

EDICIONES DE LA UNIVERSIDAD AUTÓNOMA DE MADRID
28049 Madrid
Teléfono 91 497 42 33
Fax 91 497 51 69
servicio.publicaciones@uam.es
www.uam.es/publicaciones
© UAM Ediciones, 2018.
© Las autoras, 2018.

EDICIONES DE LA UNIVERSIDAD AUTÓNOMA DE MADRID
Reservados todos los derechos. Está prohibido, bajo las sanciones penales y
resarcimiento civil previsto en las leyes, reproducir, registrar o transmitir esta
publicación, íntegra o parcialmente (salvo, en este último caso, para su cita expresa en
un texto diferente, mencionando su procedencia), por cualquier sistema de recuperación
y por cualquier medio, sea mecánico, electrónico, magnético, electroóptico, por fotocopia
o cualquier otro, sin la autorización previa por escrito de Ediciones de la Universidad
Autónoma de Madrid.

DOI: https://doi.org/10.15366/manual.psych2018
Diseño: Ana Palomo

PSYCHTOOLBOX

A BRIEF GUIDE TO START
PROGRAMMING EXPERIMENTS IN

PSYCHOLOGY

María Hernández Lorca

Almudena Capilla

2

INDEX

1. INTRODUCTION

2. PART 1: PTB FUNCTIONS AND THEIR USES

2.1 STIMULATION
 2.1.1 Visual stimulation
 2.1.2 Auditory stimulation

2.2 TIME

2.3 RESPONSE

3. PART 2: PRACTICE

APPENDIX

This work has been supported by a UAM 2016-17 Teaching Innovation Project (PS_1.16)

3

1. INTRODUCTION

Research in Psychology faces the challenge of understanding human behavior by
means of experiments while the human participant is awake, conscious and, usually,
responding to stimulation. To answer our research questions, we count on many different
techniques to register behavioral data, but to be successful in this endeavor, we need to
ensure that both stimulation and data collection of participant responses are carried out with
high precision.

There is a broad range of software useful for these purposes available on the market.
Among these, we favor and recommend the toolbox Psychtoolbox (PTB) to carry out the
typical experimental tasks employed in Psychology, as well as in related fields such as
Cognitive and Affective Neuroscience. The reasons for recommending PTB are many, but the
most important is the fact that it covers the experimental needs in Psychology research: it is
versatile in the presentation of stimuli, efficient in the programming, very accurate with
stimulation (placement on the screen and presentation time), and very accurate with data
collection (e.g. reaction times). Furthermore, PTB can be downloaded from their website
(www.psychtoolbox.org) for free.

With this tutorial we aim to introduce the toolbox from the beginner’s point of view, so
that the reader gets familiar with the most common PTB programming commands and
arguments, learns how to program a typical Psychology experiment, becomes capable of
solving the most common problems one can encounter when beginning to program an
experiment with PTB, and gets to know how and where to find the necessary information to
overcome more complex problems.

PTB runs in MATLAB and GNU Octave, and most commands you need when
programming an experiment are based on this language. This entire tutorial, the theoretical as
well as the practical approach, is based on MATLAB, and we therefore recommend to have at
least a basic knowledge of MATLAB language and functions before starting. In case you need
some training, the ‘Matlab for Psychologists’ tutorial by Antonia Hamilton can be of great help
(http://www.antoniahamilton.com/matlab.html).

This tutorial is divided into two sections: an introductory part to some of the PTB
functions and their use, and a practical part where those functions are put into practice in a
classic Psychology experiment. The first part covers three areas that are especially useful to
psychological experimentation: 1) Related to the stimulation, and therefore, and for the most
part, to what is shown on the screen. 2) Related to time, reaction times or durations: PTB has
a very high degree of timing accuracy, which gives precise control over these important
variables in psychological research. 3) Related to the participant’s response, and therefore
related to the information provided via the keyboard or any other response device (e.g., key
presses).

The practical part illustrates how to program a typical experiment, step by step, with

the code necessary to achieve the specific goal of each step. The result is a complete script
for a short experiment that will cover the usual needs in Psychology such as presentation of
pictures, response collection or reaction time recording, among many others.

http://www.psychtoolbox.org/
http://www.antoniahamilton.com/matlab.html

4

 The PTB webpage also contains demos and how tos that are very useful when
learning specific functions or in case of needed clarifications or further information (see
http://peterscarfe.com/ptbtutorials.html). A Google search with specific questions or problems
can be very useful, and it is very likely that the problem one is experiencing has already been
asked and answered in some online community.

Programming can be very discouraging and frustrating, but we entice our readers to
be patient and persistent, use up all the resources that the online community so generously
offers for solving doubts and never to lose faith and confidence in the ability to program well
and solve any problems that might occur along the way.

2. PART 1: PTB FUNCTIONS AND THEIR USES

In a typical Psychology experiment, stimulation usually comes in the form of visual

stimuli presented on a computer screen or via auditory stimuli. This chapter is about all the
PTB functions that serve sensory stimulation, their use and specifications. Please note that
these functions are only related to the presentation of the stimuli and decoding the
participant’s response and reaction time. To actually record and save the data we will need
MATLAB code. The practical section will illustrate a script as a whole, and it will therefore
include the code needed for collecting and saving the data.

We recommend that you try the examples that illustrate each function and play with

them by changing parameters and experiment with the outcome. By doing this, you will gain a
more real knowledge and comprehension of the function and will be more prepared to use it
the way your experiment demands.

2.1 STIMULATION

2.1.1 Visual Stimulation

The Screen Function

The PTB function Screen controls what happens on the computer screen. The

structure of this function is Screen('command', arg1, arg2, ...). The command
defines the instruction, and the arguments the specification to that instruction. To find out all
the functions that Screen has, you can type Screen in the Command Window for a list.
Similarly, to find the details on how to use the different instructions within the Screen
function, we can use the help that is built in the toolbox. If the usual way to ask for help in
MATLAB and any other PTB function is

>> help function

with Screen you call the help by typing in the Command Window

http://peterscarfe.com/ptbtutorials.html

5

>> Screen command?

The response appears in the Command Window with the usage and specifications.

Thus, if we type in the Command Window:

>> Screen FillRect?

the feedback in the Command Window is

Usage:

Screen('FillRect', windowPtr [,color] [,rect])

This means that if we were to call the function Screen with the command 'Fill

Rect', we would have to code it as it is shown. The arguments with no brackets [] around
them must be filled in, whereas those that have brackets around can be left blank and PTB
will use default values. If we were to specify values we would need to separate the arguments
by a comma. Furthermore, if we wanted to specify an argument that is placed after another
argument that we do not need to specify, the argument that stays as default would be
signalized with plain brackets. Following the example of 'FillRect', if we wanted to
specify the rect argument while leaving the color as default we would code it as follows:

>> Screen('FillRect', windowPtr, [], [100 100 600 600])

Opening window(s)

Opening the onscreen window, or windows, where our stimuli will appear is among the

many things we can do with Screen. This is usually the first step using PTB, and the first
PTB function that we use in an experimental script. PTB’s help for 'OpenWindow' shows
the usage as follows:

>> help OpenWindow?

[windowPtr,rect]=Screen('OpenWindow',windowPtrOrScreenN
umber[,color][,rect][,pixelSize][,numberOfBuffers][,ste
reomode][,multisample][,imagingmode][,specialFlags][,cl
ientRect]);

However, most often the arguments we need in this case are:

% Opening Onscreen Window

6

>> [windowPtr, rect] = Screen('OpenWindow', 0, [127 127
127])

The OpenWindow command returns two output variables: windowPtr stands for

Window’s Pointer, which refers to the window we just opened, and rect stands for the
dimensions of the monitor we are working with. The dimensions are signalized with a 1x4
vector with the following values [xMin yMin xMax yMax], the first two values will always be 0,
the xMax will be the number of pixels for the x axe, i.e. the width of the screen, and the yMax
will be the number of pixels for the y axe, i.e the height of the screen (see the Figure 1 below).

PTB default size for the onscreen window is full screen, and therefore the dimensions

of our onscreen window will be the same as the dimensions of our monitor, as specified in the
variable rect provided by 'OpenWindow'. However we can change the exact dimensions
and position of the onscreen window by writing a new rect (again as 1x4 vector with [xMin,
yMin, xMax, yMax] dimensions) as an argument inside the 'OpenWindow' command. The
new rect will refer to the whole screen, e.g. rect = [100 100 600 600] means that
the upper left corner of the onscreen window will be placed 100 pixels to the right on the x
axe; 100 pixels down in the y axe, the right corner will be placed 600 pixels right in the x axe,
and the right lower corner will be placed 600 pixels down in the y axe (see Figure 2 below). It
is recommendable to use a smaller window to test a script as errors may occur, and the small
screen is easier to close. On the contrary, if we are working with full screen and an error
occurs throughout the script before closing the window, the only way we can close a full
screen is by pressing Ctrl+Alt+Del and ending PTB.

Figure 1. The dimensions of our monitor
in pixels is the 1x4 vector variable rect.
The first two values refer to the upper left
corner, or the minimum values for the x
and y axes, which are always 0,0; the
third value refers to the upper right
corner, or the maximum value for the x
axe; and the fourth value refers to the
lower left corner, or the maximum value
for the y axe.

7

Closing window(s)

PTB function Screen together with the command 'Close' closes the window(s)
we have opened. If we have more than one onscreen window open and we just want to close
a specific one, we need to specify the windowPtr assigned to that window:

% Closing a specific onscreen window

>> Screen('Close', windowPtr)

In order to close all of them, even if it is just one, we use:

% Closing all onscreen windows

>> Screen('CloseAll')

or a shorter way to say the same:
>> sca

Screen ‘Flip’

Screen('Flip', windowPtr)is a critical command line, as it is responsible for
showing an onscreen window with the information we have specified in previous lines. When
set as default, Flip shows all the settings that we have previously applied at the next screen
vertical refresh. The usage allows further uses for more advanced actions such as specifying
the exact time to flip, whether it should clear previous framebuffer, whether it should

Figure 2. We can set a new rect for a
smaller onscreen window. The
dimensions of our new rect are local to
the dimensions of our monitor. Therefore,
for a rect = [100 100 600
600], we will have an onscreen window
of 500 high and 500 pixels wide.

8

synchronize with the refresh, or whether it should flip to just the onscreen identified by the
windowPtr or to all on-screens in use. See specific examples of Screen('Flip')in use in
the Writing or Drawing sections.

Show, hide, set mouse

Other PTB functions, non-directly pertaining to the stimulation, but useful and
recommendable, are HideCursor, ShowCursor and SetMouse. The first and second
functions respectively hide and show the mouse cursor on the screen. Most often they are
placed just before opening and right after closing the onscreen window, so that the cursor
does not interfere with our experiment and we can see the cursor after the experiment.
SetMouse places the cursor on the screen coordinates of your choice.

% Hide the mouse on the screen

>> HideCursor

% Show the mouse on the screen
>> ShowCursor

% Place the cursor on x,y coordinates

>> SetMouse(x,y)

Writing

Writing is among the many edits that we can make in the onscreen window. This is

helpful in a handful of situations such as writing the instructions at the beginning of the
experiment or manipulating our stimuli if needed. 'DrawText' is the command that will
draw the text onto the screen. Different characteristics of the text can be manipulated with
Screen commands and arguments. For instance, 'TextSize', 'TextFont', or
'TextStyle', are Screen commands that allow size, font or style changes in the
writing (see below for usage). The fontString argument, placed within the
'TextFont' command, refers to the name of the font you want to use (e.g.
'Helvetica' or 'Times New Roman'); and the argument style, within
'TextStyle', is coded with the following numbers: 0=normal, 1=bold,
2=italic, 4=underline, 8=outline, 32=condense, 64=extend. Finally,
'DrawText' contains the text you want to show, as well as its position on the onscreen
(x,y coordinates) and its color. Color is specified as [rgb], i.e. a [red green blue]
1x3 vector (e.g. [255 0 0] makes red, and [255 255 0] makes yellow).

Here below you will find the steps and code for writing text within the onscreen

window, and a visual presentation in Figure 3 of how the execution of this code presents
itself on the screen.

9

% Opening onscreen window
>> windowPtr=Screen('OpenWindow', 0, [], [100 100 1000
1000])

% Setting the text size
>> Screen('TextSize', windowPtr, 25);

% Setting the font
>> Screen('TextFont', windowPtr, 'Helvetica');

% Setting the style (underlined)
>> Screen('TextStyle', windowPtr, 4);

% Setting the text, location (x,y coordinates) and
color
>> Screen('DrawText', windowPtr, 'hey there', 300, 300,
[255 0 0])

% Showing the result on the screen
>> Screen('Flip', windowPtr)

% Keeping the window for 2 seconds
>> WaitSecs(2)

% Closing the window
>> sca

Figure 3. Result of executing the code
written above. In this case, we opened an
onscreen window with a rect of [100
100 1000 1000] dimensions and set
up a text in red and underlined at the 300,
300 x,y pixel coordinates.

10

Drawing

PTB allows drawing lines and shapes. There is a specific Screen('command') for
each shape, such as 'DrawLine', 'FillOval', 'FillRect', 'DrawDots',
or 'DrawArc' (type Screen in the MATLAB Command Window for a full list of
subfunctions to draw). The arguments that go along with each command set the features of
each shape, such as its color (same usage as in 'DrawText'), position or size. For
example, to draw a line ('DrawLine') we need to set the x,y coordinates to where our line
will start (fromH, fromH) and end (toH, toV), whereas 'FillRect' will draw and fill a
rectangle. In this case, rect specifies the dimension of the rectangle, with the same usage
as rect in 'OpenWindow', that is a 1x4 vector with [xMin yMin xMax yMax] coordinates. If
rect is set as default it will fill the whole onscreen window. You can see the usage of these
two specific functions below.

% Drawing a line
>> Screen('DrawLine', windowPtr [,color], fromH, fromV,
toH, toV [,penWidth]);

% Drawing and filling a rectangle
>> Screen('FillRect', windowPtr [,color] [,rect]);

Showing images

Showing pictures in .jpg, .tiff or .png, among other formats, is a common need in

Psychology experiments. PTB works with pictures in three steps: first the picture is embedded
in a texture, then the texture is drawn and finally, the result is shown on the screen. Working
with textures makes the script less time consuming, more efficient and avoids potential
pixilation or artifacts on the screen. To create the texture, we need the command
'MakeTexture' followed by the Windows Pointer and the image we want to show. The
image needs to be in a matrix form, which means that it has already been read by MATLAB.
See the example below with the necessary steps to read and show an image called
‘MyImage.jpg’ with PTB.

% Reading the picture
>> image = imread('MyImage.jpg');

% Creating the texture with the picture in it
>> texture = Screen('MakeTexture', windowPtr, image);

% Drawing the texture
>> Screen('DrawTexture', windowPtr, texture);

% It shows the result on the screen
>> Screen('Flip', windowPtr)

11

2.1.2 Auditory Stimulation

Playing sounds

The most accurate way to present auditory stimulation with PTB is using the
PsychPortAudio sound driver, which is initialized by calling InitializePsychSound. In
order to play a sound, we first need to read the sound file in MATLAB, e.g. by means of the
wavread function. It is important to notice that PsychPortAudio interprets each row of the
sound as a channel; therefore, we need to transpose the output of wavread before going
further. Similar to the procedure we used to show images, playing sounds require three
consecutive steps. First, we need to open a PsychPortAudio device. This is done by the
command 'Open', whose output pahandle indicates the handle of the port audio device
to be called later. Second, we fill the playback buffer of the audio device with the sound, using
the command 'FillBuffer'. In the third step, we actually play the buffered sound, by
calling 'Start'. Once the sound has been played, we need to Close the PsychPortAudio
device. A code example is shown below:

% Initializing PsychPortAudio
>> InitializePsychSound

% Reading the sound
>> [mysound] = wavread('MySound.wav');
>> mysound = mysound’; % transposition

% Opening a PsychPortAudio device
>> pahandle = PsychPortAudio('Open')

% Filling buffer with sound
>> PsychPortAudio('FillBuffer', pahandle, mysound);

% Starting playback
>> PsychPortAudio('Start', pahandle);

% Closing the PsychPortAudio device
>> PsychPortAudio('Close', pahandle);

2.2 TIME

Stopping the script

Working with time is an essential part of stimulation. There are different ways to

control how long something stays on the screen. One easy way is to stop the script for a
given time. This can be useful when displaying instructions or pictures.
WaitSecs(TimeInSeconds) is the function that stops the script for as long as it has

12

been set. This means that the onscreen window freezes with the last order that it was given in
the script. Therefore, and continuing with the example used in the ‘Showing images’ section,
we would add the WaitSecs order just after the Flip command to maintain the picture on
the screen for the desired time (2 seconds in the example).

% Reading the picture
>> image = imread('MyImage.jpg');

% Creating the texture with the picture in it
>> texture = Screen('MakeTexture', windowPtr, image);

% Drawing the texture
>> Screen('DrawTexture', windowPtr, texture);

% It shows the result on the screen
>> Screen('Flip', windowPtr)

% Showing the picture for 2 seconds
>> WaitSecs(2)

Calculating Reaction Times

The behavioral data we record from the participant covers both RTs and responses.

To compute the reaction times (RTs) we need to know how long it takes from a given point
(usually the stimulus onset) to the time the participant responds, i.e. when a key is pressed.
To know that interval of time we ask the computer for a time reference when the stimulus
appears on the screen and again when a key is pressed, and then subtract the first to the
latter to calculate the interval. GetSecs tells you how long the computer has been switched
on in seconds with a wide range of decimals, which makes a very precise time reference. In
short, the way we calculate RTs is:

% Calculating RTs

>> BeginningTrial = GetSecs;

BeginningTrial = 1.2509e+004

>> PressTime = GetSecs;

PressTime = 1.2510e+004;

>> RT = PressTime - BeginningTrial;

RT = 1.0731;

13

2.3 RESPONSE

Checking key presses

Responses are retrieved with KbCheck. This function gives very useful information
on the response key and response time. The feedback that KbCheck gives is triple:
keyIsDown, a true (1) or false (0) variable that indicates whether a key has been pressed;
secs, the time reference to when the key was pressed (which is equivalent to retrieving
GetSecs at the time the key was down), and keyCode, a 1x256 vector representing all the
keys in the keyboard with a true (1) for the key that has been down and false (0) for the rest.
To find out the correspondence of keyCode to the actual key that was pressed, we can use
KbName(find(keyCode)) to map the keyCode and have the name of key in return. If
there are several devices connected via USB to the computer you can set the device/s you
want the function to check. If deviceNumber is set up to -1, all keyboard devices will be
checked, if it is set up to -2, all keypad devices will be checked, and if it is set up to -3 all
keyboard and keypad devices will be checked. If deviceNumber is left blank, the main
keyboard is checked.

% Checking which key has been pressed:

>> [keyIsDown, secs, keyCode] =
KbCheck([deviceNumber])

% Finding the key that has been pressed

>> KeyPressed = KbName(find(keyCode));

Cleaning the event queue

It is important to make sure that the queue of events for key presses is empty. This
means that we should make sure that KbCheck registers the key press form the participant
as a response to the corresponding trial and not any other key press resulting from
responding to other trial or an accidental press. Therefore, we recommend to call the function
FlushEvents just before KbCheck to be sure that key press that we record for each trial
corresponds to the response to that specific trial.

% Removing the queue of events for key presses

>> FlushEvents('keyDown')

14

Waiting for button press

There is also the possibility of asking PTB to stop the script, and therefore freeze the

screen, until a key has been pressed. KbWait by itself does just that, it waits until a key has
been pressed to continue reading the next lines in the script. To do that, it scans every 5 ms
whether a key has been pressed. However, the function is more complete and can optionally
give feedback on the key that has been pressed and give the temporal reference of the key
press (just as GetSecs does). It is important to take into account that the temporal reference
is the time the function checks whether a key has been pressed, and not the exact moment
the key was pressed, so it is not recommendable to use it as a reliable RT measurement. Just
as KbCheck, you can set this function to take into account specific devices
(deviceNumber), or even a specific phase of the key press (e.g. pressing or releasing the
key, by specifying different values of the argument forWhat).

% Wait for button press:

>> [secs, keyCode] = KbWait([deviceNumber] [,
forWhat=0] [, untilTime=inf])

Checking mouse clicks

PTB can check for mouse clicks analogous to how it checks for key presses. The
function GetClicks returns the number of clicks within the interclickSecs interval
in the output variable clicks; it also returns where the cursor is positioned with x,y
coordinates, and a 1xn vector (n=buttons in the mouse) with pressed (1) or not pressed (0)
values in the column representing each button (whichButton).

% Get Mouse clicks:

>> [clicks, x, y, whichButton] = GetClicks
([windowPtrOrScreenNumber] [,interclickSecs]
[,mouseDev])

3. PART 2: PRACTICE

In this section we will illustrate how to use Psychtoolbox to code a typical Psychology

experiment from scratch. Programming this experiment will require using most of the PTB
functions previously described, such as presentation of visual and auditory stimulation, time
control and collection of responses using the keyboard. We recommend you take your time to
understand how to program this task step by step. In this way, you will acquire the necessary
skills to program your own (simpler or more complex) experiment. In the attached online
material (see Moodle Formación – almudena.capilla) you can find the step-by-step MATLAB

15

scripts we will use in this section, as well as the stimuli needed to run them. In addition, the
fragments of the scripts that need to be modified in each step will be highlighted in figures.
Finally, you can find the final version of the PTB experiment in the Appendix section.

We propose you to program a simple categorization task, in which participants have to

decide whether a given image contains an animal (press the keyboard with the right index
finger) or not (left index finger response). We would like to collect responses for 10 trials, with
the following structure each (see Figure 4 for a schematic illustration). First, a fixation cross
will be shown for a variable interval between 0.4 and 1 seconds. This will be followed by the
random presentation of an image (animal/non-animal) for a fixed duration of 0.5 seconds.
Then, a question mark will appear on the screen until the participant gives a response or, in
the case that no response is given, until a maximum interval of 2 seconds. Finally, we would
like to give feedback for each trial, consisting of a 1000 Hz tone if the response was correct,
and a 500 Hz tone in the case of an error.

Now that we know what we would like to present to our participants, the first problem

appears: where do we start? Shall we start showing images, randomizing them, collecting
responses, or? Our recommendation is to start by writing down a prioritized list of steps you
will need to sequentially achieve. Once you have prepared this list, you can start
programming the experiment step by step. For this experimental task we have prepared the
following steps, although you could try to develop your own list based on how you would build
the experiment yourself.

Step 0: Opening (and closing) a window where the experiment will be presented
Step 1: Showing just one image
Step 2: Showing all animal images in a loop and a fixation cross before each of them

Figure 4. Schematic representation of the experimental task.

16

Step 3: Showing all images, saving information about the stimulus ID and condition of each
image

Step 4: Collecting responses (key pressed and RT) and saving them in vectors
Step 5: Checking whether responses are correct, and saving this in a vector
Step 6: Giving auditory feedback (1000 Hz if correct response, 500 Hz if error)
Step 7: Randomizing stimulus/condition order and fixation time
Step 8: Showing instructions and a ready screen, and thanking the participant
Step 9: Converting the script into a function and including try-catch statement
Step 10: Saving experiment information and results in a file identified with participant’s ID

Let’s begin programming each step using PTB.

Step 0: Opening and closing an onscreen window

In this preparatory step, we are going to simply open the window where the
experiment will be presented. For running the real experiment, we usually want to use full
screen mode. However, as mentioned before, if an error occurs in this mode, you will need to
end PTB (and MATLAB) by pressing Ctrl+Alt+Del. Thus, while you are debugging the
experiment, we recommend you to open a smaller window. In the case of an error, you could
always access the Command Window to close the screen manually by writing
Screen('CloseAll')or, alternatively, sca. In the script Step 0, you could choose
between full screen and small window by un/commenting the line of code of one of them, as it
is shown in the figure below.

If you run the script Step0 you will see that it simply opens and closes a gray on-

screen window. If you want to keep it open longer (e.g. 2 seconds) you could add
WaitSecs(2) between the open and close commands.

Additionally, we suggest you to run the command VBLSyncTest to test the

synchronization accuracy of PTB with the vertical retrace on your computer. Once you have
checked that synchronization is correct, you can comment that line in your script so that this is
not executed every time you run the experiment.

17

Step 1: Showing one image

The aim of Step 1 is to present just one image (e.g. 'NA5.jpg') in the on-screen
window. In order to do so, we first need to move to the folder where the image is stored on
your computer (cd) and read it using the MATLAB function imread. Then, the image will be
converted into a texture. Textures can be presented fast and very precisely by PTB. As we
showed you before, this is done using three consecutive Screen commands: (1)
'MakeTexture' to convert the image into a texture, (2) 'DrawTexture' to draw the
specified texture and, (3) 'Flip' to present the Texture synchronized with the next vertical
retrace.

Once the image is shown on your screen you could hold it until a key is pressed using

KbWait. After that, we propose you to show a gray window for one second before closing
the onscreen window.

Step 2: Showing a fixation cross and all animal images in a loop

In this step we are going to read and present all the animal images for 1.5 seconds
and a fixation cross before them for 0.5 seconds. This timing is for debugging; we will later
change it to the real one. As the animal images are consecutively named from 'A1.jpg' to
'A5.jpg', we can read them using a for loop, and store them in a variable called
animal consisting of a 1x5 cell matrix for later use. Alternatively, you could also
automatically read all the images in a folder using ls('*.jpg'). This is especially useful if
your images do not have systematic names.

After reading the images and the fixation cross, you can show the fixation cross

followed by each image in consecutive order using another for loop. As already practiced in
Step 1, the presentation of any image will require three commands: 'MakeTexture',
'DrawTexture' and 'Flip'.

18

You may wonder why we do not take the same for loop for reading the images and

presenting the textures. We recommend programming two separate for loops because
reading images is time consuming and if it was to be included in the presentation loop, it
would damage presentation time accuracy. You could check how much time is spent on a
selected piece of code by using the MATLAB functions tic and toc.

Step 3: Showing all images, saving information about stimulus ID and condition

In Step 3 we aim to show all images in order (first, animals; second, non-animal
images). Importantly, we would like to store information about which stimulus is presented in
each trial (both its ID and condition). This is not really relevant yet, as stimuli are presented in
a known sequence, but it will become essential in next steps, when the stimulus order is
randomized.

For this example, we have manually created the stimulus ID and condition vectors.

However, you could create them more automatically, which is useful if you have a large
number of stimuli, e.g. condition = [ones(Nanimal,1);
2*ones(Nnoanimal,1)]; another solution could be reading this information from a file
(e.g. from an excel file, using xlsread).

19

As you can see in the figure below, in the trial presentation loop we have used the
conditional statement if to select whether the trial is presenting an animal (if condition for
this trial is 1) or a non-animal (if condition is 2). Apart from that, the code for presenting the
fixation cross and the animal/non-animal picture in each trial is exactly the same as in Step 2.

20

Step 4: Collecting responses (key pressed and RT) and saving them in vectors

The aim of this step is to collect the participant’s responses in each trial. In order to do
so, after each image presentation, we need to include a piece of code to check for responses.
One easy way to do this would be to use [t2, keyCode] = KbWait([], [], 2),
which would check whether a key has been pressed during 2 seconds. However, in Step 4 we
alternatively suggest you to use KbCheck inside a while loop running for 2 seconds.
Although the former alternative is simpler, the latter is more precise and can be more useful in
the case of more complex scenarios.

In each iteration of the while loop, PTB will check whether a key has been pressed.

As already said, it is important to FlushEvents beforehand to avoid responses from
previous trials to be erroneously detected. In the case that a key press is detected, we will ask
PTB to find its identity by using KbName. This will be stored in a 1xNtrials cell variable called
response_key. In addition, we are interested in collecting the RTs in the variable
response_time. To obtain RTs, we will take a time reference with GetSecs before
starting the while loop (t1) and calculate how much time has elapsed until a key has been
pressed (t2). If a key press has been detected before the time limit of 2 seconds, the while
loop will break, and the experiment will continue.

Finally, it is a good practice to initialize the response vectors before filling them with

experimental data. We can create vectors for storing the key pressed, RTs (and correct
responses, which will be used in the next step) with the same length as the total number of
trials, and filled them with NaNs (Not a Number, i.e. missing data). In this way, if a participant
does not provide response for a given trial, this will automatically remain as a missing value.

21

Step 5: Checking whether responses are correct, and saving them in a vector

In addition to recording the key pressed and RT for a given trial (Step 4), in this step
we aim to evaluate whether this response is correct. If the image shown is an animal and the
subject pressed the 'k' key (right hand) the response will be correct. It will also be correct if
the image was a non-animal and the key pressed was 'd' (left hand). This information will
be stored in the vector response_correct, which will take values equal to 1 for correct
responses and to 0 for errors.

Step 6: Giving auditory feedback (1000 Hz if correct response, 500 Hz if error)

Once we know whether the response to a given trial is correct, we can deliver the
feedback for this trial by means of auditory stimulation (a 1000 Hz tone if the response was
correct, and a 500 Hz tone if it was an error). As indicated in the introductory section, the
most accurate way to present auditory stimulation is by means of the PsychPortAudio sound
driver. After reading the sound file in MATLAB, we can play it by calling three consecutive
PsychPortAudio commands: 'Open' the port audio device, 'FillBuffer' with
sound and 'Start' playback. After using the PsychPortAudio device, we should Close it.

22

Step 7: Randomizing stimulus/condition order and fixation time

One critical issue in the design of experiments in Psychology is to control for
confounding variables. One efficient way to accomplish this is to create a random sequence
of stimuli for each participant. In our case, we could first shuffle trial order by using
randperm, and then we could apply this random order to stimulus ID and condition.
Additionally, we might also want to randomize timing. In our case, the time of image
presentation and auditory stimulation was planned to be fixed. On the contrary, we planned to
have a variable interval for fixation, from 0.4 to 1 second. This can be achieved using the
MATLAB rand function.

23

Finally, it is very important to bear in mind that the functions employed to randomize

events (rand and randperm) depend on the random number generator of MATLAB. Before
calling them it is critical to seed this generator to a random state (e.g. based on current time:
seed = round(sum(10*clock)), and setting the random number generator state to
this number by rng(seed). It is a good practice to save the seed value together with the
experimental session information. In this way we could replicate the stimulation protocol for
each participant in case we need it.

Step 8: Showing instructions and a ready screen, and thanking the participant

Once the main experiment is ready and we have checked that it runs as planned, it is
time for adding some supplementary elements, such as instructions, a training session before
starting the experiment, or a final screen to thank the participant at the end. In this example,
we suggest you to add the instructions, a ‘ready’ and a ‘thanks’ screen. There are two ways of
presenting text on the screen: by using 'DrawText' or by presenting an image that we
have previously created with the text we need to show. In this experiment we are going to use
both ways for the sake of illustration. In this case, we read the images for the instructions and
the ready screen and present them as textures as described in Step 2, and thank the
participant with the 'DrawText' function.

When thanking the participant, we would like the text to appear in the center of the

screen. To calculate the coordinates to place the text in the center, we have first calculated
the x,y coordinates for the middle of the screen and then set up the characteristics of the text.
The Screen command 'TextBounds' (textRect = Screen('TextBounds',
windowPtr, text) returns the rect of the text. Next, we have subtracted half of the
width and height of the text to calculate the x,y coordinates where our text should begin.
Finally, we just need to draw and flip the text.

24

Step 9: Converting the script into a function and including try-catch statement

In order to easily call the experiment from the Command Window, we need to convert
the script into a function by adding the term function in the first line of our script. The
name of the .m file should be the same as the one we assigned to the function. In this case,
this is Step_9 (please, remember not to leave blank spaces between words in MATLAB; you
can use _ instead). However, we recommend to change it by a more meaningful name such
as AnimalCategorization, as we do in the final script. The right-hand arguments of the function
are input variables, for example, the subject number that will be used to save the
experiment information for each participant. The left-hand arguments of the function are

25

output variables, which in our case will be a variable containing the results of the
experiment, as we will explain in detail in next step.

In addition, it is a good practice to include a try-catch statement. Thus, PTB would try

to run the experiment, which is placed in the try block. In case it encountered an error, the
catch block would be executed. In this way we ensure that onscreen windows get close and
that we get access to the Command Window again. Otherwise, we would need to end PTB by
pressing Ctrl+Alt+Del if any error occurred during the experiment. We can also use
psychrethrow(psychlasterror) to ask PTB for the last error that made the
experiment crash.

Step 10: Saving experiment information and results in a file identified with participant’s ID

As a final step we want to save all the information generated during the experiment in
a .mat file identified with the participant’s code number
('AnimalCategorization_SubjectX.mat'; X is subject number). A well-organized
way to save this information is as a MATLAB structure. Thus, we would have a variable called
results, with several fields, e.g. subject number, seed of the random number
generator, stimulus or response. In turn, some of these fields might be comprised by
subsequent subfields. For instance, the field stimulus contains all the relevant information
regarding the stimulation employed.

26

Now your experiment is ready! You can change the name of the function by
AnimalCategorization and run your first participant by writing in the Command Window:

[results] = AnimalCategorization (1)

27

APPENDIX

function [results] = AnimalCategorization (subject)

try

 screenNumber = 0;

 % Choose the size of the window to open:
 % --- 1- Full screen presentation: for the actual experiment
 % rect = [];

 % --- 2- Small window presentation: for debugging
 rect = [600 100 1300 700];

 % Opening the window
 [windowPtr,rect] = Screen('OpenWindow',screenNumber,[127 127 127],rect);

 %% ----- Reading all necessary files and creating stimulus and response vectors -----
%%

 % Change directory to the images path
 dpath='C:\Psychtoolbox';
 addpath (dpath)
 cd([dpath '\Stim\Images'])

 % Read all the images (5 animals + 5 non-animals)
 Nanimal = 5;
 Nnonanimal = 5;
 Ntrials = Nanimal + Nnonanimal;

 for i = 1:Nanimal
 animal{i} = imread(['A' num2str(i) '.jpg']);
 end

 for i = 1:Nnonanimal
 non_animal{i} = imread(['NA' num2str(i) '.jpg']);
 end

 % Vector stimulus contains information about the ID of each image
 % Vector condition contains information about image category (animal = 1; non-animal = 2)
 stimulus = [1 2 3 4 5 1 2 3 4 5]';
 condition = [1 1 1 1 1 2 2 2 2 2]';

 % Create vectors to save subject's responses: key pressed, correct/error and RT for each
trial
 response_key = cell (Ntrials,1);
 response_correct = NaN (Ntrials,1);
 response_time = NaN (Ntrials,1);

 % Change directory to the folder where the fixation point is
 cd([dpath '\Stim\'])

 % Read the fixation point image
 fixation = imread('Fixation.jpg');

 % Read the image with the question mark
 question = imread('Question.jpg');

 % Read images for instructions and ready
 instructions1 = imread('Instructions_1.jpg');
 instructions2 = imread('Instructions_2.jpg');
 ready = imread('Ready.jpg');

 % Change directory to the folder where the sounds are
 cd([dpath '\Stim\Sounds'])

 % Read the sounds

28

 sound_correct = wavread('Sound_1000Hz');
 sound_correct = sound_correct';

 sound_error = wavread('Sound_500Hz');
 sound_error = sound_error';

 % Initializing and opening a PsychPortAudio device
 InitializePsychSound
 pahandle_correct = PsychPortAudio('Open');
 pahandle_error = PsychPortAudio('Open');

 % Filling buffer with sound
 PsychPortAudio('FillBuffer', pahandle_correct, sound_correct);
 PsychPortAudio('FillBuffer', pahandle_error, sound_error);

 %% Randomization of stimulus/condition order and fixation time

 seed = round(sum(10*clock)); % set a "random" seed for this experimental session
 rng(seed)

 random_order = randperm(Ntrials);
 stimulus = stimulus (random_order); % assign random order to stimuli
 condition = condition (random_order);

 fixation_time = rand(Ntrials,1)*(1-0.4) + 0.4; % random number between 0.4 and 1

 %% Showing instructions and a ready screen before starting the experiment

 texture = Screen('MakeTexture',windowPtr,instructions1);
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);
 WaitSecs(1)
 KbWait

 texture = Screen('MakeTexture',windowPtr,instructions2);
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);
 WaitSecs(1)
 KbWait

 texture = Screen('MakeTexture',windowPtr,ready);
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);
 WaitSecs(1)
 KbWait

 %% ----- Checking whether responses are correct and giving auditory feedback (1000Hz
correct, 500 Hz error) ----- %%

 for i = 1:Ntrials

 % Show fixation point for a random duration (between 0.4 and 1 s) as stored in the
vector fixation_time
 texture = Screen('MakeTexture',windowPtr,fixation);
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);
 WaitSecs (fixation_time(i))

 % Show images for 0.5 s
 % Show images following the random order of vectors stimulus
 if condition(i) == 1 % animal
 stimulus_id = stimulus(i);
 texture = Screen('MakeTexture',windowPtr,animal{stimulus_id});
 elseif condition(i) == 2 % non-animal
 stimulus_id = stimulus(i);
 texture = Screen('MakeTexture',windowPtr,non_animal{stimulus_id});
 end
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);
 WaitSecs (0.5)

29

 % Show question mark until the subject gives a response
 % If there is no response in 2 s, start next trial
 texture = Screen('MakeTexture',windowPtr,question);
 Screen ('DrawTexture',windowPtr,texture);
 Screen ('Flip',windowPtr);

 FlushEvents('keyDown');
 t1 = GetSecs;
 time = 0;
 while time < 2 % maximum wait time: 2 s
 [keyIsDown,t2,keyCode] = KbCheck; % determine state of keyboard
 time = t2-t1;

 if (keyIsDown) % has a key been pressed?
 key = KbName(find(keyCode)); % find key's name
 response_key{i} = key;
 response_time(i) = time;

 if condition(i) == 1 && strcmp(response_key{i},'k') == 1 % animal &
right
 response_correct(i) = 1; % it's correct
 PsychPortAudio('Start', pahandle_correct);
 elseif condition(i) == 1 && strcmp(response_key{i},'d') == 1 % animal &left
 response_correct(i) = 0; % it's an error
 PsychPortAudio('Start', pahandle_error);
 elseif condition(i) == 2 && strcmp(response_key{i},'k') == 1 % n-animal
&right
 response_correct(i) = 0; % it's an error
 PsychPortAudio('Start', pahandle_error);
 elseif condition(i) == 2 && strcmp(response_key{i},'d') == 1 % n-animal
&left
 response_correct(i) = 1; % it's correct
 PsychPortAudio('Start', pahandle_correct);
 end

 break;

 end

 end

 end

 %% Background window (gray = 127) (black 0; white 255)
 Screen ('FillRect',windowPtr,127);
 Screen ('Flip',windowPtr);
 WaitSecs (1)

 %% Thanking the participant
 text='Thanks!';

 % Characteristics of the text
 Screen('TextFont',windowPtr,'Helvetica');
 Screen('TextSize',windowPtr,52);

 % Center of the screen
 centerX = rect(3)/2;
 centerY = rect(4)/2;

 % Text size in pixels
 textRect = Screen('TextBounds',windowPtr,text);
 textWidth = textRect(3);
 textHeight = textRect(4);

 % Text coordinates
 textX = centerX - textWidth/2;
 textY = centerY - textHeight/2;

 % Drawing text

30

 Screen('DrawText',windowPtr,text,textX,textY,[0 0 0]);
 Screen('Flip', windowPtr);

 WaitSecs(3)

 %% Saving experiment information and results in a file called
AnimalCategorization_SubjectX.mat (X is subject number)
 results.subject = subject;
 results.seed = seed;
 results.ntrials = Ntrials;

 results.stimulus.id = stimulus;
 results.stimulus.condition = condition;
 results.stimulus.stim_time = 0.5;
 results.stimulus.fixation_time = fixation_time;

 results.response.key = response_key;
 results.response.correct = response_correct;
 results.response.reaction_time = response_time;

 cd([dpath '\Results'])
 fout=sprintf('AnimalCategorization_Subject%d.mat', subject);
 save(fout, 'results');

 %% Closing the PsychPortAudio device
 PsychPortAudio('Close', pahandle_correct);
 PsychPortAudio('Close', pahandle_error);

 %% Closing the window
 Screen('CloseAll'); % sca

catch % this catch section closes the window automatically in case of an error

 Screen('CloseAll');
 psychrethrow(psychlasterror); % throw last error

end

	Página en blanco

