experimental conditions. In any case, it is common practice

to re-join all samples after preprocessing in one single time series, to get more data points

and enhance analysis. That is the reason to calculate connectivity in both conditions in

this study, when the time series is divided into samples, and with the signal taken as
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a whole, concatenating the samples. The number of samples vary from one subject to

another (because sampling is due to artifact removal).

In the considered MEG signals (one subject) for this work, we have 147 matrices (sam-

ples), each one composed of 241 channels along with 1018 observations. At a frequency

sampling of 508.6 Hz, each sample comprises about 2 seconds. When joined, the data is

one single matrix of 241 channels by 1018⇥147 samples = 149646 observations, around 5

minutes. Joining the data consist simply in putting the samples altogether, one after the

other. It is just the same data, concatenated. It is not a di↵erent experimental condition,

but given the fact that this procedure is common in brain connectivity analysis, the pur-

pose of this work is to asses if this is a reliable approach when calculating synchronization

in dynamical brain signals.

3.2 | Building Functional Brain Networks: Synchroniza-

tion measures

Synchronization (or coordination) measures (SM) are the first step in complex networks

analysis of brain signals (and any other discipline dealing with time series). Many SM

used in today’s neuroscience come from other disciplines like physics and communications,

that have been dealing with dynamic systems for a long time. Dynamic systems, like the

brain, are characterized by components oscillating over time. Oscillations, in the case

of the brain, can be of many natures, from electric currents to biochemical exchange

between neurons. When oscillators interact, their dynamics change, and they are said to

be coupled. The concrete mechanisms that underlie regions’ couplings is unknown, and

it is possible that brain coordination works through several di↵erent ways, depending on

task requirements and energy needs. Its manifestations would be in di↵erent characteristic

of the signal, like amplitude or phase. Nevertheless, the only known way to observe the

brain non-invasively and as whole is through noisy, indirect and highly variable signals

obtained from very precise sensors. This unfortunate situation makes interpretation of

results and theory building much more di�cult, and has boost the implementation of

many di↵erent coordination measures. There is no agreement on which is the best one,

probably due to the fact that, if coordination works under di↵erent mechanisms, each

SM could be capturing only one manifestation of the process. Experimental results seem

to confirm this idea, as some tasks are better defined studying frequencies and others

studying phase couplings (Pereda, Quiroga, & Bhattacharya, 2005). SM, then, try to
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capture how similar two time series are, in an attempt to study how coordinated two brain

regions are. Some measures are Model-Based (Granger Causality, for instance), others are

free of any model (e.g. Coherence). Most of them assume stationarity, although it may be

not the case in biological systems (Stam, 2005). Measures based on the temporal lag of

the observed coupling try to capture causal relationships in the form of direction from one

region to another (the so-called efective connectivity). In fact, almost any measure can be

transformed to be this way introducing a lag in the calculation, thus correlating values of

one variable with future values of another, and watching if previous values are usefull to

predict future ones (Pereda et al., 2005). Measures can also be bivariate (which is almost

always the case), or multivariate. Multivariate approaches are based on the following

strategy: given three variables (each one a time series in our case) X ,Y,Z calculate the

coordination measure for X �Y and X �Z. Then normalize by the correlation between

X �Z and you get the coordination of X and Y given Z (Pereda et al., 2005).

In this work we will study bivariate undirected measures. Concretely, Pearson Corre-

lation Coe�cient, Mutual Information, Coherence and Phase Locking Value. The reason

to choose this measure and not others is that we want to compare them in two di↵erent

conditions (time series in samples and joined time series) whose mathematical properties

may change. Then, all of them must be of the same nature to be compared (functional

connectivity in this case). Functional connectivity measures are much more common and

well studied than e↵ective connectivity measures, computationally much less demanding,

and much easier to understand and interpret.

The process will be to calculate the connectivity of one MEG register, in the form

of samples and a joined time series. In both conditions, Pearson, Coherence, Mutual

Information and PLV will be calculated, reflecting the coordination between a pair of

sensors, that are indirectly measuring neuronal populations’ magnetic fields. It should be

noted that the value of synchronization between any pair of sensors is just a snapshot, or an

average, of a dynamical process that evolves over time. Thus, after the calculation of each

measure we’ll end up with one connectivity matrix per measure for the joined condition,

and one connectivity matrix per sample and measure for the sampled condition. Each

matrix will be composed of 241 rows by 241 columns, each cell containing the coupling

strength between two channels. Once connectivity matrices are calculated, the next step

would be to measure network properties such as centrality, degree or clustering. In this

work we will only study the properties of the signal and its connectivity through the
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aforementioned SM.

In the following we present each measure, its basic properties and the feature of the

signal its based on.

3.2.1 Pearson’s Correlation Coe�cient

Measure introduced by Pearson, it is a covariance scaled by variances, thus capturing

linear relationships among variables. From the equations of the variance (of X and Y ) and

covariance (of XY ), we obtain Pearson Correlation Coe�cient (3.4)
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SXY = E[(X �E[X ])(Y �E[Y ])] (3.3)
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Pearson’s correlation is a measure of linear dependence between any pair of variables,

and has the great advantage that we don’t need to know how the variables are distributed.

On the other hand, it is only useful if variables are lineary related to each other. Biological

organisms (and the brain and subsequent signals) are considered nonlinear (Wang et al.,

2014), dissipative systems (Stam, 2005). Nevertheless, it sometimes o↵er good results, as

stated by some simulation works on network structure recovery by several connectivity

measures (Wang et al., 2014).

3.2.2 Coherence

Coherence (magnitude squared coherence or coherence spectrum) is one of the most classi-

cal connectivity measures considered. It has some disadvantages that lead to a decay in its

use in the field. For example, it doesn’t discern the e↵ects of amplitude and phase in the

relationships measured between two signals, thus its interpretation is not clear (Lachaux,

Rodriguez, Martinerie, & Varela, 1999; Varela, Lachaux, Rodriguez, & Martinerie, 2001).

It is a measure of the linear correlation among the two spectra considered, as a function
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of the frequency (Pereda et al., 2005).

To get the coherence spectrum, data must be in the frequency domain, but, as the

data is of finite size, the true spectrum must be estimated. In order to do so, MEG

data is usually divided into M sections of equal size (normally around 8). The Fourier

Transform (Fast Fourier Transform algorithm) is then computed over the sections, to get

the estimate of each section’s spectrum (periodogram). Then, the spectra of the sections

is averaged to get the estimation of the data, as a whole (Welch’s method). Coherence is

a normalization of this estimate by the individual autospectral density function (Pereda

et al., 2005). It is usually calculated as follows:

bk2

xy( f ) =
|hSxy( f )2i|

|hSxx( f )2i||hSyy( f )2i| (3.5)

Where Sxy is the Cross Power Spectral Density (CSPD) of both signals, Sxx and Syy are

the Power Spectral Density (PSD) of the segmented signals X and Y taken individually,

and h·i means average over the M segments.

As it doesn’t infer direction (causality), because it is a measure of functional connectiv-

ity, the adjacency matrix obtained is symmetric. The measure ranges from 0 to 1, being 1

the maximum correlation for a given frequency, and 0 no correlation at all. It infers linear

relationships, so if the relation between frequencies isn’t, the results will be misleading.

It also has a strong assumption about the data: stationarity, which more often than not

isn’t the case. The aforementioned chop of the signal into sections sometimes fix this

issue, as the data can be locally stationary.

3.2.3 Phase Locking Value

Phase Locking Value (PLV from now on) was first introduced by Lachaux et al. (1999), as

a new method to measure synchrony among neural populations. It has, at least, two major

advantages over the classical coherence measure: it doesn’t require data to be stationary, a

condition that can rarely be validated, and has a relatively easy interpretation (in terms of

phase coupling). Stationarity means that the mean, variance and structure of frequencies

in the data remains constant. In classical coherence it is a strong assumption for accuracy

and reliability; in PLV isn’t. However, the methods used to extract instantaneous phase,

a step needed to calculate PLV, rely on stationarity, so indirectly, PLV can be a↵ected
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by this condition (Cohen, 2014). PLV specifically quantify phase-relationships, while

coherence increases with amplitude covariance, and the relative importance of amplitude

and phase covariance in the coherence value is not clear. There is no clear interpretation

for the changes in coherence between two neural signals, beyond an obvious indication of

interdependency (Lachaux et al., 1999). PLV, on the contrary, requires the distribution of

phase di↵erences to follow a Von Mises distribution, the normal analogue in polar space

(Cohen, 2014).

To obtain PLV, the signal to be treated has to be decomposed in frequency domain via

discrete Fourier transform, and it’s instantaneous phases and amplitudes obtained from

the frequency spectrum. To achieve this, there are several highly reliable methods, such

as Morlet wavelet convolution or Hilbert transform (Pereda et al., 2005; Cohen, 2014).

In our work we will utilize the latter.

Phase Locking Value (PLV) is obtained averaging over time t:

PLV =
1

N

�����

N

Â
n=1

exp(iq(t,n))

����� (3.6)

Where q(t,n) is the (instantaneous) phase di↵erence fx�fy, the phases to be compared

from the signals captured by the sensors. Comparisons are carried out pairwise (bivariate).

When the di↵erence between phases is small (thus q is almost zero), PLV is close to 1.

Otherwise, it is close to zero. This means that when phases are similar (thus the wave

have close starting point in time), PLV’s score are close to one, reflecting phase coupling

processes among regions.

Once we have obtained amplitude and phase, we can compute PLV between any pair

of signals, averageing over phase di↵erences (q = f
2

�f
1

). Amplitude is not used in the

analysis. Given PLV is an average, it is measuring how constant di↵erences are between

signals via phases. In other words, PLV measures how the relative phase is distributed

over the unit circle. If the two signals are phase synchronized, the relative phase will

occupy a small portion of the circle and mean phase coherence is high. If the opposite is

true, the relative phase spreads out over the entire unit circle and mean phase coherence

is very low (Pereda et al., 2005). That is the reason why PLV relies on the Von Mises

distribution, that is symmetric and unimodal (Cohen, 2014). If it isn’t, the average won’t

represented well enough the distribution of phase di↵erences.
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PLV is very sensitive to volume conduction and common origins (Maestú et al., 2015;

Cohen, 2014), and so PLI (phase lag index) or wPLI (weighted phase lag index) are lately

recommended by some groups, although they’re not free of problems. Some authors

recommend to report PLV with an estimation of the signal-to-noise ratio, to get an idea

of how biased PLV is (Cohen, 2014).

3.2.4 Mutual Information

Mutual Information (MI) is a measure of shared information between any components

of a system, between systems, or any other parameter whose value’s probability can be

estimated. It is based on Shannon’s notion of entropy, which, in a general sense, tries

to quantify the amount of information contained in a random variable by means of its

estimated probability distribution. Mutual information is a bivariate generalization of

this notion: it measures the amount of information shared between two random variables

by means of its joint distribution, or conversely, the amount of information we can obtain

from one random variable observing another. This is analogue to measure the depen-

dence between two random variables (Veyrat-Charvillon & Standaert, 2009). Let X and

Y be two random variables with {x
1

,x
2

, ...xn} and {y
1

,y
2

, ...yn}, n possible values with

probabilities p(x) and p(y). The Mutual Information of X relative to Y can be written

as follows:

I(X \Y ) = Â
x2X ,y2Y

p(x\ y)log

2

p(x\ y)
p(x)p(y)

(3.7)

I(X \Y ) = H(X)�H(X |Y ) (3.8)

Where p(x\y) is the probability that X has a value of x while Y has a value of y, H(X)

is the entropy of X and H(X |Y ) is the conditional entropy of X and Y .

One of the major advantages of MI is that it captures linear and non-linear relation-

ships among variables. One disadvantage is that it does not explicitly tell the shape of

that distribution (Cohen, 2014). To get the mutual information between two random vari-

ables, we first need to estimate their probability density distribution, and although many

methods exist to estimate them, histograms is the most common, simple and e�cient way

(Veyrat-Charvillon & Standaert, 2009; Cohen, 2014; Gierlichs, Batina, Tuyls, & Preneel,
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2008). The procedure is simple: set a number of bins, containing a range of values, and

count the number of values that fall into each bin. Hence, two issues have to be addressed:

the number of bins to be used, and the equality or not, in length, of those bins. In general

terms, more bins means more information and vice versa (Veyrat-Charvillon & Standaert,

2009), but it is also true that with noisy signals (as the encountered in MEG data), choos-

ing less bins may have the e↵ect of noise reduction (Cohen, 2014). In practice, this means

that several distinct samples can fall into the same bin, which reflects the assumption

that they stem from the same datum (Gierlichs et al, 2008). The best performance, then,

is achieved by a balance between information and noise. As common practice, bins are

equally sized, and the number of bins is determined by the Freedman-Diaconis (F-D) rule,

that seems to o↵er the best balance between preservation of information and noise reduc-

tion (Cohen, 2014). The F-D rule was first designed to minimize the di↵erence between

the empirical probability distribution and the theoretical one. Denotating the bin size as

d, it is determined by:

d = 2

IQR(x)
3

p
n

(3.9)

where IQR is the interquartile range of the data, and n is the number of observations

in the sample. Given that, for n bins denoted as b(i), the probability is estimated as:

ˆP[y 2 b(i)] =
]b(i)

q
(3.10)

Where ]b(i) is the number of observations that fall into bin b(i) and q = Ân
i=1

]b(i) is

the total number of observations (N, total number of values that comprise the data).

This solution to the density estimation problem is not theoretically justified, but empir-

ically demonstrated to yield acceptable results, leading it to be common practice (Batina

et al., 2011). Once we build the histogram of each channel (eq. 3.9) and estimate bin’s

probabilities (eq. 3.10) we apply eq. 3.7 between channels pairwise. With histograms,

each channel’s density distribution is estimated, and we can compare each value registered

by the channel or magnetometer, whose probability is known, to its corresponding pair

in all other channels. The corresponding pair is the value taken at the same time by

other magnetometers or channels, comparing it one by one. Doing this (comparing one

value in one channel to the rest of values in all other channels recorded at the same time,
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pairwise), we get a value of MI for each comparison, that comprises a matrix of a number

of rows equal to the number of sensors, and a number of columns equal to the number of

bins. Averaging the values channel-wise, we get the adjacency matrix, squared (of length

channels x channels), symmetric (because it is undirected), and weighted (because it is

not binary).

Equation 3.7 compares joint probabilities against marginal ones. When two values are

independent, the product of their marginal probabilities should equal their joint proba-

bility. When not, we can state that there is a relationship among them (not necessarily

linear), because the probability of finding those values together is greater than the proba-

bility of finding them by chance. Thus, somehow, those brain regions are coupled, working

together, although we don’t know the way it occurs.

Yet there is another problem to be assesed. MI needs to be normalized to be reliable

and understandable. If the compared data are independent, its’ joint probabilities will be

equal to the product of their marginal ones. That means that when data are not related,

MI will o↵er values near 1. The idea, then, is to substract the expected values of MI that

could be obtained just by chance (if the sample were random) to the values of MI obtained.

Cohen (2014) states that, although this theoretical o↵set could be obtained analitically,

it is much easier (although computationally much more expensive), to calculate hundreds

of thousands of times the value of MI having one of the samples’ bins reshu✏ed. If only

one sample is reshu✏ed, only the joint distribution changes. If we reshu✏e many times

and then calculate MI, we get the distribution of values of MI expected by chance (that

is, if the samples were random). We then substract it to the values of MI obtained at

first, and the measure gets normalized. This strategy is called permutation test, and is

probably the best option. The idea is to get a distribution of MI values under the null

hypothesis. When data is randomly distributed, MI values follow a normal distribution

with mean near 0 (Cohen, 2014).

3.3 | Testing the Coordination Measures

Every coordination measure must be tested for statistical significance. However, the test

vary from one measure to another. In this section we present the statistical tests for

significance conducted for each measure.

Following Cohen (2014) k and r ’s statistical significance will be checked with t-tests;
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one-tailed for k , as it only takes positive values, and two tailed for r , as it ranges from -1

to 1. First, both measures must be t-normalized as

t = r

r
n�2

1� r2

(3.11)

being r the considered statistic (k or r) and n the number of observations (1018 in

each sample and 149646 in the joined signal). It is remarkable that the native function

to assess r ’s significance in MATLAB is based on the normal distribution (thus through

a gaussian normalization). When the null hypothesis of normality is not met (as tested

by KS test, see below), 3.3 will be used to normalize r and k . Then, to test if it is

statistically significant or not, the probability of getting that value or a higher one will be

calculated (because the t statistic follows a Student-t distribution).

To normalize MI, permutation testing is the preferred choice, as stated by (Cohen,

2014). Due to computational time, only 5 permutations will be done. The data analyzed

is composed of 147 samples, each one comprised by 241 channels capturing a signal of

1018 points. The analysis is conducted over the samples and over the whole joined time

series. This means that the sampled data is made up of 147 matrices of 241 rows and

1018 columns. When concatenated, the data is presented as one matrix of 241 rows

and 1018⇥ 147 = 149646 columns. A complete permutation test of the recommended

number of iterations [500 following Cohen (2014)], only for two channels in the joined

condition, lasts 2025.19s/60s = 33.75 minutes. Each channel must be compared with the

rest of them, pairwise. That is C
241,2 = 241!/(2!(241�2)!) = 28920 comparisons ⇥33.75

minutes each = 976140 minutes /(60⇥ 24) = 677.9 days, almost two years. Only for

the joined condition. Double that estimate, and you get the expected time needed to

calculate the permutation test for both conditions on one computer. Five iterations will

last approximately 6.8 days per condition.

Once the permutation test is completed, its mean is used to get a Z score of MI; that

is, transformed from bits to a standard statistical Z -value:

ZI =
I �µIp

sIp

(3.12)

being ZI the Z -score of MI, and I the values of MI obtained from eq. 3.7. µIp is the mean

of the results of MI after permutating the time series and sIp its standard deviation.
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Given the resources available, the optimal approach to test PLV’s statistical signifi-

cance was calculating a Kruskal-Wallis test or the critical PLV value for each sample at a

given p-value (Cohen, 2014):

PLVcrit =

r
�ln(p)

n
(3.13)

Any value above PLVcrit would be considered statistically significative. Both approaches

(Kruskal-Wallis and 3.13) su↵er from the same problem. As the number of comparisons

increase, the probability of Errors Type I raises. Under these circumstances, we decided

to perform a Bonferroni correction to enhance the reliability of our results.

The values of k , r , MI and PLV (contained in the adjacency matrix) will be the

weights of the links between nodes (sensors). With it, we could start further analysis on

connectivity, to study network properties, such as small-worldness, clustering coe�cient,

e�ciency, etc.

3.4 | Testing the Assumptions

As stated before, to be reliable, synchronization measures require some mathematical

assumptions to be reached. In this section we present those assumptions and the way to

measure them.

Coherence (k) and Pearson coe�cient (r), linear correlation coe�cients (the former,

in the spectrum of frequencies, the latter on the raw signal), assume linearity. That is,

the relationship between values (and, presumably, between brain regions), must be linear

to be captured by k or r . In addition, both are specially sensitive to constant noise, if it

a↵ects di↵erentially to certain channels. If the noise were present in all channels, and all

the sample, proportions would be preserved, and the e↵ect on this coe�cients wouldn’t

be so pronounced. But, if noise is constant along the time series in one channel but not

in other, then both measures will over or infra estimate the relationship between data.

k is computed over frequencies. Frequencies are obtained calculating the Fourier

transform, which assumes stationarity. Thus, if the signals are nonstationary, k will give

unreliable results.

On the contrary, Mutual Information does not distinguish the nature of the relation-

ship of the data (and is not so a↵ected by nonstationarity), although it doesn’t provide

28



information on what kind of relationship is that. MI is specially sensitive to SNR (signal

to noise ratio) and sample size, which is not a problem in this case, given the amount of

data. On the contrary, SNR must be a problem, and it is impossible to calculate from

empirical data. It can only be estimated. That is the reason why some authors recom-

mend to compute MI over band-filtered time series [band-filtering usually entail better

SNRs (Cohen, 2014)].

PLV is highly sensitive to volume conduction, and, as stated before, is indirectly

sensitive to stationarity. It is calcuated averaging phase di↵erences, that may be due

to a common, deeper source, or to the positioin of sensors (in between two sources). If

the conduction is constat over time, PLV will overestimate the synchronization between

regions (Maestú et al., 2015). If it is transient, it will be smoothed when averaged.

But, if the signal is nonstationary, mean phases won’t be representative of the phases

population, and its averaged di↵erences won’t be a good estimator of the synchronization

between regions.

That is, stationarity, linearity and SNR play a role in the reliability of synchroniza-

tion measures. Consequently, all of them must be tested when calculating coordination

between MEG sensors. Additionally, normality will be tested to characterize better the

time series.

To test whether the dataset follows a normal distribution or not, Kolmogorov Smirnov

test (KS) will be conducted over each channel’s signal, for both conditions. KS test is a

non-parametric test for univariate normality although it may be used as a goodness-of-fit

test for any given distribution. In a certain way, it measures the distance between data’s

probability distribution and any other given distribution. In the case where two or more

variables are checked, Mardia’s test for multivariate normality can be more suitable. Given

the nature of our data, which, as the literature states, seems to be nonlinear, non-normal

and nonstationary (Stam, 2005), KS test seems to be more appropriate, as univariate

normality is a more relaxed assumption about data than multivariate normality (which is

more unlike to be met).

In statistics and signal processing, stationarity is a common and di�cult problem, as

it may a↵ect several orders of di↵erences in the processes’ equations, an issue that can

make statistical inference go wrong.

Time series’ stationarity is ussually studied fitting di↵erent autoregressive models to
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data. Autorregresive models try to predict future values of the signal using past values

of it, weighted by a coe�cient and a stationary (or not) process to be added. Also,

depending on the sophistication of the model, an innovation variable usually modelled

as white gaussian noise that accounts for the errors of the model can be added. In that

sense, autoregressive models are linear regressions of a variable over itself.

From this perspective, time series can be characterized as having or not a trend (an

intercept constant in the model’s equations), and having or not a unit root (where the

coe�cient of the past values used to predict the present value of the variable equals one).

Then, to test stationary in each channel’s signal (both in samples and altoghether), at

least two models must be fitted to check unit roots and trends. Following (Amano &

Van Norden, 1992), an i10 test will be conducted. It is a paired test, comprising the

Augmented Dickey-Fuller test (ADF) and the Kwiatkowski, Phillips, Schmidt, and Shin

(KPSS) test. Both are based on the goodness of fit of di↵erent models used to predict

the signal.

ADF test a time series for a unit root against a trend-stationary alternative model,

augmented with lagged di↵erence terms (past values of the signal). Thus, if the null hy-

pothesis is rejected, a trend-stationary process fits better the data. This doesn’t mean

explicitly that data is a trend-stationary process, but that a model of such characteristics

fits it. It is possible that a nonstationary process fits the data as well. Hence, if the null

hypothesis is rejected, both a trend-stationary or a nonstationary process could character-

ize better the data (than a stationary one). In the case of ADF, the alternative hypothesis

is referred to the former, but whereas the latter also fits or not is not accounted. This

ambiguity is due to the fact that models of very di↵erent nature can arbitrarily fit many

time series. That is the reason to check KPSS test too, that precisely tests a nonstation-

ary process model to fit data. ADF test, then, assesses the null hypothesis of a unit root

using the model H
0

:

yt = c+d t +jyt�1

+b
1

Dyt�1

+ . . .+bpDyt�p + et (3.14)

where D is the di↵erence operator: Dyt = yt � yt�1

, p is the model order; that is, the

number of steps back used to predict the future value of y (p = 2 means that yt�1

and

yt�2

will be used to predict yt). et is the error term, usually modeled as a Gaussian

mean zero variable. This model, as well as AR, MA or ARIMA models are common in

signal processing, and are used to characterize stochastic processes. Such models can
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be linear, non-linear, stationary, non-stationary (with di↵erent regimes of stationarity),

with/without trends, etc. The idea is to adjust di↵erent models of known characteristic

equations, to check under which regime could the signal be understood. When d = 0 the

model has no trend component, and when c = 0 and d = 0, the model has no drift nor

trend.

The null hypothesis of a unit root is H
0

: j = 1. The alternative hypothesis states that

H
1

: j < 1, under the same equation. When the test rejects the null hypothesis, we assume

that the model without unit root characterizes better the data. A unit root process is a

data-generating process whose first di↵erence is stationary. This means that if we accept

H
0

the time course can be modeled as a stationary process. On the contrary, if we reject

H
0

we assume that a trend-stationary or a nonstationary process fits better the data than

a stationary one. Note that ADF and KPSS tests are conducted over every channel’s time

series, so there could be a situation in which some channels record a series coherent with

the hypothesis of j = 1, and some others coherent with the hypothesis of j < 1. The

method used to estimate the coe�cients in the alternative model is ordinary least squares

(OLS).

Unit root processes may sometimes be confused with trend-stationary processes; while

they share many properties, they are di↵erent in many aspects. In both unit root and

trend-stationary processes, the mean can be growing or decreasing over time; however,

in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory,

the time series will converge again towards the growing mean, which was not a↵ected

by the shock) while unit-root processes have a permanent impact on the mean [i.e. no

convergence over time (Kwiatkowski, Phillips, Schmidt, & Shin, 1992)].

On the other hand, KPSS test evaluates stationarity, but following another approach.

It assesses the null hypothesis that a univariate time series is trend stationary against the

alternative that it is a nonstationary unit root process. In order to do that, it uses the

model:

yt = ct +d t +u
1t (3.15)

ct = ct�1

+u
2t (3.16)

where d is the trend coe�cient, u
1t is a stationary process and u

2t is an independent and

identically distributed process (i.i.d) with mean 0 and variance s2. The null hypothesis

is H
0

: s2 = 0, implying that ct is a constant and acts as the model intercept. If s2 > 0
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there is a unit root in c.

ADF and KPSS test di↵erent models to fit the dataset. Measuring both may yield to

a good characterization of the time series, as the tested conditions are mutually exclusive.

The possible regimes a time series could be in are covered by both tests hypothesis. If

ADF’s H
0

is rejected, data is better characterized by trend-stationary or nonstationary

models. If KPSS’s H
0

is rejected, a nonstationary model fits data better. So, to accept

that the best model to understand the data is a nonstationary one, both null hypothesis

should be rejected. If data were better predicted by a trend-stationary model, ADF’s H
0

should be rejected, and KPSS’s H
0

accepted.

To asses SNR, the only available method for empirical data is the ratio between the

average and the dispersion (Cohen, 2014), that will be calculated for every channel in

both conditions (samples and joined signal): SNR = ¯X/S.

The last test is used to evaluate if data adjust to a linear series model or not. To do so,

a test based on Barnett and Wol↵’s (2005) methodology will be used. The test contrasts

if a general linear series of the form:

Xt = Â
j=1

b jet� j + et (t = 1,2, ...) (3.17)

fits a zero mean, ergodic, discrete time series ({Xt}•
t=1

), from the bispectrum of the data,

obtained from the Fourier transform on the 3rd order moment:

µ(r,s) = E(Xt ,Xt+r,Xt+s) where r and s are integers (3.18)

The rationale is to generate several hundreds of new samples (500 in our analysis) under

the null hypothesis (linear model), a technique called bootstrap. The bootstrap proce-

dure is conducted over the phase of the signal, so that a non-parametric estimate of the

variance in the third-order moment is obtained. This is done under the assumption of

linearity, which is the null hypothesis. The hypothesis is tested calculating the upper and

lower percentiles of the bootstrapped population of values minus the third-order moment.

When calculated, the test statistic is obtained as the sum of the absolute di↵erences be-

tween the observed third-order moment and the most extreme value admissible under the

null hypothesis, at a significant level a . To avoid dependent summands in the test, dis-

crepancies in variance, and Error Type I due to multiple comparisons, a second bootstrap

procedure is used. When the result of the first estimate is greater than the estimation of

the second, the null hypothesis will be rejected. When it happens, a linear model doesn’t
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fit the data, and it is reasonable to assume that, with an probability of 100�a , there are

interactions over the third order; that is, non linear interactions.

Summarizing, in our analysis we will calculate the following tests: Kolmogorov-Smirnov

test for univariate normality, Augmented Dickey Fuller test for unit roots in stationary

data, Kwiatkowski, Phillips, Schmidt, and Shin test for univariate trend stationary data

and the Barnett-Wol↵ test for linearity. Every test will be conducted over the time series

data, in both conditions, when series are joined to form a big dataset of 241 rows by

149646 points, and sampled, as 147 matrices of 241 rows by 1018 points each. Then, also

on both conditions, Phase Locking Value, Pearson Correlation Coe�cient, Mutual Infor-

mation and Coherence will be obtained and tested. We will search for di↵erences in the

connectivity measures and their statistical significance, and try to interpret them under

the violation or not of the mathematical assumptions under which they work. The ques-

tions to be answered are: is there any di↵erence in linearity, stationarity and/or normality

in both conditions? If so, how does it a↵ect to the results of the connectivity measures

from which the network is built?
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4 | Results

4.1 | Data Description

As it is common practice in data-intensive analysis, only the average-cases and extreme

values are reported to describe our data.

The channel’s average in the join condition equals the global average of samples (mean

of the averages of all samples). Almost the same can be said of the standard deviation,

where the mean di↵erence of variances between conditions is 3.9⇥10

�15.

Averages among channels, in the joined condition, range from ¯X = �9.87⇥ 10

�18 to

¯X = 7.29⇥ 10

�18, with a variability of S2

¯X = 3.44⇥ 10

�18, and a global mean of ¯X
¯X =

�8.01⇥10

�18. Variability within the channels range from S2 = 1.4⇥10

�13 to S2 = 3.72⇥
10

�13, with an average standard deviation of ¯XS2

= 2.48⇥10

�13. A visual insight can be

obtained from plot 4.1 on how means and variances are distributed over channels in the

whole time series. Each dot represent a mean (left) or standard deviation (right) in one

channel, along the entire time series joined.

Along samples, means range from ¯X =�1.29⇥10

�16 to ¯X = 1.18⇥10

�16 (global mean

of ¯X
¯X =�8.01⇥10

�19). Variability ranges from S2 = 1.01⇥10

�13 to 6.64⇥10

�13 (mean

of variances ¯XS2

= 2.44⇥10

�13). Plot 4.3a (4.3b) shows, along samples, largest averages

(standard deviations) (upper dots), medians of averages (std.)(dots in the middle) and

smallest averages (std.)(bottom dots). Each row of dots is composed of 147 dots (one

per sample), each one representing the largest, median or smallest mean (std.) for one

sample. This way, samples are characterized showing the most normal and extreme cases.

It should be noted that samples’ means tend to be zero-centered and are two orders

of magnitude larger than means when the signal is taken as a whole. Standard deviations

are also more variable (have a broader range in the same order of magnitude). That

is, joining the time series has the e↵ect of smoothing channels’ means and deviations,

although globally, the mean is the same in both conditions, and the variance is almost

the same. To represent visually this idea, upper (bottom) plot 4.2 shows the smallest and

largest average (standard deviation) in samples and in the whole signal, as well as the

average mean (standard deviation) shared (almost) in both conditions.

34



(a) Means in the Joined Condition (b) St. Dev. in the Joined Condition

Figure 4.1: Each dot represent the mean (left) or standard deviation (right) of one single channel
for the joined timeseries.

Figure 4.2: For both plots, the red line represents the joined condition, whereas the blue one
represents the sampled condition. Left/right plot shows the smallest, most central and largest
mean/standard deviation.

Figure 4.3: Plot of means (left) and deviations (right): all channels (241) along the 147 samples.
Upper dots are the largest means/deviations along samples. Middle dots are medians (of means
or deviations) along samples and bottom dots are the smallest means/deviations along samples.
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4.2 | Results of the assumptions’ tests

Kolmogorov Smirnov test for univariate normality : The KS test for both the joined and

sampled conditions yielded, a 100% rejections of the null hypothesis. That is, not a

single channel’s data can be considered as normally distributed on both conditions (in

any sample). Note that in all cases, the null hypothesis is rejected with an a always

below the corrected p�value (Bonferroni correction). This was an expected results, as it

is consistent with the main conception of biological signals.

i10 (ADF and KPSS) test for stationarity :

ADF : When the data is joined, all ADF test’s hypothesis are rejected with p = 0.001.

That is, the null hypothesis of a unit root in the proposed model 3.14 can be rejected for

all joined data (for the signals obtained in all 241 channels). That means that we accept

the alternative hypothesis, where j < 1. The consequences are of great importance in the

model, as depending on the value of j , the system will evolve in a way or in another.

As j grows, the intervals in which y values (observations in the data) go up and down,

and the height of those values is increased, and past values of y explain better and more

accurately future values of y (Hamilton, 1994). When |j| > 1, covariance-stationary

cannot be assumed. In this case, we assume H
1

= j < 1, meaning that data, at least in

principle, seems to be trend-stationary.

The same can be said in the sampled condition. All time series, in all samples, seem

to be adjustable by a trend-stationary process model, as the null hypothesis of unit root

is rejected (with p < 0.001 for all tests).

That is, ADF test yielded a 100 % of rejections, in both conditions. Consequently, we

accept that j < 1.

KPSS : KPSS test o↵ered consistent results with ADF. In the joined condition, only in

19 out of 241 cases can the null hypothesis be rejected, all of them reaching a significative

p-value. 7 of them are between 0.05 > p > 0.04, 4 are between 0.04 > p > 0.03, 1 between

0.03 > p > 0.02, and the other 7 between 0.02 > p > 0.01. The model in KPSS test (eq.

3.15) considers the hypothesis that the univariate time series is trend stationary, against

the alternative that it is a nonstationary unit root process. That is, only for 19 channels

can the signal be considered as a nonstationary unit root process. In the other 222 cases,

the null hypothesis is not rejected, but p> 0.05. Although not statistically significant, the

36



fact that in 222 the null hypothesis could not be rejected is completely coherent with ADF.

KPSS’s null hypothesis and ADF’s alternative hypothesis are analogous. Conversely,

KPSS’s H
1

is akin to ADF’s H
0

. Here, analogous means that the proposed models in each

hypothesis are of the same nature, trend stationary in ADF’s H
1

and KPSS’s H
0

, and unit

root in ADF’s H
0

and KPSS’s H
1

.

Unlike the joined condition, KPSS test’s null hypothesis in the sample condition can

be rejected in the vast majority of cases. Out of 149646 comparisons (241 channels in

147 samples each), only in 25 cases the null hypothesis is not rejected, and always with

p > 0.05. There was not a single sample in which the number of not rejections were above

5 cases. Put it in other way, the minimum number of rejections of H
0

is 237, and in

122 out of 147 samples, all 241 channels’ time series can be fitted with a nonstationary

unit root process. In every case, rejection of the null hypothesis comes with p < 0.05.

It seems unlikely to be a pattern in the channels in which the null hypothesis has been

accepted, although some of them are repeated (never more than twice, and never in

adjacent samples).

These results seem to be indicating that the signal, considered in samples, is a non-

stationary unit root. But, when joining the time series, this condition is violated, and the

process resembles more to a trend stationary model.

Barnett and Wol↵ ’s test for Linearity : In the joined condition, 111 out of 241 channels

don’t fit a linear process (p < 0.05). In 25 out of 241, the null hypothesis of linearity must

be accepted (p < 0.05). That is, no signs of nonlinearity could be found in those channels.

Only about half of the signals seem impossible to adjust to a linear model (indicating

nonlinear interactions).

On the other hand, in the sample condition, the number of rejections of H
0

(linearity)

vary with the sample, between 4 (sample 50) and 133 (sample 81). The mean of rejections

is ¯X = 32.048;S2 = 18.775. 4802 out of 149646 rejections (about a 3.21%) come with a

p < 0.05. As shown in figure 4.4, it doesn’t seem to be a pattern or change in regime, as

could be expected if the experimental design was based on a task, in which presumably,

di↵erent brain mechanisms of synchronization could lead to di↵erent types of relations

between time series. The plot shows the number of rejections of H
0

per sample. Keep in

mind that the hypothesis is referred to channel’s signal, so 241 tests are conducted per

sample.
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Figure 4.4: Plot of rejections of the null hypothesis of linearity as tested by the Barnett and
Wol↵ method along the 147 samples (with p < 0.05).

Signal-to-noise ratio:

SNR is not usually taken into account when analyzing (E/M)EG data. To test its

significance, a proper test ad hoc should be created (Cohen, 2014). To do that, non-

parametric bootstrap could serve to create a distribution of values under the null hypoth-

esis, but to the author’s knowledge there is not a standard procedure to do that. It is

out of the scope of this work to create new statistical tests, and values on SNR will be

compared informally as the result of dividing the mean to the deviation of the considered

signal ( ¯X/S, following Cohen, 2014). In any case, there isn’t such a case as a good SNR or

a standard acceptable value of it; everything depends on the concrete time series analyzed,

by comparison to other time series.

In the joined condition, SNR vary from �3.049⇥ 10

�5 (channel 224) to 3.28⇥ 10

�5

(channel 81). Mean SNR is ¯XSNR =�2.9⇥10

�6 and standard deviation is SSNR = 1.28⇥
10

�5. In the sampled condition, SNR vary from �4.77⇥ 10

�4 (channel 45, sample 85),

to 4.56⇥10

�4 (channel 92, sample 107), with a global mean of ¯XSNR =�2.39⇥10

�6 and

global standard deviation SSNR = 1.064⇥10

�4. The correlation coe�cient of SNR in the

joined signal, and the mean (in channels) along samples is 0.99 (p ⇡ 0), as we can observe

in the plot 4.5.

To summarize all this results, KS tests indicates that the hypothesis of normality must

be rejected, in all cases and both conditions. Exactly the same can be said of the ADF test

(from i10). On the contrary, KPSS yielded a very small amount of rejections (19/241) in
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Figure 4.5: Plot of SNR, joined condition vs samples.

one condition (joined time series), but not in the other (samples, 149621/149646 rejections

with p < 0.05). Barnett and Wol↵’s test for linearity also yields heterogeneous results:

111/241 rejections of H
0

in the joined condition (p < 0.05) and, in average, 32.05/241

significative rejections of H
0

in samples, although only a 3.21% reach p < 0.05.

This results seem to indicate that, when the sampled time series are joined together,

some mathematical properties of the signal may change. Concretely, the number of rejec-

tions of H
0

in KPSS decreases dramatically, indicating that, taken one by one (in samples),

this time series could be approximated by a nonstationary root process model (in almost

every channel), whereas, when all time series are joined, that is false, and a better ap-

proximation is a trend-stationary process model. This means that the regime of both

conditions is di↵erent, and the behavior of the signal may change from one to another.

In presence of a perturbation, a unit root process doesn’t converge to the mean over time

(the e↵ect is permanent), while trend-stationary processes tend to recover after a tran-

sient time. This could mean that, locally, the time series seems to be a nonstationary unit

root process, but, if enough time goes on, a more general structure can be grasped, and

corresponds to a trend-stationary process.

On the other hand, it is also remarkable that, when taken as a whole, the number

of channels that fit to a linear model decreases notably. In other words, taken locally,

much more channels can be adjusted by a linear process model. This could be interpreted

in a similar way: maybe, when the time series is long enough, it can be seen that it is

nonlinear, but taking portions of it, can locally be adjusted by a linear model. This could

be tested taking even longer datasets, to see if the rejection of the linear model depends
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on the length of the considered timeseries.

4.3 | Results of Coordination Measures’ tests

As stated before, the best procedure to test the significance of many measures of synchro-

nization is (non-parametric) permutation testing (Cohen, 2014). Due to computational

time requirements, this won’t be the approach adopted. Instead, equation 3.3 will be

used to t-normalize the values of correlation coe�cients (Pearson and Coherence), and

the probability of getting that value or a higher (k and r) or lower one (for negative values
of r) will be calculated to test its significance. Mutual Information will be Z-normalized

with a 5 iterations permutation test. Permutation test establishes a set of values under the

null hypothesis of no relationship between entropy distributions, used later to normalize

MI. This procedure corrects for sample size biases and provides a useful framework for

addressing multiple-comparisons corrections (Cohen, 2014). PLV will be tested against a

threshold critical value of PLV based on a corrected p-value (equation 3.13). Table 4.1

summarizes the results found in Pearson Correlation Coe�cient, Coherence and PLV. In

it, we observe maximum, minimum and average percentage of significative values of the

measures across samples, and the percentage of significative values when the time series

are joined. The connectivity between any pair of the 241 channels is expressed in an

adjacency matrix composed of 241 rows and 241 columns. Given that direction is not

inferred, the matrix is symmetric. Thus, the maximum number of significative values is

the number of elements in the upper triangle of the matrix minus the number of diagonal

elements (that will be zero since the graph has no self-loops), 28920. Note that Mutual

Information is obtained normalizing the values generated from the permutation test (with

5 iterations), so it is not included in this table.

Max (sample) Mean(std) Min (sample)
Exact Value (in

Joined Cond.)

r 92.26 (135) 87.5 (±1.95) 82.1(100) 98.87

k 82.4 (15) 70.8 (±3.3) 63.8 (3) 100

PLV 88.3 (100) 73.1 (±5.8) 58.9 (78) 99.07

Table 4.1: Maxima, mean and minima percentage of significative values in Pearson Coe�cient
(r), Coherence (k) and Phase Locking Value (PLV) for samples, and percentage of significative
values in the joined time series.
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The next table (4.2) explores the range of average and standard deviation values in

coordination measures across samples:

¯Xmin ¯X ¯Xmax Smin S Smax

r 0.018 0.042 0.21 0.25 0.308 0.38

|r| 0.202 0.253 0.35 0.167 0.18 0.21

k 0.17 0.17 0.19 0.055 0.057 0.068

PLV 0.19 0.24 0.33 0.13 0.14 0.16

MI 0.34 0.39 0.49 0.092 0.13 0.17

Table 4.2: range of Means and Standard Deviations in samples for Pearson Coe�cient (r) and
its absolute value, Coherence (k), Phase Locking Value (PLV) and Mutual Information (MI)

And table (4.3) displays means and deviations to compare, between the sampled and

the joined condition.

rS rJ |rS| |rJ| kS kJ PLVS PLVJ MIS MIJ

¯X 0.042 0.043 0.25 0.219 0.17 0.169 0.242 0.179 0.393 0.17

S 0.308 0.278 0.18 0.178 0.057 0.055 0.146 0.147 0.127 0.13

Table 4.3: Means and Deviations of Pearson Correlation Coe�cient (r), Coherence (k), Phase
Locking Value (PLV) and Mutual Information (MI), along samples (S), and in the joined (J)
time series.

As shown in table 4.1, the number of significative values for three of the evaluated

coordination measures (r , k and PLV) raises notably when the time series is taken as a

whole. Keep in mind that, to normalize r and k , eq. 3.3 is used. The parameters needed

to compute it are the original value of the coordination measure (r, the value of r or k) and
the number of data points (n) used in the analysis, that will vary depending on whether

the correlation coe�cient works with raw signal (r), or its spectrum of frequencies (k).
In samples, for r , n = 1018 and for k , n = 129. For the whole time series (joined), n of r
is 149646 (1018⇥ 147 samples), and n of k is 32769. Note that in the normalization of

k , n comes from the frequency spectrum, that is calculated by Welch’s method. It works

windowing the frequencies obtained from the Fourier transform of the original signal.

Once the original values (r) are transformed into t, the probability of getting that value of

t, a higher one (one tailed, for k) or a higher or lower one (two-tailed, for r), is calculated
from a Student’s t-distribution (with a number of degrees of freedom (d.f.) equal to
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n). When n ! •, the t-distribution approaches normality. As shown in plot 4.6a, the

value of t grows rapidly, thus leading to very unlike values (in the t-distribution) that,

subsequently will be evaluated as statistically significative. That seems to be the reason

why, for the joined time series, 98.87% of Pearson coe�cient, and 100% of Coherence

values are considered significative, a 11.37% more in r and a 29.2% more in k .

Something similar happens with the threshold established for PLV, whose percentage

of significative values also raises markedly when the time series is taken as a whole (joined).

Concretely, it increases a 25.97%. Remember that to obtain a critical value of PLV eq.

3.13 was used. As n enlarges, the value required to classify the original PLV as statistically

significative decays exponentially, and stabilizes around 0.009426. The rationale behind

this method is that, when the number of instantaneous phases increase, coordination will

smooth along the time series. Then, to detect di↵erences, smaller average di↵erences

should be considered significative, as the probability of finding them decreases (Cohen,

2014).

In this work, eq. 3.13 has been calculated with p = 1.7218⇥ 10

�06 for the joined

condition, and p = 1.1713⇥ 10

�08 for samples, coming from the Bonferroni correction

(of p = 0.05) for multiple comparisons (29040 comparisons when the signal is joined and

29040⇥ 147 samples = 4268880 when compared in samples). Plot 4.6b shows how the

critical value of PLV decreases as n enlarges, for a fixed original p-value. As it can be

observed, the bigger p is, the faster PLVCRIT decays. Conversely, PLVCRIT will be bigger

when p is smaller, and for smaller ns and a fixed p� value, PLVCRIT will be bigger.

It is also remarkable that, in samples, the percentage of significative values is higher in

r that in PLV or k ( ¯X
%r = 87.5, ¯X

%k = 70.8 and ¯X
%PLV = 73.1), with much less deviation

(Sr = 1.95, Sk = 3.3 and SPLV = 5.8). That is, systematically, Pearson is classified as

significative much more times than PLV or Coherence. The interpretation of this fact is

not clear, and will be discussed in more detail in the discussion.

It should be noted as well that the value of r tends to zero (0.042 in samples and 0.043

in the signal as a whole). This implies that there is almost as much direct coordination

as inverse one. Inverse coordination means that when a brain region is doing something,

other region, coordinately, is doing the opposite. Pearson coe�cient may not be the best

synchronization measure, but it is notable that the other measures, much more common

in the field, are blind to this relationships, which, on the other hand, are biologically
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(a) Evolution of t as a function of n. (b) Evolution of PLVCRIT as a function of n.

Figure 4.6: Each line represents the growth of t (left) or critical value of PLV (right) as a
function of n. In a) each line represents the growth of t as n enlarges, keeping r (the original value
of r or k) in a fixed value. In b) each line represents the decrease in the threshold as n enlarges,
keeping a fixed p� value. The values tested are p = 0.05, p = 0.01 and p = 1.7218⇥10

�06.

plausible. In any case, to compare the results of all measures at a time, the absolute value

of r will be used.

As shown in table 4.3, there are only slight di↵erences between both conditions in the

values of r and k : r di↵ers 0.001 and k di↵ers 0.001. Standard deviations behave almost

the same, in both conditions, for all measures. Sr only changes 0.03, Sk 0.002, SPLV 0.001

and SMI 0.03. On the other hand, PLV changes 0.063 from one condition to another, and

MI experiments the biggest change, from MI = 0.393 in samples to less than the half,

MI = 0.17 in the joined condition. This will be discussed in the next section.

Keep in mind that coordination/connectivity analysis is the first step to represent and

predict brain activity as a functional network or graph. After this process, network metrics

would be extracted. Presumably, the results of it could change due to the calculation of

synchronization measures (specially from PLV and Mutual Information). It is out of the

scope of this work to go farther, but at first sight, di↵erences in how nodes (sensors)

are connected, and the extent to which those nodes are important in the network could

change depending on the coordination measure and the condition.

43



5 | Discussion and Conclusions

In this section, some of the results will be discussed, following the literature in brain

connectivity analysis, and some preliminary conclusion will be provided.

There are three major points that worth discussion. First of all, the tests for linearity

and stationarity yielded contradictory results, in disagreement with the literature. Second,

the significance of PLV, Coherence and Pearson di↵er notably from one condition to

another. Third, the value of Mutual Information decreases considerably depending on the

condition.

1. Linearity and Stationarity : When data is joined, almost half of the channels’ signal

(111 out of 241) cannot be adjusted by a linear model. Keep in mind that in this

context, the linear model predicts phases (A. G. Barnett & Wol↵, 2005). On the

contrary, in average only a 13.3% of channels’ timeseries cannot be adjusted with a

linear model (in samples), and only a 3.21% from that 13.3% reach a confidence level

of p< 0.05. That is, the sampled signal seems to resemble more a linear process, but

the joined signal doesn’t. This finding is important in the context of brain network

analysis, as generally, brain signals are considered as nonlinear and nonstationary

(Stam, 2005). Concerning the latter, other authors argue that, while taken as a

whole, MEG and EEG signals are nonstationary, but can be considered as locally

stationary (when chopped in samples; Sakkalis, 2011). Even though, the i10 test

yielded contradictory results. As shown in the Results section (4), the vast majority

of channels’ signal when the timeseries are sampled can be adjusted better with a

unit root nonstationary process model, than with a trend-stationary one, that fits

better the signal when joined. This is also a contradictory finding that must be

taken into account when analyzing brain signals.

The reasons for these di↵erences, observable simply by putting samples together,

are quite opaque. The time lapse between samples is unknown and arbitrary (as

it depends on artifacts and noise present in the timeseries), but, presumably, not

very large (signals are recorded in a single session). SNR varies more (one order of

magnitude more) when data is joined. This could be indicating that samples are

heterogeneous in SNR. This has a lot to do with the quality of the register, pres-

ence of noise and even di↵erent cognitive states, although resting state is typically
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considered as random, and di↵erences should cancel out due to the fact that the

subject is “not doing anything”. More correctly, is mentally wandering, and not

doing a particular task, thus it is considered as a random cognitive processes, which

may not be the case if the person focuses his/her attention in di↵erent aspects of

the outside or inside context. The observed changes in the mathematical properties

of the signal could be indicating di↵erences in noise, artifacts (register quality in

general), but also in synchronization regimes due to di↵erent cognitive activities

(that presumably produce di↵erent activation and synchronization profiles). If that

is the case, there is no reason to combine samples together simply to get a larger

dataset, and based upon the supposition that samples belong to the same popu-

lation (dynamical regime). Joining the time series together implies assuming that

every sample accounts the same for the process’ mean and variance, something not

proved. That is, samples should be temporally correlated, because they belong to

the same process. This is not proved, although resting-state is considered so. The

most important conclusion of this work is that, given that these conditions are not

necessarily met, and clearly change the mathematical properties of the signal, it is

more recommended to conduct connectivity analysis from samples, and then average

the results.

These questions could be addressed joining more samples to watch if there is a

progression in this trend (as the dataset grows, it resembles more to a nonlinear

trend-stationary process), and generating more samples via bootstrap. The proce-

dure could be to generate several thousands of samples for a bigger population of

subjects, following di↵erent null models, in di↵erent dynamical regimes (stationary,

nonstationary, trend-stationary). Then, calculating synchronization with the con-

sidered measures, we would get a distribution of values under di↵erent null models,

in both conditions. This would reduce the error and allow better statistical tests to

assure when the value of association is statistically significative or not. This pro-

posal could be a future line of research of great importance in MEG research, as it

would cover the necessity of proper models to simulate MEG signals and test the

significance of connectivity metrics. It would also allow to understand better the

subtle relations between the mathematical properties of the signal and the capabil-

ity of synchronization measures to capture coupling processes. The lack of MEG

simulating models is probably due to the prize of a MEG machine, much higher than

other brain data signal recorders (EEG, for instance). There exist about 200 ma-
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chines in the world, and the amount of research from MEG signals is still smaller in

comparison with other devices, such as fMRI or DTI. Hence, standards procedures

that guarantee robustness and reliability when calculating synchronization measures

are still a necessity.

2. Phase Locking Value, Spectral Coherence and Pearson Coe�cient : As n enlarges to

calculate eq. 3.13, the threshold is reduced, and smaller values of PLV are consid-

ered statistically significative, under the rationale that in large datasets, coupling

smoothes, and smaller di↵erences must be taken into account (Cohen, 2014). Some-

thing similar happens to the t-normalization of Coherence and Pearson Coe�cient

(eqs. 3.3, 3.13, figs 4.6a, 4.6b). Indeed, average values of PLV are smaller for the

joined condition than for samples, even though the number of significative values

increases from 73.1% up to a 99.07%. In the case of Pearson Coe�cient and Co-

herence, averages are almost the same in both conditions, but significative values

increase from 87.5% to 98.87% (Pearson) and 70.8% to 100% (Coherence). This

finding is of great importance in brain network science, as the test of statistical

significance serves as a threshold for further network calculations. Any value below

the threshold would be set to zero; hence, the resulting networks built from one or

another condition and synchronization measure will be completely di↵erent. The

methods proposed to test the significance of this measures (Cohen, 2014) seem to be

overestimating the results of synchronization, due to the n. The conclusion, then,

is that this methods, at least for large datasets, are not recommended. Instead, it

would be preferable to use bootstrap methods, although they are much more time-

consuming and computationally much more expensive. It is a limitation in this work

not to have implemented bootstrap methods.

3. Mutual Information: The average value of MI decreases from 0.39 in samples to

0.17 when the signal is joined, although variance remains between 0.127 and 0.13.

As stated before, MI is specially sensitive to SNR. The range of SNR is one order

of magnitude bigger in the joined time series, possibly reflecting di↵erent regimes

of noise and synchronization. It is likely that this condition is a↵ecting the final

average of MI, although more research is needed to ensure this. Bootstrap proce-

dures help to avoid this condition stating a distribution of values under the null

hypothesis of no relation. It is an important limitation no to have implemented a

proper bootstrap procedure (due to resources restrictions). A future line of research,

concerning what has been stated before, would be to use the aforementioned null
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models (stationary, nonstationary, trend-stationary) no only to account for di↵er-

ences in synchronization values due to the properties of the signal, but controlling

also the SNR to observe the di↵erences in MI. Noise, following di↵erent probability

distributions, can be added easily to artificial signals. Hence, noise could be added

to the proposed null models, and correlated with values in MI to understand to

which extent is the measure a↵ected by noise.

To sum up, the conclusions are to conduct connectivity analysis over samples

and not over the whole joined signal, given that the assumptions to do that are not

proved and to avoid normalization for a large n , as statistical significance seems to

be overestimated (with the equations used in this work). Major limitations in this work

are the lack of bootstrap procedures and of simulated MEG signals. And at least, a

proposal of a new line of research based on di↵erent dynamic process in di↵erent regimes

of (non)stationarity (with trend or not), to characterize better MEG signals and later

simulate them. Each channel would be simulated, and the interactions between them

(synchronization) could be known completely, as well as noise. By doing this, a proper

model to simulate MEG data could be established, more samples could be bootstrapped

to observe if there are changes in MEG signals’ mathematical properties on the long-term,

statistical significance of coordination measures could be tested more accurately, and the

e↵ect of noise in MI would be better understood. At the end, each coordination measure’s

value could be predicted through a linear regression that takes into account the strength of

the coupling between channels, noise, and the parameters of the generative model (trend,

unit root or di↵erence step).
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Descriptives
Calculate Descriptive measures

Dscps.Global = struct;
Dscps.Global.Samps = zeros(samples,4);
Dscps.Global.Chans = zeros(channels,4);
Dscps.Global.Join = zeros(channels,2);
Dscps.Local = struct;
 
for i = 1:samples
    Dscps.Local.(strcat('s',num2str(i))) = zeros(channels,2);
    
    Dscps.Local.(strcat('s',num2str(i)))(:,1) = mean(data.trial{1,i},2);
    Dscps.Local.(strcat('s',num2str(i)))(:,2) = std(data.trial{1,i},0,2);
end
 
Dscps.Global.Join(:,1) = mean(tsignal);
Dscps.Global.Join(:,2) = std(tsignal);
 
SampAvgs = zeros(channels,samples);
SampStds = zeros(channels,samples);
 
for i = 1:samples
    for j = 1:channels
        SampAvgs(:,i) = Dscps.Local.(strcat('s',num2str(i)))(:,1);
        SampStds(:,i) = Dscps.Local.(strcat('s',num2str(i)))(:,2);
    end
end
 
Dscps.Global.Chans(:,1) = mean(SampAvgs,2); % Mean of channels along samples
Dscps.Global.Chans(:,2) = mean(SampStds,2); % Average Stds of chans along samples
Dscps.Global.Chans(:,3) = std(SampAvgs,0,2); % Deviations of the mean along samples
Dscps.Global.Chans(:,4) = std(SampStds,0,2); % Deviations of Stds along samples
 
Dscps.Global.Samps(:,1) = mean(SampAvgs); % Mean of samples along channels
Dscps.Global.Samps(:,2) = mean(SampStds); % Average Stds of samples along channels
Dscps.Global.Samps(:,3) = std(SampAvgs); % Deviations of the mean along channels
Dscps.Global.Samps(:,4) = std(SampStds); % Deviations of Stds along channels
 
% Average differences in Std between conditions
DifStdCond = mean(Dscps.Global.Join(:,2) - Dscps.Global.Chans(:,2)); 
                               
% clean
close all;
 
for i = 1:samples
 plot(Dscps.Local.(strcat('s',num2str(i)))(:,2)); hold on;
end
 
ms = max(SampAvgs);
maxSamp = max(max(SampAvgs));
plot(ms,'o')
mins = min(SampAvgs);
hold on; 
plot(mins,'o')
meansSamp = mean(SampAvgs); plot(meansSamp,'o')
 
figure;
plot(max(SampAvgs),'o')



hold on; 
plot(median(SampAvgs),'o');
plot(min(SampAvgs),'o');
 
legend('Maximum means','Median means','Minimum means');
ylabel('Means');
xlabel('Samples');
 
figure;
plot(max(SampStds),'o')
hold on; 
plot(median(SampStds),'o');
plot(min(SampStds),'o');
legend('Maximum deviations','Median deviations','Minimum deviations');
 
boxplot(tsignal(:,128));
 
tsmeans = mean(tsignal);
tsdevs = std(tsignal);
 
plot(tsmeans,'o');
plot(tsdevs,'o');
 
SampAvgs = SampAvgs';
SampStds =SampStds'; 
close all
 
a = [min(min(SampAvgs)),mean(mean(SampAvgs)),max(max(SampAvgs))];
b = [min(mean(tsignal)),mean(mean(tsignal)),max(mean(tsignal))];
 
plot(a,'-o');hold on; plot(b,'-o');
legend('Samples','Join');
 
c = [min(min(SampStds)),mean(mean(SampStds)),max(max(SampStds))];
d = [min(std(tsignal)),mean(std(tsignal)),max(std(tsignal))];
 
plot(c,'-o');hold on; plot(d,'-o');
legend('Samples','Join');
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