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Abstract

We show the directional Hadamard differentiability of various functionals re-
lated to the supremum norm. Additionally, we provide simple expressions for the
derivatives in the space of càdlàg functions with the supremum norm (Skorohod
space). The interest of these results lies in the fact that the (functional) Delta
method can be used to give asymptotic results about the asociated statistics. As
an application, we improve the results in [Raghavachari, 1973] and solve an open
problem in [Jager and Wellner, 2004] about Berk-Jones type statistics.
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1 Summary

Let us suppose that we want to estimate the Kolmogorov distance between two random
variables X and Y

d(X, Y ) = ‖F −G‖∞,
where F and G are respectively the distribution functions of X and Y . Let us assume
that we are given a sample X1, . . . , Xn of X. So, we use the statistic

∆n =
√
n (‖Fn −G‖∞ − ‖F −G‖∞) , (1)

where Fn(x) = 1
n

∑n
k=1 1{Xk≤x} is the empirical distribution function associated to the

sample and 1A stands for the indicator function of the set A.

To express it in a different way, in (1) we are comparing the supremum distance from the
empirical distribution function Fn to G and the supremum distance from F to G. This
idea is behind the Kolmogorov-Smirnov test. In fact, when X =st Y (X and Y have the
same distribution, that is, P(X ≤ x) = P(Y ≤ x), for all x ∈ R) (2) becomes

∆n =
√
n ‖Fn − F‖∞ . (2)

In other words, (2) is the so called Kolmogorov-Smirnorv statistic. The limiting distribution
of (2) under the null hypothesis (H0 : F = G) was first derived by Kolmogorov:

∆n  sup
t∈R

(∣∣BF (t)

∣∣) ,
where we use the arrow ‘ ’ to denote the weak convergence of probability measures and
BF is a F -Brownian bridge (see Subsection 4.1). From the modern perspective of the
theory, it is only an application of the extended continuous mapping theorem (see Theorem
2.4).

On the contrary, if F 6= G, it means we are testing ‘how different’ X and Y are. Under
some regularity requirements (continuity of F and G), [Raghavachari, 1973] derived the
asymptotic distribution of (1). Hence, two questions arise: Can the regularity assumptions
be weakened? Can the results be extended to higher dimensions?

Additionally, it is known that Kolmogorov-Smirnov test does not provide satisfactory
results when the differences between F and G are concentrated on the tails of the
functions. Some alternative tests have been proposed in the literature (see for in-
stance [Berk and Jones, 1979]) and questions about the asymptotic behaviour appear
(see [Jager and Wellner, 2004]).

Our ambition was to answer all these questions. The seed of the theory we present consists
of separating the study of the functionals asociated to the statistics and the convergence of
the underlying processes (in the spirit of [Pollard, 1984]). The most important tool for our
purposes in this setting is the functional Delta method, which can be sucintly summarized
as analysis of weak limit of random elements (possibly in an infinite dimensional vector
space) via first order expansions.

The aim of the Section 2 is to discuss the (directional) differentiability of the supremum
norm and various related maps, viewed as real functionals from the space of bounded

4



functions defined on an arbitrary set or a measure space. We consider the supremum norm,
the supremum, and the total amplitude of a real function. As an application, we use an
extended version of the functional Delta method to derive the asymptotic distribution of
various statistics that can be expressed in terms of these maps. In this way, we provide
a simple and unified approach and the appropriate framework to deal with such type of
statistics.

Throughout this work, X is a nonempty set and `∞(X) is the real Banach space of bounded
functions f : X −→ R, equipped with the supremum norm

‖f‖∞ = sup
x∈X

(|f(x)|).

If additionally (X,A, µ) is a measure space, where A is a σ-field and µ a positive measure,
we denote by L∞(X,A, µ) the set of classes of equivalence of measurable and essentially
bounded functions f : X −→ R with the norm ‖f‖L∞(X,A,µ) = esssup

x∈X
(|f(x)|), where

esssup
x∈X

(f(x)) = sup({C ∈ R : µ({x ∈ X : f(x) ≤ C}) > 0}.

An important example of this general setting is the case in which X = Rd or Rd (d ≥ 1),
with R = [−∞,+∞] the extended real line. To avoid unnecessary repetitions, unless
specifically mentioned, from now on we will only consider the supremum without specifying
the posible underlying measure.

Let us assume {Qn} are random elements taking values in `∞(X), q ∈ `∞(X), and

rn (Qn − q) Q in `∞(X), (3)

where rn is a sequence of real numbers such that rn →∞ (usually rn =
√
n but it might be

different), and Q is a Borel random element in `∞(X) (see [van der Vaart and Wellner, 1996]).
Given ϕ : `∞(X) −→ R we are interested in the assymptotics of

Dn(ϕ) = Dϕ (q,Qn, rn) = rn (ϕ (Qn)− ϕ(q)) . (4)

In the following, we denote the functional defined by the supremum norm by δ, that is,

δ(f) = ‖f‖∞, for f ∈ `∞(X). (5)

In light of (4)-(5), a direct and intuitive approach to find the asymptotic distribution of
Dn(ϕ) could be analyzing the differentiability of δ in (5) and use the functional Delta
method. In fact, as it will become evident in this work, looking at the behaviour and
analytic properties of the underlying functional is much more enlightening than working
directly with the probability distribution of the statistic.

In addition to the map δ in (5), we will also consider

σ(f) = sup
x∈X

(f(x)) and α(f) = amp
x∈X

(f(x)), f ∈ `∞(X), (6)

where amp
x∈X

(f(x)) = sup
x∈X

(f(x))− inf
x∈X

(f(x)) is the total amplitude of the function f . Observe

that, from (4), when X = Rd and the target function q = F −G is the difference between
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two distribution functions, σ and α are associated with the (multidimensional) one-sided
Kolmogorov statistic and the so-called Kuiper statistic (see Subsection 4.1 for details).
The asymptotic behaviour of these two statistics in dimension 1 was also discussed in
[Raghavachari, 1973] (see also [DasGupta, 2008, Chapter 26]).

In Section 3 we deepen in the theory of differentiability focusing in the Skorohod space.
The results about the derivative of the cited functionals in this space provides the nec-
essary machinery to improve in Section 4 the results of [Raghavachari, 1973]. Finally, in
Subsection 4.2 we answer an open question asked in [Jager and Wellner, 2004].
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2 Directional differentiability and the Delta method

In this section we introduce the definitions of directional differentiability of maps between
Banach spaces, recall an extended version of the Delta method for these mappings, and
discuss the analytic properties of the functionals introduced in Section 1.

In many situations it is common to face the problem of estimating a transformation, ϕ(θ),
of a (possibly infinite-dimensional) parameter θ. Typically, θ is unknown but can be
estimated by means of Tn and ϕ is a map defined in certain metric space. If ϕ is smooth
enough in a local neighborhood of θ –for instance, differentiable at θ in a precise sense–
the asymptotic distribution of (the normalized version) of ϕ (Tn) can be determined by
expanding ϕ around θ (von Mises calculus, see [van der Vaart, 1998, Chapter 20]) and
using an invariance principle for Tn in the underlying metric space. Of course, this is the key
idea behind the (functional) Delta method, one of the most frequently used methodologies
in statistics to compute the limiting distribution of an estimator of a quantity of interest
[van der Vaart and Wellner, 1996, Section 3.9]. This technique is specially fruitful when
dealing with the popular plug-in estimators, which, by construction, are functions of the
empirical distribution function of the observed sample. In such cases, the powerful theory
of weak convergence of empirical processes provides the suitable mathematical machinery
to determine the asymptotic behaviour of this kind of estimators ([Giné and Nickl, 2016]).

As a reminder we are going to review the basics of weak convergence. Let (D, d) be a
metric space, BD the Borel σ-field, {Pn} and P be Borel probability measures on D, and
Cb(D) denotes the set of all bounded continuous functions on D. The classical definition of
weak convergence is: the sequence {Pn} converges weakly to P, Pn  P, if for all f ∈ Cb(D)

�
D
f(ω) dPn(ω)→

�
D
f(ω) dP(ω). (7)

Given {(Ωn,An,Pn)} and (Ω,A,P) probability spaces and measurable mappings {Xn}
and X, Xn : Ωn −→ D, and X : Ω −→ D with respect to the Borel σ-field BD. We say
that the sequence {Xn} converges weakly to X, written Xn  X, if PXn  PX , we mean,
the sequence of measures induced by {Xn} converge weakly to the measure induced by X.
Classical theory about this mode of convergence includes results such that Portmanteau
theorem, continuous mapping theorem and, Prohorov’s theorem, tools for establishing
tightness and weak convergence results for product spaces.

However, the clasical theory requires {Pn} to be Borel measure for each n. The empirical
process does not even satisfies this condition (see [Billingsley, 1999, Chapter 15, 156-158]
or [van der Vaart and Wellner, 1996, Problem 1.7.3]). The key idea to solve this problem,
due to Hoffman and Jørgensen, is to drop the requirement of Borel measurability of each
Xn upholding the requirement (7), where the integrals of the left-hand side are now outer
expectations with respect to PX , provided X is still Borel measurable.

Definition 2.1. Let (Ω,A,P) be an arbitrary probability space and T : Ω −→ R an
arbitrary map. The outer integral of T with respecto to P is defined as

E∗(T ) = inf
({

E(U) : U ≥ T, U : Ω −→ R measurable, E(U) exists
})
.
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Here E(U) is understood to exists if E (U+) or E (U−) is finite, where
U+(ω) = max({U(ω), 0}) and U−(ω) = max({−U(ω), 0}).

The outer probability of an arbitrary B ⊆ Ω is

P∗(B) = inf({P(A) : A ⊇ B and A ∈ A}) = E∗ (1B) .

Note that the functions U in the definition of outer integral are allowed to take the value
∞, so that the set where we take the infimum is never empty.

Definition 2.2. Let {(Ωn,An,Pn)} be a sequence of probability spaces and Xn : Ωn −→ D
arbitrary maps. The sequence {Xn} converges weakly to a Borel measure L if for all
f ∈ Cb(D)

E∗ (f (Xn)) −→
�
D
f(ω) dL(ω).

This is denoted by Xn  L. If X has a law L we also say that {Xn} converges weakly to
X and write Xn  X.

The names convergence in law and convergence in distribution are used too.

Remark 2.3. If {Xn} if a sequence of Borel measurable maps, then this definition is
equivalent to the classical one because de outer expectation coincides with the (usual)
expectation.

Most of the classical results can be stated and extended in this framework (see
[van der Vaart and Wellner, 1996, Part 1]). One of the most important theorems for our
purposes is the so called extended continuous mapping theorem.

Teorema 2.4. Let (D, dD) and (E , dE) be metric spaces and let {Dn} ⊆ P(D), gn : Dn −→
E satisfy

asymptotic equicontinuity condition: if xn → x with xn ∈ Dn for every n and x ∈ D0 then
gn (xn)→ g(x) where D0 ⊆ D and g : D0 −→ E.

Let Xn be maps with values in Dn, let X be Borel measurable, separable and take values in
D0. Then Xn  X implies that gn (Xn) g(X).

Additionally, the extended continuous mapping theorem is one of the necessary ingredi-
ents to deduce the functional delta method. The other one is an appropiate notion of
differentiability.

Definition 2.5. Let (D, ‖ · ‖D) and (E , ‖ · ‖E) be Banach spaces. A map ϕ : D −→ E is
said to be Gâteaux directionally differentiable at θ ∈ D tangentially to a set D0 ⊂ D if
there exists a map ϕ′θ : D0 −→ E such that for all h ∈ D0 and all sequences {tn} ⊂ R such
that tn ↘ 0. ∥∥∥∥ϕ (θ + tn h)− ϕ(θ)

tn
− ϕ′θ(h)

∥∥∥∥
E
→ 0. (8)
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Gâteaux differentiability is too weak for the Delta method to hold. To solve this problem,
the directions along which we approach to ϕ(θ) in (8) have to be allowed to change with
n. This naturally leads to the concept of Hadamard directional differentiability. We follow
[Shapiro, 1990] for the next definition.

Definition 2.6. In the context of the previous definition, we say that ϕ : D −→ E is
Hadamard directionally differentiable at θ ∈ D tangentially to a set D0 ⊂ D if there exists
a map ϕ′θ : D0 −→ E such that for all h ∈ D0 and all sequences {hn} ⊂ D, {tn} ⊂ R such
that tn ↘ 0 and ‖hn − h‖D → 0∥∥∥∥ϕ (θ + tn hn)− ϕ(θ)

tn
− ϕ′θ(h)

∥∥∥∥
E
→ 0. (9)

Now we will give some example to get more familiar with this new notion of differentiability
provided in [Fang and Santos, 2015].

Example (Absolute value of mean). Let X be a real random variable and suppose we want
to estimate de parameter

ϕ (θ0) = |E(X)|.
Here θ0 = E(X), D = E = R and, ϕ : R −→ R is defined by for all θ ∈ R ϕ(θ) = |θ|.
The Hadamard directional derivative ϕ′θ : R −→ R equals

ϕ′θ(h) =


h if θ > 0
|h| if θ = 0
−h if θ < 0

.

Note that ϕ is actually (fully) Hadamard differentiable everywhere except at θ = 0 but
that it is still Hadamard directionally differentiable at that point.

Example (Intersection bounds). Let X =
(
X(1), X(2)

)
be a bivariate real random vector

and consider the problem of estimating the parameter

ϕ (θ0) = max
{
E
(
X(1)

)
,E
(
X(2)

)}
.

In this context, θ0 =
(
E
(
X(1)

)
,E
(
X(2)

))
, D = R2, E = R, and ϕ : R2 −→ R is given

by ϕ(θ) = max
{
θ(1), θ(2)

}
for θ =

(
θ(1), θ(2)

)
∈ R2. Let j∗ = argmax

j∈{1,2}

(
θ(j)
)
. For any

h =
(
h(1), h(2)

)
∈ R2 it is straightforward to verify that ϕ′θ : R2 −→ R is given by

ϕ′θ(h) =

{
h(j∗) if θ(1) 6= θ(2)

max
({
h(1), h(2)

})
if θ(1) = θ(2) .

As in the previous example, ϕ′θ is nonlinear precisely when Hadamard differentiability is
not satisfied.

Example (Conditional moment inequalities). Let X = (Y, Z) with Y ∈ R and Z ∈ Rd

with d ∈ N \ {0}. Fo a suitable set of functions F ⊆ `∞
(
Rd
)

we are going to test wether
E(Y |Z) ≤ 0 almost surely by estimating the parameter

ϕ (θ0) = sup
f∈F

(E(Y f(Z))),
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where θ0 ∈ `∞(F) satisfies θ0(f) = E(Y f(Z)) for all f ∈ F , D = `∞(F), E = R, and the
map ϕ : D −→ E is given by ϕ(θ) = sup

f∈F
(θ(f)). This example is infinite dimensional so

we are going to derive tangentially to C(F) ( `∞(F), the space of continuous functions
over F . Additionally suppose E (Y 2) < ∞ and that F is compact when endowed with

the metric: ‖f‖L2(Z) = (E (f(Z)2))
1/2 for f ∈ F . Then θ0 ∈ C(F) and ϕ is Hadamard

directionally differentiable at any θ ∈ C(F) tangentially to C(F). In particular, for
ΨF(θ) = argmax

f∈F
(θ(f)) the directional derivative is

ϕ′θ(h) = sup
f∈ΨF (θ)

(h(f)).

Obviously, Hadamard directional differentiability implies the Gâteaux one. The only
difference between the directional and the usual differentiability is that the derivative ϕ′θ
is no longer required to be linear in definitions 2.5 and 2.6. Nevertheless, if equation (9) is
satisfied, then ϕ′θ is continuous and homogeneous of degree 1 [Shapiro, 1990, Proposition
3.1]. The important fact about Hadamard directional differentiability is that it allows the
application of what we call the extended (functional) Delta method.

Proposition 2.7. Let (D, ‖ · ‖D) and (E , ‖ · ‖E) be Banach spaces. spaces and ϕ : Dϕ ⊂
D −→ E, where Dϕ is the domain of ϕ. Assume that ϕ is Hadamard directionally
differentiable at θ ∈ Dϕ tangentially to a set D0 ⊂ D. Let Tn : Ωn −→ Dϕ be maps such
that rn (Tn − θ)  T , for some sequence of numbers rn → ∞ and a random element T
that takes values in D0. Then, rn (ϕ (Tn)− ϕ(θ))  ϕ′θ(T ). If additionally ϕ′θ can be
continuously extended to D, then we have that rn (ϕ (Tn)− ϕ(θ)) = ϕ′θ (rn (Tn − θ))+oP(1).

Remark 2.8. The detailed proof of this result can be found in [Shapiro, 1991, Theorem
2.1] (see also [Römisch, 2006, Theorem 1] or [Fang and Santos, 2015, Theorem 2.1]), but
it is essentially the same one as for the traditional Delta method in [van der Vaart, 1998,
Theorem 20.8]. The key idea is to apply Theorem 2.4 to the sequence of functionals defined
by ϕn(h) = rn (ϕ (θ + r−1

n h)− ϕ(θ)), n ∈ N because the linearity of the derivative is not
used in the proof.

Remark 2.9. The maps δ, σ, α : `∞(X) −→ R defined in (5) and (6) are Hadamard
directionally differentiable at f ∈ `∞(X) if and only if they are Gâteaux directionally
differentiable at f . This follows from the fact that for ϕ ∈ {δ, σ, α}, we have that∣∣∣∣ϕ (f + tn hn)− ϕ(f)

tn
− ϕ′f (h)

∣∣∣∣ ≤ ∣∣ϕ (f/tn + hn
)
− ϕ

(
f/tn + h

)∣∣
+

∣∣∣∣ϕ (f + tn h)− ϕ(f)

tn
− ϕ′f (h)

∣∣∣∣
and

∣∣ϕ (f/tn + hn
)
− ϕ

(
f/tn + h

)∣∣ ≤ ‖hn − h‖∞ for ϕ ∈ {δ, σ} while∣∣α (f/tn + hn
)
− α

(
f/tn + h

)∣∣ ≤ 2 ‖hn − h‖∞.

In the next theorem we show that the maps introduced in Section 1 are directionally
differentiable at every function of `∞(X). In the sequel sgn(·) denotes the sign function.
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Teorema 2.10. For any f ∈ `∞(X)\{0}, the maps δ, σ and α in (5) and (6) are Hadamard
directionally differentiable at f . For g ∈ `∞(X), their derivatives are respectively given by

δ′f (g) = lim
ε↘0

(
sup

x∈Aε(|f |)
(g(x) sgn(f(x)))

)
, σ′f (g) = lim

ε↘0

(
sup

x∈Aε(f)

(g(x))

)
, (10)

and

α′f (g) = lim
ε↘0

(
sup

x∈Aε(f)

(g(x))− inf
x∈Bε(f)

(g(x))

)
, (11)

where, for ε > 0 and h ∈ `∞(X), Aε(h) and Bε(h) are the superlevel and sublevel sets of h
defined by

Aε(h) =

{
x ∈ X : h(x) ≥ sup

y∈X
(h(y))− ε

}
Bε(h) =

{
x ∈ X : h(x) ≤ inf

y∈X
(h(y)) + ε

}
.

Moreover, if (X,A, µ) is a measure space, the result still holds if we substitute the suprema
(respectively infima) by essential suprema (respectively infima) with respect to µ.

Proof. We first start with σ as the conclusion for the rest of the maps can be derived from
this case easily. Let us fix f ∈ `∞(X) \ {0}. For n ∈ N and each sequence of real numbers
{sn} such that sn ↗∞, we consider σn(f) : `∞(X) −→ R defined by

σn(f, g) = sup
y∈X

(sn f(y) + g(y))− sn sup
y∈X

(f(y)), g ∈ `∞(X).

From remarks 2.8 and 2.9, it suffices to show that σn(f, g)→ σ′f (g), as n→∞, with σ′f (g)
defined in (10). For ε > 0 and x /∈ Aε(f), we have that

sn f(x) + g(x)− sn sup
y∈X

(f(y)) ≤ sup
y∈X

(g(y))− sn ε.

Hence, for all ε > 0, we obtain that

limsup
n→∞

σn(f, g) = limsup
n→∞

(
sup

y∈Aε(f)

(sn f(y) + g(y))− sn sup
y∈X

(f(y))

)
≤ sup

y∈Aε(f)

(g(y)).

(12)

Conversely, let us define
h(ε) = sup

y∈Aε(f)

(g(y)), ε > 0. (13)

Observe that h is non-decreasing and thus the limit as ε decreases to 0 exists and, by
definition, coincides with σ′f (g). For each m ∈ N, there exists xm ∈ A1/m(f) satisfying

g (xm) ≥ h
(

1/m
)
−1 /m and f (xm) ≥ sup

y∈X
(f(y))−1 /m. (14)

11



From (14), for each sn, we have that

h
(

1/m
)
≤ g (xm) +1 /m

= sn f (xm) + g (xm)− sn f (xm) +1 /m

≤ σn(f, g) +(sn+1) /m.

(15)

Now (15) implies that, for all n ∈ N,

lim
ε↘0

(
sup

y∈Aε(f)

(g(y))

)
= lim

m→∞
h
(

1/m
)
≤ σn(f, g). (16)

The proof corresponding to σ follows from (12) and (16).

Now, we consider the map δ in (5). Assume that f ∈ `∞(X) with ‖f‖∞ > 0.

For g ∈ `∞(X), we have to show that δn(f, g) → δ′f(g), as n → ∞, where δn(f, g) =

‖sn f + g‖∞ − sn ‖f‖∞ and sn ↗ ∞. First, for ε <‖f‖∞ /2 and sn >
2 ‖g‖∞ /‖f‖∞ , it is

readily checked that sn |f |+ sgn(f) g ≥ 0 globally on Aε(|f |). We hence conclude that

lim
n→∞

δn(f, g) = lim
n→∞

σn(|f |, g sgn(f)) = σ′|f |(g sgn(f)) = δ′f (g).

The proof for α follows from the duality between the supremum and infimum. Finally,
the case in which X is a measure space can be treated in a similar way so it is therefore
omitted.

If X is a compact metric space, the derivatives in (10) and (11) can be characterized by
means of convergent sequences in X as the following corollary shows.

Corollary 2.11. In the context of Theorem 2.10, let us further assume that X is a compact
metric space. The derivatives in (10)–(11) can be expressed as

δ′f (g) = sup
y∈A0(|f |)

(
(g sgn(f))N|f |(y)

)
,

σ′f (g) = sup
y∈A0(f)

(
gNf (y)

)
,

α′f (g) = sup
y∈A0(f)

(
gNf (y)

)
− sup

y∈B0(f)

(
gHf (y)

)
,

(17)

where for h, l ∈ `∞(X)

A0(h) = {x ∈ X : there exists {xn} ⊂ X with xn → x and

h (xn)→ sup
y∈X

(h(y))

}
,

B0(h) = {x ∈ X : there exists {xn} ⊂ X with xn → x and

h (xn)→ inf
y∈X

(h(y))

}
,

(18)
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and

hNl (x) = sup

({
limsup
n→∞

h (xn) : xn → x and l (xn)→ sup
y∈X

(l(y))

})
, x ∈ A0(l),

hHl (x) = inf

({
liminf
n→∞

h (xn) : xn → x and l (xn)→ inf
y∈X

(l(y))

})
, x ∈ B0(l).

(19)

Proof. We only give a detailed proof for σ because the rest of the cases are analogous. We
consider the sequence {xm} satisfying (14) obtained in the proof of Theorem 2.10. As X is
compact, we can extract a convergent subsequence xmk

→ x in X, as k →∞. From (14),
we have that x ∈ A0(f) and, recalling (13), from Theorem 2.10, we obtain that

σ′f (g) = lim
k→∞

h
(

1/mk

)
≤ limsup

k→∞
g (xmk

) ≤ gNf (x) ≤ sup
y∈A0(f)

(
gNf (y)

)
. (20)

In the other direction, let x ∈ A0(f) and {xn} ⊂ X such that xn → x and
f (xn) → sup

y∈X
(f(y)). For each ε > 0, we have that xn ∈ Aε(f), for n large enough. We

therefore conclude that

limsup
n→∞

(g (xn)) ≤ sup
y∈Aε(f)

(g(y)), for all ε > 0. (21)

The conclusion follows from (20), (21) and Theorem 2.10.

In the following, if X is a metric space we denote by C(X) the subset of `∞(X) constituted
by continuous functions. We observe that if g ∈ C(X), then gNf (x) = g(x) (x ∈ A0(f)) and
gHf (x) = g(x) (x ∈ B0(f)), where gNf and gHf are defined as in (19). This observation yields
the following corollary.

Corollary 2.12. Let X be a compact metric space. For any f ∈ `∞(X), the maps δ, σ
and α in (5) and (6) are Hadamard directionally differentiable at f tangentially to the set
C(X) with derivatives, for g ∈ C(X),

δ′f (g) = sup
y∈A0(|f |)

(g(y) sgn(f(y))),

σ′f (g) = sup
y∈A0(f)

(g(y)),

α′f (g) = sup
y∈A0(f)

(g(y))− inf
y∈B0(f)

(g(y)),

where A0(·) and B0(·) are defined in (18).

Another interesting question is to find conditions under which the derivatives of the maps
are linear, i.e., the cases in which the mappings are fully Hadamard differentiable (see
[Fang and Santos, 2015, Proposition 2.1]). This kind of results can be traced back to
[Banach, 1932] (see also [Leonard and Taylor, 1983], [Leonard and Taylor, 1985], and the
references therein). In these works the supremum norm differentiability was investigated
from the point of view of functional analysis within the space C(X), with X a compact
metric space. The following result, a direct consequence of Corollary 2.12, provides similar
outcomes by using a different approach. We denote by card(A) the cardinal of the set A.
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Corollary 2.13. Assume that X is a compact metric space and let f ∈ `∞(X) \ {0}. Let
A0(·) and B0(·) be the sets in (18). We have that:

(a) The map δ in (5) is (fully) Hadamard differentiable at f tangentially to the set C(X)
if and only if card (A0(|f |)) = 1. In such a case, δ′f(g) = g (x∗) sgn (f (x∗)), where
A0(|f |) = {x∗}.

(b) The map σ in (6) is (fully) Hadamard differentiable at f tangentially to the set C(X)
if and only if card (A0(f)) = 1. In such case, σ′f (g) = g (x+), where A0(f) = {x+}.

(c) The map α in (6) is (fully) Hadamard differentiable at f tangentially to the set C(X)
if and only if card (A0(f)) = card (B0(f)) = 1. In such case, α′f (g) = g (x+)−g (x−),
where A0(f) = {x+} and B0(f) = {x−}.

When f ∈ C(X), the condition card (A0(|f |)) = 1 means that f is a peaking function, that
is, there exists x∗ ∈ X such that |f (x∗)| = ‖f‖∞ and |f (x∗)| > |f(x)|, for all x ∈ X with
x 6= x∗.

From a statistical point of view, identifying the cases in which the maps are Hadamard
differentiable is important too. It is a sufficient condition for the asymptotic normality
provided the limit in (3) is Gaussian.
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3 The Skorohod space D
(
Rd
)

Many important stochastic processes take values in the 1-dimensional Skorohod space,
D
(
R
)
, consisting of all the càdlàg functions, that is, right-continuous functions hav-

ing limit from the left at every point. This space provides a natural and convenient
setting to analyze the behaviour of processes with unidimensional time parameter and
jumps in their paths such as Poisson processes, Lévy processes, empirical processes, and
many others. The d-dimensional Skorohod space, introduced in [Neuhaus, 1971] (see
also [Bickel and Wichura, 1971]) and more recently considered in [Seijo and Sen, 2011]),
is usually defined in compact rectangles of Rd. Starting from the definition of the Skorohod
space on [0, 1]d in [Neuhaus, 1971], in this section we extend this space to functions defined
in Rd. We also provide alternative expressions for the directional derivatives in (17) when
the involved functions belong to the d-dimensional Skorohod space.

First, for v ∈ {−1, 1} and x ∈ R, let

Iv(x) =

{
[−∞, x[, if v = −1, x ∈ R,
]x,∞], if v = 1, x ∈ R,

and

Ĩv(x) =


[−∞, x[, if v = −1, x <∞,
R, if v = −1, x =∞,
∅ if v = 1, x =∞,
[x,∞], if v = 1, x <∞.

We consider V = {−1, 1}d, the set of 2d vertices of [−1, 1]d. For v = (v1, . . . , vd) ∈ V and
x = (x1, . . . , xd) ∈ Rd, we define the v-quadrants of x by

Qv(x) = Iv1 (x1)× . . .× Ivd (xd) and Q̃v(x) = Ĩv1 (x1)× . . .× Ĩvd (xd) .

Observe that Qv(x) ⊂ Q̃v(x), Q̃v(x) ∩ Q̃v′(x) = ∅ whenever v, v′ ∈ V with v 6= v′, and⋃
v∈V Q̃v(x) = Rd, for all x ∈ Rd. Additionally, for each x ∈ Rd, there exists a unique

vx ∈ V such that x ∈ Q̃vx(x). For instance, if x ∈ Rd, we have that vx = 1, where

1 ≡ (1, d). . ., 1). When d = 2 the situation can be summarized in the following figures:
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R

x

(0, 0)

Q(1,1)(x)Q(−1,1)(x)

Q(−1,−1)(x) Q(1,−1)(x)

R

R

x

(0, 0)

Q̃(1,1)(x)Q̃(−1,1)(x)

Q̃(−1,−1)(x) Q̃(1,−1)(x)

R

R

x

(0, 0)

Q(−1,1)(x)

Q(−1,−1)(x)

R

R

x

(0, 0)

Q̃(−1,1)(x)

Q̃(−1,−1)(x)

R

R

x

(0, 0)

Q(−1,−1)(x)

R

R

x

(0, 0)

Q̃(−1,−1)(x)

With the previous concepts we can define the quadrant limits. Let us consider a function
f : Rd −→ R, v ∈ V and x ∈ Rd. We say that l ∈ R is the v-limit of f at x if Qv(x) 6= ∅
and for every sequence {xn} ⊂ Qv(x) such that xn → x, we have that f (xn) → l. In
such case, we denote l ≡ fv(x). Additionally, it is said that f is continuous from above at
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x ∈ Rd if fvx(x) exists and fvx(x) = f(x). We say that f is continuous from above if it is
continuous from above at every x ∈ Rd.

Definition 3.1. The Skorohod space on Rd, denoted by D
(
Rd
)
, is the collection of all

continuous from above real functions f defined in Rd for which the v-limit of f exists for
every v ∈ V and x ∈ Rd such that Qv(x) 6= ∅.

When d = 1, D
(
R
)

is usual Skorohod space on R. The properties of the multidimensional
Skorohod space in [0, 1]d shown in [Neuhaus, 1971] can be extended with no difficulty to
D
(
Rd
)
. For instance, the elements in D

(
Rd
)

belong to D
(
R
)

in each coordinate, have
at most countably many discontinuities and all of them are finite jump discontinuities.
The fact that D

(
Rd
)
⊂ `∞

(
Rd
)

follows from [Neuhaus, 1971, Corollary 1.6] by noting that

functions in D
(
Rd
)

have finite quadrant limits at infinity points.

Remark 3.2. We observe that if f ∈ D
(
Rd
)

and {xn} ⊂ Q̃v(x) such that xn → x, then
f (xn)→ fv(x). This follows from the fact that

Q̃v(x) =
{

y ∈ Rd : y ∈ Qvy(y) ∩Qv(x)
}
,

where A denotes the closure of the set A in the usual topology of Rd. In other words, the
functions in D

(
Rd
)

have quadrant limits in Q̃v(x).

We are now in position to see how the derivatives in (17) look like when X = Rd and the
functions on which they act belong to D

(
Rd
)
.

Corollary 3.3. For any f ∈ D
(
Rd
)
\ {0}, the maps δ, σ and α in (5) and (6) are

Hadamard directionally differentiable at f tangentially to D
(
Rd
)
. For g ∈ D

(
Rd
)
, their

derivatives are given by

δ′f (g) = max
v∈V

(
sup

y∈M+
v (|f |)

((g sgn(f))v(y))

)
, σ′f (g) = max

v∈V

(
sup

y∈M+
v (f)

(gv(y))

)
,

and

α′f (g) = max
v∈V

(
sup

y∈M+
v (f)

(gv(y))

)
−min

v∈V

(
inf

y∈M−v (f)
(gv(y))

)
,

where for h ∈ D
(
Rd
)
,

M+
v (h) =

{
x ∈ Rd : Qv(x) 6= ∅ and hv(x) = sup

y∈Rd

(h(y))

}
,

M−
v (h) =

{
x ∈ Rd : Qv(x) 6= ∅ and hv(x) = inf

y∈Rd
(h(y))

}
.

(22)

Proof. This corollary can be proved as Corollary 2.11 by taking into account Remark 3.2
and the following fact: As the number of non-empty quadrants of each point in Rd is finite,
each sequence converging to a point x ∈ Rd has a subsequence contained in Q̃v(x), for
some v ∈ V. In particular, for every h ∈ D

(
Rd
)
, it holds that A0(h) =

⋃
v∈VM

+
v (h) and

B0(h) =
⋃

v∈VM
−
v (h), where A0(h) and B0(h) are defined in (18).
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The sets M+
v (h) (respectively, M−

v (h)) in (22) might coincide for different v ∈ V. For
instance, when f is continuous, M+

v (|f |) = M+(|f |), M+
v (f) = M+(f), and M−

v (f) =
M−(f), for all v ∈ V , where for h ∈ `∞

(
Rd
)
,

M+(h) =

{
x ∈ Rd : h(x) = sup

y∈Rd

(h(y))

}
,

M−(h) =

{
x ∈ Rd : h(x) = inf

y∈Rd
(h(y))

}
.

(23)

Observe that M+(|f |) (respectively, M+(f) and M−(f)) is the set of extremal points
corresponding to the sup-norm (respectively, the supremum and infimum) of f .

We emphasize that gv ≡ g, for all v ∈ V , whenever g ∈ C
(
Rd
)
. The following corollary is

important for applications because many stochastic processes that commonly appear as
weak limits of other processes have continuous paths a.s.

Corollary 3.4. For any f ∈ D
(
Rd
)
\ {0}, the maps δ, σ and α in (5) and (6) are

Hadamard directionally differentiable at f tangentially to C
(
Rd
)
. For g ∈ C

(
Rd
)
, their

derivatives are given by

δ′f (g) = max
v∈V

(
sup

y∈M+
v (|f |)

(g(y) sgn(f)v(y))

)
, σ′f (g) = max

v∈V

(
sup

y∈M+
v (f)

(g(y))

)
, (24)

and

α′f (g) = max
v∈V

(
sup

y∈M+
v (f)

(g(y))

)
−min

v∈V

(
inf

y∈M−v (f)
(g(y))

)
, (25)

with M+
v (·) and M−

v (·) defined in (22). If additionally f ∈ C
(
Rd
)
, we have that

δ′f (g) = sup
y∈M+(|f |)

(g(y) sgn(f(y))),

σ′f (g) = sup
y∈M+(f)

(g(y)),

α′f (g) = sup
y∈M+(f)

(g(y))− inf
y∈M−(f)

(g(y)),

(26)

where M+(·) and M−(·) are defined in (23).
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4 Applications

In a wide variety of situations Theorem 2.10 and its subsequent corollaries, joint with
the extended Delta method in Proposition 2.7, provide the right framework to obtain
a number of significant examples in which the asymptotic distribution of a statistic of
interest can be determined with ease. The combination of these results is summarized in
the following theorem.

Teorema 4.1. Let q ∈ `∞(X) and assume that there exists Qn taking values in `∞(X) a.s.
such that rn (Qn − q) Q, for a sequence of real numbers satisfying that rn →∞ and a
random element Q in `∞(X). Then, for ϕ ∈ {δ, σ, α} (in (5) and (6)), we have that

rn (ϕ (Qn)− ϕ(q)) ϕ′q(Q), (27)

where the derivatives ϕ′q are given in (10)-(11). Moreover, we have that rn (ϕ (Qn)− ϕ(q)) =
ϕ′q (rn (Qn − q)) + oP(1).

This theorem is still valid for the maps σ and α when q = 0 as σ′0(g) = sup
y∈X

(g(y)) and

α′0(g) = amp
y∈X

(g(y)) are continuous maps. Further, for those q ∈ `∞(X) such that ϕ′q is

linear, i.e., ϕ is fully Hadamard differentiable at q (see Corollary 2.13), and when Q is
Gaussian, we have that ϕ′q(Q) is normally distributed.

In what follows we will apply the previous general result in two different contexts to obtain
the asymptotic distribution of several statistics.

4.1 Distribution functions

Let X and Y be two non-degenerate random vectors taking values on Rd (d ≥ 1) with
joint cumulative distribution functions F (x) = P(X ≤ x) and G(x) = P(Y ≤ x), x ∈ Rd,
where ‘≤’ stands for the coordinatewise order in Rd, that is, given x = (x1, . . . , xd) ,y =
(y1, . . . , yd) ∈ Rd we say x ≤ y if and only if for every i ∈ {1, . . . , d} xi ≤ yi. The
goal in this section is to estimate φ(F −G), where φ ∈ {δ, σ, α} is any of the functionals
introduced in Section 1.

One-sample case: In this situation we have at our disposal a random sample X1, . . . ,Xn

from X. We estimate F −G with Fn −G, where Fn is the empirical distribution function
of the observed sample, that is,

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ Rd,

and 1A stands for the indicator function of the set A.
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The problem consists in finding the behaviour, as n→∞, of

Dn(δ) =
√
n (‖Fn −G‖∞ − ‖F −G‖∞) ,

Dn(σ) =
√
n

(
sup
y∈Rd

(Fn(y)−G(y))− sup
y∈Rd

(F (y)−G(y))

)

Dn(α) =
√
n

(
amp
y∈Rd

(Fn(y)−G(y))− amp
y∈Rd

(F (y)−G(y))

)
.

(28)

When F 6= G, the asymptotic distribution of the statistics in (28) can be viewed as
the limit under the alternative hypothesis of the corresponding two-sided and one-sided
Kolmogorov-Smirnov test statistics and Kuiper statistic, respectively.

In this example, for ϕ ∈ {δ, σ, α}, the statistics in (28) are Dn(ϕ) = Dϕ (q,Qn, rn) in (4)
with q = F − G, Qn = Fn − G, and rn =

√
n. The underlying normalized process, i.e.,

rn (Qn − q), is nothing but the multivariate empirical process (indexed by points),

En,F (x) =
√
n (Fn(x)− F (x)) , n ∈ N, x ∈ Rd. (29)

When there is no confusion with respect to the underlying distribution, we simply use the
notation En for the empirical process in (29). As the collection of all indicator functions
of lower (hyper)rectangles of Rd,

{
1]−∞,x1]×...×]−∞,xd] : (x1, . . . , xd) ∈ Rd

}
, is Donsker (see

[van der Vaart and Wellner, 1996, Example 2.1.3, p.82]), the empirical process converges
in law in `∞

(
Rd
)
. The weak limit of En, denoted in the following by BF , is a F -Brownian

bridge, that is, a centered Gaussian process with covariance function E (BF (x)BF (y)) =
F (x ∧ y) − F (x)F (y). (Here x ∧ y ≡ (x1 ∧ y1, . . . , xd ∧ yd) if x = (x1, . . . , xd) and
y = (y1, . . . , yd).) If d = 1, the assertion “En  BF in `∞

(
R
)
” is nothing but the

celebrated Donsker’s theorem (Kolmogorov-Doob-Donsker-Dudley central limit theorem).
In such a case, BF = B ◦ F , where B is a standard Brownian bridge on [0, 1]. When
d ≥ 2, BF is also called a tied-down or pinned Brownian sheet based on the measure with
distribution function F .

In this particular case we have that F − G ∈ D
(
Rd
)
, En ∈ D

(
Rd
)

a.s., En  BF in

`∞
(
Rd
)
, and BF ∈ C

(
Rd
)

a.s. Therefore, as a direct consequence of Theorem 4.1 and
Corollary 3.4 we obtain the following result.

Proposition 4.2. Assume that F 6= G and let BF be an F -Brownian bridge. For
ϕ ∈ {δ, σ, α}, we consider the statistics Dn(ϕ) defined in (28). We have that Dn(ϕ)  
ϕ′F−G (BF ), where the derivatives ϕ′F−G are given as in (24)–(25).

When d = 1, Proposition 4.2 improves [Raghavachari, 1973, Theorems 1, 2 and 3] as here
F and G are not assumed to be continuous. We also remark has been obtained with no
additional effort. If F −G is continuous, the limiting distributions in Proposition 4.2 have
simpler expressions. The following corollary provides a multidimensional extension of the
results in [Raghavachari, 1973].
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Corollary 4.3. In the conditions of Proposition 4.2, let us further assume that F −G ∈
C
(
Rd
)
. We have that:

Dn(δ) sup
y∈M+(|F−G|)

(BF (y) sgn(F (y)−G(y))) , Dn(σ) sup
y∈M+(F−G)

(BF (y)) ,

Dn(α) sup
y∈M+(F−G)

(BF (y))− inf
y∈M−(F−G)

(BF (y)) ,

where the sets M+(·) and M−(·) are defined in (23).

Remark 4.4. In the setting of the previous corollary, when M+(|F −G|) (respectively,
M+(F − G), and M−(F − G)) contains only one point, the mapping δ (respectively, σ
and α) is fully Hadamard differentiable at F −G (see Corollary 2.13). In particular, the
asymptotic distribution of Dn(δ) (respectively, Dn(σ) and Dn(α)) is a zero mean Gaussian
distribution. The asymptotic variance can be directly computed from the covariances of
BF .

Two-sample case: Here, two (mutually independent) random samples are available, one
of size n from F and another one of size m from G. Let Fn and Gm be the empirical
distribution functions of the two samples, respectively, and set N = nm

n+m
. The two-sided

and one-sided Kolmogorov-Smirnov and Kuiper statistics in the two sample case are given
by

Dn,m(δ) =
√
N (‖Fn −Gm‖∞ − ‖F −G‖∞) ,

Dn,m(σ) =
√
N

(
sup
y∈Rd

(Fn(y)−Gm(y))− sup
y∈Rd

(F (y)−G(y))

)

Dn,m(α) =
√
N

(
amp
y∈Rd

(Fn(y)−Gm(y))− amp
y∈Rd

(F (y)−G(y))

)
.

(30)

In the general setting specified in (4), this situation corresponds to the case q = F −G,
Qn,m = Fn −Gm and rn,m =

√
N . Hence, we have that

rn,m (Qn,m − q) =

√
m

n+m
En,F −

√
n

n+m
Ẽm,G

with En,F and Ẽm,G independent empirical processes. We further observe that if the
sampling scheme is balanced, that is, n/(n+m) → λ, with 0 < λ < 1 as n,m → ∞, then

rn,m (Qn,m − q) 
√

1− λBF −
√
λ B̃G in `∞

(
Rd
)
, where BF and B̃G are two independent

Brownian bridges associated with F and G, respectively. Hence, Theorem 4.1 and Corollary
3.4 directly imply the following result which improves and generalizes [Raghavachari, 1973,
Theorems 4 and 5].

Proposition 4.5. Let us consider a sampling scheme such that as n, m→∞, n/(n+m) →
λ, with 0 < λ < 1 and let BF and B̃G be two independent Brownian bridges associated with
F and G, respectively. For ϕ ∈ {δ, σ, α}, we consider the statistics Dn,m(ϕ) defined in

(30). We have that Dn,m(ϕ) ϕ′F−G

(√
1− λBF −

√
λ B̃G

)
, where the derivatives ϕ′F−G

are given in (24)–(25). If we further have that F −G ∈ C
(
Rd
)
, then the derivatives can

be expressed as in (26).
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4.2 On a question by Jager and Wellner related to the
Berk–Jones statistic

Let Fn be the empirical distribution function of a sample of size n from a univariate random
variable with distribution function F . Suppose that we want to test the null hypothesis
H0 : F = G versus the alternative H1 : F 6= G, where G is a fixed (and usually known) con-
tinuous distribution function. [Berk and Jones, 1979] (see also [DasGupta, 2008, Chapter
26.7]) introduced the test statistic

R (Fn, G) = sup
x∈R

(K (Fn(x), G(x))) , (31)

where

K(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
,

for x ∈ [0, 1] and y ∈]0, 1[. (The values of K(x, y) when x = 0 are taken by continuity.)

For each x ∈ R, nK (Fn(x), G(x)) is the log-likelihood ratio statistic for testing H0 :
F (x) = G(x) against H1 : F (x) 6= G(x). Hence, R (Fn, G) in (31) is nothing but the
supremum of these pointwise likelihood ratio tests statistics. Additionally, K(x, y) is the
Kullback-Leibler divergence between two Bernoulli distributions with means x and y. Hence,
K(x, y) ≥ 0 with equality if and only if x = y. In particular, R (Fn, G) = ‖K (Fn, G)‖∞.

[Berk and Jones, 1979] computed the asymptotic distribution of (the normalized version
of) R (Fn, F ), i.e., the distribution of the statistic under the null hypothesis F = G. For a
detailed proof, see [Wellner and Koltchinskii, 2003, Theorem 1.1] or
[Jager and Wellner, 2007, Theorem 3.1]. It holds that

nR (Fn, F )− dn  Y4, as n→∞, (32)

where P (Y4 ≤ x) = exp (−4 exp(−x)) for x ∈ R, i.e., Y4 has double-exponential extreme
value distribution, and

dn = log2(n)− 1

2
log3(n)− 1

2
log(4π),

with log2(n) = log(log(n)) and log3(n) = log (log2(n)).

In [Jager and Wellner, 2004, Question 2, p.329], it was set out the open problem of finding
the asymptotic behaviour of the Berk–Jones statistic under the alternative hypothesis. In
other words, assuming that F 6= G, the question consists in finding conditions on F and
G for which the statistic

Bn =
√
n (R (Fn, G)−R(F,G)) , (33)

converges in distribution and, in such case, identifying its weak limit, where R (Fn, G) is
given in (31) and R(F,G) = sup

x∈R
(K(F (x), G(x))).

Here we give a precise answer for the previous question. First, we note that Bn in (33)
can be rewritten in the general form of (4). In other words,

Bn = Dσ

(
q = K(F,G),Qn = K (Fn, G) , rn =

√
n
)
, (34)
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where σ is defined in (6). As K is non-negative, it also holds that
Bn = Dδ (K(F,G), K (Fn, G) ,

√
n) with δ in (5). Therefore, from (34) and Theorem 4.1,

to obtain the asymptotic distribution of Bn in (33) it is enough to find the weak limit of
the process Wn given by

Wn =
√
n (K (Fn, G)−K(F,G)) . (35)

This result is stated in the following theorem.

Teorema 4.6. Let us assume that
�
R

log2

(
F (t) (1−G(t))

G(t) (1− F (t))

)
dF (t) <∞.

The process Wn defined in (35) satisfies that Wn  W in `∞
(
R
)
, where

W = BF log
F (1−G)

G (1− F )
, (36)

where BF is an F -Brownian bridge.

Proof. Using Taylor’s theorem (von Mises calculus), we have that

K (Fn, G)−K(F,G) = (Fn − F ) log
F (1−G)

G (1− F )
+

1

2

(Fn − F )2

F ∗n (1− F ∗n)
, (37)

where F ∗n is between F and Fn (in a ball centered at F and radius ‖Fn − F‖∞). We set

W̃n =
√
n (Fn − F ) log

F (1−G)

G (1− F )
. (38)

From (35) and (37), we have that

∥∥∥Wn − W̃n

∥∥∥
∞

=

√
n

2

∥∥∥∥∥ (Fn − F )2

F ∗n (1− F ∗n)

∥∥∥∥∥
∞

. (39)

Now, from (39) and [Wellner and Koltchinskii, 2003, equation (2.2)] (see also
[Jager and Wellner, 2007, equation (9)], we obtain that∥∥∥Wn − W̃n

∥∥∥
∞

=st

√
nR (Fn, F )

=
1√
n

(nR (Fn, F )− dn) +
dn√
n
,

(40)

where ‘=st’ stands for equality in distribution. From (32) and (40), we conclude that∥∥∥Wn − W̃n

∥∥∥
∞
 0. Hence, the processes Wn and W̃n have the same asymptotic be-

haviour (see [van der Vaart, 1998, Theorem 18.10]). Finally, the conclusion follows from
[van der Vaart, 1998, Example 19.12, p.273].

23



Remark 4.7. As it follows from the proof of Theorem 4.6, the process Wn behaves
asymptotically as W̃n in (38), which is actually a weighted empirical process. Therefore,
necessary and sufficient conditions for the convergence of the process Wn defined in (35)
are given by the Chibisov-O’Reilly theorem.

We are now in position to solve the question proposed in [Jager and Wellner, 2004].

Corollary 4.8. In the conditions of Theorem 4.6, the statistic Bn in (33) satisfies that

Bn  σ′K(F,G)(W) = sup
y∈M+(K(F,G))

(W(y)), as n→∞,

where W is given in (36) and the set M+(·) is defined in (23).

Remark 4.9. Similar results can be stated for the family of test statistics Sn(s) based on
φ-divergences introduced by [Jager and Wellner, 2007]. Details are omitted.
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