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In this contribution we have studied the photoionization of pyrazine using
the XCHEM method and compare it with a well-establish DFT approach. In this
case, single channel single reference calculations were performed for several an-
gular momenta of the ejected electron with both techniques. Finally, multichannel
scattering cross sections were calculated with single reference and multireference
methods. These simulations, which describe the effect of the electron correlation
in the configurational interaction picture, were used to understand the photoion-
ization cross sections of pyrazine. With the results of single reference and mul-
tireference calculations, we can estimate the importance of electron correlation
in the description of the bound states and when single channel calculation and
multichannel calculations are compared, we can observe the effect of coupling
several electronic continua.
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Chapter 1

Introduction

Since the discovery of electrons in the beginning of the 20th century humanity
has undergone an unprecedented scientific and technological progress. Among
all the achievements stand out the development of Quantum Theory that has
allowed us to better understand the structure of matter and the transistor, con-
sidered by many the greatest invention of the 20th century and the foundation of
modern electronics. Therefore, it is normally stated that the 20th century was the
electron age. However, there is a strong believe that photons will hold a higher
importance than electrons in the years to come. Still, as it is stated in [1], electron
dynamics is responsible of many important processes, not just in physics; but
also in chemistry and biology: light emission, charge transfer. . . Thus, controlling
electron dynamics would bestow us a subtle control over such processes. Never-
theless, control at the atomic scale is still in early stages, so there is still much to
do. This Master thesis is about uncovering the mysteries of electron dynamics in
photoionization processes through the recent advances in laser technology.

In order to control electron motion, first we need to know the timescale at
which they move, i.e., the time interval between electron snapshots that would
allow to obtain a movie of the motion of an electron without losing information.
Taking the Bohr model as a simple example, we could determine that the period
of the first orbit is about 152 as (10−18s). This is the timescale that would be
necessary to reach in order to study electron dynamics.

The timescale at which a given system moves can be understood by consider-
ing a simple two-level system [1]. The larger the difference between energy levels
the lesser the oscillating period. This is the reason why nuclei and electrons are in
different timescales. In the case of nuclei, they move due to vibrations, and the vi-
brational levels of a molecule are quite close in energy comparing with electrons.
Nuclei move in the femtosecond timescale (10−15 s) via vibrations, giving rise to
chemical reactions. This is the area of study of femtochemistry, introduced by
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Zewail [2, 3], who managed to study chemical reactions via pump-probe experi-
ments with femtosecond lasers. With regard to imaging and controlling electron
dynamics, it is required to break the barrier of the femtosecond. However, it
was not until the appearance of attosecond lasers via High Harmonic Generation
(HHG) [4] that this was made possible, giving rise to the promising attochemistry
field [5].

The theoretical study of photoionization requires a good description of the
electron continuum. However, quantum chemistry methods, that have nowa-
days become routine to describe bound electronic states with great accuracy, are
not valid for the continuum. It is then necessary to provide similar tools to de-
scribe ionization processes so that increasingly sophisticated experiments can be
explained. Several approaches have been developed along the years, from the
single active electron approximation (SAE) to the static-exchange approximation
(SEA) [6–8]. In the SEA approximation, the coupling between continuum states
associated with different parent ions is neglected. This is usually the starting
point of more sophisticated treatments based on the close-coupling (CC) approx-
imation [9], where the coupling between different channels is included. The SEA
is able to describe primary photoemission from valence shells or core orbitals in
which the ejected photoelectron has energies bigger than 10 eV but having prob-
lems when more than one electron participates in the ionization, e.g. autoioniza-
tion arising from multiply excited states.

To overcome the above limitations, our group has developed a different ap-
proach (XCHEM [10]) that matches the capability of state-of-the-art techniques
for the calculation of correlated excited states, provided by widely available pack-
ages such as MOLCAS [11] and MOLPRO [12], with well-established techniques
for the description of the electronic continuum. This is done by using a hybrid
Gaussian-B-spline basis (GABS) [13].

There are other approaches based on a similar philosophy, in which a short-
range part represented by GTOs is complemented with other functions more ap-
propriate for the scattering description, such as finite-element (FE) representation
of the radial coordinate [14, 15], discrete variable representation (DVR) [16] and
plane waves [17]. Other efforts have been made within the framework of density
functional theory (DFT), using for instance a multicenter expansion in B-splines
[18]. Despite the existence of all these models, XCHEM has its own advantages.
Increasing the number of electrons for a fixed number of scattering channels does
not make the computational cost of the full dimensional problem significantly
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higher. This means that the effort made to compute the helium atom would be
similar to that needed to compute the water molecule for instance. Although
this points to the fact that the computation of very small systems would not be
very efficient, our real target, small and medium size molecules, would be easily
achievable without serious penalties. Another benefit of this implementation is
the capability to obtain from a multichannel scattering problem either time in-
dependent observables, e.g., resonance energies and widths, or time-dependent
ones, expanding for the latter the wave function in the box of eigenstates, a very
convenient way to carry out the time propagation and to extract observables from
it. An additional advantage is that resonances, such as doubly excited states, arise
naturally from the close-coupling expansion without the need of an ad hoc inclu-
sion.

In this work we are focusing on the aromatic pyrazine molecule, the most
complex system to which XCHEM methodology has been applied. We aim to
obtain for the first time multichannel results for such system with a high level
of accuracy of its electronic structure. We compare the results given by adapted
single-channel XCHEM calculations with the ones obtained from the SEA based
method [18, 19].
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Chapter 2

Molecular Electronic Structure

2.1 The Schrödinger Equation

It has been long well known that Classical Physics does not describe correctly
the behavior of atomic and molecular systems. Quantum Theory is necessary to
tackle this issue, and of its most important results is the so-called Time Dependent
Schrödinger Equation (TDSE) proposed by Erwin Schrödinger in the 20s. It is a
partial diffusion-like linear and homogeneous differential equation. Being linear
and homogeneous allow for the Superposition Principle, which states that if Ψ1

and Ψ2 are two solutions, then an arbitrary linear combination of both solutions
is also a solution to the equation. It should also be highlighted the fact that it is
first order with respect to time, meaning that one only has to specify the initial
conditions of Ψ in order to know its evolution in time [20].

ih̄
∂

∂t
Ψ(~r, ~R, t) = Ĥ(~r, ~R, t)Ψ(~r, ~R, t) (2.1)

where Ψ is the wavefunction that holds all the information about the system and
determines its dynamical state. Ĥ is the Hamiltonian of the system under study,
which consists of two parts: the kinetic energy of all the particles composing the
system and the potential energy defining the system.

Ĥ(~r, ~R, t) =
N

∑
i
− h̄2

2mi
∇2

i + V(~r, t) (2.2)

If one considers that H does not depend on time, one arrives at the Time In-
dependent Schrödinger Equation (TISE), normally represented as follows

ĤΨn = EnΨn (2.3)
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As it can be seen, this last equation consists of an eigenvalue problem, where
En are the stationary energies of the system (eigenvalues) and Ψn the stationary
wavefunctions (eigenvectors).

Quantum Chemistry is normally interested in molecules, which are composed
of electrons and nuclei (we are not considering the internal structure of nuclei).
We thus arrive at the Molecular Hamiltonian, in which one can distinguish the
kinetic energy of electrons and nuclei and the different possible electrostatic in-
teractions between them: electron-electron, electron-nuclei and nuclei-nuclei.

Ĥ = Te(~r) + TN(~R) + Vee(~r) + Ven(~r, ~R) + Vnn(~R) (2.4)

Ĥ = − 1
2

Ne

∑
i
∇2

i −
Nn

∑
α

1
2Mα
∇2

α +
Ne

∑
i=1

Ne

∑
j>i

1
rij

+
Ne

∑
i=1

Nn

∑
α=1

Zα

riα
+

Nn

∑
α=1

Nn

∑
β>α

ZαZβ

rαβ
(2.5)

where ’n’ and ’e’ refer to nuclei and electron respectively. The number of degrees
of freedom in this equation in which electrons and nuclei are coupled is aston-
ishing. It is then impossible to solve exactly and one can obtain an approximate
solution. The usual way of dealing with such equation is by assuming that nuclei
remain fixed from the point of view of electrons, due to the former being much
heavier. Thus, the nuclear kinetic energy can be neglected and the internuclear
interaction energy becomes a constant since nuclei remain static. This is called
the Born-Oppenheimer approximation (BOA), and allows to decouple electron
and nuclear dynamics and reduce the dimensionality of the problem. Since we
are considering the motion of electrons and nuclei to be independent, the total
wavefunction of the system can be expressed as a direct product of an electronic
and a nuclear part

Ψ = ψ(~r; ~R)ϕ(~R) (2.6)

Therefore, an electronic HamiltonianHe can be defined

He = Te(~r) + Vee(~r) + Vne(~r, ~R) (2.7)

The electronic wavefunction depends parametrically on the nuclear coordi-
nates. This means that in order to fully solve the problem one has to obtain the
electronic wavefunction for different nuclear configurations, obtaining what is
referred to as a Potential Energy Surface (PES). In the case of diatomic molecules,
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this PES is just a curve, since the only relevant nuclear coordinate is the nuclear
distance.

In the sections that follow the most important methods for solving the Elec-
tronic Structure of molecules will be discussed.

2.2 Hartree-Fock Theory

It has already been stated that solving exactly the Molecular TISE is impossible.
Therefore, approximations are needed in order to deal with such complexity. We
have already introduced the BOA that allowed to work in a lower dimensionality.
Nevertheless, even for a single nuclear configuration, the number of degrees of
freedom continues being too large. That is why other approximations or models
are needed to deal with the electronic TISE. Through the years, several methods
have been developed in the computational chemistry community to obtain ap-
proximated electronic wavefunctions. The Hartree-Fock method is the father of
other more accurate and sophisticated methods that will be reviewed later on and
the outset of computational chemistry as a standalone discipline.

Hartree-Fock is a method for solving the electronic TISE within the BOA for
a system of Ne electrons and Nn nuclei. Its core hypothesis consists on each elec-
trons moving in the average potential created by the nuclei and the rest of Ne-1
electrons. As a result, it neglects what is termed correlation [21]. It is based on
the variational method, meaning that it aims at minimizing the energy functional

E[ψ] =
〈ψ| He |ψ〉
〈ψ|ψ〉 (2.8)

thence we are looking for a many-electron wavefunction ψ such that the energy
is minimum. This ensures that the calculated energy is always an upper bound
to the exact ground state energy. Nonetheless, one cannot try all possible wave-
functions, but we must restrict ourselves to a subset of them.

|ψ〉 = 1√
Ne

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χNe(x1)

χ1(x2) χ2(x2) · · · χNe(x2)
...

... . . . ...
χ1(xNe) χ2(Ne) · · · χNe(xNe)

∣∣∣∣∣∣∣∣∣∣
= |χ1χ2 · · · χNe〉 (2.9)
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The trial functions we are considering as many-electron wavefunctions are
single Slater determinants, since they ensure the antisymmetry of the wavefunc-
tion, i.e., the permutation of any two particles causes a change of sign in the
wavefunction (Pauli principle). A Slater determinant, as seen in Equation 2.9,
consists of an antisymmetrized product of Ne one-electron functions, or spin or-
bitals. The wavefunction depends, hence, on 4Ne variables; 3 spatial and 1 spin
coordinate per spin orbital. Consequently, the energy E is a functional of the spin
orbitals {χi} [22].

The derivation of the Hartree-Fock equations comes from applying the varia-
tional procedure to find the spin orbitals that minimize the ground state energy
given by

E[{χi}] = 〈ψ| Ĥe |ψ〉 (2.10)

= 〈ψ| − 1
2

Ne

∑
i
∇2

i −
Ne

∑
i=1

Nn

∑
α=1

Zα

riα
+

Ne

∑
i=1

Ne

∑
j>i

1
rij
|ψ〉 (2.11)

=
Ne

∑
i=1
〈χ1 · · · χNe | ĥi |χ1 · · · χNe〉+

Ne

∑
i=1

Ne

∑
j>i
〈χ1 · · · χNe |

1
rij
|χ1 · · · χNe〉

(2.12)

where we have defined the one-electron operator

ĥi = −
1
2
∇2

i −
Nn

∑
α

Zα

riα
(2.13)

which represents the kinetic and potential energy of a single electron. The second
term in Equation 2.12 contains, instead the two-electron operator 1/rij. The total
electronic hamiltonian is decomposed into a one- and two-electron contributions.

Considering that a determinant can be expressed as a sum of permutations
over a product of spin orbitals [22]

|χ1χ2 · · · χNe〉 = (Ne!)−1/2
Ne!

∑
n=1

(−1)pn P̂n{χ1χ2 · · · χNe} (2.14)

a set of rules for matrix elements of the form 〈ψ| Ô |ψ′〉; being ψ and ψ′ two Slater
determinants, not necessarily identical,can be derived [22]. The operator Ô can
be one- and two-electron, and is represented by Ô1 and Ô2 respectively. For a
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one electron operator

〈Ψ| Ô1
∣∣Ψ′〉 =



Ne

∑
i=1
〈χi|Ô1 |χi〉 if Ψ = Ψ′

〈χn|Ô1
∣∣χ′n〉 if Ψ and Ψ′ differ in the n th orbital

0 if Ψ and Ψ′ differ in more than one orbital

(2.15)

In the case of the two-electron operator 1
r12

one obtains

〈ψ| Ô2
∣∣ψ′〉 =



1
2

Ne

∑
i=1

Ne

∑
j=1

〈
χiχj

∣∣ 1
r12

∣∣χiχj
〉

if Ψ = Ψ′

Ne

∑
i=1
〈χnχi|

1
r12

∣∣χ′nχi
〉

if χn 6= χ′n

〈χnχm|
1

r12

∣∣χ′nχ′m
〉

if χn 6= χ′n and χm 6= χ′m

0 if Ψ and Ψ′ differ in more than two orbitals

(2.16)

In the case of HF, ψ = ψ′. The HF energy can then be written in terms one-
and two-electron integrals involving the set of spin orbitals {χi}. It can be seen
as the sum of one-electron energies coming from electrons in spin orbital χi and
interaction energies coming from electrons in spin orbitals χi and χj

EHF[{χi}] =
Ne

∑
i=1
〈χi|ĥ|χi〉+

1
2

Ne

∑
i

Ne

∑
j

〈
χiχj

∣∣ 1
r12

∣∣χiχj
〉

(2.17)

Finally, we want to minimize the energy from Equation 2.17 constraining the
spin orbitals to be orthonormal, i.e.

〈
χi
∣∣χj
〉
= δij (2.18)〈

χi
∣∣χj
〉
− δij = 0 (2.19)

In order to impose this constraint we make use of the Lagrange multipliers
method, so that the functional to minimize is the following

L =
Ne

∑
i=1
〈χi|ĥ|χi〉+

1
2

Ne

∑
i

Ne

∑
j

〈
χiχj

∣∣ 1
r12

∣∣χiχj
〉
+

Ne

∑
i

Ne

∑
j

εij(
〈
χi
∣∣χj
〉
− δij) (2.20)
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where εij are Lagrange multipliers, and represent the spin orbitals energy. By
applying infinitesimal variations to spin orbitals so that

χi → χi + δχi (2.21)

we obtain the first variation in L

δL[{δχi}] =L[χi + δχi]−L[χi] (2.22)

=
Ne

∑
i=1
〈δχi|ĥ|χi〉+

Ne

∑
i=1

Ne

∑
j=1

〈
δχi χj

∣∣ 1
r12

∣∣χiχj
〉

−
Ne

∑
i

Ne

∑
j

εij(
〈
δχi
∣∣χj
〉
− δij)

+ complex conjugate = 0

Given the fact that L is real, δL = 0 fulfills solely if[
ĥ +

Ne

∑
j=1
Ĵj − K̂j

]
χi =

N

∑
i=j

εijχj for each i=1,2,. . . ,Ne (2.23)

where Ĵ and K̂ are one-electron operators. They are known as the coulomb and
exchange operators respectively and are defined as

Ĵj(1)χi(1) =
〈

χj

∣∣∣∣ 1
r12

∣∣∣∣χj

〉
2

χi(1) (2.24)

K̂j(1)χi(1) =
〈

χj

∣∣∣∣ 1
r12

∣∣∣∣χi

〉
2

χj(1) (2.25)

These operators are defined according to their action on a spin orbital χi.
The Hartree-Fock equations can be simplified if we define the square brackets

in Equation 2.23 as Fock operator f̂

f̂ |χi〉 =
Ne

∑
j=1

εij
∣∣χj
〉

(2.26)

The Fock operator is a one-electron operator, meaning that it does not take
into account electron correlation. The electronic interaction is accounted for only
averagely. It can be demonstrated that the set of spin orbitals {χi} is not unique,
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meaning that one can obtain a new set of spin orbitals by a unitary transforma-
tion. The new single determinant wavefunction is identical to the previous one
except for a phase factor. In view of the fact that all observables depend on the
square of the wavefunction, expectation values remain thus invariant.

Projecting the above Equation 2.23 onto spin orbital χk

〈χk| f̂ |χi〉 =
Ne

∑
j

εij 〈χk|χi〉 = εkj (2.27)

which means that the Lagrange multipliers ε are the matrix elements of the Fock
operator. Taking into account what was stated about unitary transformations on
spin orbitals, it is possible to find a suitable unitary transformation that makes
the Fock operator diagonal; thence Equation 2.23 simplifies to

f̂ |χi〉 = εi |χi〉 (2.28)

The physical interpretation of the eigenvalues of the Fock operator εi was
given by Koopmans, according to whom they could be seen as they necessary
energy to remove an electron occupying spin orbital χi.

2.2.1 Roothan Equations. SCF procedure

The development of Hartree-Fock equations was an important leap, however,
they are not solvable for systems of chemical interest, molecules, meaning that its
applicability was reduced mainly to atoms [22]. This hurdle was overcome thanks
to the work of Roothaan [23]. The forthcoming development of Roothaan’s theory
will be done under the restricted Hartree-Fock formalism, i.e. each spatial orbital
is shared by two electron with opposite spins. Spin orbitals can then be factorized
as follows

χi = Φiα (2.29)

χi = Φiβ (2.30)

In a closed shell system, there are the same number of α and β spins, mean-
ing that the Slater determinant wavefunction depends only on spatial functions,
and no longer on spin coordinates since they have been integrated out. The HF
equation results to be

f̂ (r1)ψi(r1) = εiψi(r1) (2.31)
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where r1 are the spatial coordinates of one electron. The Fock operator is now ex-
pressed in terms of Ne/2, since for each spatial orbital Φi there are two electrons,
with α and β spin

f̂ = ĥ +
Ne/2

∑
i

2Ĵi − K̂i (2.32)

The contribution of Roothaan was to employ a set of well known basis func-
tion in which to expand the spatial orbitals. This would allow to convert the
integro-differential HF equations to a set of algebraic equations, much easily solv-
able by standard matrix techniques. Theoretically, the basis function should be
able to expand the infinite L2 space, though in practice just a subset is enough for
practical purposes. The unknown spatial orbitals, or molecular orbitals, are then
expressed as a linear combination a Nb-dimensioned basis

Φi =
Nb

∑
ν=1

cνiφν (2.33)

We now introduce the molecular orbital expansion into Equation 2.31 to ob-
tain

f̂ ∑
ν

cνiφν = εi ∑
νi

cνiφν (2.34)

We project both sides of the previous equation onto
〈
φµ

∣∣ to obtain

∑
ν

cνi
〈
φµ

∣∣ f̂ ∣∣φν

〉
= εi ∑

ν

cνi
〈
φµ

∣∣φν

〉
(2.35)

from where we can define:

• The overlap matrix S of dimension Nb × Nb and hermitian with elements

Sµν =
〈
φµ

∣∣φν

〉
=
∫

dr1 φ∗µφν (2.36)

• The Fock matrix F also hermitian and with Nb × Nb dimension

Fµν =
〈
φµ

∣∣ f̂ ∣∣φν

〉
=
∫

dr1 φ∗µ f̂ φν (2.37)

• The basis expansion coefficients matrix C, where column i contains the ex-
pansion coefficients for molecular orbital i, as seen in Equation 2.33
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• The orbital energies matrix ε. It should be noted that it is a diagonal matrix
of dimension Nb × Nb, meaning that each element εii corresponds to the
energy of molecular orbital i.

The Roothaan equation can be written more elegantly in terms of these matri-
ces as

FC = SCε (2.38)

This equation can be transformed into the following eigenvalue problem, eas-
ier to solve computationally

F′C′ = C′ε (2.39)

if we consider a transformation matrix that fulfills

X†SX = 1 (2.40)

which means, that the X matrix orthonormalizes the overlap matrix. The new
Fock and coefficients matrices are defined as

F ′ = X†FX (2.41)

C′ = X−1C (2.42)

We now define the density matrix P from the expression of the electron density
for a single determinant wavefunction as follows

ρ(r) = 2
Ne/2

∑
i
|ψi(r)|2 (2.43)

= 2
Ne/2

∑
i

∑
ν

c∗νiφ
∗
ν ∑

µ

cµiφµ

= ∑
ν

∑
µ

Pµνφ∗νφµ (2.44)

where by inserting the molecular expansion 2.33 into Equation 2.43 and defining
the matrix element

Pµν = 2
Ne/2

∑
i

cµic∗νi (2.45)
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Equation 2.44 is obtained. The Fock matrix elements in terms of the density ma-
trix have the following form

Fµν = hµν + ∑
λσ

Pλσ[〈µν|σλ〉 − 1/2 〈µλ|σν〉] (2.46)

= hµν + Gµν (2.47)

where we distinguish a one electron part hµν and a two electron part Gµν. As
one can notice, to solve the Roothaan equations means to obtain the energies and
the coefficient matrix, or equivalently the density matrix. However, in order to
do this one must first obtain the Fock matrix, which also depends on the density
matrix. Consequently, Roothaan equations are nonlinear and must be solved by
using the known as self consistent field (SCF). It consists of an iterative procedure
that follows the next steps [22]:

1. Calculate one-electron integrals to build up h and S and two-electron inte-
grals to build G. The one-electron matrices need only to be calculated once
at the beginning of the procedure.

2. Diagonalize the S matrix and obtain the transformation matrix X

3. Guess an initial density matrix P.

4. Calculate G from two-electron integrals already computed at the beginning
and the density matrix to obtain the Fock matrix F.

5. Compute the transformed Fock matrix F′.

6. Diagonalize F′ that results in ε as eigenvalues and C′ as eigenvectors, from
which matrix C shall be computed.

7. With the new coefficients compute a new density matrix Pi+1

8. If |Pi+1 − Pi| ≥ δthr recalculate the G matrix and follow the steps to obtain
a new P matrix.

In summary, we have introduced a basis set of dimension Nb in which to ex-
pand the molecular orbitals Φi. This gives rise to an algebraic equation in terms
of matrices of dimension Nb × Nb, implying that one obtains as many molecular
orbitals as basis functions used. Nevertheless, in the Slater determinant there are
only Ne/2 molecular orbitals; therefore, the rest Nb−Ne/2 orbitals correspond to
what is called virtual orbitals.
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2.2.2 Basis sets

We have stated that Roothaan equations appear when one considers a basis set in
which to expand the HF spatial orbitals. However, nothing has been said about
the nature of this basis. A good basis set should follow these guidelines [24]:

• Allow for systematic extension to completeness. A complete description of
the problem is only possible with an infinite basis that spans the whole L2.

• Rapid convergence, so that only a few terms are needed in the expansion to
yield satisfactory results.

• Easy to manipulate analytical form for efficient evaluation of molecular in-
tegrals and if possible orthogonal.

In general, it is not possible to fulfill all the above requirements and one has
to sacrifice some properties in exchange of others. It could be possible to have an
orthonormal and analytic basis set, for example by using the eigenfunctions of the
harmonic oscillator. However, this basis set would suffer from slow convergence.

Quantum chemistry normally uses an atomic centered non-orthonormal ba-
sis. There are various possible functional forms, but the most important ones
are Slater type orbitals (STO), and especially Gaussian type orbitals (GTO). Slater
type orbitals are obtained from the Hydrogen atom orbitals by truncating the La-
guerre polynomial. In principle they are the most appropriate functions, due to
their good convergence and ability to represent the nuclear cusp. However, STO
hinder the calculation of molecular integrals, since they have to be computed
numerically. On the other side, GTO provide analytical molecular integrals no
matter the number of centers (atoms), since the product of two gaussian func-
tions is always another gaussian function. For nothing is perfect, GTO suppose
a worsening in convergence, meaning that more basis functions are needed to
obtain reasonable results. Nonetheless, this has been partially solved by using
gaussian contractions that mimic STOs.

2.3 Configuration Interaction

Although HF was a huge success, there were some problems inherent to the the-
ory. Nevertheless, there has been much work over the last decades to improve
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the HF wavefunction and overcome its shortcomings. Configuration interaction
consists of an extension of HF theory that considers the following wavefunction

|ΨCI〉 = c0 |Ψ0〉+ CS |S〉+ CD |D〉+ CT |T〉+ CQ |Q〉+ . . . (2.48)

where S,D,T. . . refer to all possible single, double, triple. . . excitations from the
Hartree-Fock wavefunction, that is taken as the reference. This means we are
supposing that the main contribution to ΨCI comes from the HF wavefunction
Ψ0 and the rest of Slater determinants behave as corrections. Excitation refers to
the exchange of one or more occupied orbitals of the HF wavefunction for the
same number of virtual orbitals.

The determination of the expansion coefficients is a linear variational prob-
lem, and as such, it is equivalent to diagonalizing the Hamiltonian in a basis of
N-electron functions, i.e. excitations

HC = ECIC (2.49)

where C is the CI vector containing the coefficients of the expansion. The solution
to the previous eigenvalue problem yields a set of eigenvectors and eigenvalues,
being the lowest for the ground state and the rest for excited states. The Hamil-
tonian matrix to diagonalize has the next symmetric shape

〈Ψ0|Ĥ|Ψ0〉 0 〈Ψ0|Ĥ|D〉 0 0 · · ·
〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T〉 0 · · ·

〈D|Ĥ|D〉 〈D|Ĥ|T〉 〈D|Ĥ|Q〉 · · ·
〈T|Ĥ|T〉 〈T|Ĥ|Q〉 · · ·

〈Q|Ĥ|Q〉 · · ·
...


(2.50)

The form of this matrix is consequence of the Brillouin theorem which states
that single excitations and the reference ground state do not mix, giving 〈Ψ0|Ĥ|S〉 =
0. Regarding the remaining elements, it should be reminded that matrix elements
between two different determinants that differ in more than two orbitals are zero.
Considering a complete basis, one would obtain exact energies for the ground
state and all excited states of the system.

This method provides lower energies than the HF method, meaning that we
are able to recover correlation energy, defined as the difference between the exact
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and HF energy
Ecorr = Eexact − EHF (2.51)

The number of different Slater determinants that can be constructed given Nb

one-electron basis functions and Ne electrons is(
2Nb
Ne

)
(2.52)

making this scheme inapplicable to large systems, due to the huge configuration
space that must be taken into account. The usual and most straightforward ap-
proach is to use a truncated CI wavefunction, instead of the full expansion, thus
reducing the number of determinants that have to be considered. Truncation
means that one only considers excitations up to certain order. We can distinguish
then the CID, CISD. . . methods.

This approach allows for considering larger systems, but at the cost of losing
size-consistency: the calculated energy does not follow a linear relationship with
the number of particles. This has been solved by the development of Coupled
Cluster Theory [25–27], which rather than a linear anstaz like CI uses an expo-
nential anstz. However, this method is not variational.

2.4 Multiconfigurational Methods

Now we are going to consider methods that are not subject to the restriction of
just one reference, as in the previous case where the orbitals used to generate
the contribution came from a previous HF calculation. In the MCSCF technique
the orbitals are optimized along with the CI vector. At the end of the calculation
we obtain the best CI vector accompanied by the best orbitals that describe the
system. This means that the set of orbitals affects the results, even if they are
obtained just by rotations of the HF orbitals.

The MCSCF wavefunction is of CI type, and thus

|ψ〉 = ∑
i

ci

∣∣∣2S+1Ξi

〉
(2.53)

where {2S+1Ξi} constitutes the space of Configuration State Functions (CSF). They
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are spin-adapted functions with a defined multiplicity constructed from a suit-
able linear combination of Slater determinants∣∣∣2S+1Ξi

〉
= ∑

n
ani |Dn〉 (2.54)

There are several ways of constructing CSF, being the most widespread the
Graphical Unitary Group Approach (GUGA) [28, 29]. Apart from well-defined
spin, CSF give rise to smaller CI space since only spin-defined functions are used.
On the contrary, the construction of operators requires to expand the CSF in the
determinant space yielding

|ψ〉 = ∑
i

ci

∣∣∣2S+1Ξi

〉
GUGA−−−→∑

i
ci ∑

n
ani |Dn〉 = ∑

n
dn |Dn〉 (2.55)

where Slater-Condon rules from Equation 2.15 and Equation 2.16 can be applied.
We introduce the Hamiltonian in terms of annihilation and creator operators

Ĥ = ∑
ij
〈i|ĥ|j〉 âi

† âj +
1
2 ∑

ijkl
〈ij|kl〉 âi

† âj
† âk âl (2.56)

where i,j,k and l are molecular orbitals. The first term constitutes the one-electron
integrals hij, while the second the two-electron integrals gijkl. The energy of the
MCSCF wavefunction in the determinant basis is then

E = 〈ψ|Ĥ|ψ〉 (2.57)

= ∑
ij

hij ∑
nm

d∗mdn 〈Dm|âi
† âj|Dn〉+

1
2 ∑

ijkl
gijkl ∑

mn
d∗mdn 〈Dm|âi

† âj
† âk âl|Dn〉 (2.58)

= ∑
ij

hij ∑
mn

d∗mdnDmn
ij + ∑

ijkl
gijkl ∑

mn
d∗mdnPmn

ijkl (2.59)

= ∑
ij

hijDij + ∑
ijkl

gijklPijkl (2.60)

with Dij and Pijkl the one and second order reduced density matrix elements re-
spectively. The one and two electron integrals hold the information about the
orbitals, while the reduced density matrices contain the CI coefficients.

It is not possible to consider the whole set of configurations, and one normally
considers the subset of configurations that better describes the system. One of the
most usual procedures to reduce the dimensionality of the configuration space is
the so called complete active space (CAS) [30, 31], by which configurations are
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selected by families. CAS divides the orbitals in three main groups: inactive,
active and virtual. Excitations are only allowed in the active orbitals, resulting
in a full CI in the active space. There are other possibilities for constructing the
space of configurations. Special attention deserves RASSCF [32, 33], that grants
more flexibility in selecting the relevant configurations. As well as distinguishing
between inactive and virtual orbitals, it considers three spaces RAS1, RAS2 and
RAS3. RAS2 is equivalent to the previously described CAS space. The flexibility
is given by the RAS1 and RAS3 spaces. The former permits to excite a given
number of electrons from orbitals that are not inactive enough to be considered
as such while the latter is composed of a set of orbitals to which we allow a certain
number of electrons to be excited to.

Obtaining several states for a given system could be as simple as making a
calculation for each of the states we are looking for. However, this would result
in a set of optimized states, each with its own CI vector, but also with a different
set of orbitals. This can lead to what is called root-flipping. That is why, one
normally computes a set of states under state-averaged formalism which aims at
minimizing the average energy

E = ∑
I

ωI 〈I|H|I〉 (2.61)

over the pursued I states weighted by ωI . The weights are normally chosen to
be equal for all the states. This approach is termed as state-averaged CASSCF
(SA-CASSCF) and is widely used in the XCHEM method.

CASSCF and RASSCF recover part of the correlation energy, so-called static
correlation static correlation with a reasonable number of configurations. How-
ever, much more configurations are needed to describe the remaining correlation,
known as dynamic. There are two ways of improving CASSCF and RASSCF on
top of them. One possibility would be to consider all single and double excita-
tions from all the determinants that take part in the MCSCF wavefunction. This
approach is known as MRCI [34–36]. The other option is to make use of pertur-
bation theory, for example the CASPT2 method [37].

2.5 Density Functional Theory

The appearance of Density Functional Theory (DFT) supposed a change of paradigm.
Instead of concentrating efforts in obtaining a better wavefunction to describe a
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given system, in DFT one is only interested in the one-electron density ρ given by

ρ(~r) = Ne

∫
ψ∗ψ d~r2 d~r3 . . . d~rN (2.62)

where Ne is the number of electrons. The electron density can be understood as
the probability of finding any electron of the Ne electrons present in the system
at a given position of space. Given the fact that ρ is a probability density, it is a
non-negative function in the whole domain (−∞,∞). The following properties of
the electron density are highlighted:

1. lim
r→∞

ρ = 0, meaning that it is integrable.

2.
∫

ρ(~r1)d~r1 = Ne

3. The electron density has maxima only at the positions of the nuclei.

The origins of this method can be traced back to the Thomas-Fermi model
from 1927 [38], where the energy of a fictitious system, the uniform electron gas
was given in terms of solely the electron density

ETF[ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r− Z

∫
ρ

r
d~r +

1
2

∫∫
ρ(~r1)ρ(~ρ2)

r12
d~r1 d~r2 (2.63)

where we distinguish the kinetic, nucleus-electron and electron-electron interac-
tion energies respectively. The nucleus-electron interaction is system-dependent
and is usually referred to as external potential Vext. The kinetic and electron-
electron functional forms are common to all systems. The electron-electron in-
teraction can be separated in a classical contribution J[ρ] and a non-classical part
EXC[ρ] known as the exchange-correlation potential which takes into account the
antisymmetry principle, self-interaction error and correlation effects, which as
the kinetic energy functional is not known. The energy functional could then be
written as

E[ρ] = T[ρ] + Vext[ρ] + J[ρ] + EXC[ρ] (2.64)

The real advent of DFT as is known today came with Hohenberg-Kohn theo-
rems stated in 1964, according to which [39]:

1. The external potential is a unique functional of ρ(~r); and since the external
potential Vext fixes Ĥ, the ground state energy of a many-particle system is
a functional of the density.
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2. The second Hohenberg-Kohn theorem states that the true density of the
system delivers the lowest ground state energy, i.e., the search of the actual
density of the system is a variational problem.

The previous theorems only ensure the existence of a unique ground state
density which gives the lowest energy. However, they provide no recipe of how
to construct the energy functional. This was solved with the appearance of the
Kohn-Sham scheme [40], which considered a non-interacting fictitious system
with the same density as the real one. It is therefore described by a Slater determi-
nant and a set of orbitals, called the Kohn-Sham orbitals. The energy functional
is then expressed in terms of the KS orbitals

E[ρ] =
1
2

Ne

∑
i
〈ϕi|∇2|ϕi〉+

1
2

N

∑
i

e

Ne

∑
j

∫∫
|ϕi(~r1)|2

1
r12

∣∣ϕj(~r2)
∣∣2 d~r1 d~r2 (2.65)

+ EXC[ρ] +
Ne

∑
i

Nn

∑
A

∫ ZA

r1A
|ϕi(~r1)|2 d~r1 (2.66)

The only unknown term from the previous equation is the EXC[ρ] functional.
It includes exchange-correlation effects as well as the kinetic energy not included
in the first term, which corresponds to a non-interacting system.

The problem is then reduced to finding the best KS orbitals ϕi that minimize
the energy subject to the constraint

〈
ϕi
∣∣ϕj
〉
= δij, analogously to the HF case. One

arrives then to the one electron equations(
−1

2
∇2 +

[∫
ρ(~r2)

r12
d~r2 + VXC(~r1)−

Nn

∑
A

ZA

r1A

])
ϕi (2.67)(

−1
2
+ Ve f f (~r1)

)
ϕi = εi ϕi (2.68)

which, when solved, yield the KS orbitals that minimize the energy, from which
the electron density can be calculated in the same way as HF

ρ(~r) =
Ne

∑
i

Ne

∑
j

ϕ∗i (~r)ϕi(~r) (2.69)

It should be highlighted that the Kohn-Sham approximation is essentially ex-
act. The approximation comes from the form chosen for the exchange-correlation
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potential. Over the years many exchange-correlation functionals have been de-
veloped, but none of them is universal. One has to choose "wisely" the exchange-
correlation functional to use depending on the system of interest.

The main advantage of DFT over classical wavefunction methods comes from
using the electron density, since it is an object of just 3 space variables, while the
wavefunction depends on 3N. The fact of dealing with an object of much lower
dimensionality than the wavefunction has enabled the theoretical study of larger
systems, not just molecules of a few atoms, but solids, nanostructures, proteins. . .
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Chapter 3

Light-Matter Interaction.
Photoionization methods

3.1 Gauge invariance. Photoionization cross sections

The interaction of a molecule with an electromagnetic field can be described rig-
orously by quantum electrodynamics, which treats the molecule or atom as well
as the photons quantum mechanically. Nevertheless, it is common to use a semi-
classical approach in which the molecule is described by quantum mechanics and
interacts with a classical electromagnetic field, that does not consider photons as
particles. This is the case for the methods we are employing in this work.

In this semi-classical approach the interaction energy V(t) between a given
system and electromagnetic radiation can be written in terms of position —length
gauge— or momentum —velocity gauge—.

V(t) =~r~E(t) length gauge (3.1)

V(t) =
1
c
~p~A(t) velocity gauge (3.2)

where ~E(t) is the electric field and ~A(t) is the vector potential given by

~E(t) =
∂

∂t
~A(t) (3.3)

The dipole coupling between initial Ψa and final Ψb states, which is related to
the probability of transition, also depends on the gauge used.

ML
ab = Ne 〈Ψa|~εr|Ψb〉 length gauge (3.4)

MV
ab = Ne 〈Ψa|~ε∇|Ψb〉 velocity gauge (3.5)
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From the dipole couplings we can define a magnitude called single photoion-
ization cross section, which denotes the probability a given photoionization event
has to occur. At first order perturbation theory the cross section can be related re-
lated with the dipole transition as

σL
ab = 4π2α(Eb − Ea)

∣∣∣ML
ab

∣∣∣2 length gauge (3.6)

σV
ab =

4π2α

Eb − Ea

∣∣∣MV
ab

∣∣∣2 velocity gauge (3.7)

α is the hyperfine structure factor (≈ 1/137) au and Mab the dipole coupling,
in its length and velocity form respectively. The result obtained should not de-
pend on how we define the interaction with the electromagnetic field, be it in
terms of momentum or position. This is generally known as gauge invariance,
and it has been used to check the convergence of the XCHEM calculation.

3.2 Scattering states

Photoionization consists of the ejection of an electron from a molecule. The ejected
electron behaves as a particle under the influence of a potential, the one created
by the ion core. Therefore, photoionization is equivalent to the scattering of a
particle. To model this system we make use of the radial TISE equation for one
electron with solution Rnl(r)[

− 1
2r

d2

dr2 r +
l(l + 1)

2r2 + V(r)
]

Rnl(r) = EnlRnl(r) (3.8)

By focusing on the continuum spectrum of Ĥ and considering κ2 = 2E, uκl =

rRκl we cast Equation 3.8 into Equation 3.9[
d2

dr2 + κ2 − l(l + 1)
r2 −U(r)

]
uκl(r) = 0 (3.9)

If we consider the case U(r) = 0 for a sufficiently large r, we obtain the equa-
tion for a free particle [

d2

dr2 + κ2 − l(l + 1)
r2

]
u f ree

κl (r) = 0 (3.10)
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The solution to the free particle equation is expressed in terms of spherical
Bessel functions jl and nl

uκl = Arjl(κr) + Brnl(κr) (3.11)

where rjl and rnl are known as regular Fl and irregular Gl solutions. Spherical
bessel functions are defined via

jl(r) = (−1)l
(

1
r

d
dr

)l sin(r)
r

(3.12)

nl(r) = −(−1)l
(

1
r

d
dr

)l cos(r)
r

(3.13)

The regular and irregular functions behave asymptotically when r → ∞ as

Fl → sin
(

kr− lπ
2

)
(3.14)

Gl → cos
(

kr− lπ
2

)
(3.15)

nl shows a divergence at r = 0 for all l, thence B = 0 in u f ree
kl .

If we now consider a potential U(r) up to a distance Ru, we need both jl and
nl to obtain uκl(r)|r>RU with the correct boundary conditions. In this case, at long
distances we would obtain

uκl(r)|r>RU = A sin
(

κr− lπ
2

)
+ B cos

(
κr− lπ

2

)
(3.16)

=
√

A2 + B2 sin
(

κr− lπ
2

+ δl

)
(3.17)

We can see that in the presence of a potential, the scattered particle behaves at
long distances exactly as a free particle except for the presence of a phase shift δl

given by
δl = tan−1(A/B) (3.18)

The solution to a scattering problem can the be viewed as a superposition of
free particles solutions, taking into account its corresponding phase shift.

Finally, we are considering the case the potential follows a coulomb law, i.e.
U(r) = 1

r . The solutions are called coulomb wavefunctions and are defined in
terms of the hypergeometric functions. The regular and irregular solutions Fl
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and Gl have the following asymptotic behavior

Fl(κr, η) = sin
(

κr− πl
2

+ σl − η log(2κr)
)

(3.19)

Gl(κr, η) = cos
(

κr− πl
2

+ σl − η log(2κr)
)

(3.20)

where σl is the coulomb phase shift. Coulomb wavefunctions play an important
role in photoionization, since at long distances one can consider that the electron
feels the ion as a coulomb potential.

3.2.1 B-splines basis

B-spline functions were introduced in the 40s by Schoenberg [41] and have been
extensively used mainly in mathematical numerical analysis, and even in com-
puter graphics. From the 90s they have entered in the atomic and molecular
physics field thanks to their outstanding properties. They form an essentially
complete basis set with a relatively low number of basis functions and negligible
linear dependencies [42].

B-splines are piecewise polynomial functions that are defined in an interval
[a, b] by:

1. An order k ∈N.

2. A non-decreasing knot vector t that divides the interval [a, b] in l subinter-
vals by l + 1 knots. It is allowed to have knots with a multiplicity higher
than 1, used to reduce continuity. Knot vectors are normally built up with a
maximum k multiplicity at the endpoints and simple uniform knots in the
interior leading to t = (t1, . . . , t1, t2, t3 . . . , tl+1, . . . , tl+1). This knot vector is
the one we will be considering. It contains a set of l + k − 1 B-splines and
allows to set boundary conditions at the endpoints with the first B1 and last
Bn B-splines.

They are generated recursively by the De Boor algorithm [43]

Bk
i (r) =

x− ti

ti+k−1 − ti
Bk−1

i (r) +
ti+k − x

ti+k − ti+1
Bk−1

i+1 (r) (3.21)

B1
i (r) =

1 ti ≤ x ≤ ti+1

0 otherwise
(3.22)
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where we can notice that a single B-spline is defined by k + 1 knots (k subinter-
vals) and

Bi(r) > 0 iff r ∈]ti, ti+k[ (3.23)

Bi(r) = 0 iff r /∈ [ti, ti+k] (3.24)

Consequently, there are k non-zero B-splines in a given subinterval [ti, ti+k]

and the product of two B-splines follows

Bk
i · Bk

j = 0 for |i− j| ≥ k (3.25)

yielding banded matrix representations with a k− 1 bandwidth.
As it has already shown, continuum electrons have an asymptotic oscillatory

nature, meaning that scattering functions are not square-integrable and do not
belong to the L2 space. Given the fact that B-splines are defined in a finite box,
they are square-integrable and allow for the normalizability of the wavefunction.
They must be able to reproduce the oscillatory behavior of the electron and must
match the boundary conditions at the end of the box.

3.3 Static-Exchange DFT

Decleva and collaborators [18, 19] developed a method that enables the calcula-
tion of dipole couplings between electronic states under the DFT formalism. This
method has proved to provide precise photoionization cross sections for small
and medium sized molecules within the fixed nuclei approximation

The method begins with a calculation of the ground state by using the ADF
package [44] with the LB94 exchange-correlation functional [45]. This functional
is designed to have the correct Coulomb-like asymptotic behavior. From this cal-
culation we obtain the KS-orbitals for the ground state from which we obtain
cationic one-hole states by removing one single electron and promoting it to a
continuum orbital yielding N-electron wavefunction of the form

ψN(r) = AψNe−1(r1, r2, . . . rN−1)ϕ(rN) (3.26)

STO basis used in bound state electronic calculations provide a reasonable fast
convergence and accuracy, but they are unsuited for the continuum. Therefore,
the method uses a multicenter expansion of B-splines and spherical harmonics
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in which to expand the electronic wavefunction. There are B-spline centers at
each atomic position and also at the the center of mass of the molecule. The
Hamiltonian of the system is constructed in this basis, and its diagonalization
yields bound states, when their energy is lower than the ionization threshold, and
discretized continuum states otherwise. Nevertheless, the obtained scattering
states do not satisfy the correct boundary conditions. The actual scattering states
are obtained by using the Galerkin approach, that allows to obtain them at the
chosen energies.

3.4 XCHEM Methodology

3.4.1 GABS Basis

Traditional Quantum Chemistry Packages are based on Gaussian functions and
they are not appropriate for describing continuum electrons. On the contrary, B-
splines have been successfully used to describe the electronic continuum. That
is why XCHEM has combined the best of two world in a hybrid approach by
using Gaussian and B-spline functions in a unique basis called GABS. The GABS
basis was introduced by Marante [13] and it was used to represent bound and
continuum states of hydrogen, obtaining essentially exact results. It consists of a
set of gaussian functions —monocentric gaussians (MC)— centered at the center
of mass of the molecule with the form

Gα
klm(r, θ, φ) =

√
1
2

(π

α

)1/4
√

(4k + 2l + 1)!!
(4α)2k+l+1 r2k+le−αr2

Ylm(θ, φ) (3.27)

l is the angular momentum and k is included to provide a greater radial flexi-
bility. The α exponents for each orbital angular momentum come from a geomet-
ric progression [46]

αn = αβn−1 (3.28)

The B-splines are constructed to begin at a certain radius R0 that guarantees
overlap with monocentric gaussians but no overlap with the polycentric basis
coming from a quantum chemistry calculation.

In Figure 3.1 we show a representation of the GABS basis. The black dots at
the center represent the polycentric gaussian basis (PC). On top of it we see the
MC basis that extends effectively until a certain distance, represented by the blue
area. Finally, we have the B-spline basis represented by the purple area and which
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FIGURE 3.1: Scheme of the GABS basis. Adapted from [47].

starts at R0 and extends to the end of the box. As it can be seen from the figure,
B-splines do not overlap with the polycentric gassians and one does not have to
bother with those kind of integrals. The connection between B-splines and MC
is what permits the electron from the neutral molecule to go into the continuum,
leaving the molecule ionized.

3.4.2 Augmentations

Firstly, the parent ions electronic states are obtained from a state-averaged CASSCF
calculation. This ensures that they all have the same molecular orbitals, so that
Slater-Condon rules Equation 2.15 and Equation 2.16 can be applied. The vir-
tual orbitals are removed and substituted by the GABS basis. The virtual orbitals
are very diffuse and can overlap with the B-splines, what is not allowed by the
XCHEM model.

The wavefunction is then described in a Close Coupling expansion:

|ψE〉 = ∑
i

cE
i |ψi〉+ ∑

α
∑

j
cE

αja
†
j |Φα〉 (3.29)

where ψi represents the Ne electron wavefunctions that belongs to the neutral
manifold, whereas the second part describes all possible augmentations of the
different parent ions α in the orbital j. This augmentation is done in different
orbital sets:

1. Augmentation in the remaining polycentric orbitals.
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2. Augmentation in the monocentric orbitals.

3. Augmentation in the B-splines

The possibilities 1 and 2 imply only the use of Gaussian functions and they in-
tegrals between them are calculated using a modified version of the OpenMolcas
package [11]. The last possibility is calculated by the XCHEM code considering
that the overlap between B-splines and polycentric orbitals can be neglected. The
augmentation on B-splines is done separating the radial and angular part, so that
this part is defined by |ΛαYlmR〉, where Λα is the channel function associated
with the parent ion Φα, the angular distribution of the B-spline is depicted by the
spherical harmonics Ylm and the radial part R is represented by B-splines.

Before finishing, a few comments on resonances and autoionizing states. The
autoionizing states come from the augmentations, which yield Ne electron states
in which the electron is far from the molecule and loosely bound. These autoion-
izing states are related to the parent ion from which they are built by augmen-
tation of one electron. For each parent ion there is a set of bound states that
converge to the parent ion energy, as shown in Figure 3.2. When this parent ions
—channels— are coupled in a multi-channel calculation there is a possibility that
ionization occurs by through the decay of an autoionizing state. The interfer-
ence between this path and direct ionization gives rise to Fano resonance in the
photoionization spectrum.

FIGURE 3.2: Schematic representation of the autoionizing states and continua of
pyrazine. Ionization thresholds come from a CASSCF (9,8) calculation that will be ad-
dressed in chapter 4
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The photoionization cross section in a shape resonance, i.e. when autoionizing
states are not involved, follows a Lorentzian shape

σ(E) =
π

κ2
Γ

1
4 Γ2 + (E− ER)2

(3.30)

where Γ is the width of the resonance and ER its energy. This width is related
to the lifetime by τ ∝ 1

Γ . Therefore long lifetimes yield very narrow peaks in the
photoionization spectrum. In case an autoionizing state is involved at this energy,
the photoionization cross section changes to an asymmetric shape known as Fano
profile [48].
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Chapter 4

Results and Discussion

In this thesis we have used the XCHEM and DFT static-exchange methods, previ-
ously described, to obtain the ionization cross sections of the pyrazine molecule
under the fixed nuclei approximation. This means that we are considering a
unique geometry of pyrazine, that was obtained from a geometry optimization
of the ground state at the MP2 level with a cc-PVTZ basis [49]. Nevertheless,
one must be cautious, given the fact that nuclei move for sufficiently long times.
Ultimately, we can only expect to trust results that come from very short lifetimes.

The main objective consists of performing a multi-channel calculation with
the XCHEM method for pyrazine and analyze the resonances that may appear.
Furthermore, we will compare the results given by the well-established method
based on DFT with the ones given by XCHEM. The DFT static-exchange method
does not allow for close-coupling of ionization channels, while XCHEM does.
Therefore, in order to have a better comparison the XCHEM method has been
adapted to obtain a single channel result. A multichannel calculation has also
been performed in order to show why XCHEM will play an important role in
describing and understanding photoionization.

Firstly, we will address the electronic structure calculation along with the par-
ent ions considered in this project, and subsequently we will focus on the pho-
toionization cross section curves obtained by both methods.

4.1 Bound electronic states

Prior to obtaining scattering states and cross sections, one must obtain the bound
states for the neutral system as well as the cation. In the case of XCHEM this
bound states are obtained from CASSCF, while in DFT static exchange come from
a DFT calculation. We have considered the ground state of neutral and 5 elec-
tronic states of the cation.
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FIGURE 4.1: Molecular orbitals of pyrazine from a CASSCF (9,8) state-averaged calcula-
tion. First row: 6ag, 5b2u, 1b1u, 1b3g. Second row: 1b2g, 2b1u, 1au, 2b3g.

4.1.1 Multireference methods

Regarding electronic structure, XCHEM permits a far more accurate description
of bound states, since it uses CASSCF for this purpose. This means that bound
states are described by several determinants, as many as the user desires, the
only limitation being computer time availability; in contrast to DFT where bound
states are described from a single Slater determinant.

The orbitals were calculated by averaging the wavefunction of the cation states,
i.e. a SA5-CASSCF calculation and the neutral was obtained within these orbitals.
In this project we have used two different active spaces: (9,5) and (9,8). The eight
orbitals are represented in Figure 4.1, and as it can be seen they correspond to π,
n and π∗ orbitals. In fact, the active space (9,8) is fairly small but contains the nec-
essary to describe the cationic states. From [50] one can see that the main cationic
states of pyrazine are associated to ejecting electrons from π and n orbitals. Since
pyrazine belongs to the D2h symmetry group, the parent ions considered for this
project are Ag, B2g, B2u, B3g and B1u.

The (9,5) active space does not contain the last three orbitals in Table 4.1, it
just contemplates the occupied ones. This means that electronic states are built
up with a single determinant. The purpose of using this active space is to mir-
ror as much as possible the static-exchange method, and examine the effect of
increasing the configuration space in the photoionization cross sections.

In Table 4.1 the results for the multiconfigurational calculations are shown.
The MRCI was done on top of the (9,8) calculation. There is a clear decrease in
the energy of all the considered states, however, the ionization thresholds for (9,8)
are not that far from the MRCI, meaning that it is a valid active space. In the case
of (9,5) we see that there are some big differences.
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CASSCF (9,8) all π, n, π∗ orbitals
Molecule State EMRCI (au) ∆EMRCI (eV) E (au) ∆E (eV)

Pyrazine 1Ag -263.6462 0.000 -262.8226 0.000
[Pyrazine]+ 2Ag -263.2926 9.618 -262.5109 8.478

2B2g -263.2816 9.917 -262.5056 8.622
2B2u -263.2374 11.119 -262.4587 9.898
2B3g -263.2275 11.389 -262.4544 10.015
2B1u -263.1457 13.614 -262.3722 12.251

CASSCF (9,5) only π, n orbitals
Molecule State E (au) ∆E (eV)

Pyrazine 1Ag -262.7356 0.000
[Pyrazine]+ 2Ag -262.3868 10.080

2B2g -262.4245 9.055
2B2u -262.3093 12.188
2B3g -262.3658 10.652
2B1u -262.2220 14.563

TABLE 4.1: Energy results from the (9,8) and (9,5) CASSCF calculations and comparison
with MRCI results

4.1.2 DFT

As opposed to the previous case, here we use the KS-orbtials from a ground state
DFT calculation for neutral pyrazine. The ionic states are obtained by removing
electrons from KS-orbitals, thus generating holes. In light of having a paired
system, the one-electron holes yield cationic states of the same symmetry as the
orbital where the hole was generated. We have only considered cationic states
that mirror the states from the previous section. States with the same Ag, B2g,
B2u, B3g and B1u symmetry and higher in energy, when several available for a
given symmetry where selected.

In Figure 4.2 we show the cationic states energy relative to the ground state
for the different methods employed. Considering MRCI as as the best option,
we can observe that (9,8) yields a result qualitatively identical, maintaining the
relative order of the cationic states. In the other methods, this is not the case, and
we discern that the energy order changes for (9,5) and DFT.

In the MRCI calculation we have used neutral pyrazine orbitals, in other words,
it is the best ground state that can be obtained; while for the (9,8) and (9,5) cal-
culations we have used the ground state obtained by using the parent ions state-
averaged orbitals. Still, for the computation of photoionization cross sections,
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FIGURE 4.2: Cationic pyrazine states ralative to the ground state for different methods.
Experimental ionization potential extracted from [51]

this is not the ground state used. As it has been described in chapter 3, we use a
ground state that comes from augmenting the parent ions using the GABS basis.
Thus, we obtain a better ground state, clearly with a lower energy. This results in
a displacement to higher energies of the (9,8) and (9,5) cationic states relative to
the GS. (9,8) first ionization threshold is already quite close to the experimental
ionization potential; then if we take into account that there will be a slight in-
crease in all the ionization thresholds thanks to a better description of the neutral
ground state we could almost exactly reproduce the IP.

We can notice that for all methods except for (9,5) the ground state is of Ag
symmetry. Therefore, (9,5) performs worse than DFT, as it could be foreseen, since
DFT it not just a single determinant thanks to the inclusion of electron correlation
through the exchange-correlation functional LB94.

4.2 Close Coupling scheme

In order to calculate photoionization cross sections one needs to calculate the
dipole couplings between the ground state and the continuum states.

〈ψGS|~εr̂|ψE〉 (4.1)
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TABLE 4.2: Close Coupling scheme. Symmetry of ejected electron and allowed l and m
values for each parent ion and polarization direction.

Parent Ions Ag B2u B1u B2g B3g

X
e− B3u B1g B2g B1u Au
l 1, 3, 5. . . 2, 4, 6. . . 2, 4, 6. . . 1, 3, 5, 7. . . 3, 5, 7. . .

m 1, 3, 5. . . -2, -4, -6. . . 1, 3, 5. . . 0, 2, 4. . . -2, -4, -6. . .

Y
e− B2u Ag B3g Au B1u
l 1, 3, 5. . . 0, 2, 4, 6. . . 2, 4, 6. . . 3, 5, 7. . . 1, 3, 5. . .

m -1, -3, -5. . . 0, 2, 4, 6. . . -1, -3, -5. . . -2, -4, -6. . . 0, 2, 4. . .

Z
e− B1u B3g Ag B3u B2u
l 1, 3, 5. . . 2, 4, 6. . . 0, 2, 4, 6. . . 1, 3, 5, 7. . . 1, 3, 5. . .

m 0, 2, 4. . . -1, -3, -5. . . 0, 2, 4, 6. . . 1, 3, 5. . . -1, -3, -5. . .

where ψe is constructed following the formula of Equation 3.29. The chosen chan-
nels are described by a parent ion channel Λα and the angular momentum of the
B-splines Ylm. In order for this integral to be non-zero, it must belong to the totally
symmetric irreducible representation, Ag. The molecule of pyrazine is D2h, and
therefore the x, y and z components of the polarization vector have B3u, B2u and
B1u respectively. Taking into account that neutral pyrazine is Ag and the parent
ions have Ag, B2g, B2u, B3g and B1u symmetry, depending on the polarization
vector the ejected electron must belong to a certain irreducible representation,
that will determine the allowed l and m, and thus the spherical harmonics em-
ployed in the close coupling expansion. In Table 4.2 we have gathered the valid
l and m quantum numbers for the ejected electron depending on the polarization
vector and the channel function, i.e. the final molecular ionic state.

4.3 DFT static exchange

First of all, a calculation for a maximum angular momentum of 8 is shown in
Figure 4.3. We have represented the total cross section along with the partial
cross sections from angular momenta 1, 3, 5 and 7. It can be observed that the
lowest angular momenta l = 1 and l = 3 have higher contributions to the total
cross section at low energies. The partial cross section for l = 5 and l = 7 are
zero for near zero photoelectron energies. When the energy increases we discern
a decrease in the cross sections associated with l = 1 and l = 3 and an increase
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in l = 5. In the case of l = 7, it does not have a significant contribution in the
interval of energies considered.

A convergence test have been done using the DFT static-exchange formalism,
in order to know the lowest angular momentum needed to obtain reliable re-
sults. In Figure 4.4 we observe that L = 3 is clearly not enough and thus yields
a structureless curve. By increasing the angular momentum one notes first the
appearance of a peak and second its displacement to lower energies.

4.4 XCHEM

Now we are going to present the results obtained by the XCHEM method, by
considering single and multichannel calculations and with two different active
spaces. In all cases a box from 7.0 to 200 au with 390 B-splines of order k = 7 has
been used.

In Figure 4.5 we compare the XCHEM single channel with the DFT method.
Although, obviously not exactly equal we can recognize that XCHEM with just
l = 6 and the active space (9,5) tries to reproduce the result that is obtained from
the converged DFT calculation for Lmax = 18 in the x direction. In the case of (9,8)
we observe a single peak and displaced to higher energies. The fact that DFT and
(9,5) are kind of similar and (9,8), with a much better description of the electronic
structure, so different implies that a multireference calculation is important to
describe the ionization of pyrazine.

FIGURE 4.3: Partial cross sections for the transition A1
g → A2

g when Lmax = 8.
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FIGURE 4.4: Total photoionization cross section for angular momentum 3–18.

For the y polarization we notice that both XCHEM calculations show a peak
near 0.1 au. In the case of (9,8) we observe that there is some kind of structure
above 0.2 au that is not observed in DFT and (9,5).

In the case of the z direction, DFT does not resemble at all the results obtained
with both XCHEM calculations. In fact, the results obtained from (9,8) and (9,5)
are quite similar, except for (9,8) displaying two small peaks.

In spite of not coinciding the scales, and in some cases obtaining different
shapes this is quite an important result, since it means that in order to improve
the XCHEM calculation and achieve convergence, there is no need to go to such
large angular momentum values. Perhaps just including up to L = 7 or L = 8 is
enough.

Finally, the results from a multichannel calculation in Figure 4.6 it can be ob-
served there is a good agreement between the length and velocity gauges, mean-
ing that the calculations have a certain degree of accuracy, although they could be
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FIGURE 4.5: Comparison of XCHEM single channel calculations with active spaces (9,8)
and (9,5) and L = 6 with DFT static-exchange L = 6 and L = 18.

improved. The outcome of this calculation is radically different from the ones ob-
tained by considering only a single channel. We observe a series of peaks related
to resonances that come from autoionizing states that decay to a given parent ion.
These autoinizing states are present due to the fact that we are including a mul-
tichannel close coupling. Autoionizing states are a set quasi-bound states that
converge to a given parent ion. In the XCHEM formalism they come from aug-
menting the parent ions. An excitation from the ground state to an autoionizing
state associated to a given parent is followed by its decay to a parent ion of lower
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energy. This is only possible to simulate by including several ionic channels in
the Close Coupling expansion.

In Figure 4.6 we have summed the contributions to the total cross section per
channel. This means that we observe to which parent ion the resonances are
decaying. However, we cannot still know the origin of the resonance, i.e. the
autoionizing state that eventually decays.

FIGURE 4.6: On the left: comparison of length and velocity gauges for a multidetermi-
nant and multichannel calculation. On the right: Channel contributions to the total pho-
toionization cross sections. The dashed lines represent the ionization thresholds. Parent
ions in energy order.

Below the second threshold there can only be decay to the lowest parent ion
Ag, since it is the only open channel. Furthermore, for x and y polarizations
we observe very thin peaks, meaning that they have long lifetimes and the fixed
nuclei approximation is not holding. Between the second and third thresholds we
observe wider peaks with contributions of both the first and second parent ions
Ag and B2g. The longer lifetimes of this resonances make them object of future
study. In the case the z polarization, we have obtained a cleaner spectrum with
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wider peaks and a noticeable decay to the third and fourth parent ions, in contrast
with the other polarizations where decay occurs almost exclusively to parent ions
Ag and B2g. From the fourth to the fifth threshold we know that the resonances
come from rydberg states associated to the fifth parent ion B1u. Finally, there is
no decay to the fifth parent ion since there are no autoionizing states above it.



43

Conclusions and Future prospects

In this work we have carried out a multi-channel calculation for the pyrazine
molecule using a (9,8) active space. It has been shown a good agreement be-
tween the length and velocity gauges for this calculation and the channels that
contribute to the total cross sections. As it has been stated, we cannot trust very
narrow resonances, due to their long lifetimes. In the case of the x and y directions
we intend to deepen in the resonances between the second and third thresholds
that decay to the Ag and B2g parent ions, but we still do not know where they
come from. In the case of the z direction, we have observed wider and better
defined resonances. The identification of resonances is now a development that
we are introducing in the XCHEM code.

We have also calculated photoionization cross sections for the single-channel
case with active spaces (9,8) and (9,5). The results obtained have been compared
with the ones obtained from the static-exchange method. We have seen that the
agreement is far from perfect, specially from the scale viewpoint. Nevertheless,
we have observed that for L = 6, XCHEM already yields peaks near the positions
given by SEA. This is an important result, meaning that XCHEM does not need
to include so large angular momenta to achieve convergence.
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